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presenting the research work conducted in the following three applications:
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FolderPredictor is an intelligent desktop software tool that helps the user quickly

locate files on the computer. It predicts the file folder that the user will access

next by applying machine learning algorithms to the user’s file access history.

The predicted folders are presented in existing Windows GUIs, so that the user’s

cost for learning new interactions is minimized. Multiple prediction algorithms

are introduced and their performance is examined in two user studies.

Recommender systems are one of the most popular means of assisting internet

users in finding useful online information. The second part of this dissertation



presents a novel way of building hybrid recommender systems by applying the

idea of Stacking from ensemble learning. Properties of the input users/items,

called runtime metrics, are employed as additional meta features to improve

performance. The resulting system, called STREAM, outperforms each

component engine and a static linear hybrid system in a movie recommendation

problem.

Many desktop assistant systems help users better organize their electronic

resources by incorporating machine learning components (e.g., classifiers) to

make intelligent predictions. The last part of this dissertation addresses the
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integrating learning and reasoning through Markov logic. Through an inference

engine called the PCE, multiple classifiers are integrated via a process called

relational co-training that improves the performance of each classifier based on

information propagated from other classifiers.
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Chapter 1 – Introduction

The explosion of the electronic information has introduced a big challenge for

computer scientists to invent smart and efficient ways of finding information and

improving the user experience. Machine learning, on the other hand, has been an

active research area for decades. Recently, there is a growing interest in applying

machine learning technologies to help computer users find information and better

organize electronic resources.

In this chapter, we briefly introduce the three projects that are discussed in

the following chapters, and give the outline of this dissertation.

1.1 FolderPredictor

The first part of the dissertation discusses the FolderPredictor, an intelligent

desktop software tool that helps the user quickly locate files stored on the computer.

FolderPredictor [Bao et al., 2006] is implemented as a part of the TaskTracer

project at Oregon State University. TaskTracer [Dragunov et al., 2005; Stumpf et

al., 2005] is an intelligent desktop software system designed to help multi-tasking

knowledge workers better organize the computer resources around their tasks (or

projects). FolderPredictor makes use of the user’s tasks defined in TaskTracer,

collects the user’s desktop activities, and applies machine learning algorithms to
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predict the next file folder the user wants to access. The predicted folders are

incorporated into the existing Microsoft Windows user interface (File Open/Save

Dialog Boxes and Windows Explorer Toolbar) so that they can be easily accessed

to reduce the cost of reaching the target folder.

Two user studies have been conducted to evaluate the precision and usability of

FolderPredictor. A variety of prediction algorithms are introduced and evaluated

on the real users’ data collected in the user studies. The experimental results

show that, on average, FolderPredictor reduces the cost of locating a file by more

than 50%, and the best folder predition algorithm so far is a mixture of the most

recently used (MRU) folder and the cost-sensitive predictions.

1.2 STREAM

The second part of the dissertation discusses the STREAM (STacking Recom-

mendation Engines with Additional Meta-features) project.

Recommendation engines, including Collaborative Filtering, Content-based ap-

proaches, etc., have been invented and widely used in the past decade as important

tools for finding online information and improving the user experience. Each of

these algorithms has pros and cons; as a result, real-world recommendation systems

are often hybrids [Burke, 2002] that combine multiple recommendation engines to

generate better predictions.

Previous research on hybridization has focused on building a static hybridiza-

tion scheme (for example, a linear combination of engine predictions) that does not



3

change at runtime for different input users/items. However, this approach can not

adjust the ways that the component engines are combined for different types of in-

put users/items. For example, the collaborative filtering engine should be trusted

more in the hybrid when the input user has rated a lot of items before, because it’s

well-known that the collaborative filtering engine works well for users with high

number of ratings. This motivates us to propose a dynamic hybridization scheme

that can adjust the ways that the component engines are combined depending on

the inputs with different properties.

In the dissertation, we take a novel approach to the problem of hybridizing

recommendation engines, by applying the idea of Stacking from ensemble learn-

ing. Properties of the input users/items, called runtime metrics, are employed as

additional meta features to improve performance. To demonstrate this idea, we

build a STREAM system for a movie recommendation application, which shows

significant improvements over each single component engine and a static hybrid

system.

1.3 Integrating Learning and Reasoning

The third part of the dissertation discusses the Integrating Learning and Rea-

soning project, which is a part of the CALO project [CALO, 2009] that helps

computer users better organize their electronic resources.

This work addresses the question of how statistical learning algorithms can be

integrated into a larger AI system both from a practical engineering perspective and
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from the perspective of correct representation, learning, and reasoning. The goal is

to create an integrated intelligent system that can combine observed facts, hand-

written rules, learned rules, and learned classifiers to perform joint learning and

reasoning. To achieve this, we employ a Markov Logic [Domingos and Richardson,

2006] inference engine, named the Probabilistic Consistent Engine (PCE), that can

integrate multiple learning components so that the components can benefit from

each other’s predictions.

In this dissertation, we investigate two designs of the learning and reasoning

layer, covering the architectures, interfaces, and algorithms employed, followed by

experimental evaluations of the performance of the two designs on a synthetic data

set. We also conduct experiments on the real user’s activity data collected by the

TaskTracer system. The results show that by integrating multiple learning com-

ponents through Markov Logic, the performance of the system can be improved.

1.4 Outline

This dissertation is structured as follows. Chapter 2 discusses the FolderPredictor.

Chapter 3 discusses the STREAM project. Chapter 4 discusses the Integrating

Learning and Reasoning project. In each chapter, the research background, system

design and experimental evaluation are discussed. We then conclude the disserta-

tion in Chapter 5 with proposal for future research directions.
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Chapter 2 – FolderPredictor: Reducing the Cost of Reaching the

Right Folder

Helping computer users rapidly locate files in their folder hierarchies has become an

important research topic for intelligent user interface design. This chapter reports

on FolderPredictor, a software system that can reduce the cost of locating files in

hierarchical folders. FolderPredictor applies a cost-sensitive prediction algorithm

to the user’s previous file access information to predict the next folder that will be

accessed. Experimental results show that, on average, FolderPredictor reduces the

cost of locating a file by 50%. Several variations of the cost-sensitive prediction

algorithm are discussed. An experimental study shows that the best algorithm

among them is a mixture of the most recently used (MRU) folder and the cost-

sensitive predictions. FolderPredictor does not require users to adapt to a new

interface, but rather meshes with the existing interface for opening files on the

Windows platform.

2.1 Research Background

Computer users organize their electronic files into folder hierarchies in their file

systems. But unfortunately, with the ever-increasing numbers of files, folder hier-

archies on today’s computers have become large and complex [Boardman and Sasse,
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2004]. With large numbers of files and potentially complex folder hierarchies, locat-

ing the desired file is becoming an increasingly time-consuming operation. Some

previous investigations have shown that computer users spend substantial time

and effort in just finding files [Barreau and Nardi, 1995; Jul and Furnas, 1995;

Ko et al., 2005]. Thus, designing intelligent user interfaces that can help users

quickly locate desired files has emerged as an important research topic.

Previous research on helping users find files has focused on building Personal

Information Management (PIM) systems in which documents are organized by

their properties [Dourish et al., 2000; Dumais et al., 2003]. These properties include

both system properties, such as name, path and content of the document, and user-

defined properties that reflect the user’s view of the document. In these systems,

users can search for files by their properties using search engines. Although these

search engines can be effective in helping the user locate files, previous user studies

have indicated that instead of using keyword search, most users still like to navigate

in the folder hierarchy with small, local steps using their contextual knowledge as

a guide, even when they know exactly what they were looking for in advance

[Barreau and Nardi, 1995; Jones et al., 2005; Jul and Furnas, 1995; Teevan et al.,

2004].

In this chapter, we try to address the file-locating problem from another per-

spective, using a system that we call the FolderPredictor. The main idea of Fold-

erPredictor is that if we have observations of a user’s previous file access behavior,

we can recommend one or more folders directly to the user at the moment he/she

needs to locate a file. These recommended folders are predictions — the result



7

of running simple machine learning algorithms on the user’s previously observed

interactions with files.

Ideally we want to identify when the user has just started to look for a file and

provide a shortcut to likely choices for the folder containing that file. In today’s

graphical user interfaces, there are several user actions that strongly indicate the

user is or will be initiating a search for a file. These include the display of a file

open/save dialog box or the opening of a file/folder browsing application such as

Windows Explorer. Our approach intervenes both cases.

First, FolderPredictor presents predicted folders by changing the default folder

of the open/save file dialog that is displayed to computer users from within an

application. It also provides shortcuts to secondary recommendations, in case the

top recommendation is not correct. Second, FolderPredictor presents predicted

folders as buttons inside a Windows Explorer toolbar. Users can easily jump

to the predicted folders by clicking these buttons. An important advantage of

FolderPredictor is that it reduces user cost without requiring users to adapt to a

new interface. Users have nothing new to learn.

