
AN ABSTRACT OF THE THESIS OF

Shirley Roth for the degree of Master of Science in

Computer Science presented on October 13, 1986

Title: IMPLEMENTING A SEMANTIC DATA MODEL

Abstract approved: Redacted for Privacy
Michael J. 4reiling (.,---"'

OSIRIS is an integrated information architecture which was developed at

Oregon State University. SIDUR is the data model upon which the semantic level is

based. The semantic level is the mediating level between user's information needs

and the stored data. The advantages of providing a semantic database environment

include flexibility and independence in data access and schema changes and increased

representational power.

The purpose of this paper is to describe the prototype implementation of SIDUR

in Franz Lisp on a VAX0-1 1/7 SO. This implementation maps semantic-level

database operations into a descriptive formalism, called the BAGAL query language,

based solely on present data which is amenable to optimization.

VAX® is a trademark of Digital Equipment Corporation.



Implementing a Semantic Data Model

by

Shirley L. Roth

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed October 13, 1986

Commencement June 1987



APPROVED:

Redacted for Privacy
Assistant Professor of puter Science in charge of major

Redacted for Privacy

Chairman of Department of Computer Science

Redacted for Privacy

Dean of Gradu School 1

Date thesis is presented October 13, 1986

Typed by researcher for Shirley L. Roth



ACKNOWLEDGEMENT

This paper is presented as a product of the OSIRIS project research group under

the direction of Professor Michael J. Frei ling.



TABLE OF CONTENTS

I. IMPLEMENTING A SEMANTIC MODEL 1

1. 1 Overview 1

1.2 Defining a Model 1

1. 3 Defining a Data -level Target Language 2
1.4 The Translation Process 3

1. 5 Providing an Environment 4
1.6 Literature Review 4

II. THE SIDUR MODEL 6

2. 1 Information Modeling Constructs
2. 2 The Language of Sigma Expressions

III. THE DATA ACCESS INTERFACE

7

11

18

3. 1 The OSIRIS Architecture 18
3. 2 The Data -level Model 20
3. 3 The Goal of Total Query Translation 23
3. 4 The Data-level Language 23

3. 4. 1 BAG Assignments 24
3. 4. 2 Tuple Operations 25
3. 4. 3 BAG Operations 27

IV. TRANSLATION OF SEMANTIC QUERIES 31

4. 1. The Query Translation Process 31
4. 1. 1 Description of the Translation Process 31
4. 1. 2 The Canonical Form of an Operation 32
4. 1. 3 Sigma Expansion 36

4. 2 The Code Generation Process 40
4. 2. 1 Use of Set Operators to Combine Results 40
4. 2. 2 Use of Negation 43
4. 2. 3 Building Extension of the *enquire Part 44
4. 2. 4 Update Atomicity 46
4. 2. 5 Update Ambiguity 47

4. 3 Query Interpretation 50
4. 3. 1 General Problems 50
4. 3. 2 Explicit Pre-conditions 51
4. 3. 3 Preserving Referential Integrity 54
4. 3. 4 Interpreting Data Access Operations 55
4. 3. 5 Interpreting Update Operations 57
4. 3. 6 Interpreting Action Operations 63
4. 3. 7 Interpreting Object Operations 65
4. 3. 8 Interpreting Compound Operations 65



V. IMPLEMENTATION OF THE TRANSLATION PROCESS 69

5. 1 Goals 69
5. 2 General Strategy 69
5. 3 Main Control Routines 70
5. 4 Translation Routines 72

5. 4. 1 Disjunctive Update Operations 80
5. 4. 2 Tuple -level Atomicity 89

5. 5 Syntax Checking and Input String Validation 90
5. 5. 1 Data-value Type Checking 91

5. 6 Operation Preparation Routines 92
5. 7 Expression Simplification Routines 94

5. 7. 1 The Canonical Form 94
5. 7. 2 The Simplification Algorithm 97
5. 7. 3 Definition Expansion 98
5. 7. 4 *assert Operations 99

5. 8 Cardinality Constraints 102
5. 9 Pre conditions 104

5. 9. 1 Necessary Pre-conditions 104
5. 9. 2 Required Pre conditions 106
5. 9. 3 TOKEN Definitions 109

5. 10 Bag Building Routines 112
5. 11 Utility Routines 112

VI. SCHEMA BUILDING 113

6. 1 Schema and Data Equivalence
6. 2 Run-time Schema Management
6. 3 Initializing a Schema
6. 4 Schema Operations

VII. SUMMARY

113
113
115
116

118

BIBLIOGRAPHY 119



APPENDICES

Appendix A. Use of the SIDUR Implementation 122

UNIX® 122
Login Procedure 122
Starting a Session 123
Lisp 123
Data Manipulation Operations 124
Saving Results and Getting Output 124
Pre-Defined Operations and Sigma Expressions 125
Batch Entry 126
Recovery 126
Ending a Session 127

Appendix B. VAX® Environment 128

List of Modules
List of SIDUR Files
List of Global Variables

Appendix C. Algorithm and Data Structures

128
129
130

131

Driver Routines 131
Translation Routines 132
Expression Preparation Routines 13S
Simplification Routines 13 S
Computations 137
Object Checking Routines 138
Syntax Checking Routines 139
BAG Building Routines 139
Initialization and Wrap-up Routines 140
Schema Operations 141
Utilities 141

Appendix D. A Sample User Session 142

Appendix E. SIDUR BNF 144

General Syntactic Entities 144
Data Definition Language 146
Data-value Classes 146
Object Classes 147
Situations 148
Computations 149
Actions 150



Sigma Expressions
Data Manipulation Language
Index Of Reserved Words And Prefixes

Appendix F. BAGAL Query Language BNF

150
152
153

156

Specification of New BAG Query Format 156
Preliminaries 157
BAG Query Definition 158
BAG Operations 158
BAG Assignments 159
BAG Constructions 160
ACCESS Operations 162

Appendix G. Simplified BNF 164

Data Definition Language 164
Data-value Classes 164
Object Classes 165
Situations 166
Computations 167
Actions 168
Sigma Expressions 169
Data Manipulation Language 170

Appendix H. A Sample Schema Simplified Form 172

Appendix I. Schema for Figure 16 181

Appendix J Departures from the SIDUR Manual 184

Appendix K. Notation Used In This Paper 185

UNIX® is a trademark of Bell Laboratories and is to be taken as such
throughout this paper.

VAX® is a trademark of Digital Equipment Corporation and is to be taken as
such throughout this paper.



LIST OF FIGURES

Figure Pam

1. Schema Construct Slots 9

2. TEACHES-STUDENT Schema Definition 10

3. PRIMITIVE Schema Definitions 10

4. PRIMITIVE TEACHES-STUDENT Expression 10

5. TAKES-COURSE Extension 12

6. Action COMPLETES 16

7. FOR Operation 17

8. SINCE Operation 17

9. The OSIRIS Architecture--Expanded View 19

10. Binary Functional Associations 22

11. ACCESS BAG Assignment 25

12 Data-level *assert Procedure 29

13. Computation BAGAL Query 30

14. Operation Using Connectives 32

15. Operation With Simplified Connective Expression 34

16. REFLECT Operation and Simplified Expression 35

17. SIDUR Representation of an Extension 37

18. SIDUR Virtual Extension 37

19. PRIMITIVE Schema Definitions 38

20. Present Extensions 38

21. Result of Sigma Expansion 38

22. Expanded REFLECT Expression 39



23. Connective Expression 41

24. Simplified Connective Expression 41

25. Sample Extensions 42

26. Result of Computing Expression in Figure 23 42

27. Result of Computing Expression in Figure 24 43

28. Data-level ACCESS BAGs and Merge Operations 45

29. Disjunctive Operation Flow Chart 49

30. CHECK Data-level Query 56

31. Update Operation and Primitive Expressions 58

32. BAGAL Update Operation 60

33. PERFORM Operation Flow Chart 63

34. PERMIT? Data-level Query 64

35. Compound Operation Resulting In an Extension 66

36. Extension of Tuples 66

37. Projected Extension of Tuples 66

38. Data-level Compound Operation 68

39. SIDUR Flowchart 71

40. *enquire Expression 74

41. Data-level ACCESS BAGs and Merge Operations 75

42. Data-level Flowchart for Computation Queries 76

43. Computation Query 77

44. *assert Expressions 78

45. Data-level *assert Procedure 79

46. Compound Disjunctive Update Operation 81

47. Disjunctive Update Operation 82



48. Simplified Disjunctive Update Operation 82

49. CHOICE TREE FOR DISJUNCTIVE Update 83

)0. Presenting the Choice to the User 85

51. Data-level Disjunctive Update 86

52. BAGAL Update Operation 88

53. Algorithm of Data-level Update Operation 90

54. Canonical Form of An ENQUIRE Operation 95

55. Canonical Form of a REFLECT Operation 96

56. Mapping Table 99

57. ASSERT and REFLECT Operations 101

58. Situation With Cardinality Constraint 103

59. Data-level Cardinality Check 105

60. Algorithm for Merging Two Expressions 108

61. Circular TOKEN-type Definitions 110

62. Defining Situation With Required Pre-condition 111

63. System Situations 114

64. Schema Storage of TEACHES-COURSE 115



IMPLEMENTING A SEMANTIC DATA MODEL

I. IMPLEMENTING A SEMANTIC MODEL

1.1 Overview

This thesis is a description of an implementation of the SIDUR data model.

SIDUR is the semantic level in the OSIRIS Integrated Information System, which is

an information system architecture developed by Michael J. Frei ling and his students

in the Computer Science Department at Oregon State University in Corvallis,

Oregon. The fundamental assumption of the OSIRIS project is: the data that will be

stored will be sufficiently important, complex, and massive to warrant almost any

amount of "consideration." "Consideration" in this sense means dedication of
adequate computer resources to provide a user-friendly environment that is tolerant

of change in data storage or schema description, that allows arbitrary interactive

data access and update operations, and that allows non-technical users to build or

revise schema.

1.2 Defining a Model

In order to provide a flexible, user-friendly system, the OSIRIS architecture is

based on the following three design assumptions:

1) At least three levels of data representation and support are needed. The

semantic level is concerned with the interpretation of stored data in that it enforces

constraints on allowable data for data update operations and derives virtual
information from stored data for data retrieval operations. The data level is



2

concerned with the nature, management, and manipulation of stored data in a
manner that is independent of both high-level interpretation and low-level access to

actual data structures and physical storage devices. The file level manages the actual

data structures and the access of the data on physical devices.

2) Semantic-level queries and operations should be expressed without regard to

data-level and file-level concerns, and vice versa. In order both to insure
independence of the data level from matters of interpretation and to allow it
adequate flexibility in query optimization, each semantic-level query must be fully

translatable into a single procedure described by the data-level language.

3) Data-level query planning should be independent of the actual access
algorithms but should transparently reflect both the semantics of the higher-level

query as well as the processing cost considerations used in query optimization.

This paper addresses the implementation concerns of the second assumption

described above. It is hypothesized that semantic-level queries can be expressed

independently of lower-level concerns and that each semantic query can be totally

mapped to a lower-level data access language procedure, which is independent of

semantic concerns. This result is discussed theoretically in (Frei ling, 1983a) and is

demonstrated here by describing an actual implementation of SIDUR in Franz Lisp

on a VAX-11/750 running Berkeley VAX/UNIX (4. lbsd revised 1 Sept. 1981.)

Since the purpose of a semantic-level model is to mediate between real-world

information and stored data, the model must be defined in such a way that this

"mediating" role is clearly specified by the functions that it performs. SIDUR has

been defined to perform these functions:

1) enforce pre-conditions and constraints on allowable data-store states,

2) provide high-level query operators that can be used to attain the allowable

states and to access the allowable states, and

3) allow flexible representation of information.

1.3 Defining a Data-level Target Language

The data-level target language called BAGAL (BAG ACCESS Language) has

been designed to allow expression in it of any semantic-level query whether written



3

in the SIDUR language or in other semantic-level languages that may be developed

later. In addition, this general purpose data access language provides data

independence as well as the opportunity to optimize query processing. BAGAL is

partially declarative and partially procedural. Procedural portions of a query
correspond to explicit ordering or conditional processing necessary to preserve the

original query semantics. Those portions of the query that are not so constrained

remain expressed in a declarative form in order to permit further processing to
optimize control choices.

1.4 The Translation Process

The SIDUR translation process is based on re-expressing each SIDUR operation

in terms of two primitive semantic operations, *enquire and *assert, and in terms of

how the results of these primitive operations are to be related to each other.

*enquire is the primitive data access operation. *assert is the primitive data update

operation. These primitive semantic operations are translated to BAGAL access and

update operations. Virtual semantic-level schema objects are re-expressed in terms

of the lower-level schema objects, which are known to the data level. Semantic

relationships are re-expressed as BAGAL set and computation operations, which

specify associations between results of update and access operations. Update

pre-conditions and constraints are re-expressed as BAGAL conditional and

procedural operations. So, the semantic-level meaning of a SIDUR operation is

expressed at the data level as a set of these partially ordered BAGAL operations

acting on data-level schema objects. After the translation of a SIDUR operation is

completed, the BAGAL access and update operations are interpreted at the data level

to produce extensions of data values. The resulting extensions are merged together

at the data level using the BAGAL set and computation operators to produce the

final virtual extension that was specified by the relationship in the SIDUR operation.



4

1.5 Providing an Environment

The SIDUR semantic-level data model has been implemented in Franz Lisp on

a VAX-11/750 running the Berkeley VAX/UNIX operating system (4. lbsd revised 1

Sept. 1981.) The implementation is currently a stand-alone set of Franz Lisp

functions that provides a simplified user interface to prompt for SIDUR operations.

Each SIDUR operation is translated in its entirety into a single data-level query.

The SIDUR module has been implemented so as to be suitable for incorporation as

the semantic level of the OSIRIS Integrated Information System.

The SIDUR implementation currently provides the user with only the

capabilities to define data in semantically meaningful terms, to perform

semantic-level operations, and to view the resulting data-level queries. These

queries were somewhat simplified for pedagogical purposes and used as the data-level

examples in this paper. Later, after the data-level interface is completed, the user

will be presented with actual answers in response to SIDUR operations. It is expected

that these capabilities will provide the mechanism for further research on which

functions are needed by users at the semantic level and which are the most useful

forms for providing these functions.

1.6 Literature Review

A number of data models and approaches to representing information have

been proposed in the literature (Abrial, 1974; Chen, 1976; Kogan and Frei ling, 1984;

Smith and Smith, 1977a; Smith and Smith, 1977b; Hammer and McLeod, 1978; and

Shipman, 1981.) These models have been based on a framework of levels of

abstraction within an information system (ANSI/X3/SPARC, 1975; Senko, 1976; and

Frei ling, 1983a.) The development of the semantic level has focused on dealing with



5

information, rather than data, at this level (Senko, 1973; Nijssen, 1976; Kent, 1978;

Kogan, 1984; and Tsichritzis and Lochovski, 1982.)

Although the notion of semantic data modeling has been discussed by various

authors, very little has been published on implementing data models. Many of the

proposed models have not been implemented (Cattell, 1983.) Even much of the
design work in mapping an information structure to an implementation data model

has been very specific to one particular system being developed (Bracchi, 1982.)

Many of the proposed data models have considered data access concerns but

have not made explicit provision for data manipulation. The TAXIS data model

offers the ability to define transactions that can cause database state changes

(Mylopoulos and Wong, 1980.) Incorporating a data manipulation language at the

semantic level can be been done in three ways:

1) procedural--programs in a standard programming language (Mylopoulos et.

al., 1980,)

2) algebraic--a defined set of data manipulation operators (Buneman and
Frankel, 1979; Codd, 1979; and Cattell, 1983)) and

3) declarative expressions similar to predicate logic are given a data

manipulation interpretation (Freiling, 1983b; Freiling, 1982; Clocksin and Mellish,

1981; and Warren, 1980.)

Optimization, at both the semantic level and at the data level below it, are

major concerns in implementing a data model. Various semantic-level optimization

techniques such as indexing the schema and caching have been discussed (Cattell,

1983.) Optimization at the data level is crucial but must be obtained without the

loss of independence between the semantic and access levels. One approach to
achieving both adequate performance and data independence is to translate a
semantic operation entirely into a single data-access-level language procedure

(Freiling, 1983a.) The access level is then free to optimize the entire operation and

yet be unconcerned with semantic issues.



6

H. THE SIDUR MODEL

The purpose of the SIDUR level in the OSIRIS architecture is to mediate

between users' information needs and the stored data. SIDUR handles this

interpretation of data by insuring that the stored data is in compliance with various

kinds of schema-defined constraints on allowable database conditions and by

providing a real-world-oriented mechanism for accessing and changing states.

SIDUR is based on two components that enable it to derive and manipulate virtual

data. First, there is a schema that describes the stored data in terms and associations

related to actual user information needs. Second, there is a high-level data access

and manipulation language.

The SIDUR level achieves its independence of lower-level concerns by allowing

users to deal exclusively with high-level schema constructs rather than with
constructs that resemble computer data structures. These high-level constructs are

"close" to those into which users map their real-world conceptions of information.

The SIDUR model provides the following types of information modeling constructs:

situations, data-value classes, object classes, computations, and actions. The schema

for a particular application will contain multiple occurrences of each of these
construct types. The name and description for each occurrence of a schema
construct is mapped from a real object, action, etc. in the application world.

The semantic-level access and update operations are described by a language of

declarative statements composed of system operators, construct names, and sigma

expressions, which describe relationships between data values. These operations are

also "close" to the descriptions and procedures used in the real-world application to

request information or to update information. SIDUR allows the user to manage the

schema in the same manner as application information is handled and thus allows use

of these same operations on the schema.



7

2.1 Information Modeling Constructs

The SIDUR model supports five basic types of information-modeling

constructs:

situations

data-value classes

object classes

computations

actions.

Situations are the fundamental information storage constructs in that each defined

situation is associated with an underlying real or virtual extension of stored data.

Values cannot be stored into situation extensions unless certain pre-conditions

defined in the schema are true. For closed-world situations, we assume that any

missing values indicate that they do not belong in the situation. Open-world

situations have two extensions. The affirmative or positive extension contains values

known to belong in the situation extension. The negative extension contains values

known not to belong in the situation extension. Values that are missing from both

extensions are unknown with respect to this situation extension. Data-value classes

and object classes are used to partially specify which data values may be associated

with each other in a situation extension. Each object class has associated with it a

data-value class to specify which values may legally belong to the object class. Each

data-value class describes a set of data values, INTEGER, REAL, STRING, or

TOKEN. A TOKEN is a system-generated value used to represent a real-world

entity that must be uniquely and permanently identified in an application. Each

data value participant in a situation must belong to the schema-prescribed object

class for its corresponding role in the situation. A computation is an aggregate

function whose value is determined by the values of its arguments, which are derived

from situational extensions. Actions describe user-level update operations, which are

defined in terms of their effects on situational extensions. Further information on

these constructs may be found in the "SIDUR Manual" (Freiling, 19 8 3c. )



8

Each occurrence of a SIDUR construct is described syntactically in the schema

for an application by assigning it a unique name and by filling in values for the

various slots specified for that type of construct. Each slot describes a specific aspect

of the construct in relation to other constructs or in terms of system primitives. The

semantic significance of a construct is determined by its type, by its use of system

primitives, and by its specific connections with the schema constructs whose names

appear in its various slots or who mention it in their slots. Thus, the schema can

replace hard-coded application programs and user memory in fully describing these

semantics. Figure 1 lists the slots for each of the SIDUR constructs.

As an example of how these slots are used, Figure 2 shows a schema definition

for some TEACHES-STUDENT situation that defines a relationship between two

objects, one of type PROFESSOR and one of type STUDENT. The definition: slot of

this situation is a non-procedural description of a virtual extension that can be
derived from the extensions of TEACHES-COURSE and TAKES-COURSE by

finding pairs of instances from the latter two situations having in common the same

object participant (labeled 'z' in the definition.) As it turns out, TEACHES-COURSE

and TAKES-COURSE are also defined in terms of other situations as shown in
Figure 3. It is possible, however, by a substitution procedure, to replace

non-PRIMITIVE situations by their defining expressions until only PRIMITIVE

situations remain in the expression, which now describes the original

non-PRIMITIVE virtual extension. PRIMITIVE situations are the only ones known
at the data level. TEACHES-OFFERING, OFFERING-OF, and

TAKES-OFFERING are all PRIMITIVE situations. The virtual extension of the
expression in Figure 2 can be computed using the SIDUR-defined connectives 'and',

'or', and 'not' logically as having their ordinary meaning, or procedurally as
performing certain algebraic operations on extensions of data values. This will be
discussed in Section 2. 2. Figure 4 shows the PRIMITIVE situation expression that is

equivalent to

(TEACHES-STUDENT (agent a) (object b)).

This expression is used to compute the virtual extension of the definition shown in

Figure 2.



9

DATA-VALUE CLASSES

type: INTEGER, REAL, STRING, or TOKEN
syntactic structure of STRING data values

size: the storage required for each member data value
minval: minimum range value for a numeric class
maxval: maximum range value for a numeric class
precision: number of significant digits for real numbers

OBJECT CLASSES

representative: name of a data-value class whose elements
"stand in place for" real objects

superclasses: names of object classes of which the class
under definition is a specialization

names: publicly available names for TOKEN-type objects
definition: situation used to define a TOKEN class

SITUATIONS

participants: the objects whose participation defines
the situation, and the roles they play

cardinalities: maximum occurrences of participants
extension: whether the situation is expected to obey open-

world or closed-world (the default) assumption
necessary: pre-conditions that are logically necessary

for consistency
required: pre-conditions set by policy
definition: PRIMITIVE (stored) or a sigma expression

specifying a virtual extension
sufficient: minimum that can suffice for definition:

COMPUTATIONS

participants: objects and values that serve as inputs
or outputs for the computation

definition: - the expression that specifies how to carry
out the computation

ACTIONS

participants: objects involved in the defined behavior
prerequisites: pre-conditions of the action
results: sigma expression describing the action's result

Schema Construct Slots
Figure 1



10

situation TEACHES-STUDENT

participants: ((agent x PROFESSOR) (object y STUDENT))

definition: (and (TEACHES-COURSE (agent x) (object z))

(TAKES-COURSE (agent y) (object z)))

TEACHES-STUDENT Schema Definition
Figure 2

situation TEACHES-COURSE

participants: ((agent x INSTRUCTOR) (object y COURSE))

definition: (and (TEACHES-OFFERING (agent x) (object z))

(OFFERING-OF (agent y) (object z)))

situation TAKES-COURSE

participants: ((agent x STUDENT) (object y COURSE))

definition: (and (TAKES-OFFERING (agent x) (object z))

(OFFERING-OF (agent y) (object z)))

PRIMITIVE Schema Definitions
Figure 3

(and (TEACHES-OFFERING (agent a) (object w))

(OFFERING-OF (agent z) (object w))

(TAKES-OFFERING (agent b) (object w)))

PRIMITIVE TEACHES-STUDENT Expression
Figure 4



11

2. 2 The Language of Sigma Expressions

Sigma expressions describe relationships between data values. Each sigma

expression has associated with it a unique extension that is a collection of data values

from the current database. The sigma expression notation is declarative in nature

and thus resembles logic-based languages such as predicate calculus or PROLOG

(Clocksin and Mellish, 1981; and Warren, 1980.) However, the object denoted by a

sigma expression is an extension of data values rather than a single boolean truth

value. Thus, each sigma expression is a non-procedural specification of a uniquely

determined collection of stored data. Every sigma expression has a procedural

interpretation with respect to the primitive data access operation *enquire. This

interpretation determines the computation required to produce the needed extension.

This collection is composed of a set of instances or tuples. Each tuple consists of a set

of data values. Each data value is bound to, that is can be substituted for, a role in

the sigma expression. Under this *enquire interpretation the set of all such tuples is

the extension of the sigma expression. For example,

(TAKES-COURSE (agent y) (object z))

is a simple sigma expression whose current extension can be represented as shown in

Figure 5. Sigma expressions such as the one above are also called situation
expressions. A single binding tuple from the extension can be represented as:

<(agent --> P-10) (object --> C-1)>.

When the values from the tuple are substituted back into the sigma expression

(TAKES-COURSE (agent P-10) (object C-1)),

the resulting sigma expression, considered as a predicate, is an accurate statement

with respect to the stored database.

The power of SIDUR's declarative representation stems from the fact that each

sigma expression is subject to other interpretations than just *enquire. Under the

*assert procedural interpretation, sigma expressions are used to describe operations on

extensions of data values. These operations will cause the stored database to change

with the result that the expression will become true with respect to the stored

database. In the example above, the *assert interpretation of



12

(TAKES-COURSE (agent P-11) (object C-1))

would cause the binding tuple:

agent --> P-11) (object --> C-1)>

to be added to the TAKES-COURSE extension providing that it is not already there.

agent x object y

P-21 C-1

P-10 C-1

P-3 C -1

TAKES-COURSE Extension
Figure 5

Note that a *deny interpretation is allowed for in the SIDUR model but is not

strictly needed because *assert is defined such that the expression following it is made

to be true in the stored database. Making the expression true can result in values

being added and/or deleted so that all of the SIDUR update operators can be mapped

to the *assert interpretation. In order to express deletion of values at the SIDUR

level, the operators REFLECT-NOT or DENY can be used. Another way to denote

deletion is by using REFLECT or ASSERT together with the 'not' connective. These

operators will be explained later in this section. In general, the *deny interpretation

of an expression such as

*deny (TAKES-COURSE (agent P-10) (object C-1))

can be defined in terms of *assert as follows

*assert (not (TAKES-COURSE (agent P-10) (object C-1)).

Sigma expressions, under both the *enquire and *assert interpretation, can also

be used to:

1) request an extension with fewer participants than all of the ones appearing

within the situation expression, as is provided by the relational algebra projection

operation (Ullman, 19 8 0),

2) specify constants in place of some or all of the variables, and



13

3) refer to multiple situations using the extensional connectives 'and' and 'or'.

Under the *enquire interpretation of a sigma expression:

1) 'and' roughly corresponds to the intersection of extensions,

2) 'or' roughly corresponds to the union of exten: ,ons,

3) 'not' roughly corresponds to set subtraction of extensions, and

4) 'empty' determines whether there are any tuples in the extension described by

its situation expression.

Under the *assert interpretation of a sigma expression

1) 'and' means to *assert all of the nested expressions,

2) 'or' means to *assert one of the nested expressions,

3) 'not' means to carry out operations to make the nested expression not true in

the current database, and

4) 'empty' has the same meaning as 'not'.

Further detail regarding sigma expressions can be found in Section 1. 2 of the "SIDUR

Manual" (Freiling, 19 8 3c. )

A complete SIDUR operation consists of an operator and the sigma expression(s)

upon which the operator is to act. There are six situation operators in SIDUR:

ENQUIRE

CHECK

REFLECT

REFLECT-NOT

ASSERT

DENY.

An operation such as

(REFLECT (TAKES-COURSE (agent P-1) (object C-1)))

is defined in terms of its effect on the stored database extension or in terms of stored

data to be retrieved. The operator acts on the sigma expression that follows it. In

this case, the stored database will be updated to include the information specified in

the sigma expression.

ENQUIRE is a data access operator that specifies the retrieval of every tuple

of values that meets the description in the situation expression.

(ENQUIRE <sigma expression>) is defined simply as

(*enquire <sigma expression>).

CHECK is a data access operator that determines whether there is at least one

stored tuple that meets the description in the situation expression. In other words,



14

CHECK determines whether the extension that is represented by the expression is

'full' or 'empty'. 'full' means that there are tuples qualified to be in the extension but

that they are not returned in the extension of the query. 'empty' means that no
stored tuples qualify to be in the extension.

(CHECK <sigma expression>) is defined as

(not (empty (*enquire <sigma express ion>))).

The last four situation operators are *assert operators. They cause additions

and deletions of values in the stored database. Data values will be added only if no

cardinality constraints (restrictions on the maximum number of times a data value

may occur in a particular role extension) and if no necessary or required
pre-conditions are violated.

The REFLECT operator causes the database to be changed so that the sigma

expression will make a true statement with respect to the stored data. That is, the

stored-data extension will be changed so that it "reflects" the information in the

sigma expression. However, if necessary or required pre-conditions are defined in

the schema for any of the situations that will have values added, the pre-conditions

must all hold in the current database before it is changed.

(REFLECT <sigma expression>) is defined as

(*enquire <all pre-conditions and cardinality constraints>)

if all pre-conditions and constraints hold then

(*assert <sigma expression>).

ASSERT, a stronger update operator, can cause the stored database to be
updated so that, not only does the sigma expression become true, but the sigma

expression that represents the required pre-conditions becomes true. However, the

necessary pre-conditions must already be met because the ASSERT operator does not

cause any changes to bring them about. For ASSERT, required pre-conditions are

policy changes or bookkeeping updates that will be handled automatically for the

user. In contrast, the necessary pre-conditions are logically necessary to maintain

database integrity and cannot be overridden.

(ASSERT <sigma expression>) is defined as

(*enquire <necessary pre-conditions/cardinality constraints>)

if necessary pre-conditions/cardinality constraints hold then

begin

(*enquire <required pre-conditions>)

if all required pre-conditions do not hold then



15

(REFLECT <required pre-conditions>)

if all required pre-conditions hold in the database then

(*assert <sigma expression>)

end.

REFLECT-NOT causes changes in the stored database so that the sigma
expression does not make a true statement about the stored database. If the changes

result in data values to be added, the policies defined for REFLECT will apply to the

operation.

(REFLECT-NOT <sigma expression>) is defined as

(REFLECT (not <sigma expression>)).

DENY also causes changes so that the sigma expression does not make a true

statement, but any resulting data value additions are handled as if they were part of

an ASSERT operation.

(DENY <sigma expression>) is defined as

(ASSERT (not <sigma expression>)).

There are three action operators

PERFORM

PERMIT?

PERMIT!.

These operators act on the sigma expressions that are found in the prerequisites: and

results: slots of the action named in the operation. For example, Figure 6 shows the

schema definition of the action COMPLETES. The PERFORM operator in an
expression such as

(PERFORM (COMPLETES (agent P-6)

(object 0-4)

(value "A" ) ) )

will act on the prerequisites: and results:slots of the action COMPLETES.

PERFORM applies the ENQUIRE operator to the prerequisites: expression. If the

ENQUIRE succeeds, the extension resulting from the ENQUIRE is used to apply

REFLECT to the results: expression. PERMIT? applies the CHECK operator to the

prerequisites: expression.PERMIT! applies the ASSERT operator to the prerequisites:

expression.



16

action COMPLETES

participants: ((agent x STUDENT) (object y OFFERING)

(value z GRADE))

prerequisites: (TAKES-OFFERING (agent x) (object y))

results: (and (not (TAKES-OFFERING (agent x) (object y)))

(GRADE-FOR (agent x) (object z)))

Action COMPLETES
Figure 6

SIDUR also includes two compound operators

FOR

SINCE.

