

AN ABSTRACT OF THE THESIS OF

William Curran for the degree of Master of Science in Computer Science presented on

June 4, 2013.

Title: Using RUBI to Partition Agents in Air Traffic Problems with Hard Constraints

and Reward Shaping

Abstract approved:

Kagan Tumer

Air traffic flow management over the U.S. airpsace is a difficult problem. Current man

agement approaches lead to hundreds of thousands of hours of delay, costing billions

of dollars annually. Weather and airport conditions may instigate this delay, but rout

ing decisions balancing delay with congestion contribute significantly to the propagation

of delays throughout the US airspace. The task of managing delay may be seen as a

multiagent congestion problem.

In this problem there are many tightly coupled agents whose actions collectively

impact the system, making it difficult for agents to learn how they individually affect

the system. Reward shaping is effective at improving agent learning for soft constraint

problems by reducing noise caused by interactions with other agents, so we extend those

results to hard constraints that cannot be easily learned, and must be enforced algorith

mically. Additionally, congestion must be removed from the system in order to ensure a

safe environment for all aircraft. This can be done through the use of a greedy scheduler,

enforcing a ground delay on each plane to remove congestion from the system, at the

cost of delay.

Reward shaping reduces noise caused by agent interactions, and a greedy scheduler

removes congestion from the system, but these two approaches cannot be simply com

bined without a large increase in computational complexity. Agent partitioning can be

used to alleviate this complexity by treating each partition of agents as an indepen

dent set of agents from other partitions, thus simplifying the computation during each

learning step.

Our approach is based on the combination of three different methods to perform hard

constraint optimization: a greedy scheduler, reward shaping and agent partitioning. We

present two agent partitioning algorithms in conjunction with this approach to simplify

the learning domain. The first partitioning algorithm uses system features to compute

similarities between agents. This is then used to partition agents into small subsets. To

remove the assumption of having domain knowledge, we introduce the Reward/Utility

Based Impact (RUBI) algorithm. This algorithm develops an effective similarity matrix

while requiring no prior domain knowledge. This similarity matrix can then be used in

any similarity based partitioning algorithm. Our results show that autonomous parti

tioning of the agents using system features leads to up to 450x speed over simple hard

constraint enforcement, as well as up to a 37% improvement in performance over a greedy

scheduling solution, while using RUBI to partition agents led to a better partitioning

of agents, as well as a 510x speed up. Both results correspond to hundreds of hours of

delay saved in a single day.

c©Copyright by William Curran

June 4, 2013

All Rights Reserved

Using RUBI to Partition Agents in Air Traffic Problems with Hard

Constraints and Reward Shaping

by

William Curran

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 4, 2013

Commencement June 2013

Master of Science thesis of William Curran presented on June 4, 2013.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

William Curran, Author

ACKNOWLEDGEMENTS

I would like to thank my adviser Dr. Kagan Tumer for always being on my side no

matter how many silly mistakes I make (e.g. Submitting an old version of a paper to

AAMAS entitled “Super Awesome Paper” 1 hour before the deadline) and supporting

me both mentally and academically throughout my graduate work.

I would like to particularly acknowledge Carrie Rebhuhn for proofreading my thesis

more times than I (or she) cares to count, for listening to my speech over and over

again, for always supporting me in my work, and most importantly, for pacifying our

adviser with candy bars before rough meetings. And how could I forget, thank you

Carrie Rebhuhn for also introducing me to Boris and Natasha.

And most importantly I would like to acknowledge my mom for her encouragement,

support, and patience throughout my last 6 years of college.

5

10

15

20

25

TABLE OF CONTENTS

Page

1 Introduction 1

2 Background

2.1 Multiagent Systems . 5

2.1.1 Reinforcement Learning . 5

2.1.2 Multiagent Learning . 7

2.1.3 Reward Shaping for Coordination 8

2.1.4 Agent Coordination . 9

2.2 Agent Partitioning .

2.2.1 Clustering algorithms . 10

2.2.2 Hierarchical Agglomerative Clustering 11

2.3 Related Work . 12

2.3.1 Air Traffic Flow Management Problem 13

2.3.2 Constraint Optimization . 13

2.3.3 Agent Partitioning . 14

2.4 Domains .

2.4.1 Heterogeneous Bar Problem . 15

2.4.2 Air Traffic Flow Management Problem 17

3 Approach 18

3.1 Agent Definition . 18

3.2 Agent Learning .

3.3 Reward Structures . 21

3.3.1 Assigning the System-Level reward 21

3.3.2 Applying the Difference Reward 22

3.4 Soft Constraint Application . 23

3.5 Hard Constraint Optimization .

3.6 Agent Partitioning . 26

3.6.1 Computational Complexity . 28

3.7 Simulator Characteristics . 29

4 Partitioning Agents 31

4.1 Domain-Based Partitioning . 31

4.2 Reward/Utility Based Impact Algorithm . 32

TABLE OF CONTENTS (Continued)

Page

4.2.1 Implementation of RUBI . 33

4.2.2 Impact Calculation . 34

4.2.3 Simulation . 35

4.2.4 Computational Cost . 36

4.2.5 Benefits of RUBI . 37

5 Experimental Results 39

5.1 Hard Constraint Optimization with Domain-Based Partitioning 39

5.1.1 Learning with Soft Constraints . 40

5.1.2 Learning with Hard Constraints 41

5.1.3 Partition Comparisons for Hard Constraints 46

5.2 Hard Constraint Optimization using RUBI 47

5.2.1 Heterogeneous Bar Problem . 47

5.2.2 ATFMP . 51

5.3 Comparison Between RUBI and Domain-Based Partitioning 53

6 Conclusion 61

6.1 Future Work . 62

Bibliography 62

LIST OF FIGURES

Figure	 Page

3.1	 Delay and congestion with varying w, the weight on congestion. No mat

ter the weight, the learning algorithm will not remove congestion while
attempting to keep delay low. Additionally the cost to delay for when re
moving congestion is not a 1:1 mapping. A removal of 10,000 congestion
adds 70,000 minutes of delay . 24

3.2	 Evaluation using the greedy scheduler . 26

5.1	 Using the system-level performance as a reward does not work well in
this large multiagent system. The difference reward was able to lower
congestion much more, but could not manage to also reduce delay. Note
that these are best performing experiments for the difference reward and
system-level reward. 42

5.2	 The highest level of partitioning for the system-level reward (G) is dis
played here and compared with zero partitioning and the greedy sched
uler. The system-level reward performed worse with fewer partitions,
but still better than zero partitioning. Even though partitioning per
formed better than zero partitioning, the system-level reward could not
come close to beating the greedy scheduler. Using this learning approach,
the system-level reward performance could never become better than the
greedy scheduler. 44

5.3	 A closer look at the difference reward performance using the smaller num

ber of partitions shows a 37% improvement over the greedy scheduling
solution. 45

5.4	 As the number of partitions decrease, the agents receive less information
about the environment, and performance decreases. In this domain, 2 and
3 partitions work equally well as the difference reward, but with 6x faster
simulation rate. 49

LIST OF FIGURES (Continued)

Figure	 Page

5.5	 This graph represents the scaled value of different performance metrics.
For example, a scaled value of .50 for the converged performance repre
sents that this is 50% of the best converged performance. As self-similarity
decreases, the performance and average time taken per learning step de
creases. This trend rate begins slow, but increases dramatically once
self-similarity is less than 67%. In this domain, this level of self-similarity
is an important metric to stay above while partitioning. 50

5.6	 As the number of partitions decreases, performance improves while time
complexity increases. Note that a reward independent partitioning using
RUBI includes 61 partitions. 52

5.7	 As the self-similarity increases, final performance and time taken per learn
ing step increases. Note that final performance is a 6th degree polynomial
trend line with R2 = .95 . 54

5.8	 Partitions formed with RUBI had higher self-similarity than using domain-

based partitioning. This leads to higher quality learning with respect to
each partition. 55

5.9	 The final performance of RUBI partitions compared to domain-based par
titions. Initially domain-based partitions perform better than RUBI, with
RUBI performing better with a smaller number of partitions. We see that
this is not a good performance metric, as it does not take into account
individual partition sizes. Note that the a 6th degree polynomial was used
in creating this graph with an R2 value of .95 for partitioning with RUBI
and .92 for domain-based partitioning. 58

5.10 Initially, domain-based partitioning has a larger average size of partitions,
leading to a higher initial performance. With a smaller number of parti
tions, RUBI partitioning had a larger size of partitions. Note that when all
partitions are reward independent, domain-based partitioning had only a
few number of very large partitions. RUBI partitioning on the other hand
included a much smaller average size, and many more partitions. 59

5.11 When comparing individual partition size averages to performance, RUBI
partitions perform much better than domain specific partitions with re
spect to average partition size and final performance. 60

LIST OF TABLES

Table	 Page

5.1	 With the greater number of partitions, the learning performance decreases
and speed increases. Note that the outlier is a artifact of the greedy
scheduler discussed in this section. 47

5.2	 With the greater number of partitions, the learning performance decreases
and speed increases. 48

LIST OF ALGORITHMS
Algorithm Page

1 Action-Value Learning . 7

2 Hierarchical Agglomerative Clustering . 12

3 Generic Coupled Learning System using Difference Reward 28

4 Greedy Scheduler . 30

5 Reward/Utility Based Impact Algorithm 34

Chapter 1: Introduction

A primary concern facing the aerospace industry today is the efficient, safe and reliable

management of our ever-increasing air traffic. In 2011, weather, routing decisions and

airport conditions caused 330,063 delays, accounting for 266,999 hours of delay [17].

Many of these delays in the National Airspace System (NAS) are caused by en route,

landing, or departing airspace congestion. The number of new flights being scheduled

is faster than that of airports being built, making effective traffic control algorithms

essential. We refer to the task of managing delay in the system by coordinating aircraft

as the Air Traffic Flow Management Problem (ATFMP).

Typical methods to alleviate delay in the ATFMP involve imposing ground delay

on aircraft, changing the speed of en route aircraft, and changing separation between

aircraft. Because the airspace has many connections from one airport to another, the

congestion and associated delay can propagate throughout the system. Delays may be

imposed to better coordinate aircraft and mitigate the propagation of congestion and

the associated delay, but which aircraft should be delayed? The search space in such a

problem is huge, as there are tens of thousands of flights every day within the United

States [17].

Current approaches to the ATFMP include the use of binary integer programming

[9], evolutionary approaches [39], and multiagent reinforcement learning [4]. The most

recent complete overview of the ATFMP in practice is provided by Sridhar, Grabbe, and

Mukherjee [40]. These approaches reduce delay in the NAS, but either have not been

expanded to an entire day of aircraft data or does not completely remove all congestion

from the system.

We propose an approach to solving the problem that blends multiagent coordina

tion, reward shaping, hard constraints, and automated agent partitioning. Multiagent

coordination turns the ATFMP into a distributed problem, thus decomposing it into

smaller, more manageable problems. This coordination typically improves performance,

but makes modeling interactions between agents much more difficult. When an agent

takes an action with many other agents, the total reward of the system may not reflect

2

the contribution of the single agent.

Reward shaping is a field of multiagent reinforcement learning that focuses on the

design of rewards, and has been shown to assist in multiagent coordination. The dif

ference reward is a reward shaping technique that is helpful in discovering how much

a single agent contributed to the overall system reward by calculating only the portion

of the global reward to which a particular agent directly contributed. The combination

of multiagent coordination and reward shaping give the ability to perform an intelligent

guided search over tens of thousands of aircraft actions, while the hard constraint on

congestion ensures a safe airspace.

In the ATFMP, multiagent coordination with reward shaping becomes a computa

tionally intractable task, therefore we used automated agent partitioning to reduce the

overhead associated with the hard constraint while computing rewards. Agents were

only required to compute the reward relative to other agents within their partition,

removing thousands of extra computations per learning step. We first use automated

agent partitioning that required domain knowledge and partitioned agents based on

predicted agent interactions. To further generalize this work we then implement the

Reward/Utility Based Impact (RUBI), a novel automated agent partitioning algorithm

using zero prior domain knowledge.

RUBI learns an effective partitioning of agents, while requiring no domain knowledge.

It asks the question: What is each agent’s local reward with agent a and without agent a?

The difference in these two rewards is the impact on one agent to agent a. We first test

RUBI in a simple heterogeneous bar problem as a benchmark, where partitioning with

RUBI finds an optimal solution more efficiently than the straight learning approach. We

then apply this algorithm to a more difficult problem, the ATFMP, where partitioning

with RUBI leads to better quality partitions, leading to faster simulations and better

learning.

A high level view of the approach is as follows: First, we compute partitions of

agents. These partitions are treated as reward independent of each other, and therefore

need to only compute rewards relative to the other agents within their partition. We will

use the term reward independent to denote one partition of agents to have no impact

on the reward of other partitions. Essentially, no matter what actions one partition of

agents take, it will not affect the the action choice for any agent in another partition.

We then perform multiagent reinforcement learning using the difference reward. Lastly,

3

we introduce a greedy scheduler, removing all congestion from the system at the cost

to delay. Again, combining the multiagent reinforcement learning with reward shaping

and the greedy scheduler turns this into a computationally intractable task. However,

with agent partitioning, rewards can be computed many times faster with minimal per

formance degradation.