This chapter is organized as follows. In the next section, we introduce the

TaskTracer system that FolderPredictor is built upon. Section 2.3 presents the user

interfaces of FolderPredictor and the instrumentation for presenting predictions in

the open/save file dialog box and the Windows Explorer. Section 2.4 describes how

folder predictions are made, together with the cost-sensitive prediction algorithm

and several variations of it. Section 2.5 reports the experimental results from two

user studies: the first one establishes that FolderPredictor reduces the user’s cost
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for locating files; the second one compares the performance of different variations

of the basic prediction algorithm. Section 2.6 discusses some related work in email

classification. At the end of the chapter, we have some additional discussions.

2.2 The TaskTracer System

FolderPredictor is built upon our TaskTracer system [Dragunov et al., 2005; Stumpf

et al., 2005] — a software system designed to help multi-tasking computer users

with interruption recovery and knowledge reuse. In this section, we briefly in-

troduce the multi-tasking hypothesis and the data collection architecture of the

TaskTracer system.

2.2.1 Multi-tasking Hypothesis

FolderPredictor monitors user activity to make predictions to optimize the user

experience. Previous research in intelligent “agents” has explored this kind of

approach [Horvitz et al., 1998; Maes, 1994; Rhodes, 2003]. However, one of the

challenges faced by these intelligent agents is that users are highly multi-tasking,

and they are likely to need access to different files depending on the exact task

they are performing. For example, a professor may have a meeting with a student

for one hour and then switch to writing a grant proposal. The notes file for the

student meeting and the files for the grant proposal are normally stored in different

folders. After the professor switches to working on the grant proposal, a naive agent
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might assume that the student notes are still the most likely choice for prediction,

because they were the most recently accessed. This prediction would fail, because

the agent is not taking into consideration the context of the user’s current task.

Previous work on intelligent agents or assistants has attempted to produce

more context-aware predictions by analyzing the content of the documents that

the user is currently accessing to generate an estimated keyword profile of the user’s

“task” [Budzik and Hammond, 2000]. This profile is then employed as a query to

locate web pages with similar keyword profiles. This approach is limited because

a) it cannot recommend resources that do not have text associated with them,

b) there are substantial ambiguities in text, resulting in significant uncertainty in

mapping from text profiles to user tasks, and c) the active window may not contain

sufficient text. In the last case, the agent would be forced to scan recently-accessed

documents to generate text profiles — documents that may have been accessed as

part of a previous task.

In our TaskTracer system, three core hypotheses are made in order to charac-

terize and utilize the user’s multi-tasking behavior:

1. All information workers break their work into discrete units to which they

can give names — we call these tasks.

2. At any moment in time, the user is working on only one task.

3. Knowledge of the user’s current task will substantially reduce the uncertainty

in predicting what a user is trying to do.

Users define new tasks in the TaskTracer system via an application called the
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TaskExplorer. Users can then indicate their current task through three mech-

anisms, which are shown in Figure. 2.1. Users can switch to the TaskExplorer

(Figure. 2.1(a)) and select the task from their defined hierarchy of tasks, or they

can set the task by clicking on a taskbar widget that appears as a drop-down box at

the bottom-right corner of the screen. This taskbar widget is called the TaskSelec-

tor (Figure. 2.1(b)), where the user can switch tasks by manually selecting another

task from the drop-down menu or by typing in the textbox (with auto-completion).

The third mechanism is through a tool called HotTask (Figure. 2.1(c)). It shows

a pop-up menu of tasks that are most-recently worked on, to provide quick access

to them. The user can switch tasks by pressing Ctrl + ∼ and stop at the desired

task, just like switching windows by pressing Alt + Tab in Windows OS.

We also have a system called TaskPredictor, which can automatically detect

task switches by observing the activity of the user [Shen et al., 2009b]. If a probable

task switch is detected, the user can be notified, actively or peripherally. Alterna-

tively the task can be automatically changed if task prediction confidence is high

enough.

2.2.2 Data Collection Architecture

The TaskTracer system employs an extensive data-collection framework to obtain

detailed observations of user activities. It instruments a wide range of applica-

tions under the Windows XP operating system, including Microsoft Office (Word,

Excel, PowerPoint and Outlook), Internet Explorer, Adobe Acrobat, GSView and
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(a) TaskExplorer

(b) TaskSelector (c) HotTask

Figure 2.1: User interfaces for defining tasks and declaring current task in the
TaskTracer system.

Notepad. It also instruments some operating system components including the

system clipboard and window focus switches.

Listener components are plug-ins into applications. They capture user inter-

action events and send them to the Publisher as Events, which are XML strings

with pre-defined syntax and semantics. One event of interest is the TaskBegin

event, which is sent to the Publisher when the user switches tasks. The Publisher

stores these events in its database and also distributes them to Subscriber applica-

tions that need to react to events online. FolderPredictor is one of the subscriber
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ListenerApplications

Listener
Port

Listener

Listener

Listener

Applications

Windows OS

PublisherSubscriber
Port

Listener…

SubscriberFolderPredictor

TaskExplorer

…

Subscriber

Subscriber
Event

Database

… Subscriber

Figure 2.2: Publisher-Subscriber architecture in the TaskTracer system.

applications of TaskTracer. This Publisher-Subscriber Architecture is shown in

Figure 2.2.

2.3 FolderPredictor User Interfaces

A basic design principle of FolderPredictor is simplicity. This basic principle

greatly influences the UI design — FolderPredictor actually has no independent

UI.

2.3.1 Display Predicted Folders in Existing User Interfaces

FolderPredictor provides three shortcuts to the likely choices for folders when

the user has just started to look for a file (in particular, the display of a file

open/save dialog box or the opening of a Windows Explorer window). FolderPre-
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dictor achieves this by modifying the existing user interfaces.

First, FolderPredictor enhances the well-known Windows Open/Save File Di-

alog boxes by adding its predicted folders. Figure 2.3(a) shows an example Open

File Dialog box enhanced by FolderPredictor. Three predicted folders are shown

as the top three icons in the “places bar” on the left. The user can jump to any

of them by clicking on the corresponding icon. The top predicted folder is also

shown as the default folder of the dialog box so that the display will show this

folder initially. Mousing over a folder icon will display the full path of that folder.

There are five slots in the places bar. By default, Microsoft Windows places

five system folders (including “My Computer” and “Desktop”) there. Informal

questioning of Windows users revealed that several of these shortcuts were not

commonly used. Thus, we felt it was safe to replace some of them by predicted

folders. By default, FolderPredictor uses three slots for predicted folders and leaves

two system folders. This behavior can be configured by the users if they want to

see more system folders in the places bar.

Second, FolderPredictor adds an explorer toolbar to the Window Explorer win-

dow as shown in Figure 2.3(b). Three predicted folders are accessible to the user

while browsing inside the Windows Explorer. Clicking on a folder icon will navi-

gate the current Windows Explorer window directly to that folder. Mousing over

a folder icon will display the full path of that folder.

These two interfaces hook into the native Windows environment and carry no

overhead for the user to learn additional interactions. An important advantage of

FolderPredictor is that it reduces user cost while introducing only minor changes
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(a) Folder predictions in the Open/Save File Dialog
box.

(b) Folder predictions in the Windows Explorer window.

Figure 2.3: FolderPredictor user interfaces.

to the existing user interfaces.

2.3.2 Implementing the Instrumentation

Microsoft Office applications employ a file dialog from a custom library, while

most other Windows applications use the file dialog from the common Win32

dialog library provided by the operating system. Thus, FolderPredictor needs three
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separate sets of instrumentation: the common Win32 file dialog, the Microsoft

Office file dialog and the Windows Explorer toolbar.

2.3.2.1 Instrumentation for the common Win32 file dialog

In order to modify the places bar in the common Win32 dialog, FolderPredictor cre-

ates five entries named “Place0” to “Place4” under the registry key “HKEY CUR

RENT USER\Software\Microsoft\Windows\CurrentVersion\Policies\ComDlg32

\Placesbar\”. These five entries correspond to the five slots, and their values can

be set to the paths of the predicted folders or to the system-independent numeric

IDs (CSIDL) of the system folders.

Modifying the default folder is much more difficult. There is no documented

support for this feature from Microsoft. FolderPredictor modifies the default folder

by injecting an add-in (a .DLL file written in C with embedded assembly lan-

guage) to all applications when they are started. This add-in intercepts Win32

API calls invoked by the injected application. Common Win32 applications show

the Open/Save file dialog by invoking API calls named “GetOpenFileName” or

“GetSaveFileName” with the default folder passed as a parameter. Thus, the

add-in can modify the default folder by intercepting the API call, changing the

parameter, and then passing it on. A detailed introduction of API interception

technology can be found in [Pietrek, 1995].