Each takes a "domain expression" and a list of simple operation requests. FOR applies

the ENQUIRE operator to the domain sigma expression listed in the first part of the

operation and then uses the resulting extension to carry out the simple operation

requests listed in the second part of the operation. For example, Figure 7 shows a

FOR operation that retrieves the IS-STUDENT/HAS-NAME extension and then

PERFORMs the indicated action on it. SINCE applies the REFLECT, rather than

ENQUIRE, operator to the domain expression and then uses the resulting extension to

carry out the remaining simple operations. Figure 8 shows a SINCE expression that

acts on the same sigma expression as does the FOR operator in Figure 7. The FOR

operation will only graduate SALLY if she is already recorded as a student. The

SINCE operation will first record SALLY as a student if she is not already, and then

will graduate her. The usefulness of SINCE is that the domain expression represents

an assumption that is enforced if it turns out not to be true at the time the operation

is performed.



(FOR (x)

(and (IS-STUDENT (agent x))

(HAS-NAME (agent x) (value "SALLY-BROWN")))

(PERFORM (GRADUATES (agent x) (object 3.96))))

FOR Operation
Figure 7

(SINCE (x)

(and (IS-STUDENT (agent x))

(HAS-NAME (agent x) (value "SALLY-BROWN")))

(PERFORM (GRADUATES (agent x) (object 3.96))))

SINCE Operation
Figure 8

The object operators are

17

CREATE

DESTROY.

CREATE results in the creation of a system-generated object TOKEN whose first

character is that of the object-class name listed after CREATE. DESTROY removes

an object TOKEN from use in the stored database. Any tuples in which it is

associated are also removed.

Please refer to the "SIDUR Manual" (Frei ling, 1983c) for further details on the

SIDUR operations and the language of sigma expressions. However, it should be

mentioned that the SIDUR philosophy does not rely specifically on this exact set of

operators or on their definitions. The methodology can be used to easily build new

semantically motivated definitions.



18

III. THE DATA ACCESS INTERFACE

3.1 The OSIRIS Architecture

The architecture of the OSIRIS Integrated Information System (Frei ling,

1983a) is designed to provide a hierarchy of independent modules. Each module has a

well-defined function appropriate to the level at which it occurs in the system, and

each is appropriate for interfacing with other modules. For example, the data-access

level is designed to be a general purpose module that can support SIDUR as well as

other high-level database modules that might be developed.

The primary focus in the design of the OSIRIS architecture is to provide

support for an implementation of a semantic data model and schema. The three

major components in the OSIRIS architecture are:

1) the semantic-level model,

2) the data-access-level model, and

3) the file-level model.

The division of OSIRIS into these three levels is based on placing the functions to

accomplish the following major database tasks at the corresponding level:

1) semantic level--interpretation of stored data,

2) data level--specification of stored data value strings, and

3) file level--choice of storage structures to be used.

An expanded diagram of the OSIRIS architecture is shown in Figure 9.

The reason for choosing three levels, as well as for assigning the above three

areas of function to each, is based on the ability of such an architecture to provide:

1) support for a semantic model,

2) data and schema independence,

3) isolation of user information concerns and data storage concerns,

4) ability for non-technical users to design schema,



19

USER

4'

Natural language statement

4

Semantic Level
Schema and Model

Natural Language Interface

4,

Semantic Query

4
Semantic Processor (SIDUR)

4,

Bag Query

4.

,1

Data Level
Schema and Model

BAG Query Processor and Optimizer J
4.

Access Machine Code

4.

Basic Access Machine

4

File Level
Schema and Model

Stored Data

The OSIRIS Architecture--Expanded View
Figure 9



20

5) incremental, non-cumbersome re-design of schema,

6) expandable data storage, and

7) processing of complex queries in an efficient manner.

3.2 The Data-level Model

The data level of the OSIRIS architecture is the go-between level for the

semantic and file levels. As such, it is unconcerned with matters of information

interpretation or of data structure. It is concerned solely with the data that is

actually present in storage, which in the case of the SIDUR model is composed of the

collective extension of the PRIMITIVE situations. The data level is free from
matters of interpretation. Consequently, it is not responsible for insuring the

validity of inserted data values or for enforcing semantic-level constraints and

pre-conditions. The semantic level handles constraints and pre-conditions by writing

a data-level query that will perform such tasks transparently to the data level. This

can be done by including low-level operators in the data-level query whose overall

effect will cause such tasks to be performed.

The data-level query descriptions do not have reference to physical storage data

structures. However, the higher-level associations between data values, which

embody much of the information in a database system, are of prime concern to the

data level. The associations at the data level represent logical structure and cannot

be removed without losing information at the semantic level. The OSIRIS project

has carefully considered alternative data-level representational models, including the

relational model (Codd, 1970; and Date, 1975) and binary models (Bracchi, 1976.)

These models were analyzed in terms of their capacity not only to represent these

logical structures but also to be free of lower-level physical data structure concerns

(Frei ling, 1983a.) The binary functional association (BFA) model has been developed

as the OSIRIS solution to the representational needs of this level. A BFA embodies

the functional dependency (Codd, 1977) between one participant in a tuple grouping

and a unique system-generated identifier called an instance TOKEN. Figure 10d

shows examples of BFAs. Both the BFA model and the binary models overcome most

of the rigidity of the relational model by allowing separation of attributes in storage.



21

However, because they do not require instance TOKENs, simple binary data models

allow even more flexibility. But, because information taken from a relational model

and re-expressed in a simple binary model cannot be full, reconstructed from its

binary representation, the simple binary data models can lose information. The BFA

model, like the binary models, treats all associations as being between pairs of data

values. But unlike the binary models, the BFA model, is able to re-associate the pairs

of values into the larger groupings of the original relation. This is done by using the

instance TOKEN to provide a common reference for each relational group. Like the

standard relational database tuple-id, it is used to identify a group of participants
from the relation. In addition, in the BFA model a functional dependency between

an instance TOKEN and each of the other attributes in the tuple is created.

So in OSIRIS, the structure that is known at the data level, and that is
represented by the data-level schema, consists entirely of the BFA associations.

These associations are the only data-level associations and are always between the

instance TOKEN and each of the other participants in the tuple. As shown in Figure

10, the semantic level can tie each participant grouping together by means of the

common instance TOKEN that is associated with each of its participants. Because all

of the participants in an instance can still be associated into one grouping, the BFA

model does not lose information. Because it does not force the physical data
structures to be based on entire tuples, it allows independence and flexibility in the

choice of a file-level access structure. The notation used for expressing BFAs is to

concatenate situation name and role name so that the BFAs for a situation, for
example TAKES-COURSE, become:

TAKES-COURSE / agent

TAKES-COURSE / object.



22

JOHN-BLACK CS-430 10:00

a. Relational tuple

I- 3 JOHN-BLACK CS-430 10:00

b. Tuple id added to relational tuple

JOHN-BLACK CS-430

CS-430 10:00

JOHN-BLACK 10:00

c. Binary associations

I -3 JOHN-BLACK

I -3 CS-430

1-3 10:00

d. Instance token related to each participant to form BFAs

1-3 JOHN-BLACK CS-430 10:00

e. All participants with instance token 1-3 can be re-grouped.

Binary Functional Associations
Figure 10



23

3.3 The Goal of Total Query Translation

The OSIRIS architecture specifies that each SIDUR operation is to be mapped

entirely into a single data-level-language procedure. This one-to-one mapping

allows maximum independence of the two levels from each other. The semantic level

translates a query into the corresponding data-level form in order to isolate the

lower levels from SIDUR's semantic concerns while still specifying, in the lower-level

language, how to achieve the result needed at the semantic level. The data-level

processor is free to optimize an entire operation. The semantic-level processor does

not need to be concerned with preliminary results of operations or with determining

the order in which the low-level access operations will be carried out.

3.4 The Data-level Language

SIDUR maps each semantic operation, in its entirety, into a data-level BAG

ACCESS Language (BAGAL) query. BAGAL queries are partially a declarative, and

partially a procedural, description of what data-level actions are needed in order to

carry out the semantic operation. The declarative portions of the BAGAL query

describe which data must be accessed, or which computations must be computed, in

order to process the operation. The procedural portions of the BAGAL query are

partially ordered control and update operations. Only those portions of an operation

that must be carried out in a particular order to retain the meaning of the operation

are forced to retain their order at the data level. Thus, the BAGAL queries produced

by SIDUR must impose a partial ordering and conditional execution of data-level

statements in order to achieve the proper result. The procedural operations are

performed in the order found in the BAGAL query unless the data-level processor

determines that altering the order will not affect the final result of the operation.

The order of two operations can only be changed if neither one depends on the result



24

of the other one. For example, the data-level statements to carry out a database

*assert operation (see Chapter IV) should not be performed if preliminary *enquire

results indicate that the current database extension does not meet the semantic
pre-conditions necessary to permit the update. But, in general, the data-level
processor is free to optimize the query and to maintain independence between storage

and semantic concerns.

3. 4.1 BAG Assignments

An ACCESS BAG assignment is a declarative specification of the binary

functional associations of data values that are to be accessed. It is the fundamental

declarative unit in the BAG query language. Data values are referenced in the
ACCESS BAG by means of the BFAs in which they are associated. No ordering is

imposed on the accessing of these values. Each set of accessed values forms one

tuple. The entire extension of tuples is specified by the format list and becomes the

value of the BAG. NO-NULL after an element in the format list indicates that the

corresponding value in each tuple cannot be null. The extension of values can be

referred to by referencing the BAG identifier of the ACCESS BAG.

The primary component of an ACCESS BAG assignment is the tuple pattern or

description, which specifies:

1) the names and role names, i. e. the BFAs, of the PRIMITIVE situations to be

accessed,

2) the description of any restrictions or constraints on which values need to be

accessed.

The restrictions on retrieved values fall into two classes:

1) The values in the tuple must be such that any "constraint" statements that are

made in the BAG are true.

2) Some of the values specified in the pattern consist of variables. Common use

of a variable name to represent several different participants within a pattern

implies that, for each tuple that is retrieved, the value of these participants will be

equal.



25

Figure 11 shows an example of an ACCESS BAG whose BAG identifier is b-1

and whose format list is '(y-1 V-1 V-2)'. Two constraints '(V-1 = S-1)' and '(V-2 =

"CS-430")' are specified. For each tuple, two BFAs from the MAY-TAKE situation

extension are to be retrieved. I-I is the variable denoting the instance TOKEN. For

each tuple, each BFA retrieved from MAY-TAKE must have the same instance

TOKEN. For each tuple, two BFAs from the IS-COURSE-NAME situation are to be
retrieved. 1-2 denotes the instance TOKEN. Each set of BFAs retrieved from the

IS-COURSE-NAME situation must have an agent participant y-1 equal to the

object participant y-1 of the corresponding MAY-TAKE BFAs. Both sets of BFAs

are combined to form a tuple as specified in the format list. The SIDUR operation

corresponding, in part, to this ACCESS BAG might be

(ENQUIRE

(and (MAY-TAKE (agent S-1) (object y))

(IS-COURSE-NAME (agent y) (object "CS-430")))).

((BAG b-1 (y-1 V-1 V-2)) <-

(ACCESS < tuple pattern >
(V-1 = S-1)
(V-2 = "CS-430")
(MAY-TAKE / agent I-1 V-1)
(MAY-TAKE / object I-1 y-1)
(IS-COURSE-NAME / agent 1-2 y-1)
(IS-COURSE-NAME / object 1-2 V-2)))

ACCESS BAG Assignment
Figure 11

3. 4. 2 Tuple Operations

Operations on tuples consist of tuple variable assignments and update
operations. Tuple variable assignments assign a single data value to one of the

variables in the format list for each tuple in the extension. For example in



26

Figure 12,

(V-2 <- "TRUE")

assigns the string value "TRUE" to V-2.

The update operations are CHANGE, DELETE, and CINDEX. CHANGE

causes data values to be added to the stored database. For example,

(CHANGE INTERESTING / agent I -1 V- 1)

performs an update or an addition of a BFA. DELETE causes deletion of values.

For example,

(DELETE INTERESTING / agent I-1 V-1)

removes the BFA. CINDEX is used as a precheck prior to CHANGE or DELETE

operations in order to determine

1) whether BFAs being stored are already present in order to avoid duplicate data

value insertions,

2) whether BFAs being deleted are really stored, and

3) whether an addition will violate any cardinality constraints.

For example as Figure 12 shows,

0-1 <- (CINDEX (INTERESTING (agent V-1))))

(c-1 <- (COUNT I-1 I-1))

performs an access on the INTERESTING situation and assigns to I-1 an extension of

all the tuples with the requested participant value of V-1. The COUNT operation

counts the number of tuples in I-1. The result of the COUNT operation is stored in

the variable c-1. The update is performed if the cardinality constraint will not be

violated or if the BFAs mentioned in the cardinality constraint are already stored. If

they are already stored, the update will continue by storing the remainder of the

BFAs.

Operations on tuples can occur in TUPLES BAGs, computation BAGs, and

update BAGs. TUPLES BAGs (Figure 12) are BAGs containing the constants

extracted from the semantic-level query. Computation BAGs (Figure 13) are any

BAGs containing a data-level computation operator. Update BAGs (Figure 12)

contain any of the update operators and are the only type of BAG that can cause a

change in the stored data.



27

3. 4. 3 BAG Operations

Operations on BAGs are control procedures that act on entire extensions of

tuples and result in constructing an extension that is assigned as the value of a new

BAG. The BAG operations are described below.

1) The most often used BAG operations include AND-MERGE, OR-MERGE,

and MINUS whose definitions correspond roughly to the SIDUR situation connectives

'and', 'or', and 'not'.

2) Other BAG construction operators, EMPTY and FULL, create BAGs
corresponding to SIDUR's definition for 'empty' and 'full'.

3) COLLECT is a special data-level operator that assigns an entire extension as

the value of a variable so that the extension can be passed to a computation as

argument. COLLECT takes as arguments the BAG containing the extension as well

as two or more lists of variables. The first list contains the variables common to

other portions of the query so that accesses for the same values indicated both inside

and outside the computation can be optimized and also performed in the proper
order. Subsequent lists begin with a new variable. The remainder of each list
chooses variables to be collected under the new variable. COLLECT is needed for two

reasons. The BAGAL computational operators take variables (not BAGs) as
participants so COLLECT binds the needed extension to the variable. If several
participants to a computation take extensions as participants, each different
extension can be bound to a different variable without the need for forming multiple

BAGs. In addition, in complex expressions that include ACCESS expressions as well

as computations, the results of some of the accesses must be computed prior to doing

the computations in order to pass their results as arguments to the computations.

Refer to Figure 43 for an example of this. COLLECT is used to force ACCESS BAGs

to be participants of the computations by merging their results wih ACCESS results

obtained for the participant expressions of the computations. Otherwise, the result

of some computational expressions will be wrong. Recall that the data level is free to

optimize the order of BAG ACCESS statements unless the BAGAL query specifies

the order.



28

4) TUPLES is an operator that creates a constant TUPLES BAG extension using

constant data values from the SIDUR operation.

5) FOR causes an operation to be performed on each tuple in the extension of a

BAG.

6) IF determines whether the indicated BAG condition holds and, if it does hold,

causes the associated operation to be performed.

7) CASE uses the value of its index variable to determine which of the associated

BAG operations is to be performed.

Figure 13 shows a data-level query that accesses the PRIMITIVE extension

corresponding to SIDUR's FINAL-GPA extension, COLLECTs the resulting extension

as the value of V-1, forms a TUPLES extension of constants in the operation,

AND-MERGEs the BAGs containing arguments to the computation, and then

performs the computation ACCUMULATE. The meaning of this query at the
semantic level is to find the sum of all the of value participants in the FINAL-GPA

situation.



29

(REFLECT (INTERESTING (agent V-1 P-1)
(result V-2 "TRUE")))

< TUPLES BAG forms the constant tuple to be reflected >

((BAG B-1 (V-2 V-1)) <-
(TUPLES ((V-2 <- "TRUE") (V-1 <- P-1))))

< Update BAG--This command checks cardinalities, verifies that
values are not already present, and then performs the update >

((BAG 8-2 (V-2 V-1)) <-
(FOR (BAG B-1 (V-2 V-1))

< data access to check cardinality >
((I-1 <- (CINDEX (INTERESTING (agent V-1))))

< data access statement--check if template exists >
(1-2 <- (CINDEX (INTERESTING (agent V-1) (result V-2))))
(c-1 <- (COUNT I-1 I-1))

< check cardinalities--see if count is
less than the cardinality constraint
or if already stored >

(IF (OR (c-1 < 1) (1-2 <> NULL)) THEN
((IF (1-2 = null) THEN < if not already stored >

((I-2 <- (ICREATE INTERESTING))
< perform update >

(CHANGE INTERESTING / agent 1-2 V-1)
(CHANGE INTERESTING / result 1-2 V-1)))

(1-3 <- (CINDEX (IS-PERSON (agent V-1))))
(IF (1-3 = null) THEN < see if already stored >

((I-3 <- (ICREATE IS-PERSON))
< perform update of new object type as

required by query semantics >
(CHANGE IS-PERSON / agent 1-3 V-1))))))))

< RETURN result >
(RETURN (BAG B-2 (V-2 V-1)))

Datalevel *assert Procedure
Figure 12



30

(ENQUIRE
(SUM

(domain V-1 (sigma (x-1)
(FINAL-GPA (value x-1))))

(result y-1)))

(ENQUIRE
(ACCUMULATE < sigma expansion of SUM >

(domain V-1 (sigma (x-1)
(FINAL-GPA (value x-1))))

(mapping V-2 "PLUS")
(result y-1)))

< data retrieval for *enquire >

((BAG b-1 (x-1)) <-

(ACCESS (FINAL-GPA / value I-1 x-1)))

< BAG to COLLECT extension argument into V-1 >

((BAG B-2 (x-1 V-1)) <-

(COLLECT (BAG b-1 (x-1)) nil (V-1 x-1)))

< TUPLES BAG to form extension of constants >

((BAG B-3 (V-2)) <- (TUPLES ((V-2 <- "PLUS"))))

< AND-MERGE to gather computation arguments >

((BAG B-4 (x-1 V-1 V-2)) <-

(AND-MERGE ((BAG B-2 (x-1 V-1))
(BAG B-3 (V-2)))))

< BAG to do computation >

((BAG B-5 (y-1 x-1 V-1 V-2)) <-

(FOR (BAG B-4 (x-1 V-1 V-2))
(y-1 <- (ACCUMULATE (V-1 V-2 y-1)))))

< RETURN result >
(RETURN (BAG B-5 (y-1)))

Computation BAGAL Query
Figure 13



31

IV. TRANSLATION OF SEMANTIC QUERIES

4. 1. The Query Translation Process

4. 1. 1 Description of the Translation Process

The interpretation of SIDUR query operations is based on re-expressing each

SIDUR expression in terms of two primitive semantic operations, *enquire and

*assert, and in terms of how the results of these primitive operations are to be

related to each other. *enquire is the primitive data access operation. *assert is the

primitive data update operation. These primitive operations correspond to data-level

language access and update operations. For query processing in the OSIRIS

architecture, the primitive operations are translated into a set of partially ordered

BAGAL (BAG ACCESS Language) operations. BAGAL conditional and procedural

operations are used to control update operations. BAGAL set and computation

operators are used to specify the relationships between the results of the primitive

access and update operations. Thus, each SIDUR operation is mapped in its entirety

into a single BAGAL procedure. The statements in the BAGAL procedure are

interpreted at the data level to produce extensions of data values. Extensions are

merged together at the data level using the set and computation operators to produce

the final virtual extension specified in the original SIDUR query.



32

4.1.2 The Canonical Form of an Operation

In an effort to simplify the translation of operations such as the one shown in

Figure 14 and also to provide a predictable control structure in what might otherwise

be a data-level query of arbitrarily complex structure, an expression simplification

algorithm has been developed. This algorithm converts each complex situation

expression into a simplified form and includes with the simplified form all other

information that will be needed by the translation routines to produce a

corresponding data-level query. The design of this algorithm and the form of the

resulting simplified expression are the result of dealing, at least in part, with many of

the difficult issues of implementing the SIDUR architecture. As discussed in the

following paragraphs, these issues include:

1) simplifying the translation process and the data-level query while retaining

the original meaning of the operation,

2) re-expressing non-PRIMITIVE situations and non-SYSTEM computations in

terms of their schema definitions,

3) insuring that all update operations are atomic so that an entire logical
transaction either fails or succeeds thereby maintaining the integrity of the database,

(ENQUIRE
(or

(IS-FACULTY (agent V-1 S-1))
(and

(or

(IS-STUDENT (agent V-1 S-1))
(IS-STAFF-STUDENT (agent V-1 S-1)))

(FINAL-GPA (agent V-1 S-1)))))

Operation Using Connectives
Figure 14



33

4) handling disjunctive update operations,

5) determining that constant data value participants are of the proper type,

6) insuring that all schema-specified pre -conditions and cardinality constraints

hold in the current database extension prior to an update operation, and

7) allowing operations on an extension of tuples as well as on a single instance of

data values.

The canonical form of an *enquire operation consists only of the *enquire

expression. The canonical form of an update operation consists of exactly one *assert

expression and one *enquire expression and certain other expressions containing

information needed to process the query. The *assert expression represents those

extensions that must be updated. The *enquire expression represents the

pre-conditions that must be met for a tuple to be eligible for the update. The other

expressions in the canonical form of an update operation consist of cardinality
constraints and situation names needed to resolve ambiguous updates. These other

expressions are used only in update operations and will be discussed in Chapter V.

The general approach used to prepare a situation expression such as the one in

Figure 14 for translation is to re-phrase each expression into a semantically
equivalent *enquire and/or *assert expression. An expression in the *enquire or

*assert part is in the form of a disjunct of conjuncts

(or (and S11 S12 S13)

(and S21 S22 S23)

(

where Snn is a single situation expression. Each set of situation expressions following

an 'and' connective is called a branch or conjunct. Figure 15 shows the ENQUIRE

operation of Figure 14 after it has been converted into this form. Note that in some

of the Figures in Chapter IV and V, system variables of the form 'V-1' have been

inserted in front of constant participant values. This is to aid the reader in
comparing later figures that show further processing of these same expressions.

Section 5. 6 discusses why these variables are added.

For an ENQUIRE or CHECK operation, the simplification algorithm uses the

situation expression in the ENQUIRE operation to produce the *enquire expression of

the canonical form. The canonical form is then used to guide the SIDUR translation

routines.

For a REFLECT operation, the simplification algorithm produces the *assert

expression of the canonical form from the situation expression in the operation. Both



(ENQUIRE
(or

(IS-FACULTY (agent V-1 S-1))
(and

(and

(IS-STUDENT (agent V-1 S-1))
(FINAL-GPA (agent V-1 S-1)))

(IS-STAFF-STUDENT (agent V-1 S-1))
(FINAL-GPA (agent V-1 S-1)))))

Operation With Simplified Connective Expression
Figure 15

BRANCH 1

BRANCH 2

BRANCH 3

34

required and necessary pre-conditions belonging to the *assert expression become the

*enquire expression of the canonical form. Note that the algorithm classifies

required pre-conditions as part of the *enquire expression. The list structure of the

canonical form is used to guide the SIDUR *assert translation routines as will be

discussed in later paragraphs. An example of a REFLECT operation and its
re-expressed form is shown in Figure 16. This example will be discussed in greater

detail in this chapter and in Chapter V. Appendix I contains the schema for this
operation.

ASSERT is handled in the same manner as REFLECT with the exception that

the simplification algorithm lists required pre-conditions as part of 'the *assert
expression instead of as part of the *enquire expression. Only necessary

pre-conditions will be listed as the *enquire expression.

REFLECT-NOT is handled by inserting a 'not' at the front of the situation

expression. Then, the simplification algorithm treats it as a REFLECT operation.

For example,

is treated as

(REFLECT-NOT (and (<expr 1>)

(<expr 2>)))

(REFLECT (not (and (<expr 1>)

(<expr 2>)))).



(REFLECT (and

3S

ORIGINAL OPERATION

(IS-EVENT-NAME (agent x) (object V-10 "AI-TOPICS"))
(or

(IS-NOON-MEETING (agent x))
(IS-SEMINAR (agent x)))))

OPERATION EXPRESSED AS A DISJUNCT OF CONJUNCTS

(REFLECT (or
(and BRANCH 1

(IS-EVENT-NAME (agent x)
(object V-10 "AI-TOPICS"))

(IS-NOON-MEETING (agent x)))
(and BRANCH 2

(IS-EVENT-NAME (agent x)
(object V-10 "AI-TOPICS"))

(IS-SEMINAR (agent x)))))

REFLECT Operation and Simplified Expression
Figure 16

DENY is handled in the same manner as is REFLECT-NOT with the exception

that the simplification algorithm treats the operation as an ASSERT operation after

the 'not' is inserted at the beginning of the situation expression.

So, the simplification algorithm produces a generic, update canonical form for

any of the four update operators. After this, SIDUR *assert translation routines are

guided solely by the list structure of the canonical form, which represents the full

semantics of the operation. The *assert translation routines are not explicitly aware

of which particular update operation is being translated. Furthermore, the lower

level *enquire expression translation routines are not aware of which type of

operation, update or data access, an *enquire expression belongs to. The canonical

form is the first step in expressing the semantics of an operation in lower level

statements that are unconcerned with semantics but whose actions will have the

effect of preserving the semantics.



36

4.1.3 Sigma Expansion

Each non-PRIMITIVE situation definition is a declarative specification of

which stored (i.e. PRIMITIVE) data must be combined to form a useful extension of

derived or virtual data. Non-PRIMITIVE situations are unknown at the data level

because only the extensions of PRIMITIVE situations are actually stored. All

computation expressions represent specifications of virtual data. However, only the

SYSTEM computations are implemented at the data level so non-SYSTEM

computations are defined in the SIDUR schema in terms of SYSTEM computations.

Therefore, an expression that contains only PRIMITIVE situations and SYSTEM

computations must be derived from any SIDUR expression that contains

non-PRIMITIVE or non-SYSTEM expressions. In order to derive an expression that

represents the same extension of data values, a semantic query processor must insure

that the participant data values specified by the original expression are also specified

by the derived expression and that the same associations between these participants

hold.

When a situation expression is being simplified, each non-PRIMITIVE situation

or non-SYSTEM computation included in the expression must be re-expressed in an

extensionally equivalent manner using only situations and computations with

PRIMITIVE or SYSTEM definitions. The new expression, which is derived from the

original and which contains only PRIMITIVE and SYSTEM components, is then

substituted in place of the original expression. The process of substituting new

expressions for old is called sigma expansion. A PRIMITIVE or SYSTEM expression is

obtained by a process of associating the participants of the original expression with

their corresponding role names and variables in the situation's schema specification

and then substituting them into the schema definition: slot. This process is called

sigma binding. Depending on the amount of nesting of non-PRIMITIVE situations

in the schema definition: slots, it may be necessary to apply the sigma binding process

multiple times, first to a non-PRIMITIVE situation and then to each derived

non-PRIMITIVE definition: until all situations and computations are PRIMITIVE or

SYSTEM.



37

For example, the expression in Figure 17 might, at the SIDUR level, represent

the extension shown in Figure 18. This extension may be interpreted as a list of all

tuples of TOKEN data values that represent the instructors who teach, and the

students who take, the particular course represented by C-1. However, these

particular situations, as well as the association between values that is implied by the

expression, are unknown at the data access level. Figure 19 shows the schema

definitions of these two situations. The PRIMITIVE schema definition: slots of

TEACHES-OFFERING, OFFERING-OF, and TAKES-OFFERING indicate that

what is known at the data access level is that the three extensions shown in Figure 20

are part of the stored database extension. Nothing about the derived association

between INSTRUCTOR-STUDENT-COURSE is known. Figure 21 is an equivalent

re-expression of Figure 17. So, the data-level query must be expressed in terms of

the three PRIMITIVE situations and must contain elements of procedure control

and/or data specification to cause the virtual extension to be produced. Figure 22

shows the non-PRIMITIVE situation expression from the example that we are

looking at in detail. Also shown is its equivalent sigma-expanded form.

(and

(TEACHES-COURSE (agent x) (object V-7 C-1))

(TAKES-COURSE (agent y) (object V-7 C-1)))

SIDUR Representation of an Extension
Figure 17

x y V-7

P-2 P-1 C-1

P-2 P-3 C-1

SIDUR Virtual Extension
Figure 18



38

situation TEACHES-COURSE
participants: ((agent x INSTRUCTOR) (object y COURSE))

definition: (and (TEACHES-OFFERING (agent x) (object z))
(OFFERING-OF (agent y) (object z)))

situation TAKES-COURSE
participants: ((agent x STUDENT) (object y COURSE))

definition: (and (TAKES-OFFERING (agent x) (object z))
(OFFERING-OF (agent y) (object z)))

PRIMITIVE Schema Definitions
Figure 19

agent object

TEACHES-OFFERING P -2 O -1

TAKES-OFFERING P -1
P -3

O -1
O -1

OFFERING-OF C -1 O -1

Present Extensions
Figure 20

(and

(TEACHES-OFFERING (agent x) (object z))

(TAKES-OFFERING (agent y) (object z))

(OFFERING-OF (agent C-1) (object z)))

Result of Sigma Expansion
Figure 21



39

SCHEMA DEFINITIONS

situation IS-SEMINAR
participants: ((agent x OFFERING))
necessary: (IS-COURSE (agent x))
required: (HAS-TITLE (agent x) (object "SE-400"))
definition: (and

(IS-OFFERING (agent x))
(LIMIT (agent x) (value 12)))

extension: (CLOSED-WORLD)

situation IS-OFFERING
participants: ((agent x OFFERING))
definition: (OFFERING-OF (object x))

situation OFFERING-OF
participants: ((agent x COURSE) (object y OFFERING))
definition: (PRIMITIVE)
extension: (CLOSED-WORLD)

situation LIMIT
participants: ((agent x OFFERING) (value y CLASS-LIMIT))
cardinalities: ((1 x))
definition: (PRIMITIVE)
extension: (CLOSED-WORLD)

ORIGINAL OPERATION

(REFLECT
(and (IS-EVENT-NAME (agent x) (object V-10 "AI-TOPICS"))

(or (IS-NOON-MEETING (agent x))
(IS-SEMINAR (agent x)))) < non-PRIMITIVE >

OPERATION WITH THE NON-PRIMITIVE SITUATION REPLACED BY ITS
SIGMA-BOUND DEFINITION

(REFLECT
(and (IS-EVENT-NAME (agent x) (object V-10 "AI-TOPICS"))

(or (IS-NOON-MEETING (agent x))
(and < sigma-expanded definition: slot

(OFFERING-OF (object x))
(LIMIT (agent x) (value V-14 12))))))

Expanded REFLECT Expression
Figure 22



40

4. 2 The Code Generation Process

4. 2. 1 Use of Set Operators to Combine Results

One of the most often used features of the SIDUR language is the arbitrary

nesting of the connectives 'and', 'or', 'not', and 'empty' within the scope of a situation

operator. Figure 14 shows a typical operation of this type.

Under the *enquire interpretation of a sigma expression

1) 'and' corresponds roughly to the intersection of extensions,

2) 'or' corresponds roughly to the union of extensions,

3) 'not' corresponds roughly to set subtraction of extensions, and

4) 'empty' determines whether there are any tuples eligible to be in the extension

described by its situation expression.

Under the *assert interpretation of a sigma expression

1) 'and' means to *assert all of the nested expressions,

2) 'or' means to *assert one of the nested expressions,

3) 'not' means to carry out operations to make the nested expression not true in

the current database, and

4) 'empty' has the same meaning as 'not'.