This paper is organized as follows: In Section 2 we will describe our domains, the

field of multiagent systems and our related work. This will be the foundation of the rest

of the work in this paper. In Section 3 we will then introduce our approach by explaining

the agent definition, agent learning, reward function, the heuristic approaches used, and

how this all works together as hard constraint optimization, and our simulator. We will

then introduce both partitioning methods, domain-based partitioning and partitioning

using RUBI. In Section 5 we will first show the results for learning in the ATFMP while

using domain-based partitioning, then we will show partitioning with RUBI working in

both the heterogeneous bar problem and ATFMP, lastly we will analyze the difference

in results between the standard partitioning algorithm and RUBI. We will conclude in

Section 6 with a discussion of the results.

The contributions of this thesis are largely based on the blending of multiagent re

inforcement learning, the difference reward and hard constraints. We also introduce the

Reward/Utility Based Impact algorithm, a partitioning algorithm that removes the need

for prior domain knowledge. There are two main contributions to this thesis:

•	 We combined multiagent reinforcement learning using the difference reward with

hard constraints. Since this is typically a computationally intractable task, the

problem required hard constraint optimization through the use of agent partition

ing.

•	 We introduce the Reward/Utility Based Impact (RUBI) algorithm, removing any

need for domain-specific information while partitioning, and creating well perform

ing partitions with very little effort from the programmer.

We show that this partitioning approach leads to a variety of performances, balancing

the cost of time complexity and the benefits of improved performance, and allowing a

user to choose whether to optimize time complexity or performance.

4

We also show that with reward independent partitions, the RUBI algorithm per

forms no worse than partitioning using domain-based partitioning, but with faster sim

ulations. By computing reward-based impact, reward independent partitions computed

with RUBI are smaller than domain-based partitions. When not reward independent,

partitions using RUBI outperform partitions using domain-based similarity scores. Since

RUBI computes reward-based impact, partitions created using RUBI are created based

on how much impact they have on other agents within their partitioning, essentially

making partitions smaller, but no less informative. It can also be used to discover non

trivial agent coupling, leading to a better partitioning in domains where the interactions

between agents are not obvious.

5

Chapter 2: Background

In this section we provide background information which is key to understanding the

approach used in this paper. Section 2.1 gives the reader a basic understanding of what

multiagent learning is, the reward shaping technique used in this thesis, and a brief

overview of work in agent coordination and how it is used in reinforcement learning.

Section 2.2 explains the classic clustering algorithm used in this paper, Hierarchical Ag

glomerative Clustering. Section 2.3 is the related work, explaining previous approaches

to the Air Traffic Flow Management Problem (ATFMP) and partitioning in complex sys

tems. Lastly, Section 2.4 introduces the domains used in this paper, the heterogeneous

bar problem and the ATFMP.

2.1 Multiagent Systems

The field of multiagent systems is the combination of artificial intelligence and dis

tributed problem solving. This section discusses how distributed problem solving is used

with learning algorithms from artificial intelligence in order to collectively solve prob

lems. Section 2.1.1 provides background in the reinforcement learning tools used to solve

multiagent problems, Section 2.1.2 discusses the current field of multiagent learning and

how it is used to solve distributed problems, and the section concludes with background

on constraint optimization, and the reasoning behind using our constraint optimization

approach over others. Section 2.1.3 explains the reward shaping approach used in this

work, and Section 2.1.4 is a breif overview of the work in agent coordination.

2.1.1 Reinforcement Learning

Reinforcement learning is a tool within the field of multiagent or single-agent learning

where agents take an action, observe the environment, and receive a reward based on the

new environment [42]. Reinforcement learners can learn with and without a model of the

environment. In this work we use model-free stateless multiagent reinforcement learning.

6

Without a state transition model, reinforcement learners take actions solely based on

previous experience and the current timestep, and have no concept of state. There are

three main aspects when defining a stateless reinforcement learner: the mapping, the

reward function, and action-value updates.

The mapping is a map from a value to the current optimal action an agent has

learned to take. Initially the agents start with an arbitrary mapping, which is iteratively

adjusted based on the reward received and the action-value updates.

The reward function encompasses the high-level goal of the system. When an agent

takes an action that is good for the system, the reward function ideally returns to the

agent a positive reward proportional to how much it helped the system-level reward.

Reinforcement learners also ideally receive a correspondingly smaller reward when their

actions are detrimental to the system. In this way agents can iteratively update to

converge to the optimal policy according to their reward design. This update is based

on the action-value updates.

Action-value updates of the agents mapping are based on the reward received. Equa

tion 2.1 show the action-value update [42]:

Vt(a) ← Vt−1(a) + α(Rt(a) − Vt−1(a)) , (2.1)

where Vt(a) is the updated action-value table entry for action a, Vt−1(a) is the pre

vious action-value table entry for action a, α is the learning rate between 0 and 1 (1

causing the agent to only take the most recent reward into account and 0 causing no

update), and Rt represents the reward received this time step for taking action a. In

a static environment, if the α term is chosen too high the agent will have a hard time

finding the best long term policy, and if it is set too low an agent will take a long time

to reach the optimal policy. In a constantly changing environment α needs to be set to

a rate close to the rate of change. If set too low the environment will change faster than

the agent is learning the environment, and if set too high the same problems arise as in

the static environment [42].

In action-value learning agents enforce E-greedy action selection, where the best policy

is chosen with probability 1 − E and a random policy with probability E. The Algorithm

2.1.1 explains the typical formulation of action-value learning:

7

Algorithm 1 Action-Value Learning

1: function Action-Value Learner
2: Initialize V arbitrarily
3: for e ← 1 to Episodes do
4: s ← initialize
5: for t ← 1 to T imesteps do
6: a ← argmaxaVt(a) with probability 1 − E otherwise a ← random

'7: Take action a, observe r and s
8: Vt(a) ← Vt−1(a) + α(r − Vt−1(a))

'9: s ← s
10: end for
11: end for
12: end function

2.1.2 Multiagent Learning

Multiagent learning is the intersection between the fields of multiagent systems and ma

chine learning. Typical machine learning tasks include classification, function approxi

mation, and problem solving, where multiagent systems deals with distributed problem

solving in domains involving many agents interacting. Distributed problem solving de

composes the tasks into smaller, more manageable problems allowing individual agents

to collectively solve the problem. The multiagent system approach leads to a solution

that is scaleable and more robust to unmodeled system dynamics, but modeling agent

interactions are typically complicated. Multiagent learning works toward solving this

problem by allowing an agent to learn interactions required to improve the performance

of their team [45].

In our multiagent system we have many reinforcement learners learning in parallel.

Agents take an action simultaneously, and receive feedback based on the system state

after those actions have been simulated. When performing reinforcement learning for

a single agent the concept of receiving a reward based on an action is simple, but in a

multiagent system many problems arise, namely the credit assignment problem.

In multiagent reinforcement learning, the credit assignment problem is the task of

distributing a reward signal to agents that accurately represents their impact on the

system level reward. A domain with many agents as well as highly-coupled actions suffers

when using the system-level or local rewards. System-level rewards allow an agent to

8

identify whether the joint action of all the agents increases the system’s performance,

but cannot determine whether its own action produces the increase or if another agent

was responsible. This leads to a noisy reward signal. Local rewards can always identify

whether an action had some positive or negative effects, but these local rewards do not

allow agents to coordinate effectively. In highly-coupled domains local rewards hurt

system-level performance, while the high number of agents cause agents to learn slowly

from system-level rewards due to the noise. In addition, these system-level rewards tend

to converge to suboptimal policies. Reward shaping is a typical solution to this problem.

2.1.3 Reward Shaping for Coordination

Multiagent coordination is an important aspect of many domains, such as data routing

[49], air traffic control [4, 48], Robocup soccer [1], rover coordination [29] and power

plant operations [15]. A learning or evolutionary algorithm will often convert a once

computationally intractable search problem into a feasible guided search.

In learning algorithms reward design is important in keeping convergence time low

while keeping performance high. In many multiagent coordination domains there is a

difference between maximizing the system-level reward and maximizing a single agent’s

reward. If an agent always takes the locally-optimal action, it does not always maximize

the system-level reward; this is known as the Tragedy of the Commons [23].

The difference reward [49] is evaluated such that each agent’s reward is related to

the individual’s contribution to team performance, therefore the signal-to-noise ratio is

improved considerably. This leads to final better policies at an accelerated convergence

rate, as well as overcoming the Tragedy of the Commons. The difference reward is

defined as:

Di(z) = G(z) − G(z − zi + ci) , (2.2)

where z is the system state, zi is the system state with agent i, and ci is a counter-

factual replacing agent i. This counterfactual offsets the artificial impact of removing

an agent from the system. For example, removing an aircraft from the system always

artificially decreases the amount of congestion and delay, which would provide a poor

reward if a counterfactual is not used.

9

The difference reward provides a compact encapsulation of the agent’s impact on the

system. It reduces the noise from other agents in the reward signal and has outperformed

both system-level and local rewards in many congestion domains [1, 3, 6, 15, 48, 49]. In

many systems it is difficult or impossible to calculate the difference reward without

resimulation, which can become prohibitively costly. If resimulation is fast, or the dif

ference reward function is easily approximated, this reward function is a powerful tool

for multiagent coordination.

2.1.4 Agent Coordination

Agent coordination [37] is another approach to reduce the noise of other agents found in

multiagent learning. There are three main approaches to reducing this noise: hierarchi

cal methods, task-based decomposition and team formation. Hierarchical methods and

task-based decomposition are typically performed as a preliminary step to simplify the

learning domain, while team formation is often performed online.

Hierarchical methods decompose large problems into smaller ones, overcomes partial

observability, and re-uses subtasks. This organizational structure leads to many benefits,

such as faster learning and learning from fewer trials. Haizheng Zhang and Victor Lesser

[52] used hierarchical methods to develop a hierarchical agent group formation protocol

as an alternative to a flat peer-to-peer organizational sharing system, demonstrating

a significant increase in performance. On a more theoretical application, MAXQ by

Dietterich et. al [20] decomposes a Markov Decision Process (MDP) into a hierarchy of

smaller MDPs and decomposes the value function of the target MDP into an additive

combination of the value functions of the smaller MDPs. Our work similarly decomposes

a large task into many semi-independent smaller tasks, essentially simultaneously solving

many smaller, and therefore easier problems.

Similar to hierarchical methods, task-based decomposition decomposes large prob

lems into many smaller, more task-specific problems. Agents are grouped together in

teams that are specialized for a specific task. An agent can explore more parts of the state

relevant to its current task rather than exploring the entire state space, and therefore

learn faster [21, 50]. Task-based decomposition has been previously applied in robotics

for cellular manufacturing [46], where the complexity of the manufacturing process is

too large for a straightforward multiagent approach, and the authors use task-based de

10

composition. Task-based decomposition has also been used in pattern recognition [33]

to simplify image classification through the use of decomposing pattern classification

problems based on the task required.

In team formation, agents only learn with respect to other agents within the same

team. Team formation is traditionally the problem of selecting the best possible team to

accomplish a certain goal, given limited resources. Typically, certain skills are necessary

to accomplish a task, and we must select a team that has all the necessary skills with

the minimum cost [22, 24]. Team formation has been in rover coordination [30], search

and rescue in disaster response [24, 43], and many other domains.

Similar to the work of Dietterich et. al, we use hierarchical methods to decompose a

larger learning problem into a series of smaller and easier to solve problems. This allows

agents to ignore much of the state space and find a good policy at a much faster rate.

The reasoning behind the need to do this is explained in Section 3.

2.2 Agent Partitioning

Clustering is the task of grouping a set of objects in such a way that objects within a

group are more similar to each other than to other groups. In this work, the objects

being clustered are agents. When clustering is applied to agents, it is known as agent

partitioning. This section will discuss the different types of machine learning clustering

algorithms and our reasoning behind choosing Hierarchical Agglomerative Clustering.

2.2.1 Clustering algorithms

The two most common and basic forms of clustering are centroid-based clustering and

connectivity based clustering. Both are have costs and benefits. Here we analyze those

costs and benefits and explain which we use in this work.

In centroid-based clustering, clusters are represented by a central vector, which may

not necessarily be a member of the data set. K-means clustering is a common approach

when the object can be represented by features. In k-means clustering, the number of

clusters are fixed to k, leading to an intuitive optimization problem: find the cluster cen

ters and assign the objects to the nearest cluster center, such that the squared distances

from the cluster are minimized. K-means clustering is a commonly employed clustering

11

technique and has been used in hundreds of applications over the years [26].

Connectivity based clustering, also known as hierarchical clustering, is based on the

core idea of objects being more related to nearby objects than to objects farther away. In

this method of clustering, typically an nxn similarity matrix is computed, where n is the

number of objects to cluster. After the similarity matrix is computed, this hierarchical

clustering can be performed, clustering objects one at a time based on the similarity

matrix, until one cluster remains. Clustering can be stopped at any point and saved to

obtain a varying number of clusters. Like k-means clustering, hierarchical clustering has

been used in hundreds of applications for many years, including document clustering [54]

and drug design [13].

In this work, we choose not to use centroid-based clustering. In centroid-based clus

tering, a feature vector must be created for every agent. In domains with tens of thou

sands of agents, such as air traffic, this becomes a very large memory requirement. We

chose to use a form of hierarchical clustering, hierarchical agglomerative clustering. The

work in this thesis is focused around developing a similarity matrix that can be used as

input to the hierarchical agglomerative clustering algorithm.