By intercepting the above two API calls, we can also get the original default

folder of the file dialog and the folder returned by the file dialog. This information
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was used in the evaluation of FolderPredictor, which is presented in Chapter 2.5.

2.3.2.2 Instrumentation for the Microsoft Office file dialog

As with the common Win32 file dialog, the places bar in the Microsoft Office file

dialog can be modified by manipulating registry keys. The pertinent registry key is

“HKEY CURRENT USER\Software\Microsoft\Office\VersionNumber\Commo

n\Open Find\Places\”, inside which VersionNumber should be replaced by the

version number of Microsoft Office software installed on the computer — for ex-

ample, “11.0” for Office 2003 and “12.0” for Office 2007.

Microsoft Office uses a file dialog from a custom library, and the API calls in this

library are not exposed. Therefore, API interception technology can not be used

to modify the default folder of Microsoft Office file dialog. FolderPredictor hooks

into the Microsoft Office file dialog by loading add-ins created by Visual Studio

Tools for Office (VSTO) into Microsoft Office applications. Code in these add-ins,

written in C#.NET, is invoked when the file dialog is called. When invoked, the

code changes the default folder of the file dialog to the predicted folder and then

shows the dialog box.

2.3.2.3 Instrumentation for the Windows Explorer toolbar

FolderPredictor’s toolbar in the Windows Explorer is a customized COM add-

in registered as an explorer toolbar by adding its GUID under the registry key
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“HKEY LOCAL MACHINE\Software\Microsoft\Internet Explorer\Toolbar\”.

This add-in implements the IObjectWithSite interface to initialize and dispose

itself. It subscribes to the TaskTracer events that contain FolderPredictor’s pre-

dictions and updates the three folder buttons accordingly.

2.4 Folder Prediction Algorithms

The main goal of FolderPredictor is to reduce the cost of locating files. In this

chapter, we assume that the user navigates in the folder hierarchy using a mouse,

and the number of “clicks” necessary to reach the destination folder is an appro-

priate measure of the cost to the user. One “click” can lead the user from the

currently selected folder to its parent folder or to one of its sub-folders. Our folder

prediction algorithms seek to reduce the number of clicks needed to reach the user’s

destination folder from the predicted folders.

In this section, we first introduce our approach for collecting possible target

folders and assigning weights to them. Then we discuss the idea of including

ancestor folders as candidate folders for predictions. After that, we introduce our

cost-senstive prediction algorithm, followed by several variations of it.

2.4.1 Collecting Possible Target Folders with Weights

Our approach assumes that computer users, for the most part, separate files for

different tasks into different folders. We further assume that, for the most part, the
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working set of folders for a task is relatively small. Given such assumptions, the

paths of the files that the user has accessed when working on a task provide useful

information for making folder predictions for future accesses for that task. For ex-

ample, imagine that, during one day, a student opens and saves files under the fold-

ers “C:\Classes\CS534\Homeworks\” and “C:\Classes\CS534\Presentations\”
when he is working on a task named CS534. The next day, when he returns to

working on the CS534 task, it should be useful to recommend these two folders or

even the parent folder “C:\Classes\CS534\”.

FolderPredictor generates its predictions by applying a simple machine learning

method to a stream of observed file open/save events. Each of these events includes

the path of the folder containing the file that was opened or saved. For each task,

FolderPredictor maintains statistics for each folder — how many times the user

opened files from it or saved files to it.

A statistical approach to making folder predictions is important for two reasons:

1) more-frequently-accessed folders should be more probable predictions and 2)

users sometimes access the wrong files, or forget to specify that they have changed

task. In the second case, the misleading events will add to the statistics. If observed

accesses to a particular folder are really just noise, then we are unlikely to observe

repeated future accesses to that folder over time. Thus these folders should have

relatively low access frequencies. We can use this information to filter out these

folders from recommendations.

Another factor that should be considered is recency. Our hypothesis is that

a user is more likely to need to access recently-accessed folders. For example, a
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programmer working on a big project may need to access many different folders of

source code, working on them one by one, but accessing each folder multiple times

before moving on to the next folder. Thus, the folders with older access times

should be quickly excluded from the predictions when the programmer begins to

work on source code under new folders. To achieve this, we have incorporated

a recency weighting mechanism into FolderPredictor. Instead of keeping a simple

count of how many times a folder is accessed, we assign a recency weight wi to each

folder fi. All weights are initially zero. When a file in folder fi is opened or saved

while working on a task, the weights of all the folders that have been accessed

on that task are multiplied by a real number α between 0 and 1, and wi is then

increased by 1. α is called the discount factor. Multiplying by the discount factor

exponentially decays the weights of folders that have not been accessed recently.

When α = 0, only the most recently-accessed folder will have a nonzero weight,

and it will always be predicted. When α = 1, no recency information is considered,

and weights are not decayed. Experiments show that a discount factor in the range

[0.7, 0.9] performs the best. Another benefit of recency weighting is that folders

erroneously identified as relevant due to noisy data are excluded from consideration

quickly, because their weights decrease exponentially.

In the implementation of FolderPredictor, we apply an incremental update

method to maintain the folder weights. The first time FolderPredictor is run on

a computer, historical TaskTracer data, if available, are used to build the initial

list of folders and associated weights for each task. This information is stored in

FolderPredictor’s private database. Then FolderPredictor incrementally updates



20

this database as new open or save events arrive, until the FolderPredictor is shut

down. The next time FolderPredictor is started, it updates its database using

only the events that have been added since the last time FolderPredictor was shut

down. This incremental update method helps FolderPredictor keep its data up-to-

date without any perceivable delay in prediction time or startup.

2.4.2 Predicting Ancestor Folders Is Better Sometimes

After we have collected a list of folders with weights assigned to them, the folder

prediction problem seems trivial: we could just recommend the folder having the

highest weight. However, while that might maximize the chance that we pick the

best possible folder, it may not minimize the average cost in clicks. Recall that

our goal here is to minimize the number of clicks to reach the target folder. To do

this, we may want to sometimes recommend an ancestor folder. We will motivate

the need for this decision by an example. Suppose a student has a folder hierarchy

as shown in the tree structure in Figure 2.4. His files are stored in the bottom

level folders, such as “Part3” and “Hw2”. When he worked on the CS534 task, he

accessed almost all of the bottom level folders with approximately similar counts.

In this circumstance, predicting a bottom level folder will have a high probability

of being wrong, because all the bottom level folders are equally probable. This will

cost the student several more “clicks” to reach his destination folder — first to go

up to an ancestor folder and then go back down to the correct child. On the other

hand, predicting a higher level folder, such as “Presentations” or “Homeworks” or
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CS534

Presentations Homeworks…

Part1 …Part2 Part9 Hw1 …Hw2 Hw7

Figure 2.4: An example folder hierarchy. Each node of this tree denotes a folder.
Child nodes are sub-folders of their parent node.

even “CS534”, may not be a perfect hit, but it may reduce the cost in half — the

student only needs to go downward to reach his destination folder.

Figure 2.5 shows the folder tree of a real user who has been using FolderPre-

dictor for approximately a month. The folders shown here are only the ones that

were accessed by this user during this period and their ancestors. The darkness of

a node in this tree is proportional to how frequently the corresponding folder was

accessed. There are quite a few cases where predicting the parent folder is better

than predicting a child folder. One example is folder #5. It has 13 child folders,

most of which were accessed. Another example is folder #40. It wasn’t directly

accessed by the user, but it has 6 child folders that were accessed by the user with

approximately equal frequency.

Furthermore, we believe that incorrectly predicting a leaf node will be on aver-

age more frustrating for users than picking an ancestor node that is an incomplete

path to the desired folder. For example, in Figure 2.4, if the user is going to access

the leaf folder “Part1” and FolderPredictor predicts the parent folder “Presenta-

tions” and initializes the file open dialog box with it, the user will be able to see



22

46

21

23 35

0

1

3937 26

11

48

55 49

50

4

25 16 9 5 15

5233

36 34

54

41 45

51

31

3

29

24

13

56 14

53

6

7 17

8 18

22

19 38 20

2

3210

30

44

47

28 12 27

40

42 43

Figure 2.5: Folder tree from a real user. Each node of this tree denotes a folder.
Darker nodes denote the folders that have been accessed more often. The number
on each node is the identification number of the folder. The root node marked
with “0” denotes “My Computer”.

the folder “Part1” when the dialog box is displayed and thus easily jump to it. On

the other hand, if the dialog box is initialized with a leaf node such as “Part2”, it

will be cognitively harder for the user to recognize that “Part2” is a sibling of the

target folder “Part1”, because there is no visual cue of this.