Based on the definitions given in the "SIDUR Manual" (Freiling, 1983c) for the

'and', 'or', and 'not' connectives, the extensions specified by an expression and by its

corresponding simplified form are equivalent. The BAGAL operators that
correspond to these connectives are AND-MERGE, OR-MERGE, and MINUS,

respectively. For example, the extension of Figure 23 can be produced by taking the

union (as defined for the 'or' connective) of the extensions of <expr 2> and <expr 3>

and then intersecting (as defined for the 'and' connective) this resulting extension

with the extension of <expr 1> to produce the extension represented by the entire

expression. An equivalent form of the expression is obtained by distributing the

simple operand of the 'and' connective over the nested 'or' connective. In other words,



the first part of the 'and

expression to obtain the

that computes the *en

algorithm was applied to

41

' expression is listed twice, (lice with each operand of the 'or'

structure shown in Figure 24. This is the basic algorithm

quire or *assert expression. Figure 16 shows how this
the example being followed in this chapter.

(and (<expr 1>)

(or (<expr 2>)

(<expr 3>)))

Connective Expression
Figure 23

(or (and (<expr 1>)

(<expr 2>))

(and (<expr 1>)

(<expr 3 >)))

Simplified Connective Expression
Figure 24

The extension of the expression in Figure 24 would be computed by
intersecting the extension of <expr 1> first with the extension of <expr 2> and then

with the extension of <expr 3> to obtain two preliminary extensions. Then a union

of these two extensions would be taken to produce the final extension. If the
extensions of the three expressions are as shown in Figure 25, then the result of

computing the final extension using the first form of the expression (Figure 23) is

shown in Figure 26 and the result using the second form (Figure 24) is shown in

Figure 27.



<expr 1>

<expr 2>

<expr 3>

(or (<expr 2>)

(<expr 3>)

(and (<expr 1 >)

(r1))

x y

a b

c d

x y

a b

e f

x Y

g h

Sample Extensions
Figure 25

x y

a b

e f

g h

x Y

a b

Result of Computing Expression in Figure 23
Figure 26

= r1

42



(and (<expr 1>)

(<expr 2>))

(and (<expr 1)
(<expr 3>))

(or (r2)

(r3))

x y

a b

x y

x y

a b

Result of Computing Expression in Figure 24
Figure 27

4.2.2 Use of Negation

= r2

= r3

43

In an *enquire expression, when the 'not' connective encloses a closed-world

situation, it denotes set subtraction. The equivalent BAGAL operator is MINUS.

The extension that is computed from the expression within the scope of the 'not' is

subtracted from the extension that is computed from the outer portion of the
expression. The outer portion, as well as the 'not' expression, must be enclosed within

the scope of the 'and' connective as show here

(and (<expr 1>)

(<expr 2>)

(not (<expr 3>))).

This expression is computed by taking the outer portion, which is the intersection of

the extension of <expr 1> and the extension of <expr 2>, and then subtracting the

extension of <expr 3> from the result.



44

Any situation within the scope of 'not' will be listed in the canonical form with

'not' preceding it. See Section 4. 3. 5 for a discussion of the scope of the 'not'
connective. This results in a list of situation expressions comprising each of the
branches. For each set of situations in a branch, the extension of all closed-world

situations that are preceded by the 'not' connective is subtracted from the extension

produced by intersecting the extensions of the other situation expressions in the

branch. A BAGAL example of this is shown in Figure 30.

For open-world situations that are preceded by 'not', data accesses on the
negative extension of the situation are done along with the closed-world situation

accesses, if any, in the branch.

4.2.3 Building Extension of the *enquire Part

As mentioned earlier, each semantic operation is processed into a canonical

form consisting mainly of a single *enquire expression and optionally a single *assert

expression. The first task in processing a data-level query is to build the data-level

representation for the extension for the *enquire operation. Each branch of the
disjunct will contain situations under the scope of the 'and' connective. One or two

ACCESS BAGs are created for each *enquire expression. An ACCESS BAG is

created for each set of situations that are not preceded by 'not'. This BAG is called

the positive BAG. Another ACCESS BAG is created if 'not' precedes any
closed-world situations in the branch. Then for each branch, BAGAL code is created

to build a BAG representing the subtraction of the negative extension from the
positive BAG.

For ENQUIRE and CHECK, a data-level BAG assignment to produce the

OR-MERGE (union) of the extensions resulting from each branch is then created. If

there are no computations associated with any of the branches, the final result of the

*enquire will be that of the OR-MERGE. Examples are shown in Figure 28 and

Figure 30. Computations are discussed in Section 4. 3.4. Updates are discussed in the

next sections.



45

(ENQUIRE
(or

(IS-FACULTY (agent V-1 S-1))
(and

(or

(IS-STUDENT (agent V-1 S-1))
(IS-STAFF-STUDENT (agent V-1 S-1)))

(FINAL-GPA (agent V-1 S-1)))))

< See Figure 54 for the canonical form >

< ACCESS BAG for BRANCH 1 of disjunct >

((BAG b-1 (V-1)) <- (ACCESS
(V-1 = S-1) (IS-FACULTY / agent I-1 V-1)))

< ACCESS BAG for BRANCH 2 of disjunct >

((BAG b-2 (V-1 y-1 z-1)) <- (ACCESS
(V-1 = S-1)
(IS-PERSON / agent 1-2 V-1) < IS-STUDENT expansion >
(TAKES-OFFERING / agent 1-3 V-1)
(TAKES-OFFERING / object 1-3 z-1)
(OFFERING-OF / agent 1-4 y-1)
(OFFERING-OF / object 1-4 z-1)
(FINAL-GPA / agent 1-5 V-1)))

< ACCESS BAG for BRANCH 3 of disjunct >

((BAG b-3 (V-1)) <- (ACCESS
(V-1 = S-1) (IS-STAFF-STUDENT / agent V-1 I-7)
(FINAL-GPA / agent 1-6 V-1)))

< OR-MERGE the extensions from each branch >

((BAG B-4 (y-1 z-1 V-1)) <-
(OR-MERGE

((BAG b-1 (V-1))
(BAG b-2 (V-1 y-1 z-1))
(BAG b-3 (V-1)))))

< RETURN the requested extension >
(RETURN (BAG B-4 (V-1)))

Data-level ACCESS BAGs and Merge Operations
Figure 28



46

4. 2. 4 Update Atomicity

The SIDUR definition prescribes failure for any update that fails to meet any

of the pre-conditions, cardinality constraints, or object-type specifications for the

underlying situations. SIDUR also allows compound operations on an extension of

tuples. If one tuple does not meet its set of pre-conditions, should the operation fail

for all of the tuples or for only the failing tuple? The integrity of the database can be

guaranteed in either case. The question of whether atomicity of transactions should

be implemented at the tuple level or at the extension level depends on which

approach would be most useful to users of the database. Since it was felt that
implementing a tuple level atomicity of transactions is the more fundamental
method and that users may find this added granularity more useful, this SIDUR

implementation has taken the tuple level approach. It was also felt that converting

to an extension level approach would be easier than converting to a tuple level

approach if later it is learned that users prefer the extension level approach.

The tuple level approach has necessitated that the data-level query contain

operations to determine which pre-conditions apply to each tuple, which tuples meet

their pre-conditions, and which tuples do not. The *assert operation is ignored for

each of the tuples that does not meet its pre-conditions. Recall that the data level

itself is unaware of semantic level pre-conditions so BAGAL operations that will

have the required effect must be translated. The major justification of our use of a

canonical form is that it reduces much of the complexity of translating and
performing an update. An update operation, which can have an arbitrarily complex

structure of 'and', 'or', and 'not' connectives, is transformed into the sets of expressions

represented by the canonical form. Each set corresponds to one branch of the
disjunct of the canonical form of the *assert expression. Each branch is uniform in

structure and contains all of the information needed to update a tuple of data values

into the stored database extension. For example, all of the necessary pre-conditions

that apply to the situations in a branch become the *enquire expression for that

branch. All of the situations that are to be updated become part of the *assert

expression for that branch. The next section discusses how a particular branch is

chosen for the update of each tuple. An example of this is shown in Figure 31.



47

4. 2. 5 Update Ambiguity

SIDUR defines four situation update or *assert operators, REFLECT, ASSERT,

REFLECT-NOT, and DENY. These operators can act on arbitrarily complex sigma

expressions containing any of the connectives 'and', 'or', and 'not'. The complex sigma

expression can represent an extension of a single or multiple tuples. In addition,
when used within the scope of an insertion operation, 'or' presents a potentially
ambiguous update operation. For example,

(REFLECT (or (IS-STUDENT (agent P-1))

(IS-INSTRUCTOR (agent P-1))))

means to *assert either the IS-STUDENT or the IS-INSTRUCTOR expression.

When used within the scope of a deletion operation, 'and' likewise presents a

potentially ambiguous deletion of stored data. The meaning of 'and' nested within

one of these operations is that changes should be performed so that the expression

being denied does not have a 'full' extension in the current database. For example,

(REFLECT-NOT (and (IS-STUDENT (agent P-1))

(IS-INSTRUCTOR (agent P-1) ) ))

is equivalent to

(REFLECT (not (and (IS-STUDENT (agent P-1))

(IS-INSTRUCTOR (agent P-1)))).

These expressions are also equivalent to

(REFLECT (or (not (IS-STUDENT (agent P-1))

(not (IS-INSTRUCTOR (agent P-1)))).

Therefore, these expressions involve deleting a tuple either from the extension of the

IS-STUDENT situation or from the extension of the IS-INSTRUCTOR situation in

order to make the original expression false with respect to the stored database.

Eventually, the OSIRIS project will include as one of its research projects the

automated disambiguation of a disjunctive expression that is within the scope of an

update operator. Until automated methods are devised, and even then in cases where

the system is unable to choose between the branches of a disjunct, it is the intent of

the SIDUR design that the user be given the opportunity, on a tuple-by-tuple basis,

to choose which situations will be affected by the operation.



48

For example, the operation in Figure 16 contains the disjunctive expression

(o r

(IS-NOON-MEETING (agent x))

(IS-SEMINAR (agent x))).

This means that for each tuple a choice will be made between IS-NOON-MEETING

and IS-SEMINAR. The canonical form of the operation includes the following two

branches

BRANCH 1

(and (IS-EVENT-NAME (agent x)

(object "AI-TOPICS"))

(IS-NOON-MEETING (agent x)))

BRANCH 2

(and (IS-EVENT-NAME (agent x)

(object "AI-TOPICS"))

(IS-SEMINAR (agent x))))).

Branch 1 corresponds to a choice of IS-NOON-MEETING. Branch 2 corresponds to

a choice of IS-SEMINAR. If IS-NOON-MEETING is chosen for a tuple, the tuple

will be determined eligible for the update according to the pre-conditions of the

*enquire expression of branch 1 and then updated into the *assert expression of
branch 1. If IS-SEMINAR is chosen for a tuple, then likewise the *enquire and

*assert expressions of branch 2 will be used for its update. The flowchart for a

data-level disjunctive operation is shown in Figure 29. How the correspondence

between choices and branches is implemented is discussed in Section 5. 4.1.

In an *assert operation, the *assert expression is equivalent to the expanded

form of the original expression. For the expression illustrated in Figure 31, the

corresponding *assert version represents the same two distinct branches or sets of

situations between which the user will choose in order to disambiguate the update

operation. The transformation to the canonical form, while it does not create
expressions that are optimal in terms of performance, is necessary in order to permit

appropriate use of the CHOICE function in the data-level query. The CHOICE

function will determine which branch is chosen for the update operation for each

tuple. The user will be asked to make this choice for every tuple being considered

for the update operation. The choice process will be discussed further in Chapter V.



49

Make CHOICE for each tuple

4

Put each tuple into an extension
corresponding to the choice

that was made for it

4

1

Extension 1

4

*enquire on
pre-conditions
for branch 1

4

Perform update
for conjunct 1

using the *assert
expression from

branch 1

1

Extension 2

4

*enquire on
pre-conditions
for branch 2

4

Perform update
for conjunct 2

using the *assert
expression from

branch 2

1

Extension n

4

*enquire on
pre-conditions
for branch n

4

Perform update
for conjunct n

using the *assert
expression from

branch n

4

OR-MERGE to get resulting extension of eligible tuples

Disjunctive Operation Flow Chart
Figure 29



50

4.3 Query Interpretation

4. 3. 1 General Problems

Prior to translation, the syntactic form of each semantic operation is verified

to be in compliance with the SIDUR BNF definition for that type of data
manipulation operation. The SIDUR BNF is shown in Appendix E. Any ill-formed

queries must be corrected by the user.

Because of implementation concerns, the SIDUR definition restricts the use of

the 'not' connective when it is used in an ENQUIRE or CHECK operation. If the

'not' expression contains a closed-world situation, the 'not' can occur only within the

scope of an 'and' connective that contains at least one other situation expression

whose result can be obtained by a BAGAL access operation. This is so that there will

be two extensions for the set subtraction (MINUS) operation. For open-world

situations that are enclosed by 'not', the negative extensions can be queried directly

like any other situation so set subtraction need not be performed. The SIDUR BNF

definition also restricts the expression under the scope of the 'not' to be a single

situation expression or a single computation expression. This implementation allows

any well-formed situation expression including those with connectives to appear

within the scope of the 'not' connective because use of the implementation showed

that:

1) Non-PRIMITIVE situations are often defined by complex expressions so the

implementation needs to be able to handle this sort of structure within a 'not' when

processing schema definition: slots.

2) Such structures are convenient to use in SIDUR operations as well as in

schema definition: slots.

However, this implementation does not permit computation expressions within the

scope of the 'not' connective.

Prior to translating an operation that will add data values to a situation
extension, the query processor verifies user-supplied data values to be of the correct

type as specified in the schema.



51

Objects whose corresponding data value type is INTEGER or REAL must be

verified to be within the allowable range as determined by the minval: and maxval:

schema slots.

Object classes whose admissible data values are of type STRING include values

that must comply with the form: definition found in the schema specification of the

data value class. For example, prior to translating

(REFLECT (HAS-TITLE (agent P-1)

(object "CS-430"))),

the data value "CS-430" must be determined to be a valid representative of the

COURSE-NAME object class. The corresponding data value class is

COURSE-NAME-V, which is of type STRING and whose form: slot is

(& [ "A" "Z" ] $ 2 [ "1" "5" ] & [ "0" "9" ] $ 2).

This form: definition means that a valid representative must consist of two
alphabetic characters, followed by a "-", followed by one digit whose value is between

"I" and "5" inclusive, followed by two digits whose values are between "0" and "9"

inclusive. Refer to Appendix G for a complete description of this syntax.

4. 3. 2 Explicit Pre -conditions

*assert operations, which may result in adding data values to virtual or to
stored extensions, must meet the two types of explicitly defined, schema

pre-conditions. These are necessary and required pre-conditions. A third schema

specification category, TOKEN object types, has the effect of providing implied

pre-conditions for an *assert operation. TOKEN types will be discussed in the next

section.

Any tuple whose values will be used to update the stored database must meet

the pre-conditions specified in every schema necessary: slot of the PRIMITIVE and

non-PRIMITIVE situations to which data values will be added. This is equivalent to

saying that the tuple must meet the conjunction of all of the necessary

pre -conditions

(and (<pre-condition 1>)

(<pre-condition 2>)



52

(<pre-condition n>))

of the situations involved in the update. This conjunct is part of the *enquire
expression of an update operation.

If the update operation involves a disjunctive expression, the user will choose a

branch for each tuple. Recall that a binding tuple is a set of data values that taken

together hold in the current database and that make the expression a true statement.

Each of the branches may have different necessary pre-conditions. Therefore,

different tuples computed in the same operation may have different sets of

pre-conditions. That is, a disjunctive update does not have a global set of
pre-conditions that are applicable to all tuples. A tuple needs only to meet those

pre-conditions that are related to the branch that is chosen for it. For example, the

operation in Figure 16 has two necessary pre-conditions. IS-NOON-MEETING has

the pre-condition

(HAS-TITLE (agent x)).

Any tuple chosen to be *asserted into the IS-NOON-MEETING situation will need

to meet this pre-condition. IS-SEMINAR has the necessary pre-condition

(IS-COURSE (agent x)).

Any tuple chosen to be *asserted into the IS-SEMINAR situation will need to meet

this pre-condition.

In addition to necessary pre-conditions, update operations must meet any

required pre-conditions as specified by required: slots in schema entries for all

PRIMITIVE and non-PRIMITIVE situations to be *asserted. The set of required:

pre-conditions for each of the branches in a simplified expression is derived in the

same manner as are its necessary pre-conditions with the exception that the required:

schema slots rather than the necessary: slots are consulted.

For REFLECT and REFLECT-NOT the effect of required pre-conditions on

operations is the same as the effect of necessary pre-conditions on these operations.

Therefore, when dealing with REFLECT and REFLECT-NOT operations, the

simplification algorithm does not distinguish between these two types of

pre-conditions. They both become part of the *enquire expression. For any tuple

being considered for a REFLECT or REFLECT-NOT operation the *enquire

expression equivalent to

(and (and <set of all necessary pre-conditions>)

(and <set of all required pre-conditions>)).



53

This expression, by rules of associativity of the set operations that implement this

combination, is equivalent to

(and (<necessary pre-condition 1>)

(<necessary pre-condition 2>)

(<necessary pre-condition n>)

(<required pre-condition 1>)

(<required pre-condition 2>)

(<required pre-condition n>))

So, for REFLECT and REFLECT-NOT operations, the simplification algorithm

makes an *enquire expression consisting of one list of all necessary and required

pre-conditions for each branch in the simplified *assert expression. For the operation

in Figure 16, the necessary and required pre-conditions for each branch are merged

to form the *enquire expression for each branch. These *enquire expressions are

shown in Figure 31.

For ASSERT and DENY the meaning of required pre-conditions is different

than the meaning of necessary pre-conditions. For these two operators, a required

pre-condition is also one that must hold in the database extension prior to the

successful addition of values to an extension. The difference, however, is that if the

pre-condition does not initially hold in the database extension, the operation implies

that an attempt should be made to make the pre-condition hold. This is the same as

saying that the database system will attempt to perform sub-operations that will be

semantically equivalent to the following REFLECT operation

(REFLECT (and (<required pre-condition 1>)

(<required pre-condition 2>)

(<required pre-condition n>))).

After the data-level equivalent of this operation is performed, any tuples now

meeting the required pre-conditions will still be considered for the update operation.

The intent of the stronger ASSERT operator is to supply automatically for the user

any policy requirements that have been forgotten. How this required pre-condition

sub-operation is merged with the main *assert operation to form one *assert
expression will be discussed in the next chapter.



54

4. 3. 3 Preserving Referential Integrity

Object classes whose allowable data values are of type TOKEN have a schema

specification slot referred to as their definition: slot. The value of this slot is a
situation name called the defining situation. In order for a TOKEN value to
designate an object that is a member of the given object class, the TOKEN value

must be an agent participant in the defining situation. This concept of implicit

pre-conditions is known as referential integrity (Date, 1983.) During an *assert

operation, all TOKEN values that are being added to extensions of PRIMITIVE

situations must also be added to the corresponding object class defining situations if

they are not already there. For example, part of the operation shown in Figure 16 is

(REFLECT (IS-EVENT-NAME (agent x)

(object V-10 "AI-TOPICS"))).

The situation in this sub-operation has an agent of type EVENT. The schema
definition of EVENT

object-class EVENT

representative: (TOKEN)

definition: (IS-EVENT)

names: (HAS-TITLE)

indicates that its defining situation is IS-EVENT. This implies that

(REFLECT (IS-EVENT (agent x)))

will also be performed. These two operations can be combined to form the expanded

operation

(REFLECT (and

(IS-EVENT-NAME (agent)

(object V-10 "AI-TOPICS"))

(IS-EVENT (agent)))).

It is important to note that if the

(REFLECT (IS-EVENT (agent x ) ) )

update fails for any tuples, then these tuples are removed from the REFLECT

extension and are not added to the other situation extensions mentioned in the *assert

expression. Because this addition to a defining situation is, itself, defined



55

semantically as a REFLECT operation, the same policies and procedures govern this

sub-operation. For example, the defining situation

1) might not be a PRIMITIVE situation,

2) might have necessary:, required:, and cardinality: slots, and

3) might involve disjuncts that must be resolved by the user in the same manner

as other disjuncts encountered in the operation.

Therefore, it is observed that the REFLECT sub-operation on the new object's

defining situation is simply an additional, but implied, portion of the user's original

operation. As discussed in Chapter V, this sub-operation will be merged with the

main *assert operation.

4.3.4 Interpreting Data Access Operations

A SIDUR ENQUIRE operation is defined simply as a primitive *enuire

operation on the *enguire expression of the canonical form. Refer to Section 4. 2. 3

for a description of how an *enquire expression is translated into a BAGAL
procedure. Figure 28 shows a BAGAL example of an ENQUIRE operation.

CHECK is handled by translating the situation expression as it would be for the

ENQUIRE operator with the exception that, to enhance performance, there is a limit

of one tuple placed on the BAG that computes the final extension. This means that

the data-level may stop processing after one tuple qualifies to be in the extension.

Limits, in the general case, cannot be placed on earlier BAGs because their entire

extensions may be needed to compute extensions involving set subtraction and union.

However, the existence of only one tuple in the final OR-MERGE extension is

sufficient to determine the result of the CHECK operation. Then, the CHECK

algorithm produces statements to generate a BAG with the single TOKEN



56

(CHECK

(and

(not (IS-COURSE (agent V-1 T-1)))
(OFFERING-OF (agent V-1 T-1)

(object V-2 T-2))))

< ACCESS BAG for BRANCH 1 of disjunct >

((BAG b-1 (V-1 V-2)) <-
(ACCESS

(V-1 = T-1)
(OFFERING-OF / agent I-1 V-1)
(V-2 = T-2)
(OFFERING-OF / object I-1 V-2)))

< ACCESS BAG for 'not' situations of BRANCH 1 >

((BAG b-2 (V-1)) <-
(ACCESS

(V-1 = T-1)
(IS-COURSE / agent 1-2 V-1)))

< BAG to subtract the 'not' extension >

((BAG B-3 (V-2 V-1)) <-
(MINUS (BAG b-1 (V-1 V-2)) (BAG b-2 (V-1))))

< BAG to limit extension to 1 tuple and
return BAG condition FULL or EMPTY >

(IF (FULL (BAG B-3 (V-2 V-1) 1)) THEN
((BAG B-4 (nil)) <- (FULL))

ELSE
((BAG B-4 (nil)) <- (EMPTY)))

< BAG to RETURN the requested result >
(RETURN (BAG B-4 (nil)))

CHECK Data-level Query
Figure 30



57

FULL representing the SIDUR 'full' extension it there is one tuple in the extension

or the TOKEN EMPTY representing the SIDUR 'empty' extension if there are zero

tuples. An example is shown in Figure 30. The entire extension of both the
OFFERING-OF and the IS-COURSE expressions need to be retrieved in order that

they be available for the set subtraction operation.

ENQUIRE and CHECK operations may involve computations. These operations

are translated such that all of the needed BAGAL query retrievals are done first in

order that an extension of arguments to the computations can be formed.
Computations are done by passing the BAG that holds the extension of arguments to

the first BAGAL computation operation. As results are computed, they are added to

the extension of arguments, and the BAG holding the arguments and results is passed

to the next BAGAL computation. The order in which computations are carried out

is determined by the *enquire routine, which schedules first those computations

whose results are needed as arguments for other computations. Computations will be

discussed further in Chapter V.

4.3.5 Interpreting Update Operations

As mentioned earlier, update operations are re-expressed as an *assert
expression and an *enquire expression. In summary, the *assert expression represents

the extension that may be updated in the stored database. Any tuple that does not

meet the pre-condition tests of the *enquire expression is removed from the *assert

extension and is not updated in the stored database. Figure 31 shows an example of a

REFLECT operation and its corresponding *assert and *enquire expressions.

Appendix I shows the schema definitions that were used to derive the *assert and

*enquire expressions in Figure 31. Figure 55 shows the canonical form of the
operation.

The *assert and *enquire expressions from Figure 31 are translated into the

BAGAL procedure that is shown in Figure 32. This procedure will be discussed in

more detail later. In general, this procedure performs tuple-at-a-time processing. An



58

ORIGINAL OPERATION
(REFLECT

(and (IS-EVENT-NAME (agent x) (object V-10 "AI-TOPICS"))

(or (IS-NOON-MEETING (agent x))

(IS-SEMINAR (agent x))))

OPERATION EXPRESSED AS A DISJUNCT OF CONJUNCTS

(REFLECT (or BRANCH 1

(and (IS-EVENT-NAME (agent x) (object V-10 "AI-TOPICS"))
(IS-NOON-MEETING (agent x)))

BRANCH 2
(and (IS-EVENT-NAME (agent x) (object V-10 "AI-TOPICS"))

(IS-SEMINAR (agent x)))))

PRIMITIVE SEMANTIC LEVEL *enquire AND *assert EXPRESSIONS
<Refer to Appendix I and Figure 55 >

(*enquire BRANCH 1

(or (and (HAS-TITLE (agent x) necessary:
(object V-11 "MEETING")) pre-condition

(MEETING-TIME (agent x) required:
(object V-12 "12AM")) pre-condition

BRANCH 2
(and (IS-COURSE (agent x))) necessary: pre-cond'n

(HAS-TITLE (agent x) required:
(object V-13 "SE-400"))) pre-condition

(*assert
(or (and (IS-EVENT-NAME (agent x)

(object V-10 "AI-TOPICS"))
(IS-NOON-MEETING (agent x))
(IS-EVENT (agent x))
(not (NOT-IS-NOON-MEETING

(agent x))))

BRANCH 1

PRIMITIVE definition:
PRIMITIVE definition:
TOKEN definition:
negative extension

of open-world
situation

(and (IS-EVENT-NAME (agent x) BRANCH 2
(object V-10 "AI-TOPICS")) PRIMITIVE definition:

(OFFERING-OF (object x))) PRIMITIVE definition:
(LIMIT (agent x) (value V-14 12)) sigma-bound defn.:
(IS-EVENT (agent x))))) TOKEN definition:

Update Operation and Primitive Expressions
Figure 31



59

(REFLECT (and (IS-EVENT-NAME (agent x-10)
(object V-10 "AI-TOPICS"))

(or (IS-NOON-MEETING (agent x-10))
(IS-SEMINAR (agent x-10))))

((BAG B-1 (V-10 V-14)) <- (TUPLES < TUPLES BAG for constants >
((V -10 <- "AI-TOPICS) (V-14 <- 12))))

< BAG to get users CHOICE >
((BAG B-2 (V-10 c-10)) <- (FOR (BAG B-1 (V-10))
((c-10 <- (CHOICE "choose one (IS-NOON-MEETING IS-SEMINAR)

(V-10)))
(CASE (((c-10 = IS-NOON-MEETING) ((c-10 <- 1)))

((c-10 = IS-SEMINAR) ((c-10 <- 2))))))))

< split reflect extension based on user CHOICE for each tuple >
((BAG B-3 (V-10)) <- < BRANCH 1 >

(FOR (BAG B-2 (V-10 c-10)) (IF (c-10 <> 1) THEN nil)))

((BAG B-4 (V-10)) <- < BRANCH 2 >
(FOR (BAG B-2 (V-10 c-10)) (IF (c-10 <> 2) THEN nil)))

< *enquire expression BRANCH 1 >

((BAG b-5 (x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)) <-
(ACCESS (V-11 = "MEETING") (V-12 = "12AM")
(HAS-TITLE / agent I-1 x-10) (HAS-TITLE / object I-1 V-11)
(MEETING-TIME/agent 1-2 x-10) (MEETING-TIME/object 1-2 V-12)))

< *enquire expression BRANCH 2 >
((BAG b-6 (x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)) <- (ACCESS

(V-13 = "SE-430") (IS-COURSE / agent 1-3 x-10)
(HAS-TITLE / agent 1-4 x-10) (HAS-TITLE / object 1-4 V-13)))

< merge constants and *enquire extensions to get update tuples >
< BRANCH 1 >

((BAG B-7 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)) <-
(AND-MERGE ((BAG B-1 (V-10 V-14))

(BAG b-5 (x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)))))

< BRANCH 2 >
((BAG B-8 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)) <-
(AND-MERGE ((BAG B-1 (V-10 V-14))

(BAG b-6 (x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)))))

< BAGs for each branch to do cardinality check, precheck to
see if already stored, and update operations BRANCH 1 >

((BAG B-9 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)) <-
(FOR (BAG B-7 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL))
((IF (x-10 = NULL) then (x-10 <- (OCREATE EVENT)))
(1-5 <- (CINDEX (IS-EVENT-NAME (agent x-10) (object V-10))))



60

(IF (1-5 = null) THEN < precheck >
((I-5 <- (ICREATE IS-EVENT-NAME))
(CHANGE IS-EVENT-NAME / agent 1-5 x-10) < update >
(CHANGE IS-EVENT-NAME / object 1-5 V-10)))

(1-6 <- (CINDEX (IS-NOON-MEETING (agent x-10))))
(IF (1-6 = null) THEN < precheck >

((I-6 <- (ICREATE IS-NOON-MEETING))
(CHANGE IS-NOON-MEETING / agent 1-6 x-10))) < update >

(1-7 <- (CINDEX (IS-EVENT (agent x-10))))
(IF (1-7 = null) THEN < precheck >

((I-7 <- (ICREATE IS-EVENT))
(CHANGE IS-EVENT / agent 1-7 x-10))) < update >

(I-8 <- (CINDEX (NOT-IS-NOON-MEETING (agent x-10))))
(IF (1-8 <> null) THEN < precheck >

((DELETE NOT-IS-NOON-MEETING / agent 1-8 x-10))))))
< BRANCH 2 >

((BAG B-10 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)) <-
(FOR (BAG B-8 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL))
((IF (x-10 = NULL) then (x-10 <- (OCREATE EVENT)))
(1-9 <- (CINDEX (LIMIT (agent x-10)))) < cardinality >
(I-10 <- (CINDEX (LIMIT (agent x-10) (value V-14))))
(c-11 <- (COUNT 1-9 I-9)) < cardinality >
(IF (OR (c-11 < 1) (I-10 <> NULL)) THEN
((I-11 <- (CINDEX (IS-EVENT-NAME (agent x-10)(object v-10))))
(IF (I-11 = null) THEN < precheck >

((I-11 <- (ICREATE IS-EVENT-NAME))
(CHANGE IS-EVENT-NAME / agent I-11 x-10) < update >
(CHANGE IS-EVENT-NAME / object I-11 V-10)))

(1-12 <- (CINDEX (OFFERING-OF (agent x-10))))
(IF (1-12 = null) THEN < precheck >

((I-12 <- (ICREATE OFFERING-OF))
(CHANGE OFFERING-OF / object 1-12 x-10))) < update >

(IF (I-10 = null) THEN < precheck >
((I-10 <- (ICREATE LIMIT))
(CHANGE LIMIT / agent I-10 x-10) < update >
(CHANGE LIMIT / value I-10 V-14)))

(1-13 <- (CINDEX (IS-EVENT (agent x-10))))
(IF (1-13 = null) THEN < precheck >
((I -13 <- (ICREATE IS-EVENT))
(CHANGE IS-EVENT / agent 1-13 x-10)))))))) < update >

<Merge result from each branch to get final result >
((BAG B-11 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL V-13

1-3 NO-NULL 1-4 NO-NULL)) <-
(OR-MERGE

(BAG B-9 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL))
(BAG B-10 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL))))

(RETURN (BAG B-11 (V-10 x-10))) < RETURN results >

BAGAL Update Operation
Figure 32



61

extension of tuples that are candidates for the update operation is formed from the

constant data values in the *assert expression. The CHOICE BAG causes the user to

be prompted to chose a branch for each tuple. (In this example, there is only one

tuple in the extension. Compound operations will be discussed in Section 4. 3. 8.)