2.2.2 Hierarchical Agglomerative Clustering

The HAC algorithm first computes an N x N similarity matrix C and an N -sized indi

cator matrix I where N is the number of agents. Each element is initially considered to

be in its own cluster. The algorithm then executes N -1 iterations of clustering, start

ing with the most similar clusters according to the similarity matrix. In each iteration

two clusters are merged together, the similarity matrix is updated based on the newly

merged cluster and every other cluster, and the indicator matrix for that cluster is set to

0. SIM(dn, di) and SIM(i, m, j) are functions computing the similarity between clus

ters, where SIM(dn, di) is the initial similarity between dn and di, and SIM(i, m, j) is

the similarity between merged clusters i and m, and another cluster j.

There are currently three main methods of computing cluster similarity SIM(i, m, j):

1. Single-link, where the updated similarity between the merged cluster and other clus

ters is the minimum distance i or m has to j. 2. Complete-link, where the updated

similarity between the merged cluster and other clusters is the maximum distance i or

m has to j. 3. Average-link, where the updated similarity between the merged cluster

12

and other clusters is the average distance i and m has to j. In this work we use the

average-link similarity in order to try to obtain closely sized clusters.

In this work we chose to seed the initial similarity matrix C with a similarity com

puted by either using prior domain knowledge, such as flight plan similarity, or using

RUBI, thus replacing SIM(dn, di).

Algorithm 2 Hierarchical Agglomerative Clustering

1: function HAC(d1, ..., dN)
2: for n ← 1 to N do (Initialize Similarity Matrix C)
3: for i ← 1 to N do
4: C[n][i] ← SIM(dn, di)
5: end for
6: I[n] ← 1 (keeps track of active clusters)
7: end for
8: A ← []
9: for k ← 1 to N −1 do (assembles clustering as a sequence of merges)

10: < i,m > ← argmax<i,m>:i=m∧I[i]=1∧I[m]=1 C[i][m]
11: A.AP P END(< i,m >) (store merge)
12: for j ← 1 to N do
13: C[i][j] ← SIM(i, m, j)
14: C[j][i] ← SIM(i, m, j)
15: end for
16: I[m] ← 0
17: end for
18: return A
19: end function

2.3 Related Work

This section discusses the previous work in the ATFMP, constraint optimization, and

agent partitioning. Section 2.3.1 discusses the previous work in the ATFMP, and the

specific issues behind what has been previously applied. Section 2.3.2 shows the issues

of previous methods and how RUBI and algorithmically enforced hard constraints solve

them. Lastly, Section 2.3.3 gives an overview of previously developed agent partitioning

algorithms.

13

2.3.1 Air Traffic Flow Management Problem

Previous work in the ATFMP and scheduling had applied Integer Linear Programming

[9], evolutionary approaches [5, 39], and multiagent approaches [4, 16, 44, 48, 53]. The

ATFMP is a naturally distributed problem with complex interactions among all aircraft

and airports. This renders predetermined centralized solutions suboptimal whenever

there is any deviation from the expected air traffic flow. Therefore using a decentralized

multiagent system is an ideal approach in such a domain.

There are three main issues to using Integer Linear Programming (ILP) that are

removed using a multiagent approach; first, designing an ILP algorithm for a particu

lar task is a difficult process, and it takes a lot of effort to adapt ILP to new problem

variations that inevitably come up. Second, a formulation of ILP is complex even for

simple problems. For real world implementations there is an enormous amount of subtle

complexity that has to be included in the system, such as balancing the needs to airlines,

air traffic controllers and passengers. These complexities can be added in a straightfor

ward way in reward functions, but not in ILP. Third is computational complexity; ILP

computation can grow exponentially with problem size. A carefully designed ILP can

avoid this exponential increase within a certain range of parameters, but after a certain

problem size, computing an ILP solution is infeasible, making it impracticable for the

full ATFMP.

2.3.2 Constraint Optimization

Typical learning algorithms use soft constraint optimization and attempt to minimize

or maximize certain objectives in the system. These are usually formulated as a multi-

objective learning problem where agents receive a reward or fitness that is some com

bination of all objectives. Hard constraint optimization on the other hand can assist

multiagent coordination by forcing a constraint to be satisfied, and attempting to opti

mize the rest of the reward. This approach simplifies a more complicated multi-objective

coordination problem into a more simple single-objective problem.

One approach to constraint optimization is Distributed Constraint Optimization

(DCOP) [28, 35]. DCOPs are well-suited for modeling multiagent coordination prob

lems with many interactions between agents. DCOPs have to know the reward function,

14

the underlying joint reward space, and can require communication between agents. We

used multiagent learning algorithms because of the large number of agents and intend to

extend the scope of our experiments to include uncertainty in future work. Additionally,

the RUBI algorithm requires none of these knowledge assumptions, and can treat the

multiagent system as a black box, as we show in Section 4.

Greedy search algorithms, such as a greedy scheduler, can enforce hard constraints

by forcing one of the objectives to zero while sacrificing the other objectives. Previous

approaches to the ATFMP use a greedy heuristic scheduler [39] to enforce congestion

constraints. The greedy scheduler checks to see if a plane’s flight plan causes any sectors

to become congested. If the plane causes congestion, it is delayed by one minute, and

then the congestion is recalculated. This adds delay by completely removing congestion

out of the system. The greedy scheduler is required in this domain to accomplish this

congestion removal. This is a necessity of the problem: congestion in this domain means

that there is not enough air traffic control personnel to handle the traffic, and is therefore

dangerous.

Due to the heuristic nature of the scheduler, it is suboptimal and a guided search

must be performed to improve performance. This solution requires a learning algorithm

to first choose actions for the agents, then have those actions modified by the greedy

scheduler, and finally give feedback to the learning algorithm based upon the system

after the greedy scheduler and the original actions taken.

2.3.3 Agent Partitioning

Previous work in agent partitioning has been to focus on what specifically to partition.

Jordan and Jacobs [27] developed the Hierarchical Mixtures of Experts (HME) method

to partition the state space directly, such that different agents can focus on specific

regions of the state space. This method works well in non-linear supervised learning

tasks. In this work all learning is unsupervised, so this technique cannot be used.

Partitioning actions so that each agent is responsible for a small number of actions

is another approach used often. Sun and Pearson [41] divided actions into two types,

speed and turn, and each type was handled by a separate agent. This approach uses

domain knowledge, and partitioning actions applies well in robotics, but not in domains

where all actions need to be explored.

15

The last partitioning technique we describe is to partitioning system-level goals into

smaller tasks. In the work by Dayan and Hinton [19], they accomplished goal partitioning

through task allocation, where agents are organized in a hierarchy, where high-level

agents assign goals to agents lower in the hierarchy on-line. In the work by Reddy and

Tadepalli [38], the approach is more structured. In this work the partitioning of the goal

is learned through externally provided examples. Overall, these approaches are under

the assumption that the system-level goal can be subdivided, which is not always the

case.

In this work, we partition agents, essentially treating each partition of agents as an

independent problem. Agents from one partition could potentially affect the environment

of agents in another partition, but this work attempts to minimize the partition overlap.

In a partitioning with complete reward independence, this work essentially treats the

problem as a set of smaller and easier independent problems.

2.4 Domains

This section introduces the heterogeneous bar problem and the ATFMP. The El Farol

Bar Problem [8] is a benchmarking domain used typically in preliminary work as an

abstraction of a congestion domain. It is used in this research as preliminary work

showing the general effectiveness of RUBI before applying it the more complex ATFMP.

We modify this domain by introducing heterogeneous agents. This section concludes

discussing the ATFMP. The ATFMP is a difficult congestion problem with a variety of

formulations in both the learning and algorithms field.

2.4.1 Heterogeneous Bar Problem

The El Farol Bar Problem [8] is a benchmark for multiagent systems, and is a frequently-

used abstraction of congestion problems. In this problem there is a capacity c which

provides the most enjoyment for everyone who attends the bar on that particular night.

This is a stateless one shot problem where agents choose the night they attend the bar,

and receive a reward based on their enjoyment. The traditional bar problem local reward

is a function of the attendance of that night:

16

−xi(z)

Li = e c (2.3)

where xi(z) is the attendance on the night agent i went to the bar. The system-level

reward is a simple summation of these local rewards across all agents:

KK −xk (z)

G(z) = xk(z)e c (2.4)
k=0

where k is the index of the night, and xk(z) is the number of people who attended on

the kth night. From the reward, we know that if there are enough agents to be equally

spread out across the bars, n ≤ c ∗ k, this becomes a scheduling problem. This problem

becomes a congestion problem when there are more than twice as many agents as the

capacity for each night allows, n > 2ck. In this case the optimal response is for the

majority of agents to attend one night, thus making agents attending that night receive

a very low reward, and the rest of the agents equally distributing over the rest of the

nights such that the number of agents for each other night becomes c, receiving the

optimal reward for those nights.

We chose to use a modification of the El Farol Bar Problem to run initial experiments

our new RUBI similarity matrix algorithm. The Bar Problem is a simple enough domain

to directly check for optimal policies, and therefore we can see if the new algorithm

produces partitions that can be used to converge to the optimal policy at a faster or at

least equal convergence rate to the traditional partitioning technique. To do this, we

must first slightly modify the Bar Problem to turn it into a partitioning and congestion

problem.

We modify the bar problem by introducing heterogeneous agents that can attend the

bar only a subset of nights, rather than any night. Essentially, each agent is assigned a

type representing the nights that agent is available to go to the bar. The problem is still

the same, but there are now t types of agents. This modification gives us an intuitive

partitioning of agents and allows us to directly compare a direct learning approach that

finds the optimal solution to the partitioning given by RUBI.

17

2.4.2 Air Traffic Flow Management Problem

The ATFMP addresses the congestion in the NAS by controlling ground delay, en route

speed or changing separation between aircraft. The NAS is divided into many sectors,

each with a restriction on the number of aircraft that may fly through it at a given

time. This number is formulated by the FAA and is calculated from the number of

air traffic controllers in the sector, the weather, and the geographic location. These

sector capacities are known as en route capacities. Additionally, each airport in the

NAS has an arrival and departure capacity that cannot be exceeded. Eliminating the

congestion in the system while keeping the amount of delay each aircraft incurs small is

the fundamental goal of ATFMP.

Two popular approaches to simulating the ATFMP had been to develop Lagrangian

models of each aircraft’s dynamics, and to create aggregate models of the NAS [10,

12, 34, 36]. In the Lagrangian model approaches, typically the trajectories of each

aircraft are taken into account and either collision-avoidance or congestion-reduction

is performed [12, 34]. This is an accurate and fine-grained approach to the ATFMP,

but also time-intensive and complex. On the other hand, aggregate models have been

shown to simplify the NAS and therefore are a much simpler approach to the ATFMP.

The aggregate models have been used in conjunction with linear programming to find

solutions to air traffic flow [10], and linear algorithms to analyze departure, enroute and

arrival delays [36].

In this work we chose to use an aggregate model of the NAS. By choosing to control

the ground delay of each aircraft, rather than the enroute speed, and using historical data,

we only need to count how many aircraft are within a particular sector at a particular

time. Actions affect the simulation minimally, as an aircraft with imposed ground delay

simply needs to shift its entire flight plan by the amount of ground delay, greatly speeding

up simulation time compared to Lagrangian models.

For more information on our formulation of the ATFMP, Section 3 discusses the

system-level reward function, the agent actions, and our agent definitions.

18

Chapter 3: Approach

Our approach to traffic flow management involved five main concepts:

• Formulating a multiagent congestion problem by defining agents

• Formulating the appropriate system reward function.

• Reducing noise from the reward signal through reward shaping.

• Enforcing hard constraints on congestion with the greedy scheduler.

• Performing hard constraint optimization through agent partitioning

A high-level view of the algorithm is as follows: First, during pre-processing we

compute partitions of agents, these partitions are treated as being reward independent

of each other, and during learning partitions need to only compute rewards relative to the

other agents within their partition. We then perform multiagent reinforcement learning

with the difference reward. Lastly, we introduce a greedy scheduler, which removed all

congestion from the system at the cost of higher delays. Again, combining the multiagent

reinforcement learning with the difference reward and the greedy scheduler turns this

into a computationally intractable task, but with agent partitioning rewards can be

computed hundreds or thousands of times faster.

3.1 Agent Definition

There are many possible definitions for an agent in this domain. In this paper, agents

were assigned to aircraft with cooperation enforced by airport terminals. Cooperation

needs to be enforced because aircraft are naturally greedy. Aircraft are owned by different

companies, and those companies are not interested in making sure aircraft from other

companies arrive on time. This enforced cooperation assumption by aircraft terminals

(or the government) is essential to remove greedy aircraft from the system.

19

We chose a decentralized approach over a centralized approach. Centralized ap

proaches can utilize all of the information in the system, leading to better quality learn

ing, but much of the information used by a centralized controller isn’t needed for specific

action choices, causing a slower convergence rate. Additionally, centralized approaches

have one point of failure, meaning that in a real world system, if the centralized con

troller shuts down, the entire system is unusable. In a decentralized solution knowledge

is distributed over all agents, meaning that each agent must cooperate in order to find

a solution. In this domain, since cooperation is enforced by airports, agents cooperate

with each other to find better solutions. A decentralized solution benefits from many

advantages. One of which is that each agent has its own action-value mapping, removing

the one point of failure. Since agents interact with the environment, but learn indepen

dently, agents can be easily partitioned into independently treated groups, simplifying

the learning problem.