2.4.3 Cost-Sensitive Prediction Algorithm

Based on the ideas presented above, we developed the following Cost-Sensitive

Prediction (CSP) algorithm shown in Figure 2.6.

The goal of the CSP algorithm is to find three folders from the candidate set

that jointly minimize the expected number of clicks required to reach the user’s

target folder. The candidate set H here consists of the folders that the user has
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Input: A finite set F = {f1, f2, . . . , fm}, where fi is a folder with a
positive weight wi, 1 ≤ i ≤ m.

Output: Three recommended folders a1, a2 and a3(descending in
predicted preference).

for i← 1 to m do /* normalize weights to get probability1

distribution */

pi = wi/
∑m

j=1 wj;2

end3

H = ∅;4

for i← 1 to m do /* construct the candidate set by adding5

ancestor folders */

Hi ⇐ all ancestors of fi, including fi itself;6

H = Union (H, Hi);7

end8

forall folder h in H do9

forall folder f in F do10

dis[h, f ] = TreeDistance (h, f);11

/* tree distance from h to f, in clicks */

end12

end13

{a1, a2, a3} =14

arg min{a1,a2,a3}
∑m

i=1 pi×min{dis[a1, fi], dis[a2, fi] + 1.0, dis[a3, fi] + 1.0};
Figure 2.6: Cost-Sensitive Prediction (CSP) Algorithm.

accessed before (set F) and their ancestor folders. The probability distribution of

the user’s target folder is estimated by normalizing the weights of the folders in F,

which are collected as described in Chapter 2.4.1.

In line #14 of the CSP algorithm, the cost of getting to a folder fi from a

prediction {a1, a2, a3} is computed as min{dis[a1, fi], dis[a2, fi] + 1.0, dis[a3, fi] +

1.0}, because of the following facts:

1. a1 will be set as the default folder of the open/save file dialog. This means
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that the user will be in folder a1 with no extra “click” required. Therefore,

dis[a1, fi] is the cost if the user navigates to fi from a1.

2. a2 and a3 will be shown as shortcuts to the corresponding folders in the

“places bar” on the left side of the open/save file dialog box (see Figure 2.3).

The user must execute one “click” on the places bar if he wants to navigate

to fi from a2 or a3. Therefore, an extra cost 1.0 is added. (In fact, this

doesn’t affect which three folders are chosen, but it will order them to make

sure a1 is the best folder to predict.)

3. We assume the user knows which folder to go to and how to get there by the

smallest number of clicks. Therefore, the cost of a prediction {a1, a2, a3} is

the minimum of dis[a1, fi], dis[a2, fi] + 1.0, and dis[a3, fi] + 1.0.

FolderPredictor runs this algorithm whenever the user switches task and when-

ever the folder weights are updated. The three predicted folders are then displayed

in the file dialog boxes and the Windows Explorer.

2.4.4 Variations of the CSP Algorithm

During our initial deployment of FolderPredictor, we observed that, although Fold-

erPredictor largely reduces the cost of reaching the right folder, the approach of

predicting ancestor folders that lead to multiple possible folders tends to make

the prediction less “perfect”: the top predicted folder sometimes is close to but

not exactly the same as the user’s target folder. This observation inspired us to
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consider several variations of the CSP algorithm that may increase the chance of

making a perfect prediction.

The first variation is to make FolderPredictor more “aggressive”: choosing

the most probable folder (the folder with the highest weight among the folders

that the user has accessed before) as the top prediction (a1). The other two

predicted folders are choosen by running the CSP algorithm with the top prediction

fixed. That is, line #14 of the CSP algorithm in Figure 2.6 is changed to be

{a2, a3} = arg min{a2,a3}
∑m

i=1 pi×min{dis[a1, fi], dis[a2, fi] + 1.0, dis[a3, fi] + 1.0}.
By doing this, the top predicted folder will tend to be a “leaf” folder that contains

the files that the user is most-likely to access. Therefore, it may increase the chance

that FolderPredictor makes a perfect prediction, but once the top predicted folder

is wrong, it may cost more clicks for the user to reach the target folder.

The second variation is to make use of the most recently-used (MRU) folder.

Microsoft Windows usually initialize the file open/save dialog boxes with the MRU

folder. This approach works fairly well and in our experiments presented in the

next section, it perfectly hits the target folder about 53% of the time. Therefore,

it’s worth combining it into our predictions — let the MRU folder be the top

prediction (a1) and choose the other two predicted folders by running the CSP

algorithm with the top prediction fixed.

There are two different types of MRU folder: the system-wide MRU folder

and the application-specific MRU folder. The application-specific MRU folder is

the last folder accessed by the user using the same application. For example,

the application-specific MRU folder for Microsoft Word is the folder containing
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the file that was most recently opened or saved by Microsoft Word. We store

one application-specific MRU folder for each application. On the other hand, the

system-wide MRU folder is the last folder accessed by the user, no matter which

application was used. It is hard to say which type of MRU folder is better, so we

implemented both and compared them in our experiments.

The third variation is slightly different from the second one. A potential prob-

lem with always predicting the MRU folder as the top prediction is that when

there is a task switch, the MRU folder may be a bad choice. Therefore, we want

to apply the original CSP algorithm to predict for the first file access within a

task episode (period between two task switches), and apply the second variation

described above to predict for the remainder of the task episode. A “task episode”

for task T is the segment of time in which the user is working on task T. It starts

with a “TaskBegin” message, when the user indicates he/she is starting to work

on task T, and it ends with another “TaskBegin” message when the user switches

to a different task.

Table 2.1 summarizes the folder prediction algorithms we have described above.

2.5 Experimental Evaluations

To measure the effectiveness of FolderPredictor and compare the performance of

different folder prediction algorithms, we have conducted two user studies. The

goal of the first user study was to measure how many clicks FolderPredictor with

the CSP algorithm saves, by comparing FolderPredictor’s predictions with Win-
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Table 2.1: Summary of the folder prediction algorithms.
Name Description
CSP Cost-Sensitive Prediction algorithm described in Chapter 2.4.3.
ACSP Use the most-probable folder as top prediction and run CSP to

get the other two folders.
SMCSP Use the system-wide MRU folder as top prediction and run CSP

to get the other two folders.
SMCSP2 Use CSP for the first file access within a task episode, and use

SMCSP for the remainder of the task episode.
AMCSP Use the application-specific MRU folder as top prediction and

run CSP to get the other two folders.
AMCSP2 Use CSP for the first file access of each application within a task

episode, and use AMCSP for the remainder of the task episode.

dows Default (without folder predictions). The goal of the second user study was

to compare the performance of the various folder prediction algorithms listed in

Table 2.1.

2.5.1 Comparing the CSP Algorithm with Windows Default

The first user study was conducted at Oregon State University. The participants

were two professors and two graduate students. The TaskTracer system (with

FolderPredictor) was deployed on the computers that the participants performed

their daily tasks on. Every participant ran the TaskTracer system for a fairly

long time (from 4 months to 1 year). The algorithm employed in this version of

FolderPredictor was the CSP algorithm. The discount factor α was set to 0.85.

At the end of this user study, we collected four data sets as shown in Table 2.2.

Each data set is a list of predictions that FolderPredictor made for a user, ordered
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by time. Each prediction is marked with the name of the task that was active at

the moment this prediction was made. The size of a data set is the number of

predictions it contains.

# User Type Data Collection Time Set Size
1 Professor 12 months 1748
2 Professor 4 months 506
3 Graduate Student 7 months 577
4 Graduate Student 6 months 397

Table 2.2: Information about the data sets collected in the first user study.

2.5.1.1 Average Cost

Figure 2.7 compares the average cost (in “clicks”) of the FolderPredictor and the

Windows Default on all four data sets. The cost of the Windows Default is the

distance between the original default folder of the file dialog and the destination

folder. In other words, the cost of Windows Default is the user cost when Folder-

Predictor is not running. The figure also shows 95% confidence intervals for the

costs.

Statistical significance testing shows that FolderPredictor surely reduces the

user cost of locating files (P-value = 1.51 × 10−29 using an ANOVA F-test). On

average, the cost is reduced by 49.9% when using FolderPredictor with the CSP

algorithm.
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Figure 2.7: Average cost of FolderPredictor and Windows Default.

2.5.1.2 Distribution of Costs

Figure 2.8 shows a histogram of the number of clicks required to reach the target

folder under the Windows Default and the FolderPredictor. We can see from the

figure that:

1. About 90% of the FolderPredictor’s costs are less than or equal to three

clicks. Only a small fraction of the FolderPredictor’s costs are very high.

2. Although about half of the Windows Default’s costs are zero, about 40% of

the Windows Default’s costs are above three.