Depending on th 2. user's choice, the tuple will be put into either the extension for

branch 1 or for branch 2. The *enquire expression for each branch is translated into

an ACCESS BAG that will only retrieve tuples whose necessary and required

pre-conditions are met. The two *enquire extensions are then each intersected with

the constant tuples extension to eliminate ineligible tuples and form the *assert
extension for each branch. These extensions are stored in BAGs called the update

BAGs. Each update BAG is processed by the update statements for its branch. As

an update BAG is processed, any tuple that fails a cardinality constraint is eliminated

from the extension. Any tuple that is already stored is not updated but remains in

the update extension. Each remaining tuple that is not already stored is updated into

each of the situations from the *assert expression. The union of the update extensions

from each branch is returned as the result of the operation.

REFLECT, REFLECT-NOT, ASSERT, and DENY are the four situation

operators that can result in changes being made to the stored database extension.

Each of these four update operators can cause data values to be added as well as to be

deleted from the stored database. It is apparent from the general descriptions given

the chapter titled "THE SIDUR MODEL" that REFLECT and ASSERT can result in

adding values to the database and that REFLECT-NOT and DENY can cause

deletions. However, if the expression on which the update operator will act contains

the 'not' connective, then the "polarity" of the update operation with respect to the

sub-expression that is within the scope of the 'not' will reverse. For example, both

(REFLECT (IS-COURSE (agent C-1)))

(REFLECT-NOT (not (IS-COURSE (agent C-1))))

indicate that an addition of a tuple to the IS-COURSE situation is being considered.

REFLECT-NOT becomes REFLECT with respect to the second IS-COURSE
expression because it contains the 'not' connective. The following two operations

(REFLECT-NOT (IS-COURSE (agent C-2)))

(REFLECT (not (IS-COURSE (agent C-2))))

both indicate the removal of a tuple from the extension of IS-COURSE. Again,

REFLECT becomes REFLECT-NOT with respect to the second IS-COURSE

expression.



62

SIDUR defines each of the four situation update operators in terms of the

results of applying a primitive *assert operator to the extension of tuples that is
determined to be eligible for the operation. The *assert operator adds or removes

each eligible tuple from the situation extension according to the following criteria:

1) Any atomic situation description nested directly within one of these three

elements: REFLECT-NOT, DENY, or the 'not' connective is a negated situation.

2) A 'not' connective that is nested within an operation changes the operator that

is currently in effect for that portion of the expression. If an "add" (REFLECT or

ASSERT) operator is in effect, it is changed to "remove" (REFLECT-NOT or DENY,

respectively.) If a "remove" operator is in effect, it is changed to "add". When

"remove" is in effect, any PRIMITIVE situation expressions nested directly within it

are considered negated situations.

3) Affirmed closed-world situations indicate addition of values.

4) Negated situations with a closed-world extension indicate removal of values.

5) Negated open-world situations are handled by low level translation routines as

an addition into the negative extension and a removal from the affirmative
situation.

6) Addition to affirmed open-world situations is handled as an addition to the

affirmative situation and a removal from the negative extension.

After statements are translated that will produce the extension of tuples that

meet their pre-conditions for the update operation, the primitive *assert operation

translation routines emit statements to perform the update. A flowchart of the

BAGAL processing was shown in Figure 29. These are the BAGAL operations needed

to perform the update of the *assert extension:

1) check cardinality constraints,

2) precheck to insure that values to be added are not already stored,

3) precheck to insure that values to be deleted are stored,

4) create object TOKENs and instance TOKENs,

5) perform the additions and deletions of tuples, and

6) return the resulting extension of the operation.

These statements were illustrated in Figure 32 and will be further explained in

Chapter V.



63

4.3.6 Interpreting Action Operations

PERFORM is handled by verifying the object classes of the participants and

then calling the ENQUIRE routine on the sigma-bound prerequisites: slot from the

action's schema specification. The resulting extension of data values is used as the

input extension to REFLECT the sigma-bound results: slot from the action's schema

specification. A flowchart for this operation is shown in Figure 33. Refer to Section

4. 3. 8 for a discussion of how updates that involve an entire extension are handled.

Verify types

4

Substitute prerequisites: slot

4

Generate ENQUIRE on prerequisites: slot

4

Substitute results: slot

4,

Generate a REFLECT on the results:
slot using the ENQUIRE extension

PERFORM Operation Flow Chart
Figure 33

PERMIT? is handled by verifying the object classes of the participants and

then calling the CHECK routines with the sigma-bound prerequisites: slot from the

action's schema specification as the argument. An example is shown in Figure 34.

PERMIT! is handled by verifying the object classes of the participants and then

calling the ASSERT routines with the sigma-bound prerequisites: slot from the

action's schema specification.



64

SCHEMA DEFINITION OF ENROLLS-IN

action ENROLLS-IN
participants: ((agent x STUDENT) (object y OFFERING))
prerequisites:

(and

(OFFERING-OF (agent z) (object y))
(MAY-TAKE (agent x) (object z)))

results: (TAKES-OFFERING (agent x) (object y))

(PERMIT? (ENROLLS-IN (agent V-23 S-1001)
(object V-24 0-1002)))

< ACCESS BAG to compute extension >

((BAG b-1 (V-23 V-24 z-11)) <-
(ACCESS

(V-23 = S-1001)
(V-24 = 0-1002)
(OFFERING-OF / agent I-1 z-11)
(OFFERING-OF / object I-1 V-24)
(MAY-TAKE / agent 1-2 V-23)
(MAY-TAKE / object 1-2 z-11)))

< BAG to determine FULL or EMPTY condition
of the resulting extension >

(IF (FULL (BAG b-1 (V-23 V-24 z-11) 1)) THEN
((BAG B-2 (nil)) <- (FULL))

ELSE
((BAG B-2 (nil)) <- (EMPTY)))

< BAG to RETURN result >

(RETURN (BAG B-2 (nil)))

PERMIT? Data-level Query
Figure 34



65

4. 3. 7 Interpreting Object Operations

CREATE is defined to translate to a data-level statement that will generate a

new object TOKEN whose first character will be the first character in the name of

the specified TOKEN's object class.

DESTROY is defined to translate to a data-level language statement that will

remove the object TOKEN from use in the stored database. All tuples in which it

occurs will also be removed. An example of a BAGAL DESTROY operation is shown

in Figure 38.

4.3. 8 Interpreting Compound Operations

FOR is defined by calling the ENQUIRE routine on the domain sigma
expression in the first portion of the operation. The resulting ENQUIRE extension

may contain more than one tuple. Statements to take a projection of the resulting

extension onto the variables in the FOR variable list are translated. This resulting

extension is passed as the input to each of the simple operations in the second portion

of the FOR operation.

SINCE is defined in the same manner as FOR with the exception that the

REFLECT routines are used instead of the ENQUIRE routines to produce the

resulting extension of the domain extension of the FOR operation.

It has been a goal of the OSIRIS design to allow update operations to involve

an extension of tuples of data values as well as single tuples. As currently defined, an

update operation that is part of a compound operation can result in an extension of

tuples to be updated. Note that a PERFORM operation can also result in an
extension to be updated.



66

(For (x y)

(and (HAS-NAME (agent x)
(object V-9 "MICHAEL-FREILING"))

(CAN-TEACH (agent x) (object y)))
(REFLECT

(TEACHES-COURSE (agent x)(object y))))

Compound Operation Resulting In an Extension
Figure 35

x V-9 y

P-6 MICHAEL-FREILING C-20

P-6 MICHAEL-FREILING C-21

P-6 MICHAEL-FREILING C-28

Extension of Tuples
Figure 36

x y

P-6 C-20

P-6 C-21

P-6 C-28

Projected Extension of Tuples
Figure 37



67

The situation operators therefore all need to be able to handle an extension of tuples

as argument. The need to handle an extension of tuples has especially influenced

how updates on disjunctive situation expressions are handled, how atomicity of

transactions at the tuple level is provided, and how pre-conditions are dealt with. In

order to simplify both the translation Agorithms and the BAGAL queries, operations

involving single tuple instances are handled as an extension of one tuple. The

simplification algorithm has been especially designed to enable the translation

routines to produce BAGAL queries that can handle an extension of single or

multiple tuples. Note that because ENQUIRE and CHECK may also occur (although

more infrequently) in the second portion of a compound expression, they are also

implemented to accept an initial extension of values. This is done by intersecting

their input extension with the result of the ENQUIRE or CHECK to produce the

final result.

For example, the operation in Figure 35 may result in the extension in Figure

36 after computing:

(ENQUIRE

(and

(HAS-NAME (agent x)

(object V-9 "MICHAEL-FREILING"))

(CAN-TEACH (agent x) (object y)))).

The projection, which is indicated by '(x y),' results in the extension in Figure 37 to

be considered by the REFLECT operation. Figure 38 shows an example of a BAGAL

compound operation. In this operation all occurrences of the object TOKEN whose

corresponding name in the HAS-NAME situation is "SALLY-BROWN" will be

removed from the database.



68

(FOR

((x-30)

(HAS-NAME (agent x-30)
(value V-30 "SALLY-BROWN"))

(DESTROY x-30)))

< TUPLES BAG for constants >
((BAG B-1 (V-30))

(TUPLES ((1-30 <- "SALLY-BROWN"))))

< data accesses for *enquire on domain expression >
((BAG b-2 (x-30 V-30)) <-
(ACCESS

(V-30 = "SALLY-BROWN")
(HAS-NAME / agent I-1 x-30)
(HAS-NAME / value I-1 V-30)))

< produce domain expression >
((BAG B-3 (x-30 V-30)) <-
(AND-MERGE ((BAG B-1 (V-30))

(BAG b-2 (V-30 x-30)))))

< discontinue processing if no eligible tuples >

(IF (EMPTY (BAG B-3 (x-30 V-30))) THEN
(FAIL NO EXTENSION PRODUCED"))

< object operation >
((BAG B-4 (V-30 x-30 d-30)) <-
(FOR (BAG B-3 (V-30 x-30))

(d-30 <- (DESTROY x-30))))

< RETURN result >

(RETURN (BAG B-4 (V-30 x-30 d-30)))

Data-level Compound Operation
Figure 38



69

V. IMPLEMENTATION OF THE TRANSLATION PROCESS

5.1 Goals

This implementation of SIDUR is part of the first phase of the prototype

implementation of the OSIRIS architecture. As part of the prototype, the SIDUR

implementation has two primary goals. The major goal is to provide the function of

semantic data modeling. The second goal is to provide this implementation within a

context that can evolve with the OSIRIS project as it addresses additional theoretical

and implementation issues related to semantic information systems. With these goals

in mind, the SIDUR implementation provides most of the function of the semantic

level as defined in the "SIDUR Manual" (Freiling, 1983c) as well as several additional

features that are likely to be useful at this level. Although designed to meet its

specified interface requirements in the OSIRIS architecture, SIDUR is also able to

run as an independent module by providing its own simple user interface and schema

management routines and by relying on the Franz Lisp run-time system for such

routines as input/output, number conversion, file and memory management, and
standard functions. When running independently, data-level queries can be
produced but not carried out, and schema operations can be entirely carried out.

5. 2 General Strategy

The interface of the SIDUR implementation prompts the user to provide one

operation at a time. Each operation is treated as a single unit and is translated in its

entirety into one data-level query. The general strategy used in processing an

operation is as follows: A complete check of the operation for syntactic correctness is

done. Then the operator being used is determined and a corresponding routine is



70

called. As needed, the operation routines are called recursively by each other. In

preparation for the translation process, situation expressions are simplified into an
equivalent canonical form. Non-TOKEN constant data value participants are
type-checked. Non PRIMITIVE situations are expressed in terms of their
PRIMITIVE definitions. All relevant schema information is categorized according to
the effect that the information will eventually have on the operation. If the
operation involves schema access or manipulation, it is carried out totally at the
SIDUR level. Otherwise, the operation, which involves only data access and/or
manipulation, is translated into a BAGAL query for processing by the data-level
processor of the OSIRIS architecture.

5.3 Main Control Routines

The SIDUR implementation is controlled by three routines, 'sid', 'sidur', and

'translate' as shown in Figure 39. The first routine, called 'sid', is the initial entry to
the SIDUR module. 'sid' prompts the user to type in the database schema and result
file names. 'sid' then calls routines to read the schema into the Franz Lisp
environment. If a new schema is being established, the schema initialization routines,

as discussed in the chapter titled "SCHEMA BUILDING," are called.

After the schema has been set up, the function called 'sidur' handles the

subsequent interaction with the user. 'sidur' is composed of a read-translate-break

loop that prompts the user to type in an operation, calls a routine named 'translate' to

control the translation process, and then invokes the break package feature of Franz

Lisp to enable the user to view or to save the results. In addition to operation
translation, 'sidur' allows the user to exit to the Franz Lisp level or to call several

SIDUR utility functions, which are described later in the appendix titled "Use of the

SIDUR Implementation." If an operation fails during the translation process or if an

operation involves a schema construct, control will return directly to 'sidur' without

returning results to intermediate functions.



Set up routines

Utility routines

Syntax
preparation
routines

BAG building
4-

routines

.4-

4--

sid

i

sidur

1

translate

I

Translation routine

for each operator

Sigma expansion *-
Object checking -*

routines
Canonical form F-

I

Expression

Simplification

SIDUR Flowchart
Figure 39

71

Initialization

User Interaction

Translation
Process

ENQUIRE
CHECK

REFLECT
REFLECT-NOT

ASSERT
DENY

PERFORM!
PERFORM?

FOR
SINCE
CREATE

DESTROY

'translate' is the main translation control routine and is called by 'sidur' with

the user's operation as its argument. The operation that the user types in may consist

of any of the following:

1) a symbol previously set equal to the Franz Lisp list of symbols that comprise

the operation,

2) a Franz Lisp list consisting of two elements, the first being an operator name

and the second being a symbol previously set equal to the list of symbols that

comprise the remainder of the operation, or

3) the operation typed out entirely.



72

'translate' converts the first two forms of input into the third form and calls the
syntax checking routines. Further processing will not occur if the operation is
syntactically ill-formed. Next, two routines are called to prepare the situation

expressions by creating unique variables and substituting them into the expressions in

place of the user's variables and in front of each constant. This is done in order to
avoid variable name conflicts. 'translate' then calls a routine corresponding to the

specific operator in the operation. These operation translation routines are discussed

in the next section.

5. 4 Translation Routines

Translation routines corresponding to each of the SIDUR data manipulation

operators provide the core of the SIDUR implementation. These routines first

determine which translation actions should be taken and then call other routines that

create a data-level query that correctly represents the SIDUR operation. Two of the

situation operators, ENQUIRE and REFLECT, are the basis on which the other
situation operators--CHECK, ASSERT, DENY, AND REFLECT-NOT--are

implemented. ENQUIRE and REFLECT are implemented in terms of the primitive

data access operator called *enquire and the primitive data update operator called

*assert. Furthermore, the action and compound operators are implemented in terms

of these six situation operators.

The situation operation algorithms all call the simplification algorithm routines

to produce the list structure on which they will operate. This list structure, called

the canonical form, contains as sub-lists all the expressions that will be needed to

translate the operation. The simplification algorithm routines determine the exact

function of each element of the canonical form by where they place each element in

the form.

*enquire is the primitive access operation. Its translation routine calls the

simplification algorithm to produce the *enquire expression on which it operates.

The *enquire expression, whose form is shown in Figure 40, is a situation or
computation expression that specifies the retrieval or computation of all tuples of

data values that satisfy the expression. Expressions that involve schema access are



73

used by SIDUR routines to search the schem data structure, and the result is
returned directly to the user. For each branch of a non-schema *enquire expression,

situations that are not preceded by the 'not' connective or that have an open-world
extension are translated into a single ACCESS BAG assignment statement.

Closed-world situations that are preceded by 'not' are put into another ACCESS BAG

whose resulting extension is subtracted from the extension of the first ACCESS BAG.

A BAG is translated to OR-MERGE the resulting extension obtained from each
branch. If there are any computation expressions, the extension is COLLECTed (i. e.

bound) to a variable that can later be passed as argument to the computations. If

any of the computation participants are situation expressions needing data accesses,

BAGs are translated to perform the accesses. These computation arguments are then

OR-MERGEd with the extension resulting from the situation expressions in the
*enquire expression. Since the planned query optimizer for the OSIRIS architecture

works on single ACCESS BAG retrievals, an effort has been made in the SIDUR

implementation, after all semantic considerations have been correctly provided for, to

produce large, rather than small, ACCESS BAGs. An example of an ENQUIRE

data-level access procedure is shown in Figure 41. Its canonical form is discussed

later and is shown in Figure 54.

After data access BAGs are translated, the *enquire algorithm determines the

order in which computation expressions will be carried out by repeatedly examining

each computation expression. A computation expression is translated if its arguments

are not taken from the results of other computations or if all computations whose

results are needed as arguments for this expression have already been translated. At

the data level, computations are carried out in the order in which they occur in the

query unless it can be shown that changing the order will not affect the final result.

After all of the computation expressions have been translated, data-level statements

are translated to do an AND-MERGE of the resulting computation extension with

each extension previously obtained by the ACCESS BAG retrievals done for each

branch. A final OR-MERGE of the resulting extensions from each branch is then

translated to produce the correct final extension of retrieved and computed values.

A flowchart of this algorithm is shown in Figure 42. An example of an ENQUIRE

computation query is shown in Figure 43.



74

(*enquire
(or BRANCH 1

(and (<PRIMITIVE situation expression 1>)
(<PRIMITIVE situation expression 2>)

(<PRIMITIVE situation expression n>)
(<SYSTEM computation 1>)
(<SYSTEM computation 2>)

(<SYSTEM computation n>))

BRANCH 2
(and (<PRIMITIVE situation expression 1>)

(<PRIMITIVE situation expression 2>)

(<PRIMITIVE situation expression n>)
(<SYSTEM computation 1>)
(<SYSTEM computation 2>)

(<SYSTEM computation n>))))

*enquire Expression
Figure 40

*assert is the primitive update operation and controls adding data values to, and

deleting data values from, a PRIMITIVE situation extension such as that shown in
Figure 44. Each REFLECT, REFLECT-NOT, ASSERT, and DENY operation is

translated into a primitive *assert operation. Any situation in an *assert expression

that is preceded by 'not' indicates a data value deletion. The other situations involve

data value additions. Open-world extensions are also handled by the primitive

update operation, which translates statements in the data-level query to add or
delete values as needed to complete the open-world update. The primitive *assert

expression for each branch is translated into one BAGAL update routine.



75

(ENQUIRE
(or

(IS-FACULTY (agent V-1 S-1))
(and

(or

(IS-STUDENT (agent V-1 S-1))
(IS-STAFF-STUDENT (agent V-1 S-1)))

(FINAL-GPA (agent V-1 S-1)))))

< See Figure 54 for the canonical form >

< ACCESS BAG for BRANCH 1 of disjunct >

((BAG b-1 (V-1)) <- (ACCESS
(V-1 = S-1) (IS-FACULTY / agent I-1 V-1)))

< ACCESS BAG for BRANCH 2 of disjunct >

((BAG b-2 (V-1 y-1 z-1)) <- (ACCESS
(V-1 = S-1)

(IS-PERSON / agent 1-2 V-1) < IS-STUDENT expansion >
(TAKES-OFFERING / agent 1-3 V-1) < >

(TAKES-OFFERING / object 1-3 z-1) < >

(OFFERING-OF / agent 1-4 y-1) < >

(OFFERING-OF / object 1-4 z-1) < >

(FINAL-GPA / agent 1-5 V-1)))

< ACCESS BAG for BRANCH 3 of disjunct >

((BAG b-3 (V-1)) <- (ACCESS
(V-1 = S-1) (IS-STAFF-STUDENT / agent V-1 1-7)
(FINAL-GPA / agent I-6 V-1)))

< OR-MERGE the extensions from each branch >

((BAG B-4 (y-1 z-1 V-1)) <-
(OR-MERGE

((BAG b-1 (V-1))
(BAG b-2 (V-1 y-1 z-1))
(BAG b-3 (V-1)))))

< RETURN the requested extension >
(RETURN (BAG B-4 (V-1)))

Data-level ACCESS BAGs and Merge Operations
Figure 41



76

Simplify query

I

Do data access for each branch

1

OR-MERGE to get arguments to computation

i
COLLECT argument extensions under a variable

to pass to computations

1

Do data accesses included in computation participants

I

OR-MERGE with other arguments

1

Perform Computations

I

For each branch, use AND-MERGE to combine
its computation and data access extensions

I
OR-MERGE the branches

Data-level Flowchart for Computation Queries
Figure 42



77

(ENQUIRE
(and (COUNT-UNIQUE

(domain V-6 ("TAKES-COURSE"))
(measure x-6 "agent" ("TAKES-COURSE"))
(result y-6))

(IS-PRESIDENT (agent x-6))))

< ACCESS for *enquire expression >

((BAG b-1 (x-6)) <- (ACCESS (IS-PRESIDENT / agent I-1 x-6)))

< ACCESS for computation argument participant >
((BAG b-2 (x-6 z-6 y-7)) <-
(ACCESS (TAKES-OFFERING / agent 1-2 x-6)

(TAKES-OFFERING / object 1-2 z-6)
(OFFERING-OF / agent 1-3 y-7)
(OFFERING-OF / object 1-3 z-6)))

< AND-MERGE IS-PRESIDENT/TAKES-COURSE to get argument extension >

((BAG B-3 (x-6 z-6 y-7)) <-
(AND-MERGE ((BAG b-1 (x-6)) (BAG b-2 (x-6 z-6 y-7)))))

< COLLECT extension under a variable to pass to computation >

((BAG B-4 (x-6 z-6 y-7 V-6)) <-
(COLLECT (BAG B-3 (x-6 z-6 y-7)) nil (V-6 x-6 y-7 z-6)))

< perform the computation >

((BAG B-5 (x-6 z-6 y-7 V-6 y-6)) <-
(FOR (BAG B-4 (x-6 z-6 y-7 V-6))

(y-6 <- (COUNT-UNIQUE (V-6 x-6 y-6)))))

< Combine computation result with data ACCESS results
to form the requested extension >

((BAG B-6 (x-6 y-6)) <-
(AND-MERGE ((BAG b-1 (x-6))

(BAG B-5 (x-6 z-6 y-7 V-6 y-6)))))

< RETURN the final extension >
(RETURN (BAG B-6 (x-6 y-6)))

Computation Query
Figure 43



78

1) The first elements of the BAGAL *assert routine are data retrieval
statements followed by statements to check all of the cardinality constraints that are

associated with the branch. Any tuple that fails one cardinality test is eliminated
from the extension.

2) Next are precheck statements to see if the values are already stored. Values to

be removed from the stored situation extension are verified to be present in the
stored extension. Values to be added are verified to not already be present. No

tuples are removed from the *assert extension at this step because the update BAG

will need to return an extension of eligible tuples.

3) Placed after precheck statements are the statements needed to perform the

corresponding additions and deletions. A tuple to be added will be added only if not

already present. A tuple to be deleted will be deleted if it is present.

4) A resulting extension is returned that includes all the tuples that passed all of

the cardinality checks regardless of whether the physical update was actually needed.

An example of this type of data-level procedure is shown in Figure 45.

(*assert

(or
BRANCH 1

(and (<PRIMITIVE situation expression 1>)
(<PRIMITIVE situation expression 2>)

(<PRIMITIVE situation expression n>))

BRANCH 2
(and (<PRIMITIVE situation expression 1>)

(<PRIMITIVE situation expression 2>)

(<PRIMITIVE situation expression n>))))

*assert Expressions
Figure 44



79

(REFLECT (INTERESTING (agent V-1 P-1)
(result V-2 "TRUE")))

< TUPLES BAG forms the constant tuple to be reflected >

((BAG B-1 (V-2 V-1)) <-
(TUPLES ((/-2 <- "TRUE") (V-1 <- P-1))))

< Update BAG--This command checks cardinalities, verifies that
values are not already present, and then performs the update >

((BAG B-2 (V-2 V-1)) <-
(FOR (BAG B-1 (V-2 V-1))

< data access to check cardinality >
((I-1 <- (CINDEX (INTERESTING (agent V-1))))

< data access statement--check if template exists >
(1-2 <- (CINDEX (INTERESTING (agent V-1) (result V-2))))
(c-1 <- (COUNT I-1 I-1))

< check cardinalities--see if count is
less than the cardinality constraint
or if already stored >

(IF (OR (c-1 < 1) (1-2 <> NULL)) THEN
((IF (1-2 = null) THEN < if not already stored >

((I-2 <- (ICREATE INTERESTING))
< perform update >

(CHANGE INTERESTING / agent 1-2 V-1)
(CHANGE INTERESTING / result 1-2 V-1)))

(1-3 <- (CINDEX (IS-PERSON (agent V-1))))
(IF (1-3 = null) THEN < see if already stored >

((I-3 <- (ICREATE IS-PERSON))
< perform update of new object type as

required by query semantics >
(CHANGE IS-PERSON / agent 1-3 V-1))))))))

< RETURN result >
(RETURN (BAG B-2 (V-2 V-1)))

Data-level *assert Procedure
Figure 45



80

5. 4. 1 Disjunctive Update Operations

Some *assert expressions that include the 'or' or 'and' connectives are
ambiguous disjunctive update operations. For example, an *assert expression that
contains the 'or' connective specifies that either one of the branches can be made true

in order to satisfy the update. Likewise, an *assert that contains the 'not' connective

enclosing the 'and' connective

not (and <sigma expression>

<sigma expression>)

specifies that either one of the sub-expressions can be made false in order to satisfy

the update. In either case, it is ambiguous which sub-expression is to be chosen. In

SIDUR this ambiguity is to be resolved on a tuple-by-tuple basis by the user. One
might wonder whether responsibility to communicate with the user lies at the
semantic or data level. OSIRIS has chosen to place this function at the data level for

the following reasons. The four update operators can occur within a PERFORM or a

compound FOR or SINCE operation. These types of operations specify an extension

of data values to be acted upon. Figure 46 shows an example of this. As the BAGAL

query is being interpreted, prior to the execution of the update operation, the

extension of a compound operation will be derived from the stored database. This

retrieved extension of tuples is not available to the SIDUR routines during the time

when the update portion of the operation is being translated. Therefore, the SIDUR

functions are not able to disambiguate the operation while it is being translated.

This implies that the data level must be able to determine which branch or set of
situations, and which corresponding set of pre-conditions, is applicable to each tuple

in the retrieved extension.



(FOR ((x)

(IS-STUDENT (agent x))

(REFLECT

(o r

(TAKES-OFFERING (agent x) (object

(TAKES-OFFERING (agent x) (object

Compound Disjunctive Update Operation
Figure 46

0-9 ) )

0-3))))))

81

Resolving ambiguous updates will be done at the data level by providing it

with a user interface. The user will be prompted with each tuple along with the

names of the situations among which choices must be made in order to disambiguate

the operation. The user then indicates which situation names have been chosen for

each tuple. The input/output format of the situation names will depend on the
particular CHOICE implementation. For example, Figure 47 represents, depending

on the result of the first choice made, a query needing either one or two user
interactions with the CHOICE function to determine which situations are to be
updated. If IS-COURSE is chosen, no further CHOICE interactions are needed.

Otherwise, a CHOICE between TEACHES-OFFERING and HAS-TITLE is also

needed. When simplified into a set of branches and with non-PRIMITIVE situations

expanded, the operation would be expressed as shown in Figure 48. As will be

explained later, it is also possible for the simplified form to contain expressions to

cause a REFLECT operation for TOKEN types and for required pre-conditions of

ASSERT or DENY operations. This simplified form is, equivalently, one choice with

three different alternatives:

1) IS-COURSE (agent C-3)

2) (and (TEACHES-OFFERING (agent P-5) (object C-3))

(OFFERING-OF (object 0-4)))

3) (and (HAS-TITLE (agent C-3) (object "CS-430))

(OFFERING-OF (object 0-4)))

Presenting the user with one arbitrarily large and complex choice of this form,

possibly structured differently than the original operation and containing different

situation names, is thought to be too confusing. Therefore, the canonical form is not

used as the structure in which to present choices to the user.



(REFLECT
(or (IS-COURSE (agent C-3))

(and (or (TEACHES-OFFERING (agent P-5) < non-PRIMITIVE
(object C-3))

(HAS-TITLE (agent C-3)
(object "CS-430")))

(IS-OFFERING (agent 0-4))))) < non-PRIMITIVE >

Disjunctive Update Operation
Figure 47

(REFLECT (or (IS-COURSE (agent C-3)
(and (TEACHES-OFFERING (agent P-5)

(object C-3))
(OFFERING-OF (object 0-4)))

(and (HAS-TITLE (agent C-3)
(object "CS-430"))

(OFFERING-OF (object 0-4))))

Simplified Disjunctive Update Operation
Figure 48

82

>

The method of presenting choices to the user is based on constructing a
CHOICE tree representing the structure and situation names of the original
expression rather than on the structure and names of the *assert expression of the

canonical form. The original structure is in many cases closer to the structure of the

user's real-world conception of the operation. Note however, that disjunctive

TOKEN-type and required pre-condition REFLECTs are also added to the CHOICE

tree so there may still be surprises in the presentation of choices to the user. Each

path in the tree from root to a leaf represents a possible sequence of choices. The list

of situation expressions on each path and the choices made for each tuple specify the

update to be performed for the operation. One of the branches in the canonical

form is associated with each leaf of the tree. So, each tuple is updated into the

branch associated with the leaf that the user has chosen for it.

For the expression in Figure 47, the CHOICE tree represents one or two choices

in order to determine the alternative and is shown in Figure 49. This CHOICE tree is



83

obtained by the simplification algorithm from the original expression by

transformations on each 'and' expression so that any 'or' expressions that it encloses

become nodes with branches indicating the choices that are needed. In this case the
choices that are needed are

1) a choice between IS-COURSE and the remaining situations, and

2) if the remaining situations are chosen, a choice between

TEACHES-OFFERING and HAS-TITLE.

The CHOICE names become part of the canonical form and are stored as the first
element of each branch. Refer to Figure 55.

or

1
IS-COURSE

1
or

4'

TEACHES-OFFERING HAS-TITLE
[and IS-OFFERING] [and IS-OFFERING]

CHOICE TREE FOR DISJUNCTIVE Update
Figure 49

A simple implementation of choice that presents, for each tuple, all of the

alternatives in the choice tree to the user has been considered but rejected because in

complex expressions some choices may become irrelevant based on earlier choices, and

there is no need to collect unneeded information. For example, if the left branch of a

tree is chosen, none of choices that are represented by the right branch will be

needed. After SIDUR has determined what the structure of the choice tree is, it is

translated into BAGAL statements that present the choices to the user. This is done

by looking at the CHOICE names in each branch of the canonical form. The

CHOICE names in each branch are stored in a nested list structure that reflects the

structure of the tree. Each level of nesting indicates another CHOICE node in the

tree. The first-level situation names or lists from each branch are presented to the



84

user for the first CHOICE. In our example, branch 1 would have the simple element

IS-COURSE. Branch 2 and branch 3 would each have a list (or a summary of a long

list.) The elements in the nested lists are joined into one list that represents one

alternative. The first CHOICE is between the element IS-COURSE and the list

(TEACHES-OFFERING HAS-TITLE.) The second CHOICE function will look at the

CHOICE names and lists nested one level deep within the CHOICE names of each

branch. In this case, only two single elements remain so the second CHOICE is

between TEACHES-OFFERING and HAS-TITLE. Figure 50 shows the data-level

statements needed to present these choices to the user.