Aircraft flight plans are from historical flight data from the FAA. Therefore, the only

aspect of the environment we can change is the ground delay for each aircraft. Agents

may select a certain amount of ground delay from 0 to 10 minutes (11 actions) in the

beginning of every simulation. An extension of this work could be allowing agents to

choose a different ground delay whenever they land for a lay over, turning the problem

heterogeneous. The FAA data has the sector location of each plane for every minute

that plane was in service. Therefore, adding ground delay simply shifts a plane’s flight

plan over by that many minutes. The greedy scheduler then takes all plane flight plans,

checks if the flight plans cause any congestion, and then further delays planes to eliminate

congestion from the system.

In our formulation, agents do not have the capability to change their action based

upon the system once the simulation starts, therefore feedback can only be given once

per simulation. Since agents are given no knowledge of the environment, they have no

state. This simplifies the learning problem for each agent, as they only have eleven

actions to sample from, but complicates the coordination. Agents must choose an action

without prior knowledge of other agents choices, and must learn how the environment is

changing, and simultaneously what action to take.

20

3.2 Agent Learning

Agents learned using Action-Value Learning (Algorithm 1) with a zero initialized value

table, and were updated according to Equation 2.1. This is a stateless approach where

agents map actions to values representing the quality of that action.

In single-agent systems, agents employing the exploration-exploitation strategies

eventually come to an optimal solution [42]. In multiagent systems the exploration

of other agents become an issue. When an agent takes a greedy action, other agents can

learn how that affected the environment, and modify their own greedy action. When

an agent takes an exploratory action rather than a greedy action, other agents modify

their greedy action based on how the environment changed with the exploratory actions.

Agents learn to compensate for the exploratory actions in the system, so when explo

ration removed after some learning performance often decreases. This behavior is caused

by exploratory noise [25].

With so many agents in this system, exploratory noise causes a large problem. In

the beginning of learning, having a large exploration is beneficial for the system. With

10% of the agents taking random actions, we can find a good area of the reward space

to explore. But near the end of learning, with most agents almost converged to a nearly

optimal solution, 10% of agents are taking random actions, causing over 3,500 agents

to introduce noise into the learning of all other agents. To circumvent this problem, we

need to have more agents performing greedy action selection as during each consecutive

learning step. Therefore, E would need to be lowered throughout learning to accomplish

this. We approached this problem by reducing E every n time steps by a constant amount

(more sophisticated techniques such as the Boltzmann equation could be used, but only

simple E reduction was needed). The following equation was applied to E at every time

step:

t∗Θ(t mod n)E = E ∗ c , (3.1)

where c is a constant value (typically .99), t is the current time step and Θ(t mod n)

is a step function that equals 1 when t mod n is 0 and 0 otherwise, and n is a value

that varied depending on the number of learning steps. With more learning steps n was

higher, and in experiments with fewer learning steps n was lower.

21

3.3 Reward Structures

In this section we first assign the system-level reward. This reward represents how well

the system as a whole is performing. We want this value to be as high as possible.

We then derive the difference reward from the system-level reward. The difference re

ward represents how much a particular agent contributes to the system-level reward.

Agents should be rewarded with the difference reward, and system performance should

be measured as the system-level reward.

3.3.1 Assigning the System-Level reward

The system-level reward we developed focuses on the cumulative delay (δ) and congestion

(C) throughout the system:

G(z) = −(C(z)w + δ(z)) , (3.2)

where C(z)w is the total congestion penalty to the power of w, and δ(z) is the

cumulative system delay. The importance of congestion over delay is represented by the

weight w. Although minimizing delay is important, minimizing congestion is required for

safety within the NAS. Therefore, minimizing delay must be performed simultaneously

to minimizing congestion to zero, meaning the weight for congestion must be higher than

delay.

The total delay is the sum of delays over all aircraft. This is a linear combination of

the amount of ground delay and the amount of scheduler delay an agent incurred:

K
δ(z) = (δg,a(z) + δs,a(z)) , (3.3)

a∈A

where δg,a(z) is the ground delay the aircraft incurred and δs,a(z) is the scheduler

delay the aircraft incurred.

The total congestion penalty is the sum of differences between sector capacity and

the current sector congestion:

K
C(z) = Cs(z) , (3.4)

s∈S

22

where

K
Cs(z) = θ(Ct,s − Ss)(Ct,s − Ss) , (3.5)

t∈T

where Ss is the sector capacity of sector s as defined by the FAA and θ is a step

function that equals 1 if its argument is greater than 0, and 0 otherwise. In this way,

agents are penalized when a sector exceeds its capacity.

Minimizing congestion involves intelligently adding ground delay to specific aircraft

to obtain smallest amount of system congestion possible. In this problem, removing

congestion from the system adds delay, and removing delay from the system could po

tentially add congestion, and as seen in Figure 3.1 this is not a direct mapping. Removing

a little congestion from the system still requires the introduction of quite a bit of delay.

Minimizing this cost to delay for every reduction in congestion is important to a stable

solution.

3.3.2 Applying the Difference Reward

With so many agents, tens of thousands of actions simultaneously impact the system,

causing the reward for a specific agent to become noisy with the actions of other agents.

An agent would have difficulty learning an optimal solution using such a noisy reward

signal. A difference reward function reduces much of this noise, and is easily derived

from the system-level reward:

Di(z) = C(z − zi + ci)
w − C(z)w + δ(z − zi + ci) − δ(z) , (3.6)

where δ(z − zi + ci) and C(z − zi + ci) are the cumulative delay and congestion of all

agents with agent i replaced with counterfactual ci, with w again being the importance

of congestion over delay.

We used a non-zero counterfactual for two reasons. One, an aircraft is removed from

the system, the reward given to the agents is artificially increased. Furthermore, the

aircraft are less likely to cause conflicts due to the easier scheduling problem. Two,

we used a counterfactual where the agent does not delay at all, meaning that if not

delaying produces a higher reward than delaying, this should be found quickly. We

23

also take advantage of the fact that most airplanes do not need to be delayed. If the

counterfactual is equal to the agent removed, the difference reward becomes zero and

does not need to be calculated, thus speeding up reward calculations.

3.4 Soft Constraint Application

We want to convert a multi-objective problem into a single-objective problem. Multi-

objective optimization adds a level of difficulty not essential to good performance in this

domain. We can define a desirable solution in terms of a single value, in this case delay.

We attempt to convert the multi-objective problem to a single-objective problem by

increasing the exponential weight w on the total congestion, as used in equation 3.2

As w increases, the delay impact on the system becomes negligible. Thus the agent

will ignore the delay and only attempt to optimize congestion. This turned the multi-

objective problem into a single-objective problem, but still kept sector congestion as a

soft constraint.

Preliminary results, shown in Figure 3.1 indicate that this is an impractical solu

tion. With a weight of one, the congestion and delay are equally optimized, leading to a

balanced solution. When the weight on congestion increases to two or higher, the con

gestion converges to the same suboptimal point at different speeds. The agent will never

evolve to an optimal policy that decreases congestion at the cost of delay, no matter

how much emphasis is placed on congestion. Using exponential weights to convert this

multi-objective problem to a single-objective problem does not work.

To solve this problem we introduce a greedy scheduler. The greedy scheduler converts

sector congestion into a hard constraint, causing any amount of delay to achieve the goal.

If any aircraft’s flight plan violates the capacity constraint of any sector, it is forced to

ground delay for 1 additional minute. Using the greedy scheduler forces congestion to

become zero so that it does not need to be incorporated in the system utility.

Although the greedy scheduler is useful in removing congestion, it cannot also opti

mize delay. A simple solution would be to make every aircraft have a ground delay of

0, and have the greedy scheduler fix any conflicts, but this is highly suboptimal. Due

to the congestion in the system, a delay of 0 for each aircraft would be suboptimal.

The greedy scheduler assigns delay without taking into account agent coordination. An

exhaustive search could then be used, but with such a large search space, this would

24

Figure 3.1: Delay and congestion with varying w, the weight on congestion. No matter
the weight, the learning algorithm will not remove congestion while attempting to keep
delay low. Additionally the cost to delay for when removing congestion is not a 1:1
mapping. A removal of 10,000 congestion adds 70,000 minutes of delay

25

be impossible. Reinforcement learning can discover a better assignment of ground delay

for each aircraft, preventing the need to perform an exhaustive search. The previous

cumulative delay calculation (Equation 3.3) can be used as the system-level reward for

the new system.

3.5 Hard Constraint Optimization

Other approaches to solve the ATFMP have used only a small time window [2]. We

wanted to approach this problem with a full day of flight information, which is a 28-hour

window (28 hours from the first takeoff in the day to the last landing aircraft that took

off during the day). This increases the number of agents from a few thousand to 35,844.

In this highly-congested coordination domain, it is difficult to achieve good perfor

mance without ensuring the agent’s reward fully encapsulates the impact it had on the

system, so we apply the difference reward.

The difference reward was determined from the definition of the system-level reward

(Equation 3.3):

Di(z) = G(z) − G(z − zi + ci)
(3.7)

Di(z) = (−δ(z)) − (−δ(z − zi + ci))) ,

where δ(z) is the cumulative delay in the system and δ(z − zj + cj) is the cumulative

delay of with agent i replaced with counterfactual ci, the same counterfactual introduced

earlier in Section 3.3, where the counterfactual action is chosen to be zero delay.

We combine the greedy scheduler with reinforcement learning, as shown in Figure

3.2. All of the agents take an action, all actions are then modified using the greedy

scheduler, and then each agent is assigned a reward based on the system after the greedy

scheduler. Agents now receive a reward based on a modified version of the action they

chose, leading to a noisy reward signal. Now agents have to simultaneously learn the

right action to take and how their action becomes modified, complicating the learning

problem [7]. Although the learning problem is now more complicated, congestion is

removed from the systems, and agents still learn a well performing solution.

Combining the difference reward with the greedy scheduler causes a drastic increase

26

Figure 3.2: Evaluation using the greedy scheduler

in computation time. The difference reward requires an agent to be removed from the

system, the greedy scheduler to reschedule all aircraft back into the system, and then

compute the difference in delays. Rescheduling all 35,844 aircraft during each difference

calculation makes this a computationally intractable solution. We use agent partitioning

to greatly speed up the difference reward calculation by allowing the greedy scheduler to

reschedule only the aircraft within the same partition as the removed agent, and reward

agents only based on the delay of the other agents within their partition.

3.6 Agent Partitioning

The objective of agent partitioning is to leverage domain knowledge with the intention

of partitioning together agents who impact each other. In this way we can treat each

partition as its own independent problem, and solve them simultaneously.

Agent partitioning greatly helps the learning signal for the system-level reward, but

not for difference reward. The key problem with the system-level reward is an agent

receives too noisy of a learning signal to be able to learn a good policy. Partitioning

assists the system-level reward by removing some of the noise caused by other agents,

therefore creating a cleaner learning signal. On the other hand, the difference reward

removes more noise from the learning signal than the agent partitioning, causing the

difference reward to benefit less from the partitioning noise reduction, as seen in Section

4.1. The key benefit in combining agent partitioning and the difference reward is a large

reduction in computation time.

In many domains recomputing the reward may be costly. In both the heteroge

27

neous bar problem and the ATFMP computing the reward requires looping through all

agents and either computing the enjoyment of all agents (heterogeneous bar problem)

or computing the delay for all other agents (ATFMP). In the case of the ATFMP, this

becomes very computationally expensive when computing the difference reward, and

requires agent partitioning to compute quickly.

One way to circumvent this problem is function approximation of the domain us

ing neural networks [14]. In the work by Colby et. al, a neural network was used to

predict wave energy converter power output with respect to key design variables. Al

though a function approximator can approximate the reward given simulator inputs, in

largely complex domains with highly non-linear functions and a huge number of inputs

(i.e. ATFMP), function approximation can be too costly, requiring tens or hundreds of

thousands of updates in order to accurately approximate a system.

Although agent partitioning allows much faster reward computations, it can lead

to performance degradation if the partitions are not reward independent, but reward

independence removes much of the computational benefits associated with agent parti

tioning. This is true for many highly-coupled large domains in which some intelligent

partitioning could be performed. Additionally, it is not tractable to perform multiagent

reinforcement learning combined with reward shaping and the greedy scheduler with

out agent partitioning. Section 5.1 and 5.2 explores the cost and benefits of different

percentages of partition overlap.

Without agent partitioning, each agent must be removed from the system, and then a

reward must be calculated. Since, in our domains, the global rewards are at least partially

in the form of a summation of agent relative local rewards, we are required to recompute

that local reward during every difference reward calculation. In the heterogeneous bar

problem this summation is in the form of the enjoyment of all agents, and in the ATFMP

this summation is in the form of the total delay. Here is a generic example of such a

formulation:

where Ga is the system-level reward when agent a is removed from the system,

getGlobalReward(z) is a function that computes the global reward, Lr(r, za + ca) is a

function that computes the local reward of agent r when agent a is removed and replaced

with counterfactual ca, and Da is the difference reward for agent a.