This means that FolderPredictor not only reduces the overall average cost of

locating files, but also decreases the probability of encountering very high costs in

locating files.

It is interesting to see that Windows Default actually gets the default folder

perfectly correct more than FolderPredictor. This most likely happens because
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Figure 2.8: Histogram of the number of clicks required to reach the target folder.

Windows typically picks a leaf folder (i.e., the most recently-used folder) as the

default folder. FolderPredictor sometimes plays it safe and picks an ancestor folder

that is more likely to be close to multiple possible folders and less likely to be

perfect. Thus we see a large number of cases relative to the Windows Default

where FolderPredictor is one, two, or three clicks away. In fact, this discovery

inspired us to come up with algorithm variations described in Chapter 2.4.4.

2.5.1.3 Learning Curve

Machine learning systems usually perform better as more training data is acquired.

In FolderPredictor’s case, the training data are the user’s opens and saves per task.

For each open/save, FolderPredictor makes a prediction and uses the user’s actual

destination folder to update itself. Therefore, the cost of the folders recommended

by FolderPredictor should decrease as more predictions are made for a task. To



31

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 10 20 30 40 50 60 70 80

M
ea
n
N
um

be
r
of

Cl
ic
ks

Number of Previous Open/Saves in Task

Figure 2.9: Learning curve of FolderPredictor.

evaluate this, we computed the learning curve for FolderPredictor shown in Fig-

ure 2.9.

In the figure, the X-axis is the number of predictions within one task aggregated

into ranges of width 10, and the Y-axis is the average cost of one prediction within

this range. For example, the first point of the curve shows the average cost of all

predictions between (and including) the 1st and 10th predictions of all tasks. The

figure also shows 95% confidence intervals for the average costs.

The curve shows that the cost decreases as more predictions made. The average

cost decreases from 1.6 (first 10 predictions) to 0.7 (71st to 80th predictions).
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2.5.2 Comparing Different Folder Prediction Algorithms

The second user study was conducted at Intel Corporation. The participants were

knowledge workers who perform their daily work on the computers. During a

4-week period, a software system called Smart Desktop (Beta 3), which is a com-

mercialized version of TaskTracer, was running on their computers. Smart Desktop

incorporates a version of the FolderPredictor but, more importantly, it collects all

of the information needed to evaluate alternative folder prediction algorithms. At

the end of the study, we ran an analysis program on the data to evaluate the

cost of each folder prediction algorithm by simulating the algorithm at each File

Open/SaveAs event in time order.

Seven participants completed the study. One of them is excluded from the

analysis because the number of file opens/saves is too low (< 20) in his data.

Table 2.3 shows the information about the data sets collected from the remaining

6 participants. The set size is the number of File Open/SaveAs events (i.e., the

number of evaluation points) in the data set.

# Data Collection Time Set Size
s1 4 weeks 138
s2 4 weeks 99
s3 4 weeks 395
s4 4 weeks 146
s5 4 weeks 102
s6 4 weeks 352

Table 2.3: Information about the data sets collected in the second user study.
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Figure 2.10: Average cost of different folder prediction algorithms over all data
sets.

2.5.2.1 Average Cost of Different Algorithms

Figure 2.10 compares the average cost (in “clicks”) of different folder prediction

algorithms over all data sets. The figure also shows 95% confidence intervals for

the costs.

There are several interesting observations from this figure:

1. The ACSP algorithm performs worse than the original CSP algorithm. This

means predicting the most probable folder as top prediction actually increases

the overall cost of the prediction.

2. Algorithms using an MRU folder as the top prediction (SMCSP, SMCSP2,

AMCSP, AMCSP2) have better performance than the original CSP algo-

rithm.

3. The SMCSP2/AMCSP2 algorithms are worse than the corresponding SM-
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CSP/AMCSP algorithms. This is a little surprising, because we thought

that the MRU folder would not be good for the first file access after a task

switch. One possible explanation is that different tasks may share the same

folders, especially for two tasks that are worked on sequentially in time. An-

other factor is that the users may not declare task switches accurately due

to human errors.

4. The AMCSP algorithm has the best performance among all the algorithms.

The differences among the average costs of these algorithms are generally not

statistically significant. However, the difference between the average cost of the

AMCSP algorithm (the best one) and that of the original CSP algorithm is statisti-

cally significant with p-value = 0.05 assessed with a paired t-test. On average, the

AMCSP algorithm further reduces the cost of FolderPredictor by 10%, compared

with the original CSP algorithm.

2.5.2.2 Comparison of Algorithms across Different Users

Different users behave differently in folder organization and file access. We wanted

to investigate how the folder prediction algorithms compare with each other for

different participants. Figure 2.11 illustrates the average cost of the folder predic-

tion algorithms across different participants. In this figure, the cost of the CSP

algorithm is used as baseline, and the values shown are the change in the number

of clicks compared to the CSP algorithm. The horizontal axis shows the ID’s of

our study participants.
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Figure 2.11: Average cost of algorithms across different participants.

The figure clearly shows that the AMCSP algorithm is consistently the best

algorithm across all participants. And other observations we discover from Fig-

ure 2.10 are also valid for each study participant.

2.5.2.3 Distribution of Costs

To investigate why the AMCSP algorithm outperforms the CSP algorithm, we

compared the distribution of costs of these two algorithms, as shown in Figure 2.12.

As illustrated in the figure, both algorithms show the desired property of re-

ducing the probability of encountering very high costs in locating files. The main

advantage of the AMCSP algorithm is that it makes more perfect predictions (zero

clicks) than the CSP algorithm, which validates our hypothesis that using the MRU
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Figure 2.12: Histogram of the number of clicks required to reach the target folder.

folder as the top prediction can increase the chance of making perfect predictions.

If we sum up the number of file accesses with cost of 0, 1 and 2 clicks, this value

is approximately equal for the two algorithms. Therefore, the reason why the

AMCSP algorithm outperforms the CSP algorithm is that the AMCSP algorithm

replaces some of the CSP’s 1- and 2-click predictions into perfect predictions.

2.6 Related Work

On the surface, the FolderPredictor approach is similar to some email classifica-

tion systems that predict possible email folders based on the text of incoming email

messages [Rennie, 2000; Segal and Kephart, 1999; 2000]. In particular, both Mail-

Cat and FolderPredictor present their top three predicted folders to the user [Segal

and Kephart, 1999]. However our approach is different in the following aspects:
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1. Our predictions are made for file folders, not email folders. Predicting file

folders is probably much more difficult than predicting email folders. One

reason is that in most situations, there are many more file folders than email

folders. Furthermore, there are many different types of files under file folders,

not only email messages.

2. Our predictions are based on user activities, not text in files. Text-based ap-

proaches may be applicable for email foldering, but they are more challenging

to apply to folder prediction. Challenges include

(a) tasks with similar keyword profiles but different folders (e.g., the class

I taught last year versus the class I am teaching this year);

(b) files from which it is hard to extract text;

(c) ambiguity in language;

(d) computational time to extract and analyze text, which is essential for a

real time application like FolderPredictor.

There are also some software tools that help users to quickly locate their files

in the open/save file dialog boxes, e.g. Default Folder X [Default Folder X, 2009]

for Mac and Direct Folders [Direct Folders, 2009] for Windows. These tools make

the open/save file dialog boxes more configurable and comprehensive to the user.

The user can put more shortcuts in the dialog, as well as define a default folder

for each application. However, these tools cannot adjust the shortcuts and default

folders automatically based on the context of the user’s activities. On the other
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hand, our approach makes intelligent folder predictions based on the user activities

within each task. Therefore, FolderPredictor can be a good complement to these

tools.

2.7 Discussion

The results reported in this chapter are likely a substantial underestimate of the

value of the FolderPredictor. One of the key assumptions of this chapter is that

the user always knows which folder they want to get to and where it is located

— in such cases, we have demonstrated that FolderPredictor will get them there

faster. The reality is that people have limited memory, and highly multitasking

users often cannot maintain in their memory the locations of files for all of their

tasks, particularly tasks that they have not worked on recently. Thus users may

need many more clicks to “search” for the right folder. By default, Windows only

remembers what was worked on most recently, regardless of task. FolderPredictor

on the other hand remembers multiple folders used on each task, regardless of how

long ago the task was last active. Thus FolderPredictor’s recommendations can

help remind the user where files related to a task have been stored.