After translating the statements needed to present the choices to the user, the

next step is to translate data-level statements that will put the tuples into separate

extensions according to the CHOICE made for each tuple. Remember that each of

these alternatives corresponds to one of the branches of the canonical form of the

operation. SIDUR then translates separate statements in the BAGAL query for each

branch. Each set of BAGAL statements essentially consists of a separate update

operation for each of the overall alternatives that can be chosen by the user. This is

done in order to simplify and to provide some regularity to the structure of a

data-level disjunctive update operation as well as to allow both the data level and

the SIDUR level to handle arbitrarily complex operations of this type. Of course,

optimization is still possible at the data level because the entire SIDUR operation

remains expressed in one BAGAL query. The algorithm for the BAGAL operation is

illustrated in Figure 51. Figure 52 shows the Chapter IV BAGAL query, which has a

procedure to present a CHOICE to the user. After the CHOICE statements, it

contains separate sets of routines to perform the update operation for each branch of

the disjunct. Figure 55 shows the full canonical form of the operation in Figure 52.



85

CHOICE NAMES FROM THE CANONICAL FORM:

(IS-COURSE)

((TEACHES-OFFERING))

((HAS-TITLE))

BRANCH 1

BRANCH 2

BRANCH 3

CHOICE PORTION OF A BAGAL QUERY:

< BAG to get user's choice >

((BAG B-2 (V-10 B-11 c-10)) <-
(FOR

(BAG B-1 (V-10 B-11))
((c-10 <- < first CHOICE >

(CHOICE "choose one" (IS-COURSE
((TEACHES-OFFERING HAS-TITLE)))

(V-10 B-11)))
(CASE

(((c-10 = IS-COURSE) < BRANCH 1 is chosen >
((c-10 <- 1)))

((c-10 = ((TEACHES-OFFERING HAS-TITLE)))
((c-10 <- < second CHOICE >

(CHOICE "choose one (TEACHES-OFFERING
HAS-TITLE)

(V-10 B-11)))
(CASE

(((c-10 = TEACHES-OFFERING)
((c-10 <- 2)) < BRANCH 2 is chosen >

((c-10 = HAS-TITLE)

((c-10 <- 3)))))))))) < BRANCH 3 is chosen >

< The expression above is a fragment of a BAGAL query. >

Presenting the Choice to the User
Figure 50



86

OR-MERGE to determine the TUPLES
constants and input extension

4

User makes a CHOICE for each tuple

4

Split the update extension based on choices

4 4

Form CHOICE 1 extension Form CHOICE 2 extension

4 4

Check pre-conditions/ Check pre-conditions/
Eliminate ineligible tuples Eliminate ineligible tuples

4 4

Check cardinality constraints/ Check cardinality constraints/
Eliminate ineligible tuples Eliminate ineligible tuples

4 4

Precheck to
see if values are
already stored

Precheck to
see if values are
already stored

4 4

Perform update Perform update

I I

4

OR-MERGE results

4

RETURN final extension

Data-level Disjunctive Update
Figure 51



87

(REFLECT (and (IS-EVENT-NAME (agent x-10)
(object V-10 "AI-TOPICS"))

(or (IS-NOON-MEETING (agent x-10))
(IS-SEMINAR (agent x-10))))

((BAG B-1 (V-10 V-14)) <- (TUPLES < TUF_ES BAG for constants >
((V-10 <- "AI-TOPICS) (V-14 <- 12))))

< BAG to get users CHOICE >
((BAG B-2 (V-10 c-10)) <- (FOR (BAG B-1 (V-10))
((c-10 <- (CHOICE "choose one (IS-NOON-MEETING IS-SEMINAR)

(V-10)))

(CASE (((c-10 = IS-NOON-MEETING) ((c-10 <- 1)))
((c-10 = IS-SEMINAR) ((c-10 <- 2))))))))

< split reflect extension based on user CHOICE for each tuple >
((BAG B-3 (V-10)) <- < BRANCH 1 >

(FOR (BAG B-2 (V-10 c-10)) (IF (c-10 <> 1) THEN nil)))

((BAG B-4 (V-10)) <- < BRANCH 2 >
(FOR (BAG B-2 (V-10 c-10)) (IF (c-10 <> 2) THEN nil)))

< *enquire expression BRANCH 1 >

((BAG b-5 (x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)) <-
(ACCESS (V-11 = "MEETING") (V-12 = "12AM")
(HAS-TITLE / agent I-1 x-10) (HAS-TITLE / object I-1 V-11)
(MEETING-TIME/agent 1-2 x-10) (MEETING-TIME/object 1-2 V-12)))

< *enquire expression BRANCH 2 >

((BAG b-6 (x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)) <- (ACCESS
(V-13 = "SE-430") (IS-COURSE / agent 1-3 x-10)
(HAS-TITLE / agent 1-4 x-10) (HAS-TITLE / object 1-4 V-13)))

< merge constants and *enquire extensions to get update tuples >
< BRANCH 1 >

((BAG B-7 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)) <-
(AND-MERGE ((BAG B-1 (V-10 V-14))

(BAG b-5 (x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)))))

< BRANCH 2 >
((BAG B-8 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)) <-
(AND-MERGE ((BAG B-1 (V-10 V-14))

(BAG b-6 (x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)))))

< BAGs for each branch to do cardinality check, precheck to
see if already stored, and update operations BRANCH 1 >

((BAG B-9 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL)) <-
(FOR (BAG B-7 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL))
((IF (x-10 = NULL) then (x-10 <- (OCREATE EVENT)))
(1-5 <- (CINDEX (IS-EVENT-NAME (agent x-10) (object V-10))))



88

(IF (1-5 = null) THEN < precheck >
((I-5 <- (ICREATE IS-EVENT-NAME))
(CHANGE IS-EVENT-NAME / agent 1-5 x-10) < update >
(CHANGE IS-EVENT-NAME / object 1-5 V-10)))

(1-6 <- (CINDEX (IS-NOON-MEETING (agent x-10))))
(IF (1-6 = null) THEN < precheck >

((I-6 <- (ICREATE IS-NOON-MEETING))

(CHANGE IS-NOON-MEETING / agent 1-6 x-10))) < update >
(1-7 <- (CINDEX (IS-EVENT (agent x-10))))
(IF (I-7 = null) THEN < precheck >

((I-7 <- (ICREATE IS-EVENT))
(CHANGE IS-EVENT / agent 1-7 x-10))) < update >

(1-8 <- (CINDEX (NOT-IS-NOON-MEETING (agent x-10))))
(IF (1-8 <> null) THEN < precheck >

((DELETE NOT-IS-NOON-MEETING / agent I-B x-10))))))

< BRANCH 2 >
((BAG B-10 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL)) <-
(FOR (BAG B-8 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL))
((IF (x-10 = NULL) then (x-10 <- (OCREATE EVENT)))
(1-9 <- (CINDEX (LIMIT (agent x-10)))) < cardinality >
0-10 <- (CINDEX (LIMIT (agent x-10) (value V-14))))
(c-11 <- (COUNT 1-9 I-9)) < cardinality >
(IF (OR (c-11 < 1) (I-10 <> NULL)) THEN

((I-11 <- (CINDEX (IS-EVENT-NAME (agent x-10)(object v-10))))
(IF (I-11 = null) THEN < precheck >
((I -11 <- (ICREATE IS-EVENT-NAME))

(CHANGE IS-EVENT-NAME / agent I-11 x-10) < update >
(CHANGE IS-EVENT-NAME / object I-11 V-10)))

(1-12 <- (CINDEX (OFFERING-OF (agent x-10))))
(IF (1-12 = null) THEN < precheck >

((I-12 <- (ICREATE OFFERING-OF))
(CHANGE OFFERING-OF / object 1-12 x-10))) < update >

(IF (I-10 = null) THEN < precheck >
((I-10 <- (ICREATE LIMIT))
(CHANGE LIMIT / agent I-10 x-10) < update >
(CHANGE LIMIT / value I-10 V-14)))

(1-13 <- (CINDEX (IS-EVENT (agent x-10))))
(IF (1-13 = null) THEN < precheck >
((I-13 <- (ICREATE IS-EVENT))
(CHANGE IS-EVENT / agent 1-13 x-10)))))))) < update >

<Merge result from each branch to get final result >
((BAG B-11 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL V-13

1-3 NO-NULL 1-4 NO-NULL)) <-
OR-MERGE

(BAG B-9 (V-10 V-14 x-10 V-11 V-12 I-1 NO-NULL 1-2 NO-NULL))
(BAG B-10 (V-10 V-14 x-10 V-13 1-3 NO-NULL 1-4 NO-NULL))))

(RETURN (BAG B-11 (V-10 x-10))) < RETURN results >

BAGAL Update Operation
Figure 52



89

5.4.2 Tuple-level Atomicity

*assert operations are defined to fail if any pre-condition of any of the
situations that will have values added does not hold with respect to the current
database extension. However, the entire operation may involve an extension of

multiple tuples each of which is a candidate for the update operation. In this

implementation each tuple that satisfies its pre-conditions will be updated into its

corresponding branch of the *assert expression. Other tuples may fail their

pre-condition tests and will not be used in the update operation.

In order to allow optimization at the data level, to allow update operations on

an extension of retrieved values, and to permit arbitrarily complex pre-condition

expressions, the determination of which tuples within an extension meet their
pre-conditions is implemented by means of the data-level set

operators--AND-MERGE, OR-MERGE and MINUS. A routine is called to

translate the entire pre-condition expression into BAGAL procedures that will

retrieve the extension of tuples that meet all the pre-conditions. Recall that a
separate set of BAGAL update operations will be translated for each branch. Then

BAGAL statements are translated to use the AND-MERGE data operation, which

corresponds to the SIDUR 'and' connective, to do a set intersection with the extension

of tuples being considered for the update operation. This extension can be a TUPLES

BAG extension, an extension resulting from the first phase of a PERFORM or
compound operation, or the OR-MERGE of these two extensions. Those tuples

remaining in the intersection set are still "eligible" for the update operation. Figure

52 shows an example of this type of operation. Figure 53 shows the flowchart for

this operation for each branch of a disjunctive update.



90

Check Prerequisites
and construct extension

of eligible tuples

Extension to be
considered for

the update

AND-MERGE

Continue update

Algorithm of Data-level Update Operation
Figure 53

5.5 Syntax Checking and Input String Validation

The structure and content of the syntax checking routines are based directly on

the data manipulation portions of the SIDUR BNF definition as shown in Appendix

E. The routines are initially entered through the function 'dml-command?' and are

called from the 'sidur' function in order to check the syntactic correctness of the
user's original operation. Later, during the actual expression preparation and
translation process, various subsections of these routines are called to determine the

type of the next element in the current expression. Because some of the syntax

routines involve inefficient Franz Lisp symbol-name character manipulation, an

effort has been made to minimize the number of calls to these routines. So, due to

performance considerations, because a thorough initial check of the syntax of the

operation is done, and because it is assumed that the schema construct specifications

are syntactically correct, only minimal syntax checking is done during translation.

Several conventions have been followed in the syntax routines. The names of

these routines all end with a question mark "?" in order that they be easily recognized

by a reader of the SIDUR source code. In addition, the names of the syntax routines

are those of the type of structure being looked for. Each syntax routine returns only



91

a true or false indication of whether the structure being looked for has been found

and is correct.

A future change to the SIDUR implementation might include making the

syntax checking routines "smart" rather thar "dumb." That is, rather than leaving

the decision to high-level routines as to which type of structure is permissible as the

next element in the operation and then calling a corresponding syntax routine, the

syntax routines themselves could analyze the element and return a type value rather

than a boolean value. This change might improve performance by combining

element type determination with syntax checking.

Included with the syntax routines are a few simple "access" routines, which

return the value of an element of an operation. For example, given the situation

expression

(TAKES-COURSE (agent x) (object y)).

the 'terms-of' function will return the participants

(agent x) (object y).

The purpose of these routines is twofold. Reading the Franz Lisp translation

functions is often easier if an element is referred to by name such as 'situation-name'

rather than as the Franz Lisp equivalent '(car expr)'. In addition, changes to data

structures can be more easily made by changing these routines rather than making

many changes in the high-level routines.

5.5.1 Data-value Type Checking

Prior to an *assert operation that will add data values to a situation extension,

user-supplied data values are verified to be of the correct type as specified in the

schema. That is, STRING, INTEGER, and REAL data values are checked against the

form:, minval:, and maxval: slots in the corresponding data-value class schema

specifications. (Refer to Section 5. 9. 3 for a discussion of how TOKEN values are

added to extensions.) A set of object checking routines is entered through the

'objects-in-prescribed-class?' function. Object checking is done when the expression

simplification routines encounter a situation to which user-supplied constant data

values will be added. Failure of the entire operation will occur if any data value



92

does not comply with the type definition. Because values are checked prior to being

added by an update operation, it is semantically unnecessary to check values in an

ENQUIRE operation or in an expression whose values will be deleted from an

extension database.

Objects whose corresponding data-value type is INTEGER or REAL are
verified to be within the allowable range as determined by the minval: and maxval:

schema slots. However, both of these types are simply treated as Franz Lisp numbers

so, in this implementation, no attempt is made to provide strict type checking for

INTEGER and REAL types other than the use of Franz Lisp functions to determine

that the values are numbers within their ranges.

At the data level, values that are retrieved from the database during the first

part of a compound operation can be added directly to the extensions of other
situations referred to in the second part. There is at this time no provision
implemented in OSIRIS for checking the form:, minval:, or, maxval: slots of these

retrieved values prior to addition.

5.6 Operation Preparation Routines

After the syntax of an operation is checked, the operation is prepared for

translation by:

1) replacing each of the user's simple variables with a unique SIDUR-generated

variable, and

2) inserting a unique variable in front of each constant data value in the
operation because variables are used in the BAGAL query to refer to constants.

Variables are replaced in order to avoid using the same variables in the
operation as those which may be found in the schema specification slots. Otherwise,

because expressions from the schema may be added to the original expression,

duplicate use of a variable name to stand for different values might occur and would

result in incorrect translations. 'make-vars-unique' is the routine that replaces the

simple variables in an operation. Simple variables, as defined in the SIDUR BNF,

may consist of a single lower case alphabetic character. It is suggested that, if

needed, the definition later be expanded to include a lower case letter followed by a



93

single digit. For now, however, performance of the syntax routines has been

improved by restricting the definition to simple symbol operations rather than

character operations on symbol names. A list of distinct variables in the operation is

made and a unique system variable for each is created using the Franz Lisp 'gensym'

function. These system variables are symbol names in the form of a lower case letter

followed by a hyphen and digits. The lower case letter is the same character as the

user's original variable. This list is then used to substitute each new variable for each

occurrence of the corresponding simple variable in the original operation.

Next the 'find-constants' routine lists each distinct constant from the operation

along with a corresponding, unique, system-generated variable of the form "V"

followed by a hyphen and digits. The system variables are then inserted into the

expression in front of each occurrence of their corresponding constants. This

variable insertion is done because the data-level language refers to a constant by its

corresponding variable name when a TUPLES BAG is created to hold the extension

of constants in an update expression. In addition, constraints in ACCESS BAGs are

expressed as a condition statement such as 'V-31 = "SMITH'. Finally, the data

language provides for returning the results of a BAG operation or ACCESS by

forming an extension of all of the data values that are referred to in the format list

by their corresponding variable names.

To show an example of the process of operation preparation

(HAS-NAME (agent x) (object "JOHN-JONES"))

becomes

(HAS-NAME (agent x-4) (object V-31 "JOHN-JONES")).



94

5. 7 Expression Simplification Routines

5.7.1 The Canonical Form

Figure 54 and Figure 55 show examples of the canonical form. The list

structure of the canonical form represents an analysis of all of the information
needed to complete an operation. It consists of sub-lists each representing one

branch of the disjunctive. Each branch is in turn composed of the following items:

1) CHOICE names--the situation names which, if chosen by the user for a tuple,

determine that this branch is to be used in the update of the tuple,

2) *enquire or *assert- -the set of situation expressions (This is the *assert

expression for this branch if this is an update operation. This is the data retrieval

portion of the *enquire expression for this branch if this is a data access operation.),

3) cardinalities--the cardinality constraints,

4) *enquire--the pre-conditions (the *enquire expression of an update operation),

5) computations--set of computation expressions (part of the *enquire expression

of a data access operation),

6) empty--expressions in the scope of the 'empty' connective (part of the
*enquire expression of a data access operation.)

This structure is used to guide the translation routines in producing the data-level

query. If the operation is ENQUIRE or CHECK, items 2, 5, and 6 are used by the

translation routines. Item 2 is the main data access *enquire expression. Items 5 and

6 are part of the *enquire expression but are handled by the translation routines

separately from item 2. Computation and 'empty' expressions are translated into

data-level operations whose results are merged with the other *enquire expression

results. The *assert operation translation routines use items 1, 2, 3 and 4 to create

BAGAL queries. Item 2 is the *assert expression, and item 4 is the *enquire

expression, which contains necessary pre-conditions and required pre-conditions for a

REFLECT or REFLECT-NOT operation. 'empty' expressions are listed with the

*assert expression with 'empty' replaced by the 'not' connective.



95

(ENQUIRE
(or (IS-FACULTY (agent V-1 S-1))

(and (or (IS-STUDENT (agent V-1 S-1))
(IS-STAFF-STUDENT (agent V-1 S-1)))

(FINAL-SPA (agent V-1 S-1))))) )

BRANCH 1

(nil)

*enquire ((IS-FACULTY (agent V-1 S-1)))
(nil)

(nil)

(nil)

(nil)

BRANCH 2
(nil)

*enquire ((IS-PERSON (agent V-1 S-1))
(TAKES-OFFERING (agent V-1 S-1) (object z-1))
(OFFERING-OF (agent y-1) (object z-1))
(FINAL-GPA (agent V-1 S-1))))

(nil)

(nil)

(nil)

(nil)

BRANCH 3
(nil)

*enquire ((IS-STAFF-STUDENT (agent V-1 S-1))
(FINAL-GPA (agent V-1 S-1))))
(nil)

(nil)
(nil)

(nil)

< The three *enquire extensions will be OR-MERGED to produce
the final resulting extension. >

Canonical Form of An ENQUIRE Operation
Figure 54



96

(REFLECT (and (IS-EVENT-NAME (agent x)
(object V-10 "AI-TOPICS"))

(or (IS-NOON-MEETING (agent x))
(IS-SEMINAR (agent x))))

< See Appendix I for the schema and Figure 52 for the BAGAL query >

BRANCH 1

CHOICE names (IS-NOON-MEETING)
*assert ((IS-EVENT-NAME (agent x)

(object V-10 "AI-TOPICS")) PRIMITIVE definition:
(IS-NOON-MEETING (agent x)) PRIMITIVE definition:
(IS-EVENT (agent x)) TOKEN definition:
(not (NOT-IS-NOON-MEETING negative extension

(agent x)))) of open-world
situation

cardinalities (nil) none
*enquire ((HAS-TITLE (agent x) necessary:

(object V-11 "MEETING")) pre-condition
(MEETING-TIME (agent x) required:

(object V-12 "12AM"))) pre-condition
computations (nil) none
empty (nil) none

BRANCH 2
CHOICE names (IS-SEMINAR)
*assert ((IS-EVENT-NAME (agent x) PRIMITIVE

(object V-10 "AI-TOPICS")) definition:
(OFFERING-OF (object x)) TOKEN-type and

PRIMITIVE definition:
(LIMIT (agent x) sigma-bound

(value V-14 12)) definition:
(IS-EVENT (agent x))) TOKEN definition:

cardinalities ((1 LIMIT (agent x)))
*enquire ((IS-COURSE (agent x)) necessary: pre-cond'n

(HAS-TITLE (agent x) required:
(object V-13 "SE-400"))) pre-condition

computations (nil) none
empty (nil) none

Canonical Form of a REFLECT Operation
Figure 55



97

S. 7. 2 The Simplification Algorithm

The expression simplification algorithm used to produce the canonical form is

based on a set of recursive algorithms that convert an arbitrarily complex situation

expression into the form of a disjunct of conjuncts (i.e. branches.) For an ENQUIRE

or CHECK operation, as each sub-expression is encountered, the following actions are

taken:

1) The algorithm determines whether it is a single situation or computation

expression or whether it contains any of the connectives 'and', 'or', 'not', and 'empty'.

2) Computation expressions and expressions that are enclosed within the scope of

the 'empty' connective are kept track of separately from the rest of the situation

expression for each branch. They are listed separately from the situations because

they are handled separately by the data-level procedure and by the translation
algorithms.

3) If a complex sub-expression is found, the algorithm recursively converts it into

a disjunct of conjuncts. This is done by distributing the operands of a nested 'or'

connective over an enclosing 'and' connective. The 'and' expression is listed twice,

once with each operand of the 'or' expression. This partial result is combined with

other partial results to obtain the final simplified expression. If the 'not' connective

is found, the polarity of the negation indicator is changed so that negation will be

applied directly to the enclosed situations. The algorithm is called recursively to

analyze each expression that is enclosed by a connective.

4) If the sub-expression found is a single situation or computation expression, it is

analyzed by the algorithm.

4a) PRIMITIVE and SYSTEM expressions are added to the appropriate branch of

the canonical form. If the negation indicator is 'on', the expression is preceded by

'not'.

4b) Non-PRIMITIVE situation definitions and non-SYSTEM computation

expressions are replaced by equivalent expansions containing only PRIMITIVE or

SYSTEM definitions after a re-binding of variables. Then, the resulting expression is

simplified by calling the algorithm recursively.



98

5. 7.3 Definition Expansion

Prior to sigma expansion of non-PRIMITIVE expressions, their participants

must be correctly associated with the participants in the schema definition. This is

the sigma binding process, which consists of the following steps:

1) Variables that are internal to a schema construct specification are listed in the
participants: slot of the schema definition next to their corresponding role names.

These variables are used to indicate where each participant of the original situation

or computation is to be substituted into the definition: expression for that construct.

2) Each of the original participants is bound to, which means it is associated with,

the variable defining its corresponding role in the schema definition.

3) Each occurrence of a variable in the definition: slot is replaced by the original

participant, which is bound to it.

4) This substituted definition: is substituted in the main expression in place of the

non-PRIMITIVE expression. For example, the expression

(TEACHES-COURSE (agent P-20) (object C-20))

is extensionally equivalent to

(and (TEACHES-OFFERING (agent P-20) (object z))

(OFFERING-OF (agent C-20) (object z)))

when the extension that is represented by the latter expression is projected onto the

two agent roles. As shown in Figure 56, the equivalent schema-specified expression

is obtained by associating the agent value P-20 with the variable x, representing the

'agent' participant in the schema entry for TEACHES-COURSE. Likewise, the

'object' participant C-20 is associated with the variable y. Then every occurrence of

the variable x in the schema definition: slot is replaced by the value P-20, and every

occurrence of the variable y is replaced by C-20. This substitution produces the

association between data values that the schema specifies to be the "definition" of the

non-PRIMITIVE situation.



99

Schema Specification Expression Participant Associated Variable
and Data Value

agent x INSTRUCTOR agent P-20 x P-20

object y COURSE object C-20 y C-20

Mapping Table
Figure 56

5. 7. 4 *assert Operations

If the operation being analyzed by the simplification algorithm is one of the

*assert operations, REFLECT, ASSERT, REFLECT-NOT, or DENY, the algorithm

determines the structure of the *assert expression. In addition, the situation names

that will be presented to the user by the data-level CHOICE function are determined

and listed with the corresponding branch. The algorithm also keeps track of all

other sub-operations that will be needed for each branch found in the simplified

expression.

The implied sub-operations for a REFLECT or REFLECT-NOT operation are:

1) Verify STRING-type object participants,

2) REFLECT TOKEN-type object participants,

3) Enforce cardinality constraints,

4) Enforce necessary pre-conditions, and

5) Enforce required pre-conditions.

The implied sub-operations for an ASSERT or DENY operation are:

1) Verify STRING-type object participants,

2) REFLECT TOKEN-type object participants,

3) Enforce cardinality constraints,

4) Enforce necessary pre-conditions, and

5) REFLECT required pre-conditions.



100

As will be explained later, the algorithm determines which sub-operations are

needed by examining the schema specifications of all single situation expressions to

determine whether they contain any other information that will have an effect on

the operation. For example, in order to insure referential integrity (Date, 1983) for

each object of type TOKEN, a sub-expression representing the implied REFLECT

operation on the defining situation is added to the simplified *assert expression.

Note that required pre-conditions for an ASSERT operation are semantically

equivalent to the *assert expression, and so they are included with the *assert
expression. For REFLECT operations required pre-conditions are semantically
equivalent to necessary pre-conditions and are included with the *enquire

expression. Figure 57 shows the different effects on the canonical form of an

ASSERT and a REFLECT operation that operate on the same sigma expression. Note

that the ASSERT operation became disjunctive due to the implied REFLECT of the

required pre-condition, which was disjunctive. How these pre-condition expressions

are merged with an *assert or *enquire expression will be explained soon.

When simplifying an *assert expression, the simplification algorithm keeps

track of which operation--add or remove--is to be applied to each situation. Each

time the 'not' connective is encountered, the "polarity" of the operation that is to be

applied is reversed. All situation expressions that will be involved in the *assert

operation are listed in the canonical form as discussed earlier. Situation expressions

that will have data values removed are listed with a 'not' preceding them.

The simplification algorithm for an update operation is:

1) the algorithm determines whether it is a single situation or computation

expression or whether it includes any of the connectives 'and', 'or', 'not', and 'empty'.

2) For an update operation, computation expressions are not allowed. Expressions

that are enclosed within the scope of the 'empty' connective are handled as if they

were in the scope of the 'not' connective.

3) If it is a complex sub-expression, the algorithm recursively converts it into a

disjunct of conjuncts. This is done by distributing the operands of a nested 'or'
connective over an enclosing 'and' connective. The algorithm identifies the CHOICE



situation IS-FACULTY
participants: ((agent x EMPLOYEE))
necessary: (FINAL-GPA (agent x) )

required: (or (TEACHES-OFFERING (agent x) (object z))
(CAN-TEACH (agent x)))

extension: (OPEN-WORLD)
definition: (PRIMITIVE))

ASSERT IS-FACULTY

*enquire (and
(FINAL-GPA)
(OFFERING-OF)
(CAN-TEACH))

BRANCH 1

(FINAL-GPA)) BRANCH 2

*assert (and (IS-FACULTY) BRANCH 1

(TEACHES-OFFERING)
(IS-INSTRUCTOR)
(IS-EMPLOYEE)
(OFFERING-OF))

(and (IS-FACULTY) BRANCH 2
(CAN-TEACH)
(IS-PERSON)
(IS-EMPLOYEE)))

101

< necessary: >

< necessary: for
TEACHES-OFFERING,
which is REFLECTed
as a required
pre-condition >

< definition: >

< required: >

< TOKEN type >
< TOKEN type >
< TOKEN type >

< definition: >
< required: >

< TOKEN type >
< TOKEN type >

REFLECT IS-FACULTY

*enquire (or (and BRANCH 1

(FINAL-CPA)
(TEACHES-OFFERING))

(and

(FINAL-GPA)
(CAN-TEACH)))

*assert (and (IS-FACULTY) BRANCH 1

(IS-EMPLOYEE))

< necessary: >

< required: >

< necessary: >

< required: >

< necessary: >

< TOKEN type >

< The expressions above are abbreviated sigma expressions. >

ASSERT and REFLECT Operations
Figure 57



102

names for each of the 'or' branches by taking the situation names enclosed by an 'or'

connective. The 'and' expression is listed twice, once with each operand of the 'or'

expression. This partial result is used to combine with other partial results to obtain

the final simplified expression. If the 'not' connective is found, the polarity of the

negation indicator is changed so that negation will be applied directly to the enclosed

situations. The algorithm is called recursively to analyze each expression enclosed by

a connective.

4) If the sub-expression is a single situation, it is analyzed by the algorithm.

Necessary and required pre-conditions are handled as described later in this chapter.

In summary, necessary pre-conditions are placed in the *enquire expression. For

REFLECT operations, required pre-conditions are also placed in the *enquire
expression. But, for ASSERT operations, a required pre-condition is placed in the

*assert expression and is then recursively analyzed by the algorithm as if it were a
REFLECT operation.

4a) PRIMITIVE expressions will be placed on the list structure of the canonical

form. Cardinality constraints are listed if not already present. TOKEN data types

will be handled as described later in this chapter. In summary, their defining
situations become part of the *assert expression as if

(REFLECT (<defining situation>))

were part of the original operation.

4b) Non-PRIMITIVE situation definitions and non-SYSTEM computation
expressions will be replaced by equivalent expressions containing only PRIMITIVE or

SYSTEM definitions after a re-binding of variables. Then, the resulting expression is

simplified by calling the algorithm recursively.

5. 8 Cardinality Constraints

The semantic update operations, REFLECT, ASSERT, DENY, and

REFLECT-NOT, are defined to fail if the addition of any tuple to a PRIMITIVE

situation's extension will cause a violation of any of the situation's schema-specified

cardinality constraints. Cardinality constraints belonging to situations from which

values will be deleted do not affect the operation because constraints only determine



103

the maximum allowable number of occurrences of participants in an extension and

not the minimum number. For an update operation, the simplification algorithm

keeps track of all relevant cardinality constraints that involve the same, or a subset

of, the participants about to be added. The cardinality constraints are re-expressed

as situation expressions. Each expression is preceded by a digit denoting the
maximum allowable number of occurrences of the participants.

For example, the cardinalities: slot in the schema specification for the
GRADE-FOR situation is shown in Figure 58

(( 1 x y ))
This slot has one constraint whose interpretation is: No more than one occurrence of

any specific pair of participants for the agent and object roles of this situation is

allowed in the extension.

situation GRADE-FOR
participants: ((agent x STUDENT)

(object y OFFERING)
(value z GRADE))

cardinalities: (( 1 x y ))
definition: (PRIMITIVE)
extension: (CLOSED-WORLD)

Situation With Cardinality Constraint
Figure 58

The simplification algorithm re-expresses the constraint as

(1 GRADE-FOR (agent x) (object y))

by determining from the participants: slot which roles correspond to the variables in

the constraint. Then, the participants that will be added to the agent and object

roles are sigma-bound to this expression of the constraint. For example, if the
expression in the update operation is

(GRADE-FOR (agent S-13) (object 0-13) (value "A")),

then the sigma-bound constraint will be

(1 GRADE-FOR (agent S-13) (object 0-13) ) .

The sigma binding process was discussed earlier in Section 5.7.3 and in Chapter IV.