28

Algorithm 3 Generic Coupled Learning System using Difference Reward

1: function SYSTEM
2: G ← getGlobalReward(z)
3: for a ← 1 to N do
4: za ← removeAgent(a)
5: for r ← 1 to N do (Sum local rewards for each agent with modified state)
6: Lr ← Lr(r, za + ca)
7: Ga ← Ga + Lr

8: end for
9: Da ← G − Ga (Difference reward calculation)

10: end for
11: end function

3.6.1 Computational Complexity

Algorithm 3 is a highly generic example, but shows that each learning iteration is on the

order of O(n ∗ O(removeAgent(a)) + n2), where n is the number of agents. Oftentimes

the removeAgent(a) function is a function relative to the number of agents within the

system. In the ATFMP each removeAgent(a) call must call the greedy scheduler, an

O(n) algorithm, leaving the time complexity growth of the learning system to remain
2O(n + n2) = O(n2). When the complexity of removing an agent becomes larger than

linear time, the cost of removing an agent dominates the cost of computing the agent

reward. In this case the agent partitioning becomes more useful.

When using agent partitioning, this time complexity can be drastically reduced.

When computing time complexity, the number of agents, n, can be replaced with the

number of agents per partition pn squared multiplied by the number of partitions, p:

2O(n 2) = O(p ∗ p) , (3.8)n

With many agents we see a significant speedup. If we have 10,000 agents in the

system, and convert that to 100 partitions of 100 agents we get 106 iterations as opposed

to 108 , two magnitudes lower. Additionally, the more partitionable the domain, the

better the speed up performance. If a domain is highly partitionable, then c becomes

larger and cn becomes smaller, meaning fewer agents per partition. This lowers time

complexity by lowering the faster-growing term, and becomes extremely important when

29

removeAgent(a) involves a high time complexity operation. Also, keep in mind this is a

worst case complexity analysis. In actuality, the speed up is much higher in the ATFMP,

as the greedy scheduler has to reschedule only a subset of agents, rather than all agents.

In the ATFMP we used two partitioning methods; first, we make the once computationally

intractable problem possible by using domain knowledge to partition agents together.

Second, we expand upon this work by introducing a generic partitioning algorithm that

requires zero domain knowledge. Both approaches are explained in detail in Section 4.

3.7 Simulator Characteristics

We present a multiagent approach to traffic flow management based on agents taking

independent actions that maximize a system utility. All agents’ actions are then simu

lated in a simple traffic flow management simulator. This simulator needs only to store

sector and time information for each flight and compute congestion for each sector. From

the simulation we can compute congestion and ground delay in the system and assign

rewards to agents accordingly.

Due to the simplicity of our simulation requirements, using complicated simulators

such as FACET [11] and AgentFly [48] would cause computation time problems. We

chose to create our own flight simulator and scheduler because our simulation is simple;

the only requirement is to keep track of sector capacities per time step, given a list of

flight plans. Additionally, using reinforcement learning requires frequent sampling from

data, meaning that using more advanced simulators would result in an unnecessarily

large time complexity.

The greedy scheduler used in our simulation is a standard greedy algorithm, looping

through agents, scheduling them into air traffic, all while enforcing the congestion hard

constraint:

where N is the total number of aircraft, dn is the delay of plane n, nfp is plane n’s

flight plan, sn is plane n’s starting time, sn,τ is the sector of plane n at time step τ .

30

Algorithm 4 Greedy Scheduler

1: function Greedy
2: for n ← 1 to N do
3: dn = ACT ION()
4: while ISCONGEST ED(dn
5: dn ← dn + 1
6: end while
7: for τ ← 1 to nfp do
8: t ← sn + τ + dn

9: s ← sn,τ

(For all agents N)
(Agent n takes action dn)

, congestion) do
(Greedy modification)

(Update global congestion)

10: congestiont,s ← congestiont,s + 1
11: end for
12: end for
13: end function

31

Chapter 4: Partitioning Agents

To reduce the computational overhead while computing the difference reward we reduced

the number of aircraft the greedy scheduler had to reschedule by partitioning the aircraft

into groups. The ATFMP has a clear partitioning of agents. Agents that do not go

through the same sectors do not impact each other at all, and therefore can be treated

as a smaller, more easily manageable, learning problem. This section will explain in

detail the two partitioning methods used in this research, domain-based partitioning

and partitioning using RUBI.

4.1 Domain-Based Partitioning

One possible partitioning approach used by Agogino and Rios [2] is to force every parti

tion to be reward independent of every other partition. This requires a potential overlap

of partitions, as typically many aircraft have partially or completely overlapping flight

plans. Each partition is therefore a collection of overlapping flight plans with a small

number of sectors unique to that partition. Although this approach achieves what we

need, it typically results in n partitions, where n is the number of agents, and very large

partitions due to overlapping flight plans. With around 35,000 aircraft this approach

becomes prohibitively computationally expensive.

Instead of this approach, we applied HAC [18] to partition similar agents together.

The similarity of each agent was computed as the number of similar sectors they had

within their flight plan. In this way agents that impact each other are partitioned

together. HAC was then applied using the average-linking metric and was saved at

every iteration to obtain a varying size of partitions. Since our distance metric was a

count of similar sectors, choosing the average-linking clustering metric was natural, as

we are interested in how similar clusters are on average, rather than based on least or

most similar members. Additionally, the SIM(dn, di) function (see Algorithm 2) was

computed by finding the number of similar sectors between plane dn and di. This was

accomplished all during the pre-processing of the flight plan data. Partitioning reduced

32

the number of aircraft into a more manageable size for learning, from 35,844 to on the

order of hundreds or thousands, depending on how long we run HAC (see Section 5.1.2

and 5.2.2 for more specific partition sizes).

When assigning a reward to an agent, only the delay of the agents within their

partition were taken into account. Therefore, the greedy scheduler only needs to schedule

the size of the partition during each difference reward calculation. This dramatically

reduces the time complexity and allows the difference reward to be efficiently combined

with the greedy scheduler. This results in a new reward for each partition p:

Di(zp) = −δ(zp) − (−δ(zp − zpi + ci)) , (4.1)

where zp is the state of partition p, δ(zp) is the cumulative delay of partition p

and δ(zp − zpi + ci) is the cumulative delay of partition p with agent i replaced with

counterfactual ci.

4.2 Reward/Utility Based Impact Algorithm

We expand upon our previous work by introducing an autonomous partitioning algorithm

requiring no domain knowledge, the Reward/Utility Based Impact (RUBI) algorithm.

Domain-based partitioning directly looks through aircraft flight plans and partitions

agents together based on how similar their flight plans are. We extend this work by

developing an initial agent similarity matrix that uses no knowledge about the domain,

and partitions agents together based on the impact of one agent to another. This matrix

can then be used as an input to the HAC algorithm, replacing the SIM(dn, di) calcula

tions. Additionally, by removing all knowledge about the domain and partitioning based

on reward, RUBI can be used to discover non-trivial indirect interactions encoded in a

reward signal.

On a basic level, this algorithm leverages the same central idea behind difference

rewards: If an agent is removed from the system, how does that affect system-level

reward? We modify this approach to answer the question: If an agent is removed from

the system, how does that impact each other agent? If one agent’s action heavily impacts

another agent’s reward (positively or negatively), those agents are coupled enough to be

33

partitioned together. The RUBI algorithm computes a localized reward for each agent

with agent r in the system, and then compares that reward to the localized reward for

each agent if agent r is not in the system. This partitioning algorithm is based around

the central idea:

|Li(z) − Li(z − zj)| > |Lk(z) − Lk(z − zj)| ⇒ SIM(i, j) > SIM(k, j) (4.2)

where Li(z − zj) is the localized reward of agent i if j is not in the system, Lk(z − zj)

is the localized reward of agent k if j is not in the system, and Li and Lk are the localized

rewards of i and k when all agents are in the system. This means that if the localized

reward of agent i changes more than the localized reward of agent k when agent j is

taken out of the system, agent j has more effect on agent i than agent k. This is the

essential idea behind RUBI, and is encoded in this algorithm through the equation:

Cr,a ← Cr,a + |La(z) − La(z − zr)| , (4.3)

where La(z) is the reward agent a receives when all agents are in the system, La(z−zr)
is the reward agent a receives with agent r not in the system, and Cr,a is the cumulative

impact agent r has on agent a.

4.2.1 Implementation of RUBI

The RUBI algorithm 4.2.1 first initializes an N x N matrix C, where N is the number of

agents within the system. It then calculates actions based on the ACT () function, which

is typically random action selection. A simulation is then ran with all of the agents in the

system and the localized reward is calculated for every agent. We then remove an agent

from the system, recalculate the reward for each agent (since this is a localized reward,

this is typically a fast operation), and update the impact table based on equation 4.3.

This is a high level understanding of RUBI, and the following sections will explain how

the impact data is computed, simulation specifics, the ACT () function, and finally when

this partitioning algorithm is practical.

34

Algorithm 5 Reward/Utility Based Impact Algorithm

1: function RUBI(sim)
2: C ← NxN
3: for i ← 1 to iterations do
4: actions ← ACT ()
5: sim.run(actions)
6: L(z) ← sim.getRewards() (Original Rewards w/ Agent r)
7: for r ← 1 to N do
8: sim.removeAgent(r)
9: L(z − zr) ← sim.getRewards() (New Rewards w/o Agent r)

10: for a ← 1 to N do
11: Cr,a ← Cr,a + |La(z) − La(z − zr)| (Update Impact Data)
12: end for
13: sim.addAgent(r)
14: end for
15: end for
16: end function

4.2.2 Impact Calculation

The impact data used to compute the similarity matrix is obtained from a localized

reward or utility with respect to an agent. Learning in congestion problems using local

rewards typically lead to a terrible solution, as local rewards correspond to greedy agents.

Congestion problems usually need a few agents to receive negative rewards in order for

the rest of the agents to receive positive rewards. Greedy agents do not take this into

account. In RUBI, we do not want to learn, but instead analyze the local impact one

agent has on another, therefore local rewards are an ideal choice.

In this work we apply RUBI only to reinforcement learning, therefore all impact

scores are based on reward, but the work applies to algorithms that use utilities. A

traditional local reward can work, or a localized reward can be specifically built for the

partitioning. A high-level reward, such as the system-level reward, will not work as

impact data. First, when computing the difference in the global reward with all agents,

and the global reward without a specific agent, that is the difference reward. This reward

represents how much an agent impacts the system, but the goal is to find how much one

agent impacts another agent. This makes the difference in local rewards an intuitive

35

choice for impact measurement.

Equation 4.3 is simply an accumulation of impact scores. Given enough iterations,

this accumulation is informative enough to perform accurate partitioning. In this re

search we are interested more in the relative impact score from one agent to another,

rather than what the explicit impact score is. This iterative approach requires at min

imum enough iterations to evenly distribute over all actions an agent can take. Ideally

each action should be sampled many times for a accurate impact estimate. Future work

in RUBI involves approximating the impact score of each agent by adding a learning rate

and subtracting off previous impact scores per iteration. This causes Cr,a to converge

to an impact score, and analyzing this impact score may be useful in team formation or

domain analysis.

When we performed partitioning in the heterogeneous bar problem we use a local

reward that was simply the local version of the system-level performance:

−xi(z)/cR = e , (4.4)

where xi(z) is the attendance on the night that agent i went to the bar. Looking

at Equation 2.3 you can see that this a local reward for the heterogeneous bar problem,

and an example of using a local reward for partitioning data.

For the ATFMP we developed a partitioning reward by both simplifying the simu

lation and adding to the reward. At a high level we want to encapsulate how one agent

affects another in the reward. We took out the greedy scheduler and used the congestion

as added information for the similarity data:

R = −(C(z) + δ(z)) , (4.5)

where C(z) is the congestion penalty and δ(z) is the delay as defined in Equations

3.4 and 3.3. This is a perfect example of how different the simulation can be during

partitioning than during learning.

4.2.3 Simulation

The simulation is also an aspect that can be widely varied when using RUBI. One

example already explored is the ATFMP reward-based impact data, where we change

36

the simulation by removing the greedy scheduler, and taking advantage of the congestion

information. This concept can be expanded upon by borrowing some of the concepts

from transfer learning.

Transfer learning is a traditional approach used in both classification and learning

to apply what is classified or learned from a smaller and easier domain to a larger

more complicated domain. One subset of transfer learning is transfer clustering. Given

a proper mapping, clusters learned in a small simulation can be applied to a larger

simulation [51]. We can apply the same concepts developed in transfer clustering to

this RUBI simulation. We’ve shown the simulation used during partitioning doesn’t

necessarily have to be the same as the simulation used during learning. It’s also intuitive

that any simulation can be used during partitioning, as long as there is a mapping from

the RUBI simulation to the learning simulation. This approach is very beneficial in

domains where the simulation is costly and a mapping can be discovered.

The ACT () function returns a list of agent actions to use in the RUBI simulation.

This is yet another aspect of this algorithm that can be chosen by the user. In the

domains with no extreme failure modes, this function typically returned random ac

tions. The fundamental goal of ACT () is to have as much of the interactive state space

explored as possible, but we cannot exhaustively search the entire state space, as that

would be both impractical and computationally impossible. For this reason we choose

to take random actions. When random actions are taken, agents are not driven by any

motivating logic, and impact scores will be biased only toward agents who consistently

impact each other.

There are many domains, such as robotics, where random actions may cause certain

failure modes, or where agents need to be in a particular area of the state space before

interactions can really be analyzed. In these domains the ACT () function can either

sub-sample from a set of known non-failure mode actions, or be replaced with an actual

learning algorithm (i.e. action-value learning) to get the agent in a successful area of the

state space before sampling.