There are other psychological benefits of FolderPredictor that are harder to

evaluate. For example, being placed consistently in the wrong folder can gener-

ate frustration, even if the click distance is not far. At this stage, all that we

have is qualitative evidence of this. During the deployments of FolderPredictor,

multiple participants reported becoming “addicted” to FolderPredictor — they
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were distressed when they had to use computers that did not have TaskTracer

installed. They also reported that they did a better job of notifying TaskTracer of

task switches in order to ensure that the FolderPredictor recommendations were

appropriate for the current task.
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Chapter 3 – Stacking Recommendation Engines with Additional

Meta-features

In this chapter, we apply stacking, an ensemble learning method, to the problem

of building hybrid recommendation systems. We also introduce the novel idea

of using runtime metrics which represent properties of the input users/items as

additional meta-features, allowing us to combine component recommendation en-

gines at runtime based on user/item characteristics. In our system, component

engines are level-1 predictors, and a level-2 predictor is learned to generate the

final prediction of the hybrid system. The input features of the level-2 predictor

are predictions from component engines and the runtime metrics. Experimental

results show that our system outperforms each single component engine as well

as a static hybrid system. Our method has the additional advantage of removing

restrictions on component engines that can be employed; any engine applicable to

the target recommendation task can be easily plugged into the system.

3.1 Research Background

The growth of online information has stimulated the use of recommendation en-

gines as an important way of finding information and improving user experience.

For example, Netflix.com recommends movies based on the user’s scoring of previ-
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ously watched movies (both the user and others); Amazon.com recommends goods

to the online shopper based on the previously viewed/purchased items and the

purchases of other customers.

In the past two decades, a number of recommendation engines have been de-

veloped for a wide range of applications. Content-based recommendation engines

are typically used when a user’s interests can be correlated with the description

(content) of items that the user has rated. An example is the newsgroup filtering

system NewsWeeder [Lang, 1995]. Collaborative filtering engines are another pop-

ular type which utilize users’ preferences on items to define similarity among users

and/or items. An example is the GroupLens system [Konstan et al., 1997]. Other

recommendation technologies include knowledge-based approaches, utility-based

filtering, etc [Burke, 2002].

Previous research has shown that each of these engines has pros and cons [Ado-

mavicius and Tuzhilin, 2005; Burke, 2002; Ramezani et al., 2008]. For example,

collaborative filtering engines depend on overlap in ratings (whether implicit or

explicit) across users, and perform poorly when the ratings matrix is sparse. This

causes difficulty in applications such as news filtering, where new items are enter-

ing the system frequently. Content-based engines are less affected by the sparsity

problem, because a user’s interests can be based on very few ratings, and new

items can be recommended based on content similarity with existing items. How-

ever, content-based engines require additional descriptive item data, for example,

descriptions for home-made video clips, which may be hard to obtain. And experi-

ments have shown that, in general, collaborative filtering engines are more accurate
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than content-based engines [Alspector et al., 1997].

Real-world recommendation systems are typically hybrid systems that com-

bine multiple recommendation engines to improve predictions (see Burke [Burke,

2002] for a summary of different ways that recommendation engines can be com-

bined). Previous research on hybridization has mostly focused on static hybridiza-

tion schemes which do not change at runtime for different input users/items. For

example, one widely used hybridization scheme is a weighted linear combination of

the predictions from component engines [Bell et al., 2007a; Claypool et al., 1999],

where the weights can be uniform or non-uniform. Pazzani [Pazzani, 1999] also

proposed a voting schema to combine recommendations.

However, this approach can not adjust the ways that the component engines are

combined for different types of input users/items. For example, the collaborative

filtering engine should be trusted more in the hybrid when the input user has rated

a lot of items before, but it should not be trusted at all when the input item is

a new item that no one has rated before. Therefore, in this chapter, we focus on

building hybrid recommendation systems that exhibit the following two properties:

1. The system should adjust how component engines are combined depending

on properties of the inputs. For example, collaborative filtering engines are

less accurate when the input user has few ratings on record; the system

should reduce the weights of these engines for this type of user.

2. The system should allow not only linear combinations but also non-linear

combinations of predictions from component engines. For example, a piece-
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wise linear function may be preferable to a simple linear function if a compo-

nent engine is known to be accurate when its predictions are within a certain

range but inaccurate outside this range.

To achieve these two goals, we apply stacking, an ensemble learning method,

to solve the problem of building hybrid recommendation systems. The main idea

is to treat component engines as level-1 predictors, and to learn a level-2 predictor

for generating the final prediction of the hybrid system. We also introduce the

novel idea of using runtime metrics as additional meta-features, allowing us to

use characteristics of the input user/item when determining how to combine the

component recommendation engines at runtime. These runtime metrics are prop-

erties of the input user/item that are related to the precisions of the component

engines. For example, the number of items that the input user has previously rated

may indicate how well a collaborative filtering engine will perform. By employing

different learning algorithms for learning the level-2 predictor, we can build sys-

tems with either linear or non-linear combinations of predictions from component

engines. We name our method and the resulting system STREAM (STacking

Recommendation Engines with Additional Meta-features).

The chapter is organized as follows. In the next section, we discuss related

work. Section 3.3 describes our STREAM approach in detail. Section 3.4 demon-

strates how to build a STREAM system for a movie recommendation application

and discusses how to apply the concepts to other domains. Section 3.5 presents

experimental results. Section 3.6 concludes the chapter with discussion.
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3.2 Related Work

The BellKor system that won the first annual progress prize of the Netflix compe-

tition [Netflix, 2009; Bell et al., 2007b] is a statically weighted linear combination

of 107 collaborative filtering engines. The weights are learned by a linear regres-

sion on the 107 engine outputs [Bell et al., 2007a]. This method is actually a

special case of STREAM wherein no runtime metrics are employed and the level-2

predictor is learned by linear regression.

Some hybrid recommendation systems choose the “best” component engine

for a particular input user/item. For example, the Daily Learner system [Billsus

and Pazzani, 2000] selects the recommender engine with the highest confidence

level. However, this method is not generally applicable for two reasons. First,

not all engines generate output confidence scores for their predictions. Second,

confidence scores from different engines are not comparable. Scores from different

recommendation engines typically have different meanings and may be difficult to

normalize.

There are also hybrid recommendation systems that use a linear combination

of component engines with non-static weights. For example, the P-Tango system

[Claypool et al., 1999] combines a content-based engine and a collaborative filter-

ing engine using a non-static user-specific weighting scheme: it initially assigns

equal weight to each engine, and gradually adjusts the weights to minimize prior

error as users make ratings. This scheme combines engines in different ways for

different input users. However, the prior error of an engine may not be a sufficient
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indicator of the quality of its current prediction. For instance, the prior error of a

collaborative filtering engine is probably lower than that of a content-based engine

for a user who has rated 100 items. But if the two engines are asked to predict this

user’s rating on a new item, the content-based engine will probably make a better

prediction because the collaborative filtering engine is unable to predict ratings for

new items. Another disadvantage of this method is the rise in computational cost

of minimizing the prior error as ratings accumulate.

There have been several research efforts to apply machine learning / artificial

intelligence methods to the problem of combining different recommendation tech-

nologies (mostly content-based and collaborative filtering). These typically focus

on building unified models that combine features designed for different recommen-

dation technologies. For example, Basu, Hirsh and Cohen applied the inductive

rule learner Ripper to the task of recommending movies using both user ratings

and content features [Basu et al., 1998]. Basilico and Hofmann designed an SVM-

like model with a kernel function that is based on joint features of user ratings

as well as attributes of items or users [Basilico and Hofmann, 2004]. Our goal in

this chapter, however, is to build hybrid recommendation systems that combine

the outputs of individual recommendation engines into one final recommendation.

We treat the component engines as black boxes, making no assumption on what

underlying algorithms they implement. In the latter sections of this chapter, we

will show that any engine applicable to the target recommendation task can be

easily plugged into our STREAM system. Anytime a new engine is added or an

old engine is removed, all we need to do is re-learn the level-2 predictor. This
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allows system designers to flexibly customize the hybrid recommendation system

with their choice of component engines.

3.3 Our Approach

In this section, we first introduce the stacking method in ensemble learning. We

then describe how we apply it to solve the engine hybridization problem with

runtime metrics as additional meta-features. Finally we demonstrate our STREAM

framework.

3.3.1 Stacking: An Ensemble Learning Method

Stacking (also called Stacked Generalization) is a state-of-the-art ensemble learning

method that has been widely employed in the machine learning community. The

main question it addresses is: given an ensemble of classifiers learned on the same

set of data, can we map the outputs of these classifiers to their true classes?

The stacking method was first introduced by Wolpert in [Wolpert, 1992]. The

main idea is to first learn multiple level-1 (base) classifiers from the set of original

training examples using different learning algorithms, then learn a level-2 (meta)

classifier using the predictions of the level-1 classifiers as input features. The final

prediction of the ensemble is the prediction of the level-2 classifier. Training exam-

ples for the level-2 classifier are generated by performing cross-validation [Hastie et

al., 2001] on the set of original training examples. The idea of stacking classifiers



47

was extended to stacking regressors by Breiman [Breiman, 1996], where both level-

1 predictors and the level-2 predictor are regression models that predict continuous

values instead of discrete class labels.