104

This constraint is added to the list structure of the canonical form of the
operation. The translation routines use this expression to translate the constraint

into data-level statements. If the *assert will violate a cardinality constraint for any

situation being *asserted for a tuple, then the entire *assert for this tuple will fail.

An example of these statements is shown in Figure 59. Statements to cause the

check on the constraint as well as the possible subsequent failure can be placed in the

same data-level BAG with the data level update operators. They can be placed in

the same BAG because each constraint is concerned with only a single PRIMITIVE

situation. Furthermore, each data retrieval to check a cardinality constraint

corresponds to exactly one of the tuples of constant values that is about to be added.

Thus, there is no possibility that a complicated expression involving multiple situation

retrievals and OR-MERGE (union) operations will be needed. The simplification

algorithm thus lists the cardinality constraints for each branch separate from the

necessary pre-conditions because the translation routines handles those two types of

expressions differently. Figure 59 shows the BAGAL code that enforces the
cardinality constraint of ( 1 x y ) on a situation INTERESTING.

5.9 Pre-conditions

5. 9. 1 Necessary Pre-conditions

An update operation's necessary pre-conditions consist of the sigma-expanded

necessary: slots of both PRIMITIVE and non-PRIMITIVE situations being *asserted

by the operation. The necessary: slots of situations from which values will be

removed do not affect the operation and, therefore, are not included in the list of

pre-conditions. This is equivalent to saying that the tuple must meet the



105

< Update BAG--This command checks cardinalities, verifies that
values are not already present, and then performs the update >

((BAG B-2 (V-2 V-1)) <-
(FOR (BAG B-1 (V-2 V-1))

c data access to check cardinality >
((I-1 <- (CINDEX (INTERESTING (agent V-1))))
(c-1 <- (COUNT I-1 I-1))

< data access statement--check if template exists >
(1-2 <- (CINDEX (INTERESTING (agent V-1) (result V-2))))

< check cardinalities--see if count is less than
the cardinality constraint or if already stored >

(IF (OR (c-1 < 1) (1-2 <> NULL)) THEN
((IF (1-2 = null) THEN < if not already stored >

<- (ICREATE INTERESTING))
< perform update >

(CHANGE INTERESTING / agent 1-2 V-1)
(CHANGE INTERESTING / result 1-2 V-1)))

<perform remainder of the update>

Data-level Cardinality Check
Figure 59

conjunction of all of the necessary pre-conditions

(and (<necessary pre-condition 1>)

(<necessary pre-condition 2>)

(<necessary pre-condition n>))

of the situations that are involved in the insert. This conjunct is part of the
*enquire expression of an update operation. As the simplification algorithm analyzes

an *assert expression, it keeps track of the expression's necessary pre-conditions by

listing them in the *enquire expression of the branch of the canonical form where

the situation having the pre-condition was found. If duplicate expressions would

occur in the *enquire expression for a branch, the duplicate is not listed. The merge

algorithm, shown in Figure 60, handles adding expressions to the canonical form.



106

5. 9. 2 Required Pre-conditions

Update operations must meet any required pre-conditions as specified by

required: slots in schema entries for both PRIMITIVE and non-PRIMITIVE situations

being *asserted. The set of required pre-conditions for each of the sets of situations

in a simplified expression is derived in the same manner as are its necessary
pre-conditions with the exception that the required: schema slots rather than the

necessary: slots are consulted.

For a REFLECT or REFLECT-NOT operation, the effect of required

pre-conditions on the operation is the same as the effect of necessary pre-conditions

on these operations. Therefore, when dealing with REFLECT and REFLECT-NOT

operations, the simplification algorithm does not distinguish between these two types

of pre-conditions. They both become part of the *enquire expression. The merge

algorithm that joins two expressions is shown in Figure 60.

For an ASSERT or DENY operation, the data-level operations that will need to

be performed in order to REFLECT its required pre-conditions include *assert as

well as *enquire operations. These are exactly the same kind of operations that are

needed to perform the main ASSERT operation. The difference between these

operations lies solely in how required pre-conditions are analyzed at the SIDUR

level. So, the simplification algorithm, when dealing with the analysis of the
specified REFLECT on the required pre-conditions for an ASSERT or DENY

operation, isolates the sub-expressions of the implied REFLECT operation. When the

simplification algorithm encounters a PRIMITIVE or non-PRIMITIVE situation into

whose extension values will be ASSERTed and whose schema specification includes a

required: slot, it sigma binds the required: slot as described earlier in this section. The

simplification algorithm is then called recursively to include the resulting REFLECT

expression in the same *assert expression that is being built for the ASSERT or

DENY operation. That is, the simplification algorithm analyzes the required:

expression as if it is part of a REFLECT operation, but, by placing its results onto the

same list structure that had been built for the ASSERT/DENY operation, causes the

two operations to be correctly merged. This results in adding three groups of



107

sub-expressions to the canonical list structure of the ASSERT operation.

First, the required: slot is REFLECTed. This results in adding the

sigma-expanded required: slot to the *assert expression as shown below:

(and (<set of expressions in the ASSERT situation expression>)

(<set of *assert expressions obtained by REFLECTing

required pre-conditions>)).

Any TOKEN-type participants of the sigma-bound required: slot are also added to

the *assert expression. Circularities among TOKEN-type definitions can arise when

this is done and will be described in the next section. In order to prevent
redundancies in the *assert expression, which will result in "circularities" in

processing the operation, expressions that are duplicates or subsets of ones already on

the list are not added. Further analysis of a duplicate new expression is discontinued

because all of the information needed for the operation was obtained the first time

the expression was put in the *assert expression. If a subset of the new expression is

already on the list, the subset is removed and the new one is added. This is the merge

operation shown in Figure 60.

The second group of sub expressions that result from semantically

REFLECTing a required pre-condition are obtained from any necessary: and

required: slots found in situation definitions of the situations in the required: slots.

These kinds of sub-expressions represent pre-conditions that must already exist in

the database extension prior to any update for some situation. They are, therefore,

semantically equivalent to the necessary pre-conditions of the main ASSERT or

DENY operation. The simplification algorithm puts these sub-expressions on the

same list that it is building for the *enquire expression for the original ASSERT or

DENY operation.

( *enquire

(and (<necessary pre-conditions of the original ASSERT>)

(<necessary and required pre-conditions of the

REFLECT of the required pre-conditions>)))

The merge algorithm is used to join the expressions. The translation routines then

can handle all of these pre-conditions as one expression to which the *enquire

operator is applied. Note that there is a possibility that a duplicate expression might

not have been added to the *assert expression because it had already been added by

the original ASSERT operation. If the duplicate expression had a required

pre-condition, the required pre-condition should not be put into the *enquire



108

expression. This is because it has already been dealt with by the stronger ASSERT

operator, which put it in the *assert expression. Therefore, putting it into the
*enquire expression would cause incorrect results if tuples were erroneously
eliminated from the update extension by not passing the *enquire pre-condition.

The third group of ASSERT / DENY sub-expressions obtained from the

implied REFLECT of required pre-conditions are cardinality constraints. These are

added to the list of cardinality constraints for the main operation if they are not
already present.

Determine if the new situation is already listed
If an expression with the same situation name is listed then

Begin

Determine if the new expression is a duplicate of one
already listed

If it is a duplicate then
Do not add it to the list

Determine if the new expression is a subset of one
already listed

(i.e. its participants are a
subset of those of an existing
expression involving this situation)

If it is a subset then
Do not add it to the list

Determine if the new expression is a superset of one
already listed

If it is a superset then
Begin

Remove the old expression
Add the new expression to the list

End
End

Else

Add the new expression to the list

Algorithm for Merging Two Expressions
Figure 60



109

5. 9. 3 TOKEN Definitions

During an *assert operation, all TOKEN values that are being added to

extensions of PRIMITIVE situations must also be added to the corresponding

object-class defining situations. Because this addition to a defining situation is, itself,

defined semantically as a REFLECT, the same policies and procedures govern this
sub-operation. Therefore, it is observed that the REFLECT sub-operation on the

TOKEN type's defining situation is simply an additional, but implied, pre-condition

of the user's original operation. Within a REFLECT operation this is semantically

equivalent to another REFLECT operation whose expression includes the conjunct of

the user's original REFLECT expression and the expression needed to cause the

REFLECT of the TOKEN's defining situation. For example,

(REFLECT (HAS-TITLE (agent C-21)

(object "CS-430") ) )

has an agent of type COURSE. The schema definition of COURSE indicates that its

defining situation is IS-COURSE. This implies that

(REFLECT (IS-COURSE (agent C-21)))

will also be performed. These two operations can be combined to form a single

equivalent operation.

(REFLECT (and (HAS-TITLE (agent C-21)

(object "CS-430"))

(IS-COURSE (agent C-21)))).

It is important to note that if the

(REFLECT (IS-COURSE (agent C-21)))

update fails for any tuples, then these tuples must be removed from the REFLECT

extension and not added to the other situation extensions mentioned in the *assert

expression. However, if C-21 is already present in the IS-COURSE extension, the

REFLECT operation of IS-COURSE should be considered as already successful and

should not be repeated. Since the two REFLECTs are semantically equivalent to one

REFLECT of the conjunct of their situation expressions, the REFLECT of the

object-class defining situation is implemented by merging this implied REFLECT

expression with the *assert expression. This is done when the simplification

algorithm processes the *assert expression. However, if the implied REFLECT



110

expression is a duplicate or a subset of an expression already listed in the *assert

expression, the implied REFLECT is not placed on the list. If a subset of the implied

REFLECT is already on the list, it is removed. Figure 60 shows the algorithm for

merging the REFLECT expression with the implied REFLECT on the TOKEN types.

When performing the implied REFLECT on TOKEN types, it is possible to

encounter a circularity in the schema definitions of the object type and of the
defining situation. Example schema definitions are shown in Figure 61. For

example, when a REFLECT operation involves IS-SEMINAR, the TOKEN type

EVENT also needs to be REFLECTed into its defining situation IS-EVENT. But,

note that the object type of the participant of the defining situation is the same type

object-class EVENT
representative: (TOKEN)
definition: (IS-EVENT)

situation IS-EVENT
participants: ((agent x EVENT))
definition: (PRIMITIVE)
extension: (CLOSED-WORLD)

situation IS-SEMINAR
participants: ((agent x EVENT))
definition: (PRIMITIVE)
extension: (CLOSED-WORLD)

Circular TOKEN-type Definitions
Figure 61

already involved in the implied TOKEN REFLECT. This type of circularity can

also be indirect in that several situations and TOKEN types may be dependent on

each other for their definitions. The simplification algorithm handles this type of

circularity by making a list of TOKEN types being REFLECTed. When a duplicate

is encountered, the cycle is broken, and the data value is scheduled for addition to all

defining situations specified in the schema. In this example, the cycle is quickly

stopped, and values would be scheduled for addition to the IS-EVENT situation.

For an ASSERT operation, the implied REFLECT expression for TOKEN types



Ill

is also added to the *assert expression as shown in the example above. When the

schema specifications related to the implied REFLECT are examined by the
simplification algorithm, their effects on the canonical expression that is being built

will be those defined for the REFLECT operator rather than those of the ASSERT

operator. For example, if the schema specification of a TOKEN type's defining

situation contains a required pre-condition, this pre-condition will be treated as part

of the required pre-conditions for the implied REFLECT. For a REFLECT
operation, required pre-conditions are semantically equivalent to necessary

pre-conditions. Therefore, the required pre-conditions of the implied REFLECT

operation are equivalent to the necessary pre-conditions of the original ASSERT

operation and are listed with the necessary pre-conditions in the *enquire expression

as shown below:

(*enquire ((required pre-conditions of the REFLECT of the

defining situation of the TOKEN type >)

(*assert ((defining situation of the TOKEN type>)>

Figure 62 shows an example of a defining situation with a required pre-condition. In

order to ASSERT a situation having an object participant of type ARTICLE, the

*enquire expression must include

(IS-SUBMITTED (agent x ) ) ,

and the *assert expression must include

(IS-ARTICLE (agent x)).

object-class ARTICLE
representative: (TOKEN)
definition: (IS-ARTICLE)

situation IS-ARTICLE
participants: ((agent x ARTICLE))
required: (IS-SUBMITTED (agent x))
definition: (PRIMITIVE)
extension: (CLOSED-WORLD)

Defining Situation With Required Pre-condition
Figure 62



1 1 2

5.10 Bag Building Routines

The translation routines call SIDUR's code generation routines to build a Franz

Lisp list structure that will represent the data-level query. The code generation

routines consist of a set of routines that

1) initialize the BAGAL query or initialize a new BAG within the query,

2) add sub-lists to a BAG and return the BAG as value,

3) add statements to the BAGAL query, and

4) build sub-lists and return them for use by other routines that later add them

to BAGs.

Many of the BAG building routines build small lists. Those routines are called

by higher-level routines. By isolating these routines from the higher-level routines,

changes can be made in the data-level language syntax without disturbing the
translation routines.

5. 11 Utility Routines

The utilities consist of a set of routines that print results of operations, save

results, pre-define operations and expressions, and handle files containing

pre-defined operations and expressions. These are all very simple Franz Lisp
functions whose usage and results are described in the appendix titled "Use of the

SIDUR Implementation."



113

VI. SCHEMA BUILDING

6.1 Schema and Data Equivalence

SIDUR users can access and update the schema in the same manner that data is

accessed and updated. This symmetry between schema and data management enables

the information system to provide users with a unified method of representation and

information access. This equivalence is achieved by defining, for each type of

SIDUR construct, a system situation whose participants are the slots for the
construct. The role names for these situations are the relevant slot names for each

construct type. Figure 63 shows the system situations whose extensions contain the

SIDUR schema.

6.2 Run-time Schema Management

Since the OSIRIS data level is not yet available, the run-time schema for this

implementation of SIDUR is stored in the form of Franz Lisp p-list structures. The

schema information for each construct is stored on the p-list of the Franz Lisp
symbol whose print-name is the construct name. The name of each slot in the
construct schema is a property on the p-list, and the contents of the slot are the

value of the property. Figure 64 shows the p-list data structure for the
TEACHES-COURSE situation.



114

(situation IS-DATA-VALUE-CLASS
participants: ((agent a DATA-VALUE-CLASS)

(type: b DATA-VALUE-TYPE)
(form: c NAME-RULE)
(size: d UNSINT)
(minval: f NUMBER)
(maxval: e NUMBER)
(precision: g UNSINT))

definition: (SYSTEM))

(situation IS-OBJECT-CLASS
participants: ((agent a OBJECT)

(representative: b DATA-VALUE-CLASS)
(superclasses: c OBJECT-LIST)
(names: d STRING-LIST)
(definition: e SITUATION))

definition: (SYSTEM))

(situation IS-SITUATION
participants: ((agent a SITUATION)

(participants: b PARTICIPANT-LIST)
(cardinalities: c CARDINALITY-LIST)
(extension: g EXTENSION-DESCRIPTOR)
(necessary: e SIGMA-EXPRESSION)
(required: f SIGMA-EXPRESSION)
(definition: d SIGMA-EXPRESSION)
(sufficient: e SIGMA-EXPRESSION))

definition: (SYSTEM))

(situation IS-COMPUTATION
participants: ((agent a COMPUTATION)

(participants: b PARTICIPANT-LIST)
(definition: c SIGMA-EXPRESSION))

definition: (SYSTEM))

(situation IS-ACTION
participants: ((agent a ACTION)

(participants: b PARTICIPANT-LIST)
(prerequisites: c SIGMA-EXPRESSION)
(results: d OPERATION-LIST))

definition: (SYSTEM))

System Situations
Figure 63



1 1 5

TEACHES-COURSE

(construct-type situation

participants: ((agent x INSTRUCTOR) (object y COURSE))

definition:

(and (TEACHES-OFFERING (agent x) (object z))

(OFFERING-OF (agent y) (object z))))

Schema Storage of TEACHES-COURSE
Figure 64

6.3 Initializing a Schema

One of the long-range design goals of the OSIRIS architecture is to support the

automated generation of database schemas. However, in the meantime in order to

facilitate independent development of this phase of the SIDUR implementation, a set

of batch schema input routines and a simplified schema BNF have been developed.

If the user wishes to establish an entire schema, he/she may use any standard text

editor to create a schema file in which schema constructs are defined using a

notation very similar to that established in the "SIDUR Manual" (Frei ling, 1983c.) In

addition to the departures from the "SIDUR Manual" BNF for defining schema

constructs, the implementation described in this thesis does not verify the syntactic or

semantic soundness of a schema. Appendix G contains the BNF used in this SIDUR

implementation.

After a text file containing the schema has been prepared, the user should enter

the SIDUR system as outlined in Appendix A. In response to the initial SIDUR

prompt, the user should type the word 'new'. The response to the next prompt should

be the name of the file containing the text of the schema. After the third prompt,

the user should choose and type the name of the file that will contain the run-time

schema p-list structure. The run-time schema will be stored into this file when the

user terminates the SIDUR session by typing '(wrap-up)'.



116

6.4 Schema Operations

Since the user can express schema operations in the same language in which

data operations are expressed, SIDUR must intercept the schema operations and

process them at the SIDUR level. With one exception noted below, data-level queries

are not created for operations that mention any of the system situations listed in

Figure 63 or that mention the situations MEMBER and MENTIONS. A restriction

of this implementation, but not of the SIDUR model itself, is that operations
involving the schema may not include data accesses or updates and may not refer to
more than one situation.

The user can access information about the schema by using the SIDUR situation

operator ENQUIRE in an operation such as

(ENQUIRE (IS-SITUATION (name TEACHES-COURSE)

(definition: x))).

Quotation marks, which are used by the Franz Lisp read functions to denote Lisp

strings, are not used to surround the constant data values such as

TEACHES-COURSE in operations that mention the system situations. Operations of

this type should always include the name participant and any slot names about which

information is being requested. The role 'name' is converted to 'agent' by SIDUR.

The situation MEMBER is implemented as discussed in the "SIDUR Manual"

(Frei ling, 1983c.) MEMBER tests for construct type membership. For example,

(ENQUIRE (MEMBER (agent "TEACHES-COURSE")

(object "SITUATION") ) )

will return a true or false value indicating whether TEACHES-COURSE is a

situation name. If the agent participant of this query is an object TOKEN and if the

object participant is the name of an object class of type TOKEN, then SIDUR will

prepare a data-level query to determine whether the TOKEN value is stored in the

defining situation of the object class. The mechanism by which this is accomplished is

an ENQUIRE operation on the defining situation.

The MENTIONS situation will return the list of construct names that are

mentioned in the indicated slot of the situation named in the operation. For



1 1 7

example,

(ENQUIRE (MENTIONS (name "TEACHES-COURSE")

(object "definition:")

(value x)))

will return a list of construct names found in the definition: slot of

TEACHES-COURSE. This implementation corresponds to a definition of

MENTIONS from in an early version of the SIDUR definition and does not
correspond with the current SIDUR definition of MENTIONS.

The user can update the run-time schema file (but not the original

user-created schema file) by using the REFLECT and REFLECT-NOT operators.

An operation such as

(REFLECT (IS-SITUATION (name TEACHES-COURSE)

(definition: (PRIMITIVE)))

will revise the definition: slot of the TEACHES-COURSE situation. Again, double

quotes around the schema slot values should not be used, and these operations may

involve only one situation.



1 1 8

VII. SUMMARY

This paper has discussed some of the major concerns of implementing a

semantic-level information system. Some of the major concerns include:

1) the advantage of translating a semantic operation into only one data-level

operation,

2) providing for operations on single tuples as well as on an extension of tuples,

3) handling disjunctive update operations,

4) insuring the integrity of stored data by enforcing pre-conditions and
cardinality constraints,

5) insuring that updates are atomic, and

6) removing semantic concerns from data-level queries while yet expressing in

data-level terms what needs to be done to bring about the requested semantic-level

result.

The SIDUR implementation has approached each of these concerns in a manner

designed to allow flexibility and evolvability of the system as the research needs of

the OSIRIS project evolve. The OSIRIS project has reached many of its preliminary

design goals and is now ready to refine and test the models and interfaces that have

been developed. For the SIDUR portion of the project, the next steps will be:

1) tuning the usability of the SIDUR model,

2) interfacing with the data level,

3) integrating with the user interface module, and

4) using the OSIRIS architecture as the vehicle for continued study of

semantic-level issues.



119

BIBLIOGRAPHY

1. Abrial, J. R. Data semantics. In Database Management, J. W. Klimbie and K. L.
Koff eman, Eds. North-Holland Pub. CO., Amsterdam, 1974.

2. ANSI/X 3/SPARC (Standards Planning and Requirements Committee). Interim
report from the study group on database management systems. FDT_Q3ulletin
of ACM SIGMODEZ, 2 (1975).

3. Bracchi, G., Paolini, P., and Pelagatti, G. Binary logical associations in data
modelling. In Modelling in Data Base Management Systems, G. M. Nijssen,
Ed. North-Holland Pub. CO., Amsterdam, 1976.

4. Bracchi, G. Methodologies and tools for logical database design. In Data Base
Management: Theory_ and Applications, C W. Holsapple and A. B. Whinston,
Eds. D. Reidel Pub. CO., Holland, 1982.

5. Buneman, P., and Frankel, R. E. FQL--A functional query language. In Proc.
ACM SIGMOD Int. Conf. Management of Data, Boston, Mass., 1979.

6. Cattell, R. G. G. Design and Implementation of a Relationship-Entity:. Datum
Data Model. Xerox Corporation, Palo Alto, Ca., 1983.

7. Chen, P. P. S. The entity-relationship model: Toward a unified view of data.
ACM Trans. Database Syst. 1, 1 (March 1976), 9-36.

8. Clocksin, W. F., and Mellish, C. S. Programming in Prolog. Springer-Verlag,
Berlin, 1981.

9. Codd, E. F. Extending the database relational model to capture more meaning.
ACM Trans. Database Syst. 4, 4 (Dec. 1979), 397-434.

10. Codd, E. F. Further normalization of the data base relational model. In
Database Systems, Courant Computer Science Symposia 6, R. Rustin, Ed.
Prentice-Hall, Englewood Cliffs, N.J., 1971.

11. Codd, E. F. A relational model for large shared data banks. Commun. ACM 13,
6 (June 1970), 377-387.

12. Date, C. J. An architecture for high level language database extension. In Proc.
ACM SIGMOD Int. Conf. Management of Data, Washington, D.C., 1975.

13. Date, C. J. An introduction to database systems, Vol. 2. Addison-Wesley
Publishing Company, Reading, Mass., 1983.

14. Foderaro, J. L., and Skiower, K. L. The FRANZ LISP Manual. Regents of the
University of California, Sept. 1981.



120

15. Frei ling, M. J. "OSIRIS" Project. OSIRIS Internal Document, Oregon State
University, Corvallis, Or., 1983a.

16. Frei ling, M. J. SIDUR An integrated data model. In Proc. Comp. Soc. Int.
Conf. , Arlington, Va. , Sept. 1983b.

17. Frei ling, M. J., et. al. The SIDUR 2. 0 Reference Manual. Project OSIRIS
Internal Document, Oregon State University, Corvallis, Or., 1983c.

18. Freiling, M. J. UnderstandinLDatabase Management. Alfred Publishing Co.,
Sherman Oaks, Ca., 1982.

19. Hammer, M., and McLeod, D. The semantic data model: A modelling
mechanism for database applications. In Proc. ACM SIGMOD Int. Conf.
Management of Data, Austin, Tex., 1978.

20. Kent, W. Data and Reality. North-Holland Pub. CO., Amsterdam, 1978.

21. Kogan, D. SIDUR--A Formalism for Structuring Knowledge Bases.. Masters
Thesis, Dep. Computer Science, Oregon State University, Corvallis, Or., 1984.

22. Kogan, D. D., and Freiling, M. J. SIDUR A structuring formalism for
knowledge information processing systems. In Proc. Int. Conf. Fifth
Generation Comiuter S_ystems, Tokyo, Japan, Nov. 1984.

23. Mylopoulos, J., Bernstein, P. A., and Wong, H. K. T. A language facility for
designing interactive database-intensive applications. In Proc. ACM SIGMOD
Int. Conf. Management of Data, Austin, Tex., 1978.

24. Mylopoulos, J., and Wong, H. K. T. Some features of the taxis data model. In
Proc. of the 6th Int. Conf. Very_Large Databases, Montreal, Canada, Oct.,
1980.

25. Nijssen, G. M. A gross architecture for the next generation data base
management systems. In Modelling in Data Base Management Systems, G. M.
Nijssen, Ed. North-Holland Pub. Co., Amsterdam, 1976.

26. Senko, M. E., et. al. Data structuring and accessing in data-base systems. IBM
Syst. J. 12, 1 (1973), 30-93.

27. Senko, M. E. DIAM as a detailed example of the ANSI/SPARC architecture. In
Modelling_ in Data Base Management Systems, G. M. Nijssen, Ed.
North-Holland Pub. Co., Amsterdam, 1976.

28. Shipman, D. W. The functional data model and the data language DAPLEX.
ACM Trans. Database Syst. 6, 1 (March 1981), 140-173.

29. Smith, J. M., and Smith, D. C. P. Database abstractions: Aggregation. Commun.
ACM 20, 6 (June 1977), 405-413.

30. Smith, J. M., and Smith, D. C. P. Database abstractions: Aggregation and
generalization. ACM Trans. Database Syst. 2, 2 (June 1977), 105-133.



121

31. Tsichritzis, D., and Lochovsk:, F. Data Models. Prentice-Hall, Englewood
Cliffs, N. J. 1982.

32. Ullman, J. D. Principles of Databaseystems. Computer Science Press, Potomac,
Md., 1980.

33. UNIX Time-Sharing System: UNIX Programmer's Manual, 7th Ed., Vol. 2A.
Bell Telephone Laboratories, Inc., Murray Hill, N. J., Jan. 1979.

34. UNIX Programmer's Manual, 7th Ed., Virtual VAX-11 Version. Computer
Science Division, Department of Electrical and Computer Science, University
of California, June 1981.

35. Warren, D. H. D. Logic Programming and compiler writing. Software-Practice
and Experience, 10 (Feb. 1980), 97-125.



APPENDICES



122

Appendix A. Use of the SIDUR Implementation

UNIX®

SIDUR is implemented on the Oregon State University Computer Science

Department VAX-11/750, which runs Berkeley VAX/UNIX (4. 1 bsd revised 1 Sept.

1981). The reader is referred to the standard UNIX documentation (UNIX, 1979;

and UNIX, 1981) if further information is needed. This document will provide the

reader with enough detail about the UNIX environment to enable him/her to do the

basic functions needed in using the SIDUR system.

Login Procedure

The procedure for logging in is:

1) Obtain <account name> and <password>.

2) Type the 'break' key until the login prompt appears.

3) When the login prompt appears, type the <account name>.

4) When the password prompt appears, type the <password>.

5) When the '(VT100)' prompt appears, type the 'carriage return' key.

6) Type 'lisp'.

7) The Franz Lisp and SIDUR environment will be initialized and ready for the

user to begin a session.



123

Starting a Session

SIDUR will prompt the user for the database name that will be used to
perform subsequent data and schema operations. The user will usually supply the
name of an existing database that he wishes to access. If a new database is to be
created at this time, the user will need to specify a name for it. Database names

must be unique from any other name in the UNIX directory. SIDUR will then
prompt the user to supply a UNIX file name to store the results of operations. This

file name will be handled as a Franz Lisp atom. The form of the name can be any

valid UNIX file name. A sample of a SIDUR session is shown in Appendix D.

Lisp

Because the SIDUR implementation is a set of Franz Lisp (OPUS 38.22)

functions, the user who is knowledgeable of Lisp may find it helpful to refer to "The

Franz Lisp Manual" (Foderaro and Skiower, 1981) for further detail if unusual

circumstances arise. Enough detail will be provided here to enable the user to handle

ordinary events and to recover from typical errors. An ordinary SIDUR session will

consist of a series of prompts 'sidur-->' to the user from the Franz Lisp driver

function. However, the user who is knowledgeable of Lisp may wish to leave SIDUR

in order to perform Lisp functions. This can be done by typing '(lisp)' in response to

the SIDUR prompt. The user can return from Franz Lisp to the SIDUR system by

typing '(sidurY. In addition, the user may leave the Franz Lisp-SIDUR system in

order to execute UNIX commands. This can be done by typing (CONTROL-Z.

Re-entry to the Franz Lisp-SIDUR system can be accomplished by typing 'fg' in

response to the UNIX prompt.



124

Data Manipulation Operations

After a session has been started, the user will be presented with the SIDUR

prompt 'sidur- ->'. In response, the user can type in a SIDUR operation. If the
operation is ill-formed, SIDUR will respond with an error message. Otherwise

SIDUR will respond with an indication that the operation has been processed. In

either case, SIDUR will enter the Franz Lisp break package whose prompt is '<l>:'.

The user can then perform any Franz Lisp function or any of the SIDUR utilities

mentioned later in this section. If the user types '(pprint query)', the BAGAL

translation of the operation will be displayed on the screen. When the user is ready

to resume, the response to the break package prompt should be '(return t)'.

Saving Results and Getting Output

The SIDUR implementation includes a utility routine that allows the user to

save the results of the most recent query by typing:

(pprint query %p)

after the SIDUR-break prompt occurs. A user who is familiar with Lisp and with

the SIDUR functions may wish to invoke the pprint function to print other values.

'%p' denotes the port (file) that was opened for the user when the SIDUR environment

was initialized. Other files may be opened by typing

(setq <port name> (outfile <file name>)).

Then, subsequent statements of the form

(pprint <variable name> <port name>)

will cause values to be written to the file. <file name> will be a file name on the

UNIX current directory and should be distinct from any other names in the

directory. Any new ports opened by the user in this manner should be closed by

typing



125

(close <port name>)

prior to leaving the SIDUR environment. '%p' will be closed automatically by SIDUR

when the user invokes the '(wrap-up)' function.

In order to obtain a line printer listing of the result file, the user will need to
leave the SIDUR environment either temporarily by typing (CONTROL) -Z or

permanently by typing '(exit)'. When at the UNIX command level, the user can type

1pr <filename>

to obtain a line printer listing.

Pre-Defined Operations and Sigma Expressions

The user may pre-define operations and sigma expressions using a standard

text editor. Operations can be defined by using the 'valdef' utility function:

(valdef <opl >

(ENQUIRE (TAKES-COURSE (agent x) (object y)))).

<op I> can be typed in response to the SIDUR prompt and its corresponding

operation will be performed. Sigma expressions can be defined in the same manner:

(valdef <exprl>

(TAKES-COURSE (agent x) (object y))).

If '(ENQUIRE <expr 1>)' is typed in response to the SIDUR prompt, the ENQUIRE

operator will be applied to the sigma expression of <expr l>.

A file that contains pre-defined operations and sigma expressions can be read

into the SIDUR environment by typing

(read -in-operations).

The user will be prompted to type the name of the file in which the operations are

saved. The SIDUR utility routine

(save -next -operation)

will add an operation to the file that was read in by '(read -in- operations)'. This

command will prompt the user to provide a name for the operation or expression and

then to type it in. The revised operation file may be saved by typing

(store -operations).