4.2.4 Computational Cost

When analyzing the computational complexity of RUBI we will look only at a randomized

action ACT () function and no learning during partitioning. The time complexity for

37

RUBI becomes:

f(n) =iO(ACT) + i ∗ O(Run) + i ∗ O(GetReward)+
2i ∗ n ∗ O(GetReward) + i ∗ n ∗ O(RemoveAgent) + i ∗ n

(4.6)

=i ∗ (O(ACT) + O(Run) + O(GetReward)+

n ∗ O(GetReward) + n ∗ O(RemoveAgent) + n 2)

where i is the number of iterations and n is the number of agents, O(ACT) is the

time complexity of the ACT () function, and Run, GetReward, and RemoveAgent are

simulator calls. The simulation functions cannot be removed as constants, as they are

typically a function of the number of agents within the simulation, n.

The RUBI algorithm is similar to computing difference rewards. A difference reward

removes an agent from the system, and calculates the new system level reward, where

the RUBI algorithm takes an agent out of the system, and calculates a new local reward.

Local rewards are traditionally computationally easier to compute than the system-level

reward, therefore we can say the difference reward calculation time is an upper bound

to the RUBI algorithm computation. In any domain where the difference reward can be

calculated, this impact calculation is computationally possible.

RUBI is also built with parallelism in mind. Assuming that no learning is being

performed at each simulation step, it is possible to parallelize RUBI at the outermost

for loop. This can be done with c cores through the use of creating c independent simu

lators simultaneously running simulations with random actions. Treating each iteration

independently causes a near c times speed up in computation with little optimization

effort.

4.2.5 Benefits of RUBI

One of the key strengths of RUBI is its sheer simplicity and generality combined with

computing highly informative similarity scores, leading to well-performing partitions,

as described in Section 5.2 and 5.3. It needs no prior knowledge about the domain to

perform partitioning, and simply needs a localized reward from each agent to build the

38

similarity matrix. This makes RUBI highly generic and can be applied to any multiagent

domain. It can treat the multiagent system as a black box, giving it random actions and

receiving rewards. It can also discover non-trivial agent coupling.

Since RUBI uses a localized reward as partitioning data, any effect one agent has

on another agent will be encoded in this reward. For example, if an agent a is removed

from the system, and agent b’s reward changes, it means that in some way agent a affects

agent b in a direct or indirect way. This indirect affect can be captured by RUBI and

used as additional information when partitioning, leading to higher quality partitions in

domains with complex interactions.

Lastly, partitions built using RUBI are likely to be fewer in number. The ATFMP

is a perfect example. Domain-based partitioning based on similar sectors encodes how

often two aircraft can impact each other. RUBI on the other hand looks more into

how the actions of one agent impact another agents reward, in this case congestion.

For example, plane a and plane b go through the same sectors, but are never congested.

Using domain-based partitioning, two agents that go through the same sector many times

would be partitioned together, so plane a and plane b would be partitioned together. In

partitioning using RUBI, if over a few thousand trials the congestion of each plane is

always 0, those planes actions never impact each others rewards, therefore they would

not be partitioned together. The same is true if the congestion of each plane remains

the same non-zero value, the actions do not affect the reward, therefore they are not

partitioned. This leads partitioning using RUBI to find fewer partitions without loss of

performance.

39

Chapter 5: Experimental Results

We analyze the performance of the accumulation of different approaches in the exper

imental results of this paper. Section 5.1 will explore learning utilizing domain-based

partitioning. In these results, we will first add the domain-based partitioning technique

to the previously used approaches, attempting to minimize congestion and delay simul

taneously. We will then analyze the results of our hard constraint optimization. This

will explore the impact of combining the greedy scheduler and partitioning using both

the system-level reward and the difference reward. Lastly, we analyze the quality of the

partitioning based on size, time per simulation step and performance.

Section 5.2 will explore RUBI. We will first explore the performance of RUBI in a het

erogeneous bar problem, showing that the RUBI algorithm does no worse in this domain

than using domain-based partitioning, thus eliminating the need for prior knowledge.

We will then show RUBI partitioning performing well in the ATFMP, creating a better

partitioning of agents.

Section 5.3 compares the domain-based partitioning technique to partitioning using

RUBI. We find that while analyzing partitions built with RUBI the smallest number of

reward independent partitions is 61, as opposed to 3 using domain-based partitioning.

This leads to an increased simulation speed at no cost to performance. Partitioning with

RUBI also created more distributed partitions with higher reward independence between

partitions. Note that all error bars are generated over 5 statistical runs in the ATFMP

and 10 statistical runs for the heterogeneous bar problem.

5.1 Hard Constraint Optimization with Domain-Based Partitioning

Our first set of experiments apply our approach to the ATFMP without using the greedy

scheduler. This makes congestion a soft constraint, and the learning algorithm attempts

to minimize both delay and congestion. We compare agent partitions that receive the

system-level reward to partitions being rewarded difference reward and analyze the differ

ence in performance. We then add in the greedy scheduler and compare learned policies

40

under the difference reward to the strict greedy scheduling. Lastly, we take a closer look

at the time per learning step for each partition.

5.1.1 Learning with Soft Constraints

Agent partitioning allowed us to improve upon the learning approach with soft con

straints. We tested the difference between using partitions and not using partitions and

show here that using partitions dramatically improved performance for the system-level

reward, but less for the difference reward.

Agents within each partition are not always reward independent of all other agents.

Making each partition reward independent would require no reward impact overlap

among partitions, which is a difficult feat in this domain because many flight plans

overlap each other for a small amount of time. Although difficult, making each partition

reward independent is possible, but we found the partitioning consists of one very large

partition, representing over 95% of all aircraft, and many other smaller partitions.

When adding partitions to the original learning approach, some changes needed to

be made to the congestion metric. Since agents are now given a reward based only on

their small partition, the amount of time aircraft within a partition spend in a sector

needs to be taken into account. If an aircraft only spends a few minutes in sector i, and

a few hours in sector j, its impact on congestion in sector j is much higher than sector i.

We weighted the relative total congestion by the cumulative amount of time the aircraft

within a partition are within a sector. The total congestion relative to partition i is now

a modified version of Equation 3.2, and becomes:

K
Ci(z) = Cs(z) , (5.1)

s∈S

where

K
Cs(z) = θ(Ct,s − Ss)(Ct,s − Ss)wi,s , (5.2)

t∈T

where Cs is the capacity of sector s, Ct,s is the capacity of sector s at time step t, Ss is

the sector capacity of sector s, θ is a step function that equals 1 if its argument is greater

than 0, and 0 otherwise, and wi,s is cumulative amount of time agents in partition i are

41

within sector s. The sum of the congestion over all sectors within a partition i’s flight

plan make up the total congestion for partition i.

Figure 5.1 shows that the system-level reward performs better using partitions. The

best partitioning performance was used, with a small number of partitions being used for

the difference reward, and a large number of partitions used for the system-level reward.

When looking closer at congestion and delay, we find that using the system-level reward

does not improve delay at all, and only improves congestion slightly. There is too much

noise caused by other agents within this system for the system-level reward to be a good

evaluation. With the partitions, the noise is greatly reduced and therefore agents are

given a better reward. The difference reward on the other hand is able to more easily

capture an agents impact on congestion, and dramatically reduced congestion. The

difference reward also benefits much less from the partitioning than the system-level

reward. This is because the difference reward is able to reduce the signal-to-noise within

the learning signal on its own, while the system-level reward requires the partitioning to

attempt to accomplish the same noise reduction. The partitioning benefits the difference

reward in time complexity, rather than performance.

This is an acceptable solution if some congestion was allowed in the system, as both

delay and congestion are greatly decreased. In our problem however, we would like to

reduce congestion down to zero. This is only possible with the greedy scheduler.

5.1.2 Learning with Hard Constraints

By adding the greedy scheduler we were able to eliminate congestion by sacrificing delay.

Some aircraft in normally highly-congested areas are forced to delay many hours, while

most aircraft don’t need to delay at all. Although high, this delay is required to guarantee

a safe environment for all aircraft.

This is a difficult scheduling problem that has a very specific solution. Although the

greedy scheduler is suboptimal, it performs well in this domain without the use of agents.

Most planes do not need to be delayed, and the ones that do can simply be delayed until

no congestion occurs. This solution does not take into account any interactions between

aircraft, and cannot perform the coordination required to reduce delay even further.

Our approach finds a better solution by finding these subtle coordination situations and

taking advantage of them.

42

Figure 5.1: Using the system-level performance as a reward does not work well in this
large multiagent system. The difference reward was able to lower congestion much more,
but could not manage to also reduce delay. Note that these are best performing experi
ments for the difference reward and system-level reward.

43

As mentioned earlier, the greedy scheduler gives a good, but not optimal schedul

ing policy. This leads us to use the greedy scheduling policy as a good place to start

searching. Initializing each agent to choose zero delay reduces the overall amount of

computation time needed to compute the difference reward by giving the agents a good

policy from the start. Agents can then explore other actions with a frequency based on

the exploration rate and can discover potentially better actions.

This greedy scheduler also includes bias when comparing experimental runs. The

greedy scheduler schedules planes in order, resulting in different delay with a different

ordering of aircraft. During partitioning, this ordering of aircraft changes for different

partition sizes. Therefore, the initial greedy scheduling solution causes some bias in

the trends we show here. For example, the greedy scheduler can initialize a particular

partition to a better initial policy than a different partition size, causing bias in the

comparisons. This greedy scheduling bias isn’t large enough to impact the overall trend.

Figure 5.2 shows that although using partitions are an improvement, using our

system-level reward still does not minimize delay more than the simple greedy solu

tion. This reward function does not give the agents an accurate enough learning signal

to discover the subtle coordination improvements, and additionally takes a very long

time to converge to a suboptimal solution.

The difference reward is able to communicate to the agents a reward that is more

representative of their contribution to team performance. This reduced the the signal-

to-noise ratio in the reward and greatly assists the agents in choosing the optimal action.

This accurate reward allows agents to quickly find the subtle actions that will allow them

to easily coordinate with other agents, thereby quickly reducing the delay more than the

greedy scheduling solution.

Figure 5.2 and 5.3 shows the best-performing simulation using the system-level re

ward involved the highest number of partitions, while the best performing simulation

using the difference reward used the lowest number of partitions. As the number of

agents per partition increased, more agents affect the reward. The system-level reward

has no way for an agent to filter out the noise of other agents, and therefore benefits more

from a larger number of partitions. The difference reward on the other hand removes the

noise out of the system-level reward and agents can therefore coordinate in the larger

partitions easier.

Although it would result in the best performance, using the difference reward with the

44

Figure 5.2: The highest level of partitioning for the system-level reward (G) is displayed
here and compared with zero partitioning and the greedy scheduler. The system-level
reward performed worse with fewer partitions, but still better than zero partitioning.
Even though partitioning performed better than zero partitioning, the system-level re
ward could not come close to beating the greedy scheduler. Using this learning approach,
the system-level reward performance could never become better than the greedy sched
uler.

45

Figure 5.3: A closer look at the difference reward performance using the smaller number
of partitions shows a 37% improvement over the greedy scheduling solution.

46

greedy scheduler is an impossible task. With around 35,000 aircraft in the system, one

reward step takes 3 hours due to the rescheduling needed at every difference calculation.

Agent partitions allowed us to greatly decrease simulation time, as only agents within a

partition need to be rescheduled during the difference calculation. Graph 5.3 shows the

magnitude of performance gain when using the difference reward and partitioning, while

Table 5.1 shows that the speedup of using different partition sizes is significant, but has

a high cost to performance. Since partitions had some overlap, actions in one partition

may affect the agents in another partition, meaning that the higher the number of

partitions the less information the agents receive of the environment. A smaller number

of partitions end up leading to better overall performance at the cost of computation

time.

5.1.3 Partition Comparisons for Hard Constraints

Speed and performance of partitions were negatively correlated. As the number of parti

tions reduced, the greedy scheduler was required to schedule more planes per difference

calculation. This greatly increased the amount of time per learning step. Addition

ally, with a smaller number of partitions, planes that slightly affected each other were

partitioned together. This allowed higher quality learning since an agent’s reward en

compassed the effects of at most all of the other agents that impact it.

This speed and performance correlation also occurs within the same partition. As the

delay decreases, more agents switch from taking the zero delay action to taking a more

intelligent action allowing better scheduling. This means that the agent no longer equals

the counterfactual, and the difference reward calculation cannot be skipped. Table 5.1

shows this in more detail. This table compares the amount of time taken per simulation

step to the final performance.

The agent partitioning allows applications to become very situation dependent. If

results need to be found very quickly, a larger number of partitions could be used, and

this approach will find a policy still better than using the greedy scheduler. On the other

hand if time spent is not important, the smaller number of partitions will result in a

very good policy 37% better than the greedy scheduler, and still 450x faster per learning

step than non partitioning based approaches. The same trends found in this section are

expected in the partitioning using RUBI.

47

Number of Partitions Average Time/Learning Step (s) Converged Performance G(z)
Delay (m)

Greedy * 153502
3 483.76 97688
50 42.11 124056
100 22.43 128021
150 20.91 121074
200 17.37 145844
250 14.27 152402

Table 5.1: With the greater number of partitions, the learning performance decreases
and speed increases. Note that the outlier is a artifact of the greedy scheduler discussed
in this section.