The level-2 predictor can be learned using a variety of learning algorithms.

We call these learning algorithms meta-learning algorithms in order to distinguish

them from the learning algorithms used to learn the level-1 predictors. Dzeroski

and Zenko [Dzeroski and Zenko, 2004] empirically compared stacking with several

meta-learning algorithms, reaching the conclusion that the model tree learning

algorithm outperforms others. They also reported that stacking with model trees

outperforms a simple voting scheme as well as a “select best” scheme that selects

the best of the level-1 classifiers by cross-validation.

3.3.2 Stacking Recommendation Engines

We are addressing the problem of combining predictions from multiple recommen-

dation engines to generate a single prediction. To apply the stacking method to

the engine hybridization problem, we first define each component recommendation

engine as a level-1 predictor. We treat each engine as a black box that returns a

prediction given the input. Then we learn a level-2 predictor, using a meta-learning

algorithm, with predictions of the component engines as meta-features. The level-

2 predictor can be either a linear function or a non-linear function based on the

meta-learning algorithm employed. This satisfies one of our two goals: support for

non-linear combinations of predictions from component engines, as well as linear
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combinations.

However, this method fails to achieve the other goal: we want a system that can

adjust how the component engines are combined depending on the input values.

For example, suppose there are two users A and B, with user A rating only 5

items, while user B rates 100 items. It is likely that the collaborative filtering

engine works better for user B than for user A, while the content-based engine

may work equally well for both of them. Thus, the weight on the collaborative

filtering engine should be higher when the system is predicting for user B than for

user A.

To achieve our goal of a system that adapts to the input, we define new meta-

features that indicate the expected quality of the predictions from the component

engines. These new meta-features are properties of the input users/items that can

be computed at runtime, in parallel with the predictions from the component en-

gines. We call these new meta-features runtime metrics. For example, the runtime

metric, “the number of items the input user has previously rated”, might be ap-

plicable to the problem in the previous paragraph. In general, the runtime metrics

are both application domain specific and component engine specific. Therefore,

we cannot define a set of runtime metrics that work for all applications. Instead,

in the next section we will describe a set of runtime metrics defined for a movie

recommendation application and discuss general characteristics of these metrics

for other applications.
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3.3.3 STREAM Framework

Figure 3.1 illustrates our STREAM framework. To be concrete, we assume that

the recommendation task is to predict R(u, i), the rating of the input user u on the

input item i. We call the input (u, i) a user-item pair. The system’s background

data consists of historical ratings known to the system and possibly additional

information such as item content. The framework does not place restrictions on

the algorithms used inside the component engines. The only requirement for an

engine is that given an input user-item pair and a set of background data, it must

return a predicted rating. MetricEvaluator is a component for computing the

runtime metrics. The engines’ predictions 〈P1, P2, ..., Pn〉 and the values of the

runtime metrics 〈M1, M2, ..., Mm〉 are passed to the level-2 predictor f(·), which is

a function of the engines’ predictions and the runtime metrics, to generate a final

prediction R(u, i).

Figure 3.2 shows the underlying meta-learning problem in STREAM. The input

vector to the level-2 predictor is in the top dotted ellipse and the output value of

the level-2 predictor is in the bottom dotted ellipse. This gives us a standard

machine learning problem. To learn the model, we first generate a set of training

examples in the format (〈M1, M2, ..., Mm, P1, P2, ..., Pn〉, PT ) where Mi is the value

of the i-th runtime metric evaluated for a user-item pair, Pj is the prediction of

the j-th component engine for this user-item pair, and PT is the user’s true rating

for this item. We then apply an appropriate meta-learning algorithm to learn a

model from these training examples. If the ratings are ordered numbers, this meta-
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Background Data

R(u, i) = ?

MetricEvaluator Engine_1 Engine_2 Engine_n…

P1 P2 Pn<M1, M2, …, Mm>

Prediction R(u, i) Level-2 Predictor:
R(u, i) = f (M1, M2, …, Mm, P1, P2, … Pn)

Figure 3.1: STREAM Framework.

learning problem is a regression problem. If the ratings are unordered categories

(e.g., “Buy” / “No Buy”), this meta-learning problem is a classification problem.

To generate the training examples, we perform a cross-validation on the back-

ground data. The general idea is to simulate real testing by splitting the original

background data into two parts: cv background data which is used as background

data for the component engines and the MetricEvaluator, and cv testing data on

which the learned model is tested. For each user-item pair in the testing data,

an input vector 〈M1, M2, ..., Mm, P1, P2, ..., Pn〉 can be generated by running the

MetricEvaluator on the input user-item pair and by requesting predictions of the

component engines. The true rating for this user-item pair (PT ) is known, giving

us a complete training example.
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MetricEvaluator Engines

<M1, M2, …, Mm, P1, P2, …, Pn>

Level-2 Predictor

Prediction: R(u, i)

Figure 3.2: The meta-learning problem in STREAM.

3.4 Predicting Movie Ratings: An Application

Predicting users’ movie ratings is one of the most popular benchmark tasks for rec-

ommender systems. Ratings are typically represented by numbers between 1 and 5,

where 5 means “absolutely love it” and 1 means “certainly not the movie for me”.

There are several publicly available data sets for this problem. To demonstrate

our STREAM method, we built a movie recommendation system and evaluated it

on the widely used MovieLens data set [MovieLens, 1997]. This data set consists

of 100,000 ratings from 943 users on 1682 movies — each user rates 4.3% of the

movies on average. Each record in this data set is a triplet 〈user, item, rating〉.
The MovieLens data set contains only the title, year, and genre for each movie.
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This is insufficient for useful recommendations from a content-based engine. There-

fore, we augmented this data set with movie information extracted from the IMDb

movie content collection [IMDb, 2009]. After augmentation, the movie contents

included the title, year, genre, keywords, plot, actor, actress, director, and country.

Note that not all movies contain complete information; some fields are missing for

some movies.

3.4.1 Recommendation Engines

Three widely-used but significantly different recommendation engines were chosen

for the system: a user-based collaborative filtering engine, an item-based collabo-

rative filtering engine, and a content-based engine.

Our user-based collaborative filtering engine is built according to the basic

algorithm described in [Herlocker et al., 1999]. The similarity between two users is

defined by the Pearson Correlation. To predict the rating of the user u on the item

i, this engine selects the most similar 300 users as u’s neighborhood, and outputs

the average of the neighbors’ ratings on the item i weighted by the corresponding

similarities.

Our item-based collaborative filtering engine is built according to the basic

algorithm described in [Sarwar et al., 2001]. The similarity between any two items

is defined as the Pearson Correlation between the rating vectors of these two items,

after normalization to the interval between 0 and 1. To predict the rating of the

user u on the item i, this engine computes the similarities between item i and all
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items u has rated, and outputs the average rating of all items u has rated weighted

by the similarities between them and item i.

Our content-based engine is the same as the item-based collaborative filtering

engine except that the item similarity is defined as the TF-IDF similarity [Salton

and McGill, 1986] calculated from the movie contents. Apache Lucene [Lucene,

2009] is employed to compute the TF-IDF scores.

There are cases where one or more engines are unable to make predictions.

For example, none of the three engines can predict for new users who do not

have ratings recorded in the background data. Similarly, the two collaborative

filtering engines cannot predict users’ ratings on items that no one has yet rated.

Our engines will predict the overall median rating in its background data if their

underlying algorithms are unable to make predictions.

3.4.2 Runtime Metrics

The runtime metrics were designed based on characteristics of the component

recommendation engines. We sought measures that we expected to correlate well

with the performance of each engine, and that would distinguish between them.

We considered the following general characteristics of the engines:

1. The user-based collaborative filtering engine works well for users who have

rated many items before but not for users who have rated few items. It also

works poorly for the users who tend to rate items that no one else rates.

2. The item-based collaborative filtering engine works well for items that have
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been rated by many users but not for items that few users have rated.

3. The content-based engine performs consistently no matter how many items

the input user has rated and how many users have rated the input item,

but it works poorly when the content of the input item is incomplete or

non-descriptive.

Based on these properties, we design the runtime metrics. Table 3.1 shows

the runtime metrics we have defined for the movie recommendation application

and the three engines described above. We assume 〈u, i〉 is the input user-item

pair. All eight runtime metrics are normalized into the range between 0 and 1

by dividing by the corresponding maximum possible value (e.g., total number of

items for RM1).