126

Batch Entry

A batch entry function called 'do-queries' is provided so that pre-defined
operations can be processed. The user should type '(do-queries)' in response to the

SIDUR prompt. The user then will be prompted to provide the name of the file that

contains the pre-defined operations. If the file has not yet been loaded, the user will

be prompted to type in '(loadf <file name >)'. Then the user will be asked whether all

operations in the file should be processed or whether he/she should be prompted to

decide individually whether each operation should be done. The user will also be

asked whether the results of each operation should be displayed on the terminal and

whether the results of each operation should be written out to the result file. The

user should respond with 'y' for yes or 'n' for no to each of these last prompts.

Recovery

Since SIDUR is running in the Franz Lisp environment, various user terminal

entry errors or misuse of SIDUR may invoke the Lisp break package. If this occurs

the prompt '<1 >:' will appear on the screen along with a description of the error. If

the user is able to identify and correct the error, he/she can re-enter SIDUR and try

the operation again. In order to do this, (CONTROL)-D should be typed in order to leave

the Lisp break package. Then the user should type '(sidur)' to re-enter the SIDUR

System. The SIDUR prompt will re-appear, and the user can re-try the transaction.

If the user does not wish to continue the session, the normal procedure for ending a

session should be followed. That is, '(wrap-up)' can be invoked from Franz Lisp as

well as from within SIDUR. Occasionally, the user may wish to suspend a SIDUR

session and then to resume later in exactly the same state. This may be helpful in

order to temporarily exit Franz Lisp to do such things as make a back-up copy of the

database or get a line printer copy of output. The UNIX system provision for

temporarily halting a job may be used by typing CONTROL -Z. When the user is ready

to re-enter SIDUR, he/she may type 'fg'. If the user wishes a longer suspension of

the session, he/she may type '(dumplisp <file name >)'. This command will cause a file



127

to be created on the SIDUR account and to store in it the entire contents (core dump)

of the current Franz Lisp-SIDUR environment. The user may log off or perform

other UNIX jobs as needed. Later, SIDUR can be re-entered when the user is at the

UNIX command level by typing '<file name >' in response to the UNIX prompt.

Ending a Session

In order to end a SIDUR session, the user should type the command '(wrap-up)'.

'wrap-up' is a Franz Lisp function that will update and close the file that contains

the database. The user will be asked whether the Franz Lisp schema should be stored

in pretty-printed form or not. The user should respond by typing 'pretty' or 'not.' It

will then close the result file and cause the Franz Lisp environment to be exited. In

order to log off Unix, the user should type 'logout'.



128

Appendix B. VAX® Environment

List of Modules

Module File Main Routines

Main Control q-interp sid

Syntax Checking syn -check dml-command?
<others individually>

Operation q-interp make-vars-unique
Preparation find-constants

Expression q-interp flatten-expr
Simplification

Object-checking obj-check objects-in-prescribed-class

Translation q-interp <correspond to name
of the operator>

BAG Building bag-p <called individually
by translation routines>

Utilities util <called individually by user>

Schema sc-ops <called individually
Operations by translation or

initialization routines>

Initialization read-db read-db
Wrap-up initialize-schema

wrap-up



130

List of Global Variables

Variable Purpose

query The data-level query

db-filename The stored database file name

db-schema The name of the schema file

result-file The name of the output file

%p The name of the port
corresponding to result-file

opfile The name of the operation file

constant-bag Holds the extension of constants

list -of -slot -names Valid slot names

<any pre-defined operation or expression>

Lists of schema construct names:
list-of-data-value-names
list-of-object-names
list-of-situation-names
list-of-computation-names
list-of-action-names
list-of-protected-system-sits
list-of-construct-situations



131

Appendix C. Algorithm and Data Structures

Driver Routines

Description: The driver routines control the user's
interaction with SIDUR and call the
translation routines.

Data Structure: The lists representing the SIDUR operation
and the BAG query are the data structures.

Algorithm:

's id'

Set up schema--Call 'initialize-schema'
Set up result file
Call user routine 'sidur'

'sidur'

Prompt user to type in the operation
Read in a list structure representing the operation
If a utility was typed, call the corresponding routine
Else call 'translate'

'translate'

Initialize query
If operation is pre-defined, get its value
Generate unique variables--Call 'make-vars-unique'

'find-constants'
Call a translation routine corresponding to the
operator of this operation



132

Translation Routines

Description: There is a translation routine corresponding to
each of the SIDUR operators.

Data Structure: The lists representing the operation,
the canonical form of the operation, and
the BAG query.

Algorithm:

'enquire'

If the expression begins with a connector or a construct name
Begin

Call 'flatten-expr' to get the canonical form
Create a data access BAG for each of the sets of situations

to query situations not enclosed by a 'not' connective
Create BAGs to merge the prior results with the BAGs

representing 'empty' expressions from each branch
Create a data access BAG for each of the sets of situations

to access situations enclosed by the 'not' connective
Create a BAG for each of the sets of situations to perform

set subtraction (MINUS) on the prior two results
Call 'handle-computations' to create computation BAGs and

to merge the results of the computations with the
extension of the MINUS BAG

Make the format list of the final BAG
End

Else if the expression begins with the 'empty' connective
Begin
Call 'enquire' to translate the expression within 'empty'
Create a BAG to indicate the FULL or EMPTY condition of the

extension computed by the 'enquire'
End

Else if the expression is a closed sigma expression
Begin

Call 'enquire' to translate the expression
Make the format list correspond to the sigma variables
End

If there is an input extension, merge it with the result



133

'check'

Call 'enquire' with the expression as parameter
Put a limit of 1 tuple on the result
Create a BAG to indicate the FULL or EMPTY condition of the

extension computed by the 'enquire'

'reflect'

Call 'update-operation' with REFLECT and the sigma expression
as parameters

If a closed sigma expression, make the format list

'reflect-not'

Put 'not' in front of the expression
Call 'update-operation' with REFLECT and the expression

preceded by 'not' as parameters
If a closed sigma expression, make the format list

'assert'

Call 'update-operation' with ASSERT and the sigma
expression as parameters

If a closed sigma expression, make the format list

'deny'

Put 'not' in front of the expression
Call 'update-operation' with ASSERT and the expression

preceded by 'not' as parameters
If a closed sigma expression, make the format list

'perform'

Determine that the binding tuple is complete
Determine that the object classes are correct
Call 'enquire' on the sigma-bound prerequisites: slot
Call 'reflect' on the sigma-bound results: slot

'permit!'

Determine that the binding tuple is complete
Determine that the object classes are correct
Call 'assert' on the sigma-bound prerequisites: slot

'permit ?'

Determine that the binding tuple is complete
Determine that the object classes are correct
Call 'check' on the sigma-bound prerequisites: slot



134

'since'

Create a BAG to hold the extension of constant values
Call 'reflect' on the domain sigma expression
Create a BAG FAIL operation if the resulting extension

is EMPTY

Call the appropriate translation routine to translate each
simple operation using as input the result of the
'reflect' on the sigma expression

Create a BAG to OR-MERGE the results of each operation

'for'

Create a BAG to hold the extension of constant values
Call 'enquire' on the domain sigma expression
Create a BAG FAIL operation if the resulting extension

is EMPTY

Call the appropriate translation routine to translate each
simple operation using as input the result of the
'enquire' on the sigma expression

Create a BAG to OR-MERGE the results of the simple
operations

'create'

Create a BAG to OCREATE the object token

'destroy'

Create a BAG to DESTROY the object token

'update-operation'

Call 'flatten-expr' to get the canonical form
Create BAGs to form the extension of constants in the

operation and AND-MERGE with the input BAG
Create the BAG to prompt the user to choose which branch

is to be used to update each tuple in the input extension
Create BAGs to split the input extension into a separate

extension for each branch
Call 'enquire' to create BAGs to hold the extensions of

tuples that meet the necessary pre-conditions related
related to each branch

Create AND-MERGE BAGs to determine which of the input
tuples meet the *enquire pre-conditions

Create update BAGS for each of the sets of situations that
check cardinality constraints, insert tuples if they are
not already stored, delete tuples if they are stored, and
handle open-world updates

Create a BAG to OR-MERGE the result from each branch
Make the format list of the final BAG



135

Expression Preparation Routines

Description: The preparation routines locate constants and
variables in the operation and generate unique
variables for each. Variables a're replaced by
their unique corresponding variables
('make -vars- unique',) and unique variables are
inserted in front of each occurrence of a
constant ('find- constants'.)

Data Structure: The list representing the SIDUR operation.

Simplification Routines

Description: Determine the canonical form of the operation.

Data Structure: The lists representing the SIDUR operation,
the canonical form of the operation, and
the p-lists of the schema constructs.

Algorithm:

'flatten-expr' (alias 'f-e')

If ((the expression begins with 'or') and
(the expression is not enclosed by the 'not' connective))

or ((the expression begins with 'and') and
(the expression is enclosed by the 'not' connective))

Make a list structure for each branch of the disjunctive
Call 'f-e' to put the needed construct names on each list

If ((the expression begins with 'and') and
(the expression is not within a 'not'))

or ((the expression begins with 'or') and
(the expression is within a 'not'))

Call 'f-e' for each branch to put the needed
construct names on the path

Take the union of the resulting paths

If the expression begins with 'not', toggle the 'not-on' flag
Call 'f-e' to handle the enclosed expression

If the expression begins with 'empty', add the 'empty'
expression to the 'empty' portion of the path



136

If the expression begins with a PRIMITIVE situation
Call 'augment-path' to add construct names to the path

based on the schema specification of the situation

If the expression begins with a non-PRIMITIVE situation
Call 'augment-path' to add construct names to the path

based on the schema specification of the situation
Call 'f-e' on the sigma-bound sufficient: slot or

on the sigma-bound definition: slot

If the expression begins with a SYSTEM computation, add the
computation to the 'comp' portion of the path

If the expression begins with a non-SYSTEM computation
Call 'f-e' on the sigma-bound definition: slot

'augment-path'

If the operation is an update, check the STRING object form:
definitions and minval: and maxval: slots for numbers

If the situation is PRIMITIVE or SYSTEM, add the expression
to the portion of the branch that represents the
extension of the operation ('defn')

If the situation has a necessary: slot
and the operation is an update
add the sigma-bound necessary: slot to the 'nec' portion

of the path
If the situation has a required: slot

and the operation is reflect:
Add the sigma-bound required: slot to the 'nec' portion

If the situation has a required: slot
and if the operation is 'assert'
Call 'f-e' as if for a 'reflect' operation on the

sigma-bound required: slot
If the situation has cardinality constraints involving one or

more of the participants in this operation
and the operation is an update
Re-phrase each constraint into a situation expression
Add the cardinality expression to the 'card' portion

of the path
If the situation involves REFLECTing TOKEN object types

Re-phrase each TOKEN definition: slot into a situation
expression

Call 'f-e' on the sigma-bound expression with REFLECT,
the TOKEN sigma expression, and the current branch
as parameters



137

'sigma-bind'

Associate each of the expression participants with the
internal variable of its corresponding role in the
list of participants

Replace each internal variable in the definition: slot with
its corresponding participant

Make list of un-associated internal variables in the
expression

Generate a unique variable for each un-associated variable
and replace each internal variable with its new unique
variable

Generate a unique variable for each constant in the
definition: slot and insert the variable in front of
the constant

Computations

Description: The main computation routine is called once by the
'enquire' function to translate all of the
computations required by the operation.
The BAGs containing the results of all of the data
accesses for all of the branches are used to
produce an extension that will be passed as the
input to the computation BAGs. As each of the
computations is translated, the BAG identifier
of the BAG containing the results of the
previous computations and data accesses
is passed as input to it. Computations
are translated in the order in which they are
found in the expression unless the result of
a computation is a participant to another
computation in which case the computation whose
result will be the argument is translated first.
After all of the computations are translated, the
results are merged with the extensions of the
data access BAGs to produce the final extension
specified by the operation.

Data Structure: The computation routines take as input the
list structure that represents the canonical
form of an expression and produce as
output elements of a BAG query.



138

Algorithm:

'handle-computations'

Form extension from results of data accesses
Translate the computations for each of the

branches--Call 'do-computations'
Form final resulting extension by merging data
access BAGs and computation BAGs

'do-computations'

Translate each computation 'do-comp'

'do-comp'

Determine whether this computation needs as
argument the result of an untranslated computation.

Translate the computation--Call 'enquire-comp-bag'

enquire-comp-bag'

Translate BAGs to compute the value of each participant
Translate a BAG to perform the computation

Object Checking Routines

Description: The object checking routines determine whether
a constant value of type STRING meets the
corresponding form: slot specification.
They are called recursively to determine
whether each character in the constant
is valid as the next character. Since
STRINGs may contain variable numbers of
elements, the routines must back-up to
the previous variable element if failure
occurs. Back-up occurs as long as there is
any valid combination of variable elements
as yet untried. Other object checking routines
verify the minval: and maxval: slots of
INTEGER and REAL types and also that they are
numerical types.



139

Data Structure: The constant data value is represented
as a Franz Lisp list of symbols. Each
symbol corresponds to a letter in the
data value. A pointer to the current
character is kept as well as pointers
to each character location that may be
backed-up to.

Syntax Checking Routines

Description: These routines determine whether an operation
is syntactically correct. They correspond
closely to the SIDUR BNF. Some of the routines
also provide simple list structure access to
improve readability of the source code.

Data Structure: The list representing an operation.

BAG Building Routines

Description: The BAG building routines are a set of
very short list building routines. They
include functions that build lists to
represent the various data-level language
features.

Data Structure: The data-level query is represented by a
Franz Lisp list structure. Each element
of the list is a sub-list whose structure
corresponds to the BAGAL BNF.



140

Initialization and Wrap-up Routines

Description: These routines initialize a new database
schema, read in a schema already initialized,
and finish a session.

Data Structure: The lists representing the user's schema
text file, the text file of system
schema constructs, the initialized schema,
and lists of construct and role names.

Algorithm:

'initialize-schema'

Read in the user's schema text file
Define the p-lists for each construct read in
Read in the system schema text file
Define the p-lists for each construct read in

'read-db'

Read in the file containing an initialized schema

'wrap -up'

Write the current schema to the database file
Close files



141

Schema Operations

Description: During initialization, these routines
set up a construct specification
by re-phrasing the user's STRING form: slots
into an internal representation and by setting
up schema specifications for open-world
situations. These routines also include
functions defined in a prior version of SIDUR:
'define', ' mentions','undefine', 'establish',
'disestablish', and 'mentioned-by'.

Data Structure: The lists representing the user's schema and
the lists representing the internal form of
the schema.

Utilities

Description: The utilities are a set of routines that
provide file storage and printing
capabilities. The 'pprint' routine is a
slightly altered version of the SIDUR
pprine' routine.

Data Structure: The lists representing the SIDUR
operation, pre-defined operations and
expressions, and the BAG query.



142

Appendix D. A Sample User Session

Oregon State University(VAX 11/750 + 4.1 BSD UNIX)

login: shirl <account name> <---- user
Password: <password--no echo>
Last login: Mon Jul 25 18:52:16 on tty01
Switching to new tty driver...
TERM = (vt100) <user typed carriage return>
Erase is control-H
Kill is delete
users:

meagher regan shirl shirl shirl uy youfengw zhu
1:lisp <---- user
Franz Lisp, Opus 38.22

FILES LOADED ---->

fl.util
fl.pprint
fl.edit
fl.matcher

read-db
util

q-interp
comps
syn-check
obj-check
bag-p
sc-ops
ops-in
exfile

Itype in database name--> or type new-->Istored-s
Itype in result filename-- >Irfile
sidur?-->s2
finished

Break 'Itype (return t) when ready'
<1>: (pprint query)
((comment Begin q-0004)
(comment ******* ( > s2 < ) I******* comment end')
(comment

*******

(ENQUIRE (MAY-TAKE (agent V-0006 S-1018) (object y-0005)))
******* comment endI)

<---- user
<---- user
<---- user

<---- user



((BAG b-0008 (y-0005 V-0006))

(ArCESS
(V-0006 = 5 -1018)
(MAY-TAKE / agent 1-0009 V-0006)
(MAY-TAKE / object 1-0009 y-0005)))

(RETURN (BAG b-0008 (y-0005 V-0006))))
DONE
<1>: (return t)
sidur?-->(DENY (IS-COURSE (agent C-12345)))
finished

Break 'type (return t) when readYI
<1>: (pprint query)
((comment Begin 800010)
(comment

*******

(DENY (IS-COURSE (agent V-0011 C-12345)))
1******* comment end')

(comment ******* DENY 1******* comment end')
(comment ******* ASSERT 1******* comment end1)
(comment ******* 1constant tuples bags' 1******* comment end1)
((BAG B-0012 (V-0011))
<-

(TUPLES ((V-0011 <- C-12345))))
(comment ******* 'bags to do cardinality precheck and

update operations ( ******* comment end')
((BAG B-0013 (V-0011 1-0014))

143

<---- user
<---- user

<---- user

(FOR

(BAG B-0012 (V-0011))
((I-0014 <- (CINDEX (IS-COURSE (agent V-0011))))
(IF (1-0014 <> null) THEN

((DELETE IS-COURSE / agent I-0014))))))
(RETURN (BAG B-0013 (V-0011))))

DONE
<1>: (pprint query %p) <---- user
DONE
<1>: (return t) <---- user
sidur?-->(wrap-up) <---- user
(type in pretty or not-- >Ipretty <---- user
153.5u 16.5s 6:36 42% 76+387k 242+57io 193pf+Ow
2:lpr rfile <---- user
3:logout <---- user
/csm/shir1/.delfiles/: No such file or directory

Reverting to old tty driver...
Oregon State University(VAX 11/750 + 4.1 BSD UNIX)



144

Appendix E. SIDUR BNF

BNF syntax for SIDUR 2.0

. = delimiter (space , cr , tab , etc.)
[x] = optional element in expansion
(x)* = 0 or more repetitions of x
(x)+ = 1 or more repetitions of x
(x)'d'* = 0 or more repetitions of x separated by d
(x)'d'+ = 1 or more repetitions of x separated by d

= BNF character used literally
= quote character used literally

; = remainder of line is comment

General Syntactic Entities

<uc letter> ::=
AIBICIDIEIFIGIHIIIJIKILIMI
NIOIPIQIRISITIUIVIWIXIYIZ

<lc letter> : :=

albjcidielfiglhliiilkIliml
nioliolcilrisitluiviwtxtylz

<digit> ::=

01112131 41516171819
<unsint> ::=

( <digit> )+

<int> ::=
<unsint> 1 <unsint> 1 + <unsint>

<real> ::=
<int> '.' 1 <int> '.' <unsint>

<fpn> ::=
<real> E <int>



145

<sp char> ::=

#1!1?1_18:1701-1'*'1'+' 1$1""1"'
1

( 1 ) 1 1 :

; The two double quotes are a syntactic
; device to designate one double quote.

<letter> ::=
<uc letter> 1 <lc letter>

<character> ::=
<letter> 1 <digit> 1 <sp char>

<simple variable> ::=
<lc letter> ; This could be expanded.

<variable> ::=
<letter> [ <unsint> ]

<role> ::=
agent 1 object 1 value 1 source 1 destination 1

time 1 location 1 { <lc letter> )4.

<computation role> ::=
<domain role> 1

<measure role> 1

<mapping role> 1

<result role>

<domain role> ::=
domain 1 domain- <unsint>

<measure role> ::=
measure 1 measure- <unsint>

<mapping role> ::=
mapping 1 mapping- <unsint>

<result role> ::=
result

<identifier> ::=
( <identifier segment> ) unsint

<identifier segment> ::=
{ <uc letter> )+

<string> ::=
". {j <character> )+ ""

<data value> ::=
<token> 1 <string> 1 <int> 1 <real>



<token> ::

<uc letter> <unsint>

<constant> ::=
<data value> I nil I null

Data Definition Language

<ddl command> ::=
<data value class definition>
<object class definition> 1

<situation definition> 1

<computation definition> 1

<action definition>

Data -value Classes

<data value class definition> ::=
data-value-class <data value class name> .

type: <data value type> .

[ form: <name rule> . ]

; for type STRING only
; required for type STRING

[ size: <unsint> . ]

; for type STRING only

[ maxval: <int> . 1 maxval: <fpn> . ]

[

[

; for numeric type only
; required for numeric type

minval: <int> . 1 minval: <fpn> . ]

; for numeric type only
; required for numeric type

precision: <unsint> . ]

146



147

; for reals only
; required for reals

<data value type> ::= STRING
1 INTEGER 1 REAL

<data value class name> ::=
<identifier>

<name rule> ::
{ <name rule term> }-4-

<name rule term> ::=
<string> 1 <range> 1 <repetition>

<range> ::=
'[' "<character>" "<character>" ']' 1

'[' <name rule term> {, <name rule term> }4- '1'

<repetition> ::=
'{' <name rule> '}' <repetition factor>

<repetition factor> ::=
<unsint> i '<' <unsint> 1 '<' <unsint> '>' <unsint>

; repetition factors
; {rule }n exactly n
; {rule}<n>m -- between m and n
; {rule } <n n or less

Object Classes

<object class definition> ::=
object-class <object class name> .

[ definition: <object class definition slot> . ]

[ superclasses: <object class name>{,<object class name>)+ . ]

[ representative: <representative descriptor> . ]

[ names: { <situation name> }','+ . ]

; The names: slot is only valid for
; situations with representative: TOKEN.

<object class name> ::=
<identifier>



148

<object class definition slot> ::=
SYSTEM 1 <situation name>

<representative descriptor> ::=
TOKEN 1 <data value class name>

Situations

<situation definition> ::=
situation <situation name> .

participants: ( <participant> (<participant>)+ )
[ cardinalities: {< cardinality constraint>)','+ ]
definition: <situation definition slot>
[ necessary: <necessary> . ]

[ required: <required> . ]

[ extension: <extension option> . ]

[ sufficient: <sufficient> . ]

<situation name> ::=
<identifier>

<participant> ::=
( <role> <variable> <object class name> )

<cardinality constraint> ::=
<unsint> "<" <variable> ( . <variable>)* ">"

; example: 1 <x y>
; Interpretation is that at most n
; tuples in the extension at any time
; may have identical sub-tuples of
; the indicated sort.

<situation definition slot> ::=
<open sigma expression> 1 PRIMITIVE 1 SYSTEM

<necessary> ::=
<open sigma expression>

<required> ::=
<open sigma expression>

<sufficient> ::

<open sigma expression>



149

; Assuming integrity of the database,
; the sufficient: sigma expression
; should produce an extension identical
; to the definition:.

<extension option> ::=
OPEN-WORLD I CLOSED-WORLD

; This slot is only meaningful for
; PRIMITIVE situations.

Computations

<computation definition> ::=
computation <computation name> .

participants: { <computation participant> .}+
definition: <computation definition slot>

<computation participant> ::
<computation role> / <variable> / <computation type>

<computation role> ::=
result 1 <argument role>

<argument role> ::=
domain 1 value 1 mapping I measure 1 <role>

; The last one can be removed
; if some effort is made to
; permit multiple arguments
; of the same type.

<computation type> ::=
<simple computation type>
<second order type>

<second order type> ::=
vector-of ( <computation type> ) I

role-of ( <situation literal> ) 1

instance-of ( <situation literal> )

extension-of ( <situation literal> ) 1

object-of ( <role literal> , <situation literal> )

operation-from <computation type> to <computation type>

<simple computation type> ::=
INTEGER 1 REAL I NUMBER 1 <variable> I <object class name>



150

; Variables must define
; other participants in
; the computation.

<situation literal> ::=
<variable> 1 <situation name>

; Variables must define
; other participants in
; the computation.

<role literal> ::=
<variable> I <role name>

<computation definition slot> ::=
SYSTEM 1

<open sigma expression> 1

<computation literal> 1

<object literal>

Actions

<action definition> ::=
action <action name> .

participants: ( <participant> .)+
results: <action result slot>
[ prerequisites: <open sigma expression> ]

<action result slot> ::
<open sigma expression>

Sigma Expressions

<sigma expression> ::=
<open sigma expression> 1

<closed sigma expression>

<closed sigma expression> ::=
(sigma ( (<sigma variable specification>)+ )

<open sigma expression> )



151

<vector sigma expression> ::=
(sigma ( <sigma variable specification> )

<open sigma expression> )

<sigma variable specification> ::=
( <variable> )

<open sigma expression> ::=
<sigma term> 1

( and { <open sigma expression> )+ ) 1

( or ( <open sigma expression> )+ ) 1

( empty <open sigma expression> )

<sigma term> ::=
<sigma literal> 1 ( not <open sigma expression> )

; Except when 'not' precedes PRIMITIVE
; situations with an open-world extension,
; it may only be used in the immediate
; scope of an 'and' expression
; where all free variables specified in
; negated conjuncts are also specified
; in affirmed conjuncts.
; Can only be <sigma literal> in SIDUR 2.0.
; The second alternative is allowed by
; this implementation of SIDUR 2.0.

<sigma literal> ::=
<extension literal> 1

<computation literal>

<extension literal> ::=
( <situation name> { ( <role> : <object literal> ) ) + )

<object literal> ::=
<simple object literal> 1

<computed object literal>

<simple object literal> ::=
<constant> 1 <variable>

<computed object literal> ::=
( <computation name> { . <argument literal> ) + )

; Computed object literal is the same
; as computation literal except that the
; result: computation role may not
; appear. A computed object literal is
; taken to denote the object computed.



152

<computation literal> ::=
( <computation name>

{ . { <argument literal> 1 <result literal>) ) + )

<argument literal> ::=
( <domain role>: <object literal> ) 1

( <domain role>: <closed sigma expression> ) 1

( <domain role>: <situation name> ) 1

( <measure role>: " <role name> ) 1

( <mapping role>: <computation name> )

<result literal> ::=
( <result role>: <object literal> )

<role literal> ::=
<role> 1 <variable>

Data Manipulation Language

<dm1 command> ::= <operation>

<operation> ::=
<simple operation> 1

<compound operation>

<simple operation> ::=
<action operation> 1

<object operation> 1

<situation operation>

<object operation> ::=
( CREATE <object class name> [ <variable> ] ) 1

( DESTROY <simple object literal> )

<situation operation> ::=
( <situation operator> <sigma expression> )

<situation operator> ::=
ASSERT 1 DENY 1 CHECK 1 ENQUIRE 1 REFLECT 1 REFLECT-NOT

<action operation> ::=
( <action operator> <action literal> )



153

<action operator> ::.
PERFORM I PERMIT? I PERMIT!

<action literal> ::=
( <action name> { <role>: <simple object literal> )+ )

<compound operation> ::=
( <compound operator> ( <variable> {. <variable> )+ )

<open sigma expression>
{ <simple operation> )+ )

<compound operator> ::=
FOR 1 SINCE

; FOR performs the indicated operations
; for each binding tuple in the extension
; of the open sigma expression.
; SINCE does the same, but a REFLECT
; is performed on the expression to force an
; extension to occur. If the REFLECT fails,
; no operations are performed.

Index Of Reserved Words And Prefixes

The following is a list of reserved words and prefixes that
have special meaning to SIDUR. The grammatical constructs in
which they are defined are listed as well.

action
agent
and
ASSERT
cardinalities:
CHECK
CLOSED-WORLD
computation
context
context
CREATE
data-value-class
definition:
definition:
definition:
DENY

destination
DESTROY

<action definition>
<role>

<open sigma expression>
<situation operator>
<situation definition>
<situation operator>
<extension option>
<computation definition>
<argument role>
<argument literal>
<object operation>
<data value class definition>
<computation definition>
<object class definition>
<situation definition>
<situation operator>
<role>

<object operation>



154

domain <argument literal>
domain <argument role>
empty <open sigma expression>
ENQUIRE <situation operator>
extension: <situation definition>
extension-of <second order type>
FOR <compound operator>
form: <data value class definition>
instance-of <second order type>
INTEGER <data value type>
INTEGER <simple computation type>
location <role>
mapping <argument literal>
mapping <argument role>
maxval: <data value class definition>
measure <argument literal>
measure <argument role>
minval: <data value class definition>
necessary: <situation definition>
not <sigma term>
NUMBER <simple computation type>
object <role>
object-class <object class definition>
OPEN-WORLD <extension option>
operation-from <second order type>
or <open sigma expression>
participants: <action definition>
participants: <computation definition>
participants: <situation definition>
PERFORM <action operator>
PERMIT? <action operator>
PERMIT! <action operator>
precision: <data value class definition>
prerequisites: <action definition>
PRIMITIVE <computation definition slot>
PRIMITIVE <situation definition slot>
REAL <data value type>
REAL <simple computation type>
REFLECT <situation operator>
REFLECT-NOT <situation operator>
representative: <object class definition>
required: <situation definition>
result <computation role>
result: <computation definition>
results: <action definition>
role-of <second order type>
sigma <sigma expression>
SINCE <compound operator>
situation <situation definition>
size: <data value class definition>
source <role>
STRING <data value type>



155

superclasses: cobject class definition>
SYSTEM <computation definition slot>
SYSTEM <object class definition slot>
SYSTEM <situation definition slot>
T- <token>
time <role>
to <second order type>
TOKEN <representative description>
type: <data value class definition>
value <argument literal>
value <argument role>
value <role>
vector-of <second order type>



156

Appendix F. BAGAL Query Language BNF

Specification of New BAG Query Format

The new BAG query format has been designed to separate out the
declarative (access oriented) from the procedural (action oriented) aspects of query

definition. Under the new format, the BAG query itself is a collection of BAG

assignments and control expressions. The expressions that define BAGs in BAG

assignments are of two types, ACCESS BAG expressions and BAG operations.

Access BAG expressions form the declarative portion of the BAG query. They

include non-directional specifications of binary functional associations (BFAs) that

must be accessed, specifications of values that must be computed on the basis of other

values, and constraints on the possible values acceptable as output to the BAG.

The rest of the BAG assignments involve BAGs defined by BAG operations.

BAG operations are operations that can be performed on already defined BAGs to

yield new BAGs. Some of these are operations on the whole BAG, such as merge and

sort operations, while others are composed of tuple-at-a-time augmentation of an

existing BAG. Using BAG operations, it is possible to fully proceduralize the

declarative information contained in BAG definitions. In this fashion, the query
planning and optimization process can be implemented purely in terms of

transformations on the BAG query, which fully proceduralize the declarative aspects

of an initial ACCESS BAG.