5.2 Hard Constraint Optimization using RUBI

We have already seen in the previous section that the accumulation of the different

approaches turn a once intractable learning problem into a possible, and well performing

solution. We will now look at the impact of replacing the domain-based similarity matrix

with RUBI. We will first test RUBI in the heterogeneous bar problem as a benchmark,

and compare it to the difference reward in both time complexity and performance. We

will then apply RUBI to the ATFMP, assuming we have zero domain knowledge while

performing partitioning. Lastly, we will directly compare the partitions developed while

using RUBI to partitions developed using the domain-based approach.

5.2.1 Heterogeneous Bar Problem

In our formulation of the heterogeneous bar problem each agent is placed on a team of

other agents who go on the same subsets of days. In this benchmarking test we are under

the assumption that we do not have any access to domain knowledge, and we cannot

make the simplifying assumption that agents on the same night receive the same reward.

This is to further generalize the bar problem and show that partitioning with RUBI is

both general, and effective in domains where domain knowledge cannot be used.

In the heterogeneous bar problem we used 10 nights, 1000 agents, and 10 different

types of agents. Each type of agent randomly generated 3 nights the agents of that type

can go to the bar, and each agent was randomly given a type. Although this formulation

48

Number of Partitions Average Time/Learning Step (s) Converged Performance G(z)
1 1.240 25.774
2 0.238 25.742
3 0.269 25.740
4 0.244 25.722
5 0.254 25.702
6 0.199 24.352
7 0.195 23.526
8 0.187 22.368
9 0.197 22.511
10 0.185 21.654
11 0.121 21.454

Table 5.2: With the greater number of partitions, the learning performance decreases
and speed increases.

of the bar problem makes it easier to directly find a solution, it shows RUBI can find a

partitioning of agents with no domain knowledge, and have generalized results that can

give some insight to the performance of RUBI in the ATFMP.

When partitioning agents with RUBI in the heterogeneous bar problem agents took

random actions, and the localized reward was simply the local reward traditionally used

(Equation 2.3). In this experimental set up, partitions had some overlap, as it is very

unlikely that there is a type of agent completely reward independent from all other

types, this causes performance to degrade when using partitioning. Graph 5.4 shows

that this degradation is minimal with fewer number of partitions, and increases as more

partitions are added. Table 5.2 on the other hand shows the computational speed-up

involved when having many smaller partitions. This emphasizes the fact that partitioning

without reward independent partitions increases speed at the cost of performance.

Here, we define self-similarity as the accumulated number of days each agent within a

partition has in common with another agent in a partition, and average these together for

a overall self-similarity metric. We also define other-similarity to be the average number

of days each agent within a partition has in common with another partition, and average

those together. When graphing these values we use the percentage of self-similarity to

other-similarity.

When looking at graph 5.4, and table 5.2, we gain an understanding of the costs and

49

Figure 5.4: As the number of partitions decrease, the agents receive less information
about the environment, and performance decreases. In this domain, 2 and 3 partitions
work equally well as the difference reward, but with 6x faster simulation rate.

50

Figure 5.5: This graph represents the scaled value of different performance metrics. For
example, a scaled value of .50 for the converged performance represents that this is
50% of the best converged performance. As self-similarity decreases, the performance
and average time taken per learning step decreases. This trend rate begins slow, but
increases dramatically once self-similarity is less than 67%. In this domain, this level of
self-similarity is an important metric to stay above while partitioning.

benefits of partitioning in highly-congested domains, where a clear reward independent

partition isn’t possible. In graph 5.5 these costs and benefits are shown together, com

paring self-similarity, final performance, and average time per learning step, all scaled

between 0 and 1. In the heterogeneous bar problem, the ideal performance is from parti

tion size 2 to 5. In order to find these optimal partition sizes, a binary search can be used

through partition sizes to find the greatest rate of increase in the performance graph.

These costs and benefits are general to these types of domains, and similar trends are

expected in the ATFMP.

51

5.2.2 ATFMP

RUBI works as expected in the heterogeneous bar problem, but what happens when we

apply it in a complex domain with tens of thousands of agents, such as the ATFMP?

When RUBI is applied during partitioning in the ATFMP, simulation time decreases and

the ease of application raises over deriving a similarity metric. The removal of domain

knowledge allows the same RUBI algorithm to be used in both the heterogeneous bar

problem and the ATFMP with no effort and without any need to develop a similarity

metric. The approach used here is the same as in Section 5.1.2, except utilizing RUBI.

5.2.2.1 RUBI Performance in the ATFMP

Partitions developed using RUBI uses similarity metrics that encapsulated the agent

coupling. In this section we will show how RUBI partitioning works well in the ATFMP,

and analyze the cost/benefit of varying the number of partitions.

When partitioning agents using RUBI in the ATFMP agents took random actions,

the greedy scheduler was not used, and the localized reward for each agent involved

both congestion and delay (Equation 4.5). Although the reward-based impact func

tion included both delay and congestion, since the greedy scheduler was removed, the

difference in delay was constantly 0 when computing reward-based impact. Therefore,

agents were partitioned together based on whether their actions cause congestion to other

agents.

Similar to the results in the domain-based partitioning, partitioning with RUBI and

the difference reward outperformed the greedy scheduler. Graph 5.6 shows a variety

of partitions out performing the greedy scheduler. This trend is similar to domain-

based partitioning in Section 5.1. In RUBI partitioning, a reward independent partition

involved 61 partitions, but in domain-based partitioning the smallest was 3. This leads

to faster processing time, at no cost to performance.

The key difficulty in performing partition in the ATFMP, where almost every agent

is coupled, is to partition agents in such a way that the similarities between partitions

are as small as possible, while still preserving the computational benefits of partitioning.

For this reason, we need to analyze both the performance of a variety of partition sizes,

as well as the cost associated with the partition sizes.

52

Figure 5.6: As the number of partitions decreases, performance improves while time
complexity increases. Note that a reward independent partitioning using RUBI includes
61 partitions.

53

When partitioning in a multiagent system, unless partitions are reward independent,

there is always a cost and a benefit. The benefit is faster simulation time and/or reward

calculations at the cost to performance. Although there is always a cost to performance,

there is typically a point where the benefit of faster computation offsets the cost to per

formance. When partitioning with RUBI, overall there is a 37% increase in performance

over the greedy scheduler, with a 510x speed up per simulation step over non-partitioning

approaches.

In the ATFMP, this partitioning benefit speeds up computation by magnitudes, but

how much performance are we losing, and at what point is the partitioning costing too

much performance for the benefit of faster computation? Graph 5.7 compares average

computation time, final performance and self-similarity of each partition. The average

computation time per learning step for each partition size remains static, and then

exponentially increases once the self-similarity becomes large. This is the cost of each

partition. There is also has a sharp increase in final performance as the self-similarity

increases. This is the benefit of each partition. Both of these performance metrics are

correlated greatly with the self-similarity metric.

5.3 Comparison Between RUBI and Domain-Based Partitioning

To understand how much overlap partitions had with each other, we analyzed the simi

larity each partition had with itself, and the average similarity each partition had with

other partitions. Similarity was defined as the similarity metric used in Section 4.1, the

number of similar sectors between agents.

In this section, we find the number of sectors that are similar between planes in a

partition (self-similarity). We then find the the average number of sectors each plane

in one partition has in common with each plane in another partition, and average all

of these together to obtain a other-similarity metric. When graphing these metrics

we take the percentage of self-similarity to other-similarity, and vice-versa. In a purely

reward independent partition, the other-similarity is 0, and the self-similarity is 1. As the

amount of self similarity increases though, the computation time increases exponentially,

and the benefits of partitioning decreases, as described in Section 3.6 and shown in the

Section 5.1 and 5.2.

Partitioning with RUBI developed better similarity scores than domain-based parti

54

Figure 5.7: As the self-similarity increases, final performance and time taken per learning
step increases. Note that final performance is a 6th degree polynomial trend line with
R2 = .95

55

Figure 5.8: Partitions formed with RUBI had higher self-similarity than using domain-
based partitioning. This leads to higher quality learning with respect to each partition.

tioning (Graph 5.8). By partitioning using congestion, rather than similar sectors, the

similarity metric was able to represent both similar sectors as well as sector congestion.

For example, two aircraft have the same flight plan, excluding their congested arrival and

departure location. These aircraft would be partitioned together when using only similar

sector domain knowledge. With RUBI, those aircraft would be partitioned together with

aircraft that cause them congestion. By partitioning using the impact one agent had on

another agents reward, we are able to formulate higher quality partitions, without the

overhead of developing similarity metrics or learning domain knowledge.

In addition to higher self-similarity, the partitioning using RUBI converged to a

reward independent partitioning that included many more partitions than domain-based

partitioning. The reward independent domain-based partition included 3 partitions,

while partitioning with RUBI included 61 partitions. This is due to using reward-based

56

impact as a similarity metric, as mentioned in Section 4.4.2. Two agent’s actions may

greatly affect each other during simulation, but their reward-based impact on each other

might still be zero. This is a very important fact to keep in mind during partition

analysis. For example, if two agents go through the same sectors, but neither agent

causes another agent more or less congestion, then the difference in local reward will be

zero, even though those aircraft affect each other. This leads to more partitions, and

faster simulations.

When comparing final performance, a direct comparison of performance is not ad

equate. This is because partitions are not evenly distributed, which causes extremely

large bias when comparing final performance to number of partitions. To show this in de

tail, we directly compare performance. Graph 5.9 shows that domain-based partitioning

initially out performs RUBI, but RUBI began out performing domain-based partitioning

with a smaller number of partitions. In looking deeper into the reasoning behind this, we

realize that partitions are not evenly distributed (Graph 5.10). Initially, domain-based

partitioning have very large partitions compared to RUBI partitioning. This is due

to the accumulation of similar sectors in domain-based partitioning. In domain-based

partitioning, all of the planes with high overlap are initially merged together, giving

domain-based partitioning initially larger partitions. Since this is a highly-coupled do

main, this also leads to one partition becoming much larger than others. This is not

seen in the self-similarity due to self-similarity being an average of all self-similarities.

Basically, domain-based partitioning in this domain results in one partition having very

high self-similarity, while other partitions get ignored.

RUBI, which partitions based on the reward of congestion and delay, initially merged

together partitions whose reward highly impacted each other, which creates more evenly

distributed partitions, leading to a better overall similarity, but initially worse perfor

mance (Graph 5.8).

With a smaller number of partitions, RUBI partitioning partitions end up becoming

larger on average. This in turn led to a bias for RUBI partitioning. Note that when all

partitions are reward independent, RUBI partitioning included a much smaller average

size, and many more partitions.

This results in us comparing final performance to the average size of the top 5% of

partitions. This gives a comparison of how well a partitioning performs with respect to

the size of it’s partitions, rather than the number. Graph 5.11 shows that initially in

57

domain-based partitioning, learning performance does not increase with respect to the

average size of the partitions. RUBI on the other hand creates a partitioning with con

stantly increasing performance. Additionally, as also shown in Graph 5.9, domain-based

partitioning initially performs better than RUBI. In this case domain-based partition

ing remains static as the average size of partitions decreases, while the performance of

RUBI decreases. Although these partitions are too large to be of use during learning, it

is interesting to note that in this case, domain-based partitioning performs better than

RUBI. The reasoning behind this is similar to the reasoning behind Graph 5.9, initially

it is more informative for agents to be partitioned together using strict sector similarity

counts than using reward impacts. Eventually though, reward impacts are much more

useful as a partitioning metric.

58

Figure 5.9: The final performance of RUBI partitions compared to domain-based par
titions. Initially domain-based partitions perform better than RUBI, with RUBI per
forming better with a smaller number of partitions. We see that this is not a good
performance metric, as it does not take into account individual partition sizes. Note
that the a 6th degree polynomial was used in creating this graph with an R2 value of
.95 for partitioning with RUBI and .92 for domain-based partitioning.

59

Figure 5.10: Initially, domain-based partitioning has a larger average size of partitions,
leading to a higher initial performance. With a smaller number of partitions, RUBI
partitioning had a larger size of partitions. Note that when all partitions are reward
independent, domain-based partitioning had only a few number of very large partitions.
RUBI partitioning on the other hand included a much smaller average size, and many
more partitions.

60

Figure 5.11: When comparing individual partition size averages to performance, RUBI
partitions perform much better than domain specific partitions with respect to average
partition size and final performance.

61

Chapter 6: Conclusion

The contributions of this paper are to present a distributed adaptive air traffic flow

management algorithm with implementable results, and to introduce the Reward/Utility

Based Impact algorithm.

The ATFMP method introduced is based on agents representing airport gates within

the NAS choosing aircraft ground delay with the intent of minimizing delay within the

system. It uses reinforcement learning in combination with the difference reward and

hard constraints on congestion. This is typically an impossible problem, but we introduce

agent partitions to dramatically reduce the time complexity by 450x per simulation step

with a 37% increase in performance over the greedy solution. The different sizes of

partitions also allowed the implementation to vary with the situation. If results need

to be computed quickly, a large number of partitions could be used, where a smaller

number of partitions could be used if performance was more important than speed. In

this case a solution could reduce the time complexity by 5400x per learning step, with

a 20% increase in performance over the greedy solution. The ease of adding simple

ground delays in combination with the large increase in performance over currently used

approaches makes this approach easily deployable and effective.

This paper also introduces RUBI, a partitioning algorithm that computes reward-

based impacts that can then be used to partition agents together, removing the need for

prior knowledge of the system. This method also removes the need develop similarity

metrics derived from expert domain knowledge. Additionally, by removing all knowledge

about the domain and partitioning based on reward, RUBI can be used to discover non

trivial indirect interactions encoded in a reward signal. Since RUBI uses only a reward

signal to compute impacts, it will theoretically work in any domain where partitioning

is useful.

In this work, we showed that partitioning with RUBI accurately encapsulated the

amount of coupling between agents, leading to a higher self-similarity metric over the

domain-based partitioning, leading to faster simulation computation times. Learning

using partitions developed with RUBI also found a 37% increase in performance over

62

the greedy solution, but with a 510x reduction in time complexity per learning step.

This reduction in simulation cost was due to partitioning with RUBI leading to a larger

number of smaller sized reward independent partitions.

6.1 Future Work

Future work in the ATFMP would mainly involve increasing both performance and

speed. Speed could easily be improved through the use of parallel computing and opti

mization of the greedy scheduler. Approaches improving team based coordination such

as leniency [32] and coordination graphs [31, 47] could be additional ways to increase

performance at the cost of speed. Further analysis will be done to attempt to add these

coordination methods to this approach while minimizing the cost to speed. A more ac

curate environment with a higher level of complexity could be added by making each

agent heterogeneous and the domain time-extended, allowing agents to choose a different

ground delay whenever they land for a lay over. Additional improvements involve a more

advanced and unbiased greedy scheduler.

Future work in RUBI would involve applying it to domains where coupling is very

difficult to predict. We expect that RUBI would work fine in such a domain, but more

exploration is needed. Performing a formal analysis of the relation between the number

of iterations of RUBI and partition performance is important for future work, as we

currently do not have a formal stop criteria. Approximating the impact score of each

agent, rather than using a accumulation has the potential of being very informative when

performing an analysis of a system. Future work in performing a simple approximation

of the local reward function for each agent will greatly speed up RUBI computation time.

Lastly, performing distributed clustering would be an important, yet simple extension

to this work. Agents need only to compute the difference in local rewards if they come

into contact with another agent, and then partition using this trimmed down similarity

matrix.

Further advances in the simulator could be easily worked into the problem. Attributes

such as flight importance or unscheduled delays, such as weather or maintenance, could

be easy implemented. Additionally, a level of uncertainty can be added to analyze how

robust this particular solution is to unknown changes. This approach may be dynamic

enough to be robust to all of these changes, and this is a subject of further research.

63

Bibliography

[1] Noa Agmon and Peter Stone.	 Leading ad hoc agents in joint action settings with
multiple teammates. In Proc. of 11th Int. Conf. on Autonomous Agents and Mul
tiagent Systems (AAMAS 2012), June 2012.

[2] A.	 Agogino and J. Rios. Robustness of two air traffic scheduling approaches
to departure uncertainty. In Digital Avionics Systems Conference (DASC), 2011
IEEE/AIAA 30th, pages 2C6–1–2C6–8, 2011.

[3] A. K. Agogino and K. Tumer.	 Analyzing and visualizing multiagent rewards in
dynamic and stochastic environments. Journal of Autonomous Agents and Multi-
Agent Systems, 17(2):320–338, 2008.

[4] A. K. Agogino and K. Tumer. A multiagent approach to managing air traffic flow.
Autonomous Agents and MultiAgent Systems, 24:1–25, 2012.

[5] Adrian Agogino.	 Evaluating evolution and monte carlo for controlling air traffic
flow. In Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers, GECCO ’09, pages
1957–1962, New York, NY, USA, 2009. ACM.

[6] Adrian Agogino, Chris HolmesParker, and Kagan Tumer.	 Evolving large scale uav
communication system. In Proceedings of the fourteenth international conference on
Genetic and evolutionary computation conference, GECCO ’12, pages 1023–1030,
New York, NY, USA, 2012. ACM.

[7] Adrian K. Agogino and Kagan Tumer.	 Learning indirect actions in complex do
mains: Action suggestions for air traffic control. Advances in Complex Systems,
(4-5):493–512.

[8] Brian W. Arthur.	 Inductive reasoning and bounded rationality. In American Eco
nomic Review (Papers and Proceedings), volume 84, pages 406–411, 1994.

[9] D. Bertsimas and S.S. Patterson.	 The air traffic flow management problem with
enroute capacities. In May-June 1998, pp. 406422, 1998.

[10] Dimitris Bertsimas and Sarah Stock Patterson.	 The air traffic flow management
problem with enroute capacities. Oper. Res., 46(3):406–422, March 1998.

64

[11] B. Sridhar G. B. Chatterji K. S. Shethand Bilimoria, K. D. and S. R. Grabbe. Facet:
Future atm concepts evaluation tool. Air Traffc Control Quarterly, 9:1, 2001.

[12] Karl D. Bilimoria. A geometric optimization approach to aircraft conflict resolution.
In AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO.

[13] Giovanni Bottegoni,	 Walter Rocchia, Maurizio Recanatini, and Andrea Cavalli.
Aclap, autonomous hierarchical agglomerative cluster analysis based protocol to
partition conformational datasets. Bioinformatics, 22(14):e58–e65, 2006.

[14] M. Colby, E. Nasroullahi, and K. Tumer. Optimizing ballast design of wave energy
converters using evolutionary algorithms. In Proceedings of the Genetic and Evolu
tionary Computation Conference, pages 1739–1746, Dublin, Ireland, July 2011.

[15] Mitchell Colby and Kagan Tumer. Shaping fitness functions for coevolving cooper
ative multiagent systems. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’12, pages 425–
432, Richland, SC, 2012. International Foundation for Autonomous Agents and
Multiagent Systems.

[16] William J. Curran, Adrian Agogino, and Kagan Tumer. Addressing hard constraints
in the air traffic problem through partitioning and difference rewards. In Proceed
ings of the 2013 international conference on Autonomous agents and multi-agent
systems, AAMAS ’13, pages 1281–1282, Richland, SC, 2013. International Founda
tion for Autonomous Agents and Multiagent Systems.

[17] FAA OPSNET data Jan-Dec	 2011. US Department of Transportation website.
(http://www.faa.gov/data statistics/), 2011.

[18] William H.E. Day and Herbert Edelsbrunner. Efficient algorithms for agglomerative
hierarchical clustering methods. In Journal of Classification, number 1 in 7-24, 1984.

[19] Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Advances in
Neural Information Processing Systems 5, pages 271–278. Morgan Kaufmann, 1993.

[20] Thomas G. Dietterich.	 Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303,
2000.

[21] John A. Doucette, Peter Lichodzijewski, and Malcolm I. Heywood.	 Hierarchical
task decomposition through symbiosis in reinforcement learning. In Proceedings of
the fourteenth international conference on Genetic and evolutionary computation
conference, GECCO ’12, pages 97–104, New York, NY, USA, 2012. ACM.

http://www.faa.gov/data

65

[22] Christian Guttmann. Making allocations collectively: Iterative group decision mak
ing under uncertainty. In Proceedings of the sixth German Conference on Multi-
Agent system TEchnologieS (MATES), volume 5244 of Lecture.

[23] G. Hardin. The tragedy of the commons. Science, 162:12431248, December 1968.

[24] L. He and T.R Ioerger. A quantitative model of capabilities in multi-agent systems.
In Proceedings of the International Conference on Articial Intelligence, IC-AI ’03,
pages 730–736, 2003.

[25] C. HolmesParker, A. Agogino, and K. Tumer. Clean rewards for improving multia
gent coordination in the presence of exploration. In Proceedings of the Twelfth In
ternational Conference on Autonomous Agents and Multiagent Systems, June 2013.

[26] Anil K. Jain.	 Data clustering: 50 years beyond k-means. Pattern Recogn. Lett.,
31(8):651–666, June 2010.

[27] M.I. Jordan and Robert A. Jacobs.	 Hierarchical mixtures of experts and the em
algorithm. In Neural Networks, 1993. IJCNN ’93-Nagoya. Proceedings of 1993 In
ternational Joint Conference on, volume 2, pages 1339–1344 vol.2, 1993.

[28] Robert Junges and Ana L. C. Bazzan.	 Evaluating the performance of dcop algo
rithms in a real world, dynamic problem. In Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems - Volume 2, AAMAS
’08, pages 599–606, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

[29] G.A. Kaminka, D. Erusalimchik, and S. Kraus. Adaptive multi-robot coordination:
A game-theoretic perspective. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 328 –334, may 2010.

[30] Matt Knudson and Kagan Tumer. Robot coordination with ad-hoc team formation.
In Proceedings of the 9th International Conference on Autonomous Agents and Mul
tiagent Systems: volume 1 - Volume 1, AAMAS ’10, pages 1441–1442, Richland, SC,
2010. International Foundation for Autonomous Agents and Multiagent Systems.

[31] Jelle R. Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by
payoff propagation. J. Mach. Learn. Res., 7:1789–1828, December 2006.

[32] Keith Sullivan Liviu Panait and Sean Luke.	 Lenience towards teammates helps
in cooperative multiagent learning. In Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multi Agent Systems, 2006.

66

[33] Bao-Liang Lu and M. Ito.	 Task decomposition and module combination based on
class relations: a modular neural network for pattern classification. Neural Networks,
IEEE Transactions on, 10(5):1244–1256, 1999.

[34] David McNally and Chester Gong. Concept and laboratory analysis of trajectory-
based automation for separation assurance. In AIAA Guidance, Navigation and
Control Conference and Exhibit, Keystone, CO.

[35] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo.	 Adopt:
asynchronous distributed constraint optimization with quality guarantees. Artif.
Intell., 161(1-2):149–180, January 2005.

[36] Eric R. Mueller and Gano B. Chatterji. Analysis of aircraft arrival and departure
delay characteristics. In AIAA Aircraft Technology, Integration and Operations
(ATIO) Conference, Los Angeles, CA.

[37] H S Nwana, L Lee, and N R Jennings.	 Co-ordination in software agent systems,
1996.

[38] Chandra Reddy and Prasad Tadepalli. Learning goal-decomposition rules using ex
ercises. In In Proceedings of the 14th International Conference on Machine Learning,
pages 278–286. Morgan Kaufmann.

[39] J. Rios and J. Lohn. A comparison of optimization approaches for nationwide traffic
flow management. In Proceedings of the AIAA Guidance, Navigation, and Control
Conference, Chicago, Illinois, August 2009.

[40] B. Sridhar, S.R. Grabbe, and A. Mukherjee.	 Modeling and optimization in traffic
flow management. Proceedings of the IEEE, 96(12):2060 –2080, dec. 2008.

[41] Ron Sun and Todd Peterson.	 Some experiments with a hybrid model for learning
sequential decision making. Information Sciences, 111:83–107, 1998.

[42] Richard S. Sutton and Andrew G. Barto.	 Reinforcement Learning I: Introduction.
1998.

[43] Milind Tambe.	 Towards flexible teamwork. Journal of Artificial Intelligence Re
search, 7:83–124, 1997.

[44] C. Tomlin, G.J. Pappas, and S. Sastry.	 Conflict resolution for air traffic manage
ment: a study in multiagent hybrid systems. Automatic Control, IEEE Transactions
on, 43(4):509 –521, apr 1998.

67

[45] K. Tuyls. Learning and Adaption in Multi-Agent Systems: First International Work
shop, LAMAS 2005, Utrecht, The Netherlands, July 25, 2005, Revised Selected Pa
pers. Lecture Notes in Computer Science / Lecture Notes in Artificial Intelligence.
Springer, 2006.

[46] E.S. Tzafestas. Agentifying the process: task-based or robot-based decomposition?
In Systems, Man, and Cybernetics, 1994. Humans, Information and Technology.,
1994 IEEE International Conference on, volume 1, pages 582–587 vol.1, 1994.

[47] N. Vlassis, R. Elhorst, and J. R. Kok. Anytime algorithms for multiagent decision
making using coordination graphs. In International Conference on Systems, Man
and Cybernetics, 2004.

[48] David ˇ sl´ remysl Volf, ˇ ep´ riva, and Michal Pˇ cek. aSǐ ak, Pˇ Stˇ an Kopˇ echouˇ Agentfly:
multi-agent airspace test-bed. In Proceedings of the 7th international joint confer
ence on Autonomous agents and multiagent systems: demo papers, AAMAS ’08,
pages 1665–1666, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

[49] D. H. Wolpert and K. Tumer.	 Collective intelligence, data routing and Braess’
paradox. Journal of Artificial Intelligence Research, 16:359–387, 2002.

[50] Lasheng Yu, Fei Hong, PengRen Wang, Yang Xu, and Yong Liu.	 Influence graph
based task decomposition and state abstraction in reinforcement learning. In Young
Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for,
pages 136–141, 2008.

[51] Litao Yu, Yanzhong Dang, and Guangfei Yang. Transfer clustering via constraints
generated from topics. In Systems, Man, and Cybernetics (SMC), 2012 IEEE In
ternational Conference on, pages 3203–3208, 2012.

[52] Haizheng Zhang and Victor Lesser. Forming and Searching Content-Based Hierar
chical Agent Clusters In Distributed Information Retrieval Systems. Web Intelli
gence and Agent Systems, 4(4):353–370, November 2006.

[53] Wei Zhang and Thomas G. Dietterich.	 A reinforcement learning approach to job-
shop scheduling. In In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, pages 1114–1120. Morgan Kaufmann, 1995.

[54] Ying Zhao and George Karypis.	 Evaluation of hierarchical clustering algorithms
for document datasets. In Proceedings of the eleventh international conference on
Information and knowledge management, CIKM ’02, pages 515–524, New York, NY,
USA, 2002. ACM.