157

Preliminaries

<uc letter> ::=

A !BIC IDIE1F IGIHI I 1J1K 1 LIM'
NI0IPIQIRIsITIulvlwlx1Y1z

<ic letter> ::=

allalcidleIfIglhli1j1k111m1n101PlqlrlsItlulvlwlx1Ylz
<digit> ::=

0111213141516171819

<unsint> ::=
{ <digit> }+

<int> ::=
<unsint> I <unsint> I + <unsint>

<real> ::=
<int> '.' 1 <int> <unsint>

<fpn> ::=
<real> E <int>

<sp char> ::=

#1!1?1_18,1%1-1'*'1$1""1
<comparator> ::=

= 1 <> 1 <= 1 >=

<letter> ::=
<uc letter> 1 <lc letter>

<character> ::=
<letter> 1 <digit> 1 <sp char>

<situation name> ::=
{ <uc letter> )+

<role name> ::=
{ <uc letter> )+



158

<variable> ::=
{ <letter> )+ <unsint>

<string> ::=
""

{ { <character> )*

BAG Query Definition

<bag query> ::=
{ <comment> 1 <bag operation> ) *
<return operation>

<comment> ::=
( comment { <string> 1 <variable> } * ) 1

"<" character* ">"

<return operation> ::=
( RETURN ( <bag projection> )* ) 1

<fail operation>

<fail operation> ::=
( FAIL <string> )

BAG Operations

<bag operation> ::=
<bag assignment> 1

<return operation> 1

( FOR <bag projection> { <tuple operation> }+ ) 1

( IF <bag condition> THEN <bag operation>
[ ELSE <bag operation> ] )

( CASE { <bag case clause> )* [ <bag else clause> ] )

<bag projection> ::=
( BAG <bag label> <bag projection list> )

<bag projection list> ::=
{ <variable> 1 ( <variable> '<-' <variable> ) )*



159

<bag case clause> ::=
( <bag condition> <bag operation> )

<bag else clause> ::=
( ELSE <bag operation> )

<bag condition> ::=
( FULL <bag projection> ) 1

; true if the BAG either has tuples or
; is the constant BAG "FULL"

( EMPTY <bag projection> )

; true only if the BAG is the
; the constant BAG "EMPTY"

( TUPLES <bag projection> ) 1

; true only if the BAG contains
; actual tuples

( OR { <bag condition> }+ ) I

( AND { <bag condition> }+ ) I

( NOT <bag condition> )

BAG Assignments

<bag assignment> ::=
(( BAG <bag label> <bag variable list> [ <limit expression> ] )

'<-' <bag construction> )

<limit expression> ::=
( LIMIT <integer> )

; The limit expression limits the number
; of tuples produced as a result of the
; BAG ACCESS or operation.

<bag variable list> ::=
( { <bag variable specification> }* )

<bag variable specification> ::=
<variable> 1

( <variable> NO-NULL ) 1

( <variable> AGGREGATE <initial value> <partition> )



160

<initial value> ::=
<simple value expression>

; Aggregate variables are initialized prior to
; being used. The variable itself may be referred
; to on the right hand side of the expression that
; computes its value in each iteration.

<partition> ::=
( ( <variable> )* )

; The partition induced divides the tuples of
; a BAG into unique classes based on each possible
; binding of values to the partition variables.
; Aggregate variables are treated as if there is
; a separate variable for each partition. The value
; associated with each tuple in the BAG is the
; value for the partition to which that tuple
; belongs.

BAG Constructions

<bag construction> ::=
<access operation>
( FULL ) 1

( EMPTY ) I

( TUPLES { <tuple definition> ) + ) I

( FOR <bag projection> ( <tuple operation> ) + ) I

( LOOP <bag label> ( <tuple operation> ) + ) I

; The semantics of LOOP is that the sequence
; of tuple operations are repeated beginning with
; the initially named BAG, until the BAG stabilizes,
; i.e. there is an iteration in which nothing is
; added or removed from the BAG. This provides
; an iterative mechanism for creating structures
; like transitive closure. LOOP will not be
; implemented on the first pass.

( AND-MERGE ( <bag projection> ) + ) 1

( OR-MERGE { <bag projection> ) + ) 1

( MINUS <bag projection> <bag projection> )

( SORT <bag projection> <sort specification> )

( SEQUENTIAL-INSTANCES <situation name> ) 1

( SEQUENTIAL-VALUES <situation name> )



161

( COLLECT <bag projection> <variable list>
{ <variable list> } + )

; The first variable list to COLLECT is
; the list of common values over which
; BAG bindings are to be COLLECTed. Subsequent
; lists begin with the new variable. The
; remainder of each list chooses variables to
; be COLLECTed under the new variable.

( SPREAD <bag projection> ( <variable> ) + )

; This function is the inverse of COLLECT,
; expanding variables that have been
; previously COLLECTed. If the variables
; expanded have not been COLLECTed, an
; error occurs.

<sort specification> ::=
( <variable> + ) 1 ( <variable> )

<tuple definition> ::=
( { <tuple variable assignment> ) * )

<tuple operation> ::=
<access operation> 1

<tuple variable assignment> 1

<update operation> 1

<fail operation> 1

( IF <tuple condition> THEN <tuple operation>
[ ELSE <tuple operation> ] ) 1

( CASE { <tuple case clause> )* [ <tuple else clause> ] )

<tuple variable assignment> ::=
( <variable> '<-' <value expression> )

<tuple case clause> ::=
( <tuple condition> ( <tuple operation> )* )

<tuple else clause> ::=
( ELSE { <tuple operation> }* )

<update operation> ::=
( CHANGE <situation name> / <role name> <variable>

<value expression> )

( DELETE <situation name> / <role name> <variable> )



162

<value expression> ::=
<simple value expression> 1

( INDEX (<situation name> ( <role name> <variable> )) 1

( CINDEX (<situation name> {(<role name> <variable>)) + )) 1

( VALUATION (<situation name> ( <role name> <variable> ))

; The result of the valuation function is always single
; valued. The result of the index or cindex function
; may not be.
; When multiple values are returned, these
; cause multiple tuples to be produced by
; the tuple operation.

ACCESS Operations

<access operation> ::=
( ACCESS { <access expression> } + )

; ACCESS operations may be used to define
; an entire BAG or to define assignment of
; values to variables within a tuple-by-tuple
; assignment loop. In the latter case, values
; already assigned in the loop are considered
; fixed (constant). If the ACCESS expression
; generates multiple values, these become extra
; tuples for the rest of the loop.

<access expression> ::=
<bfa expression> 1

<tuple condition>

<bfa expression> ::=
( <situation name> / <role name> <variable> <variable> )

<tuple condition> ::=
( OR ( <tuple compare> ) + )

( AND { <tuple compare> } + )

( NOT { <tuple compare> } )

( <variable> MEMBER { <constant> }+ )

<tuple compare> ::=
( <variable> <comparator> <simple value expression> )



<simple value expression> ::=
<constant> 1

<variable> 1

<computation expression>

<constant> ::=
<string> 1 <int> 1 <real> 1 <fpn>

<computation expression> ::=
( ICREATE <situation name> ) 1

( OCREATE <object class name> ) 1

( CHOICE { <string> 1 <variable> ) +
( <computation name> { <simple value

) 1

expression> )* )

163

The BAG assignments and operations defined in the BAG query are

assumed to be listed in order of execution. For optimization reasons, this order may

be permuted when the following two conditions hold:

(1) The second operation does not depend on the first operation or on any BAG

that does depend on the first operation.

(2) The second operation does not access any BFAs that are updated by the first

operation, nor update any BFAs that are accessed by the first operation.

The goal is that any permutation of BAG operations that will make a semantic

difference in the result of the query is not permitted. Only when it can be
demonstrated that this does not happen can the order of the BAG operations be
permuted.



164

Appendix G. Simplified BNF

Data Definition Language

<ddl command> ::=
<data value class definition>
<object class definition>
<situation definition>

1

<computation definition>
1

<action definition>

Data-value Classes

<ddl command> ::=
<data value class definition> ::=

( data-value-class <data value class name> .

type: <data value type> .

[ form: ( <name rule> ) . ]

; for type STRING only
; required for type STRING

[ size: <unsint> . ]

; for type STRING only
; not required

[ maxval: <int> . 1 maxval: <real> . ]

; for numeric type only
; required for numeric type

[ minval: <int> . 1 minval: <real> . ]



1 6 5

; for numeric type only
; required for numeric type

[ precision: <unsint> .

; for reals only
; required for reals

<data value type> ::= STRING 1 INTEGER 1 REAL

<data value class name> ::=
<identifier>

<name rule> ::=
{ <name rule term> }1-

<name rule term> ::=
<string> 1 <range> 1 <repetition>

<range> ::=
'[' "<character>" "<character>" ']' 1

'[' <name rule term> ( <name rule term> )+ ']'

<repetition> ::=
( '&' <name rule> '$' <repetition factor> )

<repetition factor> ::=
<unsint> 1 '<' <unsint> 1 '<' <unsint> '>' <unsint>

1 '*' I '+'

; repetition factors
; {rule}n exactly n
; {rule }<n >m between m and n
; (rule)<n n or less
; * 0 or more
; + 1 or more

Object Classes

<ddl command> ::=
<object class definition> ::=

( object-class <object class name> .

[ definition: ( <object class definition slot> ) . ]

[ superclasses: ( <object class name>
(<object class name>)+ ).

[ ( representative: <representative descriptor> ) . ]

[ names: ( ( <situation name> )+ ) . ] )



166

; The names: slot is only valid for
; situations with representative: TOKEN.

<object class name> ::=
<identifier>

<object class definition slot> ::=
SYSTEM 1 <situation name>

<representative descriptor> ::=
TOKEN 1 <data value class name>

Situations

<ddl command> ::
<situation definition> ::=

( situation <situation name> .

participants: ( <participant> (<participant>)+ ) .

[ cardinalities: ( (<cardinality constraint>)+ ) ] .

definition: <situation definition slot> .

[ necessary: <necessary> . ]

[ required: <required> . ]

[ extension: ( <extension option> ) . ] )

[ sufficient: ( <sufficient> ) . ] )

<situation name> ::=
<identifier>

<participant> ::=
( <role> / <variable> / <object class name> )

<cardinality constraint> ::=
( <unsint> <variable> { . <variable> } * > )

; example: ( 1 x y )

; Interpretation is that at most n
; tuples in the extension at any time
; may have identical sub-tuples of
; the indicated sort.

<situation definition slot> ::=
<open sigma expression> I ( PRIMITIVE ) I ( SYSTEM )

<necessary> ::=
<open sigma expression>



167

<required> ::=
<open sigma expression>

<sufficient> ::=
<open sigma expression>

; Assuming integrity of the database,
; the sufficient: sigma expression
; should produce an extension identical
; to the definition:.

<extension option> ::=
OPEN-WORLD I CLOSED-WORLD

; This slot is only meaningful for
; primitive situations.

Computations

<ddl command> ::=
<computation definition> ::=

( computation <computation name> .

participants: ( ( <computation participant> .)+ )

definition: <computation definition slot> ) .

<computation participant> ::=
( <computation role> / <variable> / <computation type> )

<computation role> ::=
result 1 <argument role>

<argument role> ::=
domain 1 value 1 mapping 1 measure I <role>

; The last one can be removed
; if some effort is made to
; permit multiple args of the
; same type.

<computation type> ::=
<simple computation type> 1

<second order type>



168

<second order type> ::=
vector-of ( <computation type> ) 1

role-of ( <situation literal> ) 1

instance-of ( <situation literal> ) 1

extension-of ( <situation literal> ) 1

object-of ( <role literal> , <situation literal> ) 1

operation-from <computation type> to <computation type>

<simple computation type> ::=
INTEGER 1 REAL 1 NUMBER 1 <variable> 1 <object class name>

; Variables must define
; other participants in
; the computation.

<situation literal> ::=
<variable> 1 <situation name>

; Variables must define
; other participants in
; the computation.

<role literal> ::=
<variable> 1 <role name>

<computation definition slot> ::=
( SYSTEM ) 1

<open sigma expression> 1

<computation literal> 1

( <object literal> )

Actions

<ddl command> ::=
<action definition> ::=

( action <action name> .

participants: ( <participant> .)+
results: <action result slot>
[ prerequisites: <open sigma expression> ] )

<action result slot> ::=
( <open sigma expression> )



169

Sigma Expressions

<sigma expression> ::=
<open sigma expression> I

<closed sigma expression>

<closed sigma expression> ::=
(sigma ( {<sigma variable specification>}+ )

<open sigma expression> )

<vector sigma expression> ::=
(sigma ( <sigma variable specification> )

<open sigma expression> )

<sigma variable specification> ::=
<variable>

<open sigma expression> ::=
<sigma term>
( and { <open sigma expression> }+ ) I

( or { <open sigma expression> )4. ) 1

( empty <open sigma expression> )

<sigma term> ::=
<sigma literal> I ( not <open sigma expression> )

; Except when 'not' precedes PRIMITIVE
; situations with an open-world extension,
; it may only be used in the immediate
; scope of an 'and' expression
; where all free variables specified in
; negated conjuncts are also specified
; in affirmed conjuncts.
; Can only be <sigma literal> in SIDUR 2.0.
; The second alternative is allowed by
; this implementation of SIDUR 2.0.

<sigma literal> ::=
<extension literal>
<computation literal>

; This implementation does not allow a
; computation within the scope of 'not'.

<extension literal> ::=
( <situation name> { ( <role> . <object literal> ) ) + )



170

<object literal> ::=
<simple object literal>
<computed object literal>

<simple object literal> ::=
<constant> 1 <variable>

<computed object literal> ::=
( <computation name> { . <argument literal> ) + )

; Computed object literal is the same
; as computation literal except that the
; result: computation role may not
; appear. A computed object literal is
; taken to denote the object computed.

<computation literal> ::=
( <computation name>

{ . { <argument literal> 1 <result literal>) ) + )

<argument literal> ::=
( <domain role> <object literal> ) 1

( <domain role> <closed sigma expression> ) 1

( <domain role> <situation name> ) 1

( <measure role> <role name> ) 1

( <mapping role> <computation name> )

<result literal> ::=
( <result role> <object literal> )

<role literal> ::=
<role> 1 <variable>

Data Manipulation Language

<dml command> ::= <operation>

<operation> ::=
<simple operation> 1

<compound operation>



171

<simple operation> ::=
<action operation> 1

<object operation> 1

<situation operation>

<object operation> ::=
( CREATE <object class name> [ <variable> I ) 1

( DESTROY <simple object literal> )

<situation operation> ::=
( <situation operator> <sigma expression> )

<situation operator> ::=
ASSERT 1 DENY 1 CHECK 1 ENQUIRE 1 REFLECT 1 REFLECT-NOT

<action operation> ::=
( <action operator> <action literal> )

<action operator> ::=
PERFORM 1 PERMIT? 1 PERMIT!

<action literal> ::=
( <action name> { <role> <simple object literal> }4- )

<compound operation> ::=
( <compound operator> ( <variable> {. <variable> }4- )

<open sigma expression>
{ <simple operation> }+ )

<compound operator> ::=
FOR 1 SINCE

; FOR performs the indicated operations
; for each binding tuple in the extension
; of the open sigma expression.
; SINCE does the same, but a REFLECT
; is performed on the expression to force an
; extension to occur. If the REFLECT fails,
; no operations are performed.



172

Appendix H. A Sample Schema--Simplified Form

( data-value-class AGE-V
type: INTEGER
minval: 0
maxval: 90 )

( data-value-class CLASS-LIMIT-V
type: INTEGER
minval: 10
maxval: 100 )

( data-value-class COURSE-NAME-V
type: STRING
size: 6
form: ( & [ "A" "Z" ] $ 2 "-" [ "1" "5" ]

& [ "0" "9" ] $ 2 ))

( data-value-class GPA-V
type: REAL
minval: 0.0
maxval: 4.0
precision: 2 )

( data-value-class GRADE-V
type: STRING
size: 1

form: ( [ "A" "B"
I "C" "D" "F" ] ))

( data-value-class PERSONAL-NAME-V
type: STRING
size: 14
form: ( & [ "A" - "Z" ] $ < 5 "-" & [ "A" "Z" ] $ < 8 ) )

( data-value-class PHONE-NUM
type: STRING
size: 12
form: ( & [ "0" "9" $ 3 "-" & [ "0" "9" ] $ 3

& [ "0" "9" ] ))

( data-value-class SSNUM
type: STRING
size: 9
form: ( & [ "1" "9" ] $ 9 ))



173

( data-value-class TIME-V
type: STRING
size: 4
form: ( [ [ "1" "9" ] "10" "11" I "12")

( object-class AGE
representative: ( AGE-V ))

( object-class CLASS-LIMIT
representative: ( CLASS-LIMIT-V ))

( object-class COURSE
representative: ( TOKEN )

definition: ( IS-COURSE )
names: ( HAS-TITLE ))

( object-class COURSE-NAME
representative: ( COURSE-NAME-V ))

( object-class EMPLOYEE
representative: ( TOKEN )

definition: ( IS-EMPLOYEE )
superclasses: ( PERSON )

names: ( IS-PERSON-NAME HAS-NAME ))

( object-class GPA
representative: ( GPA-V ))

( object-class GRAD-STUDENT
representative: ( TOKEN )

definition: ( IS-GRAD-STUDENT )
superclasses: ( STUDENT )
names: ( IS-STUDENT-NAME ))

( object-class GRADE
representative: ( GRADE-V ))

( object-class HOUR
representative: ( TIME-V ))

( object-class INSTRUCTOR
representative: ( TOKEN )

definition: ( IS-INSTRUCTOR )
superclasses: ( PERSON )

names: ( IS-PERSON-NAME HAS-NAME ))

( object-class NAME
representative: ( PERSONAL-NAME-V ))



174

( object-class OFFERING
representative: ( TOKEN )
definition: ( IS-OFFERING )
names: ( HAS-TITLE ))

( object-class PERSON
representative: ( TOKEN )

definition: ( IS-PERSON )
names: ( IS-PERSON-NAME HAS-NAME ))

( object-class PERSON-NAME
representative: ( PERSONAL-NAME-V ))

( object-class STAFF-STUDENT
representative: ( TOKEN )

definition: ( IS-STAFF-STUDENT )
superclasses: ( STUDENT EMPLOYEE )

names: ( IS-STUDENT-NAME ))

( object-class STUDENT
representative: ( TOKEN )

definition: ( IS-STUDENT )
names: ( IS-STUDENT-NAME ))

( object-class UNDERGRAD-STUDENT
representative: ( TOKEN )
definition: ( IS-UNDERGRAD-STUDENT )
superclasses: ( STUDENT )
names: ( IS-STUDENT-NAME ))

( situation ADMITTED-TO-GRAD-SCHOOL
participants: (( agent x PERSON ))
cardinalities: (( 1 x ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation CAN-TEACH
participants: (( agent x PERSON ) ( object y COURSE ))
definition: ( PRIMITIVE )
extension: ( OPEN-WORLD ))

( situation COURSE-GRADE
participants: (( agent x STUDENT ) ( object y COURSE )

( value z GRADE ))
definition: ( and ( GRADE-FOR ( agent x ) ( object w )

( value z ))

( OFFERING-OF ( agent y ) ( object w ))))



175

( situation COURSE-GRADE-2
participants: (( agent x STUDENT ) ( object y COURSE )

( value z GRADE ))
definition: ( and ( GRADE-FOR ( agent x ) ( object w )

( value z ))

( OFFERING-OF ( agent y ) ( object w ))))

( situation FINAL-GPA
participants: (( agent x STUDENT ) ( value y GPA ))
cardinalities: (( 1 x y ))
definition: ( PRIMITIVE ))

( situation FLUNKED
participants: (( agent x STUDENT ) ( object y COURSE ))
definition: ( and ( OFFERING-OF ( agent y ) ( object z ))

( GRADE-FOR ( agent x ) ( object z )

( value w "F" ))))

( situation GRADE-FOR
participants: (( agent x STUDENT ) ( object y OFFERING )

( value z GRADE ))
cardinalities: (( 1 x y ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation GRADE-VALUES
participants: (( agent x GRADE ) ( object y INTEGER ))
cardinalities: (( 1 x ))

definition: ( PRIMITIVE ))

( situation HAS-AGE
participants: (( agent x PERSON ) ( value y AGE ))
cardinalities: (( 1 x ))

definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation HAS-NAME
participants: (( agent x PERSON ) ( value y NAME ))
cardinalities: (( 1 x y ))
definition: ( PRIMITIVE ))

( situation HAS-TITLE
participants: (( agent x COURSE ) ( object y COURSE-NAME ))
cardinalities: (( 1 x ))

definition: ( PRIMITIVE ))

( situation INTERESTING
participants: (( agent x PERSON ) ( result y BOOLEAN ))
cardinalities: (( 1 x ))

definition: ( PRIMITIVE ))



176

( situation IS-COURSE
participants: (( agent x COURSE ))
definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))

( situation IS-COURSE-NAME
participants: (( agent x COURSE ) ( object y COURSE-NAME ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation IS-EMPLOYEE
participants: (( agent x PERSON ))
definition: ( or ( IS-INSTRUCTOR ( agent x ))

( IS-STAFF-STUDENT ( agent x ))))

( situation IS-FACULTY
participants: (( agent x EMPLOYEE ))
definition: ( PRIMITIVE )

necessary: ( FINAL-GPA ( agent x ))

required: ( or ( TEACHES-OFFERING ( agent x ) ( object z ))

( CAN-TEACH ( agent x )))
extension: ( OPEN-WORLD ))

( situation IS-GRAD-STUDENT
participants: (( agent x GRAD-STUDENT ))
definition: ( and ( ADMITTED-TO-GRAD-SCHOOL ( agent x ))

( IS-STUDENT ( agent x )))
necessary: ( ADMITTED-TO-GRAD-SCHOOL ( agent x ))

required: ( HAS-AGE ( agent x )))

( situation IS-GRAD-STUDENT-2
participants: (( agent x STUDENT ))
definition: ( ADMITTED-TO-GRAD-SCHOOL ( agent x ))
necessary: ( IS-PERSON ( agent x ))
required: ( ADMITTED-TO-GRAD-SCHOOL ( agent x )))

( situation IS-INSTRUCTOR
participants: (( agent x PERSON ))
definition: ( TEACHES-COURSE ( agent x )))

( situation IS-OFFERING
participants: (( agent x OFFERING ))
definition: ( OFFERING-OF ( object x )))

( situation IS-PERSON
participants: (( agent x PERSON ))
definition: ( PRIMITIVE ))

( situation IS-PERSON-NAME
participants: (( agent x PERSON ) ( object y PERSON-NAME ))
definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))



177

( situation IS-PRESIDEN1
participants: (( agent x EMPLOYEE ))
definition: ( PRIMITIVE ))

( situation IS-STUDENT
participants: (( agent x STUDENT ))
definition: ( and ( IS-PERSON ( agent x ))

( TAKES-COURSE ( agent x ) ( object y ))))

( situation IS-STAFF-STUDENT
participants: (( agent x STUDENT ))
definition: ( PRIMITIVE ))

( situation IS-STUDENT-NAME
participants: (( agent x STUDENT ) ( object y PERSON-NAME ))
definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))

( situation IS-UNDERGRAD-STUDENT
participants: (( agent x STUDENT ))
definition: ( and ( IS-STUDENT ( agent x ))

( not ( IS-GRAD-STUDENT ( agent x )))))

( situation LIMIT
participants: (( agent x OFFERING ) ( value y CLASS-LIMIT ))
cardinalities: (( 1 x ))

definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))

( situation MAY-TAKE
participants: (( agent x STUDENT ) ( object y COURSE ))
necessary:

( empty ( or ( and ( PREREQUISITE-FOR ( agent z )

( object y ))
( FLUNKED ( agent x ) ( object z )))

( and ( PREREQUISITE-FOR ( agent z )

( object y ))
( IS-STUDENT ( agent x ))
( not ( COURSE-GRADE ( agent x )

( object z )))))))
required: ( IS-OFFERING ( agent y ))
definition: ( PRIMITIVE ))

( situation MEETING-TIME
participants: (( agent x OFFERING ) ( value y HOUR ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation OFFERING-OF
participants: (( agent x COURSE ) ( object y OFFERING ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))



178

( situation PREREQUISITE-FOR
participants: (( agent x COURSE ) ( object y COURSE ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation TAKES-COURSE
participants: (( agent x STUDENT ) ( object y COURSE ))
definition: ( and ( TAKES-OFFERING ( agent x ) ( object z ))

( OFFERING-OF ( agent y ) ( object z ))))

( situation TAKES-OFFERING
participants: (( agent x STUDENT ) ( object y OFFERING ))
definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))

( situation TEACHES-COURSE
participants: (( agent x INSTRUCTOR ) ( object y COURSE ))
definition: ( and ( TEACHES-OFFERING ( agent x ) ( object z ))

( OFFERING-OF ( agent y ) ( object z ))))

( situation TEACHES-OFFERING
participants: (( agent x INSTRUCTOR ) ( object y OFFERING ))
cardinalities: (( 1 y ))
necessary: ( and ( OFFERING-OF ( agent z ) ( object y ))

( CAN-TEACH ( agent x ) ( object z )))
definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))

( situation TEACHES-STUDENT
participants: (( agent x INSTRUCTOR ) ( object y STUDENT ))
definition: ( and ( TEACHES-OFFERING ( agent x ) ( object z ))

( TAKES-OFFERING ( agent y ) ( object z ))))

( computation AVERAGE-OF
participants: (( domain x extension-of ( s ))

( measure y role-of ( s ))

( result z real ))
definition:

( DIVIDE
( domain-1 ( SUM ( domain x ) ( measure y )

( result r )))
( domain-2 ( COUNT-OF ( domain x ) ( measure y )

( result t )))))



179

( computation COUNT-INTERESTING
participants: (( domain x object-of ( A ))

( result y INTEGER ))
definition:

( ACCUMULATE
( mapping "SUM" )

( domain
( MAP ( domain z )

( mapping ( sigma ( z )

( INTERESTING ( agent x ) ( result z ))))
( result w )))

( mapping "PLUS" )

( result y )))

( computation COUNT-OF
participants: (( domain x extension-of ( A ))

( result y INTEGER ))
definition:

( ACCUMULATE
( domain

( MAP ( domain x )

( mapping "INSTANCE-VALUE" )

( result u )))
( mapping "PLUS" )

( result y )))

( computation COUNT-UNIQUE
participants: (( domain x extension-of ( s ))

( measure y role-of ( s ))
( result z INTEGER ))

definition:
( COUNT-OF

( domain ( PROJECT ( domain x ) ( measure y )

( result r )))
( measure y )

( result z )))

( computation ENROLLMENT
participants: (( domain x COURSE ) ( result y INTEGER ))
definition:

( COUNT-OF
( domain

( sigma ( z )

( TAKES-COURSE ( agent z ) ( object x )

( result y ))))))



180

( computation GPA-OF
participants: (( agent x STUDENT ) ( result y GPA ))
definition:

( AVERAGE-OF
( context z )

( domain
( sigma ( z )

( and ( COURSE-GRADE ( agent x ) ( value w ))
( GRADE-VALUES ( agent w )

( value z )))))))

( computation INSTANCE-VALUE
participants: (( domain x instance-of ( A ))

( result y INTEGER ))
definition: ( CONSTANT ( domain x ) ( result y 1 )))

( computation SUM
participants: (( domain x vector-of ( INTEGER ))

( result y INTEGER ))
definition:

( ACCUMULATE ( domain x ) ( mapping "PLUS" ) ( result y )))

( action CANCEL
participants: (( object x OFFERING ))
results: ( and ( not ( OFFERING-OF ( object x )))

( not ( TAKES-OFFERING ( object x )))))

( action COMPLETES
participants: (( agent x STUDENT ) ( object y OFFERING )

( value z GRADE ))
prerequisites: ( TAKES-OFFERING ( agent x ) ( object y ))
results: ( and ( not ( TAKES-OFFERING ( agent x )

( object y )))
( GRADE-FOR ( agent x ) ( object y )

( value z ))))

( action ENROLLS-IN
participants: (( agent x STUDENT ) ( object y OFFERING ))
prerequisites:

( and ( OFFERING-OF ( agent z ) ( object y ))
( MAY-TAKE ( agent x ) ( object z )))

results: ( TAKES-OFFERING ( agent x ) ( object y )))

( action GRADUATES
participants: (( agent x STUDENT ) ( object y GPA ))
results: ( FINAL-GPA ( agent x ) ( value y )))



181

Appendix I. Schema for Figure 16

( data-value-class EVENT-NAME-V
type: STRING
size: 10
form: ( & [ "A" "Z", "-" ] $ ) )

( object-class EVENT-NAME
representative: ( EVENT-NAME-V ))

( object-class EVENT
representative: ( TOKEN )
definition: ( IS-EVENT )
names: ( HAS-TITLE ))

( situation IS-EVENT
participants: (( agent x EVENT ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation IS-EVENT-NAME
participants: (( agent x EVENT ) ( object y EVENT-NAME ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( data-value-class COURSE-NAME-V
type: STRING
size: 6
form: ( & [ "A" "Z" ] $ 2 "-" [ "1" "5" ]

& [ "0" - "9" ] $ 2 ) )

( object-class COURSE
representative: ( TOKEN )

definition: ( IS-COURSE )
names: ( HAS-TITLE ))

( object-class COURSE-NAME
representative: ( COURSE-NAME-V ))

( situation IS-COURSE
participants: (( agent x COURSE ))
definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))



182

( situation HAS-TITLE
participants: (( agent x COURSE ) ( object y COURSE-NAME ))
cardinalities: (( 1 x ))

definition: ( PRIMITIVE )

extension: (CLOSED-WORLD))

( data-value-class TIME-V
type: STRING
size: 4
form: ( [ [ "1" "9" ] 1 "10" I "11" I "12"]

( object-class HOUR
representative: ( TIME-V ))

( situation MEETING-TIME
participants: (( agent x OFFERING ) ( value y HOUR ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation IS-NOON-MEETING
participants: (( agent x EVENT ))
necessary: ( HAS-TITLE ( agent x ) ( object "MEETING" ))
required: ( MEETING-TIME ( agent x ) ( value "12AM" ))
definition: ( PRIMITIVE )
extension: ( OPEN-WORLD ))

( object-class OFFERING
representative: ( TOKEN )

definition: ( IS-OFFERING )
names: ( HAS-TITLE ))

( situation OFFERING-OF
participants: (( agent x COURSE) ( object y OFFERING ))
definition: ( PRIMITIVE )
extension: ( CLOSED-WORLD ))

( situation IS-OFFERING
participants: (( agent x OFFERING ))
definition: ( OFFERING-OF ( object x )))

( situation IS-SEMINAR
participants: (( agent x OFFERING ))
necessary: ( IS-COURSE ( agent x ))
required: ( HAS-TITLE ( agent x ) ( object "SE-400" ))
definition: (and ( IS-OFFERING ( agent x ))

( LIMIT ( agent x ) ( value 12 )))
extension: ( CLOSED-WORLD ))



183

( data-value-class CLASS-LIMIT-V
type: INTEGER
minval: 10
maxval: 100 )

( object-class CLASS-LIMIT
representative: ( CLASS-LIMIT-V ))

( situation LIMIT
participants (( agent x OFFERING ) ( value y CLASS-LIMIT ))
cardinalities: (( 1 x ))

definition: ( PRIMITIVE )

extension: ( CLOSED-WORLD ))



184

Appendix J Departures from the SIDUR Manual

Numbers Objects of type INTEGER and REAL are
handled as Franz Lisp numbers.

BNF Simplified as shown in Appendix G.

'empty' Has same effect as 'not' when used in
update operations.

'MENTIONS' Returns a list of construct names
that appear in the specified slot
of a construct.

Schema operations Must not involve data operations
and can only handle one construct.
The name of the construct must be
a constant in the operation.

'not' Any open sigma expression may appear within
a 'not' connective.

'not' Only one computation may appear within
the scope of a 'not' connective



'sidur'
*assert

<expression>

REFLECT

< comment >

185

Appendix K. Notation Used In This Paper

Single quote marks or underlines
are used to denote identifiers,
reserved words, and items which
are to be taken literally.

The expression in angle brackets can be
replaced by any well-formed expression of
the type named inside of the brackets.

Names and reserved words which are
capitalized in the OSIRIS literature
are also capitalized is this paper.

Denotes a comment within an expression
or BAGAL procedure.