Table 3.1: Runtime metrics defined for the movie recommendation application.
ID Runtime Metric Definition
RM1 Number of items that u has rated
RM2 Number of users that have rated i
RM3 Number of users that have rated the items u has rated
RM4 Number of users that have rated more than 5 items u has rated
RM5 Number of neighbors of u that have rated i
RM6 Number of items that have rating similarity more than 0.2 with i
RM7 Number of items that have content similarity more than 0.2 with i
RM8 Size of the content of i

Note that these eight runtime metrics are ones that we consider related to the

performance of the three component engines. It is by no means a complete set,

and others might define different runtime metrics, even for the same engines. On

the other hand, we will show in the next section that it is unnecessary to use all
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eight runtime metrics. Using just a subset of these metrics, we can achieve almost

the same performance as using them all.

It is important to note that runtime metrics are specific to both an application

domain, and to the specific engines to be hybridized. Application specificity in

designing our metrics can be seen in the use of user ratings and item contents,

integral to the movie recommendation application. For other applications, other

runtime metrics would be defined. For example, in an online shopping application,

one could define a binary runtime metric “whether the user inputs query words”

because one might expect that the content-based engine will work better when

query words are presented.

Engine specificity can also be seen in our runtime metrics. For example, we

expect better performance of the user-based collaborative filtering engine as values

of RM5 rise, because this engine’s predictions improve when more neighbors have

rated the same item. Similarly, the content-based engine should perform better

when RM8 is higher, because the content similarity computed for this item has

higher accuracy when the content is more descriptive. Some of the runtime metrics

are predictive of the performance of multiple engines. For example, we expect all

three engines to perform better when RM1 is higher, but the two collaborative

filtering engines to be affected by this runtime metric more than the content-based

engine. It is important to select metrics that do a good job of differentiating the

engines, i.e., that show a different response across the range of values for each

engine.
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3.4.3 Meta-Learning Algorithms

There are several properties of the target application to be considered when choos-

ing meta-learning algorithms:

• Is the final prediction numerical or unordered categorical? If numerical, re-

gression algorithms are required, e.g., linear regression, regression trees, SVM

regression, etc. If the final prediction is unordered categorical, classification

algorithms are required, e.g., naive Bayes, decision trees, SVM, etc.

• Are the input features (predictions from components engines) numerical or

categorical or mixed? Some learning algorithms, such as nearest neighbors,

are good at dealing with numerical features, while others, such as naive Bayes,

are good at dealing with categorical features. Many algorithms, such as linear

regression and SVM, cannot work with mixed data without additional data

conversions.

In the movie rating application, both input features and final prediction are

numerical (real numbers between 1 and 5). Therefore, we tested the following

three learning algorithms:

1. Linear regression: learns a linear function of the input features. Note that

there could be a non-zero intercept term in the learned function. In cases

where all component engines tend to overrate (or underrate) in their predic-

tions, the intercept term may help reduce the error of the final prediction.

2. Model tree [Wang and Witten, 1997]: learns a piece-wise linear function
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of input features. As mentioned in Chapter 3.3.1, model tree algorithms

have been shown to be good candidates for the meta-learning algorithm. We

anticipate that this algorithm can capture some of the non-linearity of this

meta-learning problem.

3. Bagged model trees: bagged version of model trees. Bagging is an en-

semble learning method to improve the accuracy of machine learning models

by reducing the variances [Hastie et al., 2001]. Tree models generally have

small biases but large variances. Therefore, bagging them is usually a good

practice.

We use the implementations of these three algorithms in Weka, a widely-used

open source machine learning library [Witten and Frank, 2005]. The size of the

bagged ensemble is set to 10 for the bagged model trees algorithm. The default

values in Weka are retained for other learning algorithm parameters.

3.5 Experimental Results

In this section, we evaluate the performance of our STREAM system on the Movie-

Lens data set and compare with the performance of each component engine as well

as a static equal-weight hybrid system. We also compare the effectiveness of the

three learning algorithms in our STREAM system, and evaluate the utilities of

different sets of runtime metrics.
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3.5.1 Setup

We randomly split the entire MovieLens data set into a training set with X%

ratings and a testing set with (100-X)% ratings. The split is performed by putting

all ratings in one pool and randomly picking ratings regardless of the users. The

training set serves as background data for all three component engines and the

MetricEvaluator. In addition, the background data for the content-based engine

includes content from all movies; this is reasonable, since movie content is available

whether or not any given film has been rated. For each triplet 〈user, item, rating〉
in the test set, we compare the predicted rating with the true rating using mean

absolute error (MAE), a widely-used metric for recommendation system evaluation.

Smaller MAE means better performance.

We vary the value of X from 10 to 90 in order to evaluate the performance

of the system under different sparsity conditions. The background data is sparser

when the value of X is smaller. For each value of X, we repeat the random split

10 times and report the average performance of the system.

In each experiment, the level-2 predictor is learned by individually running the

three meta-learning algorithms on the training examples generated by performing a

10-fold cross-validation on the training set (X% of total data). The cross-validation

is performed as described in Chapter 3.3.3. The number of training examples

generated is the same as the size of the background set. For the MovieLens data

set, this number is 10,000 for X=10 and 90,000 for X=90. Since the model to

be learned only has 11 input features (three engine predictions plus eight runtime



59

metrics), it is not necessary to use all the training examples. Therefore we extract

a random sample of 5,000 training examples for learning the level-2 predictor.

3.5.2 Comparison

Figure 3.3 compares the performance of the different systems. The three dot-

ted curves correspond to the three single component engines: the user-based col-

laborative filtering engine, the item-based collaborative filtering engine, and the

content-based engine. As anticipated, the two collaborative filtering engines per-

form badly when X is small due to the sparsity problem and their performance

improves quickly as X increases, while the content-based engine’s performance is

less sensitive to the value of X, yielding a much flatter curve.

The “Equal Weight Linear Hybrid” curve in the figure corresponds to a static

linear hybrid of the three engines with equal weights 〈1/3, 1/3, 1/3〉. Its overall

performance is significantly better than the single engines. One possible explana-

tion is that averaging the predictions from the three engines reduces the variance

of the predictions.

The “STREAM - linear regression”, “STREAM - model tree” and “STREAM

- bagged model trees” curves show the performance of our STREAM system with

three different meta-learning algorithms. All three systems are consistently better

than the equal weight hybrid. The bagged model trees algorithm is slightly better

than the model tree algorithm, and they are both better than the linear regression

algorithm.
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Figure 3.3: Comparison of performance on the MovieLens data set.

3.5.3 Different Sets of Runtime Metrics

Note that some of the runtime metrics are engine-specific and computationally

expensive. For example, RM5 involves a compute-intensive neighborhood search

operation that is specific to the user-based collaborative filtering engine. We want

to eliminate such expensive runtime metrics and find a small set that are easily

computed but still provide good results. This corresponds to the feature selection

problem in machine learning because the runtime metrics are employed as input

features for the meta-learning problem. Therefore, we conduct experiments to

compare the STREAM system with different sets of runtime metrics. We use the

bagged model trees algorithm as the meta-learner, since it gave the best results in
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the previous experiment.

Experimental results are shown in Figure 4. The “STREAM - No Runtime

Metric” curve shows the performance of the STREAM system without any runtime

metrics, using only the predictions of the three engines as input meta-features to

the level-2 predictor. The curve shows consistently poorer performance than the

systems with runtime metrics, especially when the value of X is small. We believe

this results from having many users who rated few items when X is small; the

runtime metrics let the system weight the content-based engine more heavily when

predicting for these users.

The “STREAM - 8 Runtime Metrics” curve shows the performance of the
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STREAM with all eight runtime metrics, while the “STREAM - 2 Runtime Met-

rics” curve shows the performance with only two runtime metrics: RM1 and RM2.

We selected these two runtime metrics because they reflect local sparsity for the

input user and item, and are easy to compute. The curve shows that using only

these two metrics, the system can achieve approximately the same performance

as the system with all eight runtime metrics; adding additional metrics does not

necessarily improve the performance of the system.

3.6 Discussion

Since the STREAM framework is about hybridizing recommendation engines, we

do not consider the computational cost of the component engines. The only con-

cern is the additional computational cost of the STREAM system over the cost of

the component engines. We identify two different costs: runtime cost and offline

cost. At runtime, the STREAM system incurs additional computation for the run-

time metrics and for evaluation of the prediction model on the current inputs. If

chosen carefully, the runtime metrics can be computed quickly. For example, the

runtime metrics RM1 and RM2 in Table 1 can be stored in a look-up table, with a

table update whenever there is a new rating. The cost of evaluating the prediction

model (a linear or non-linear function) depends on the learning algorithms used.

Model-based algorithms, such as the three employed in our experiments, compute

predictions very quickly. The offline cost of learning the prediction model is high,

however. Most of the time is spent generating the training examples from the back-
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ground data. In our experiments, the training example generation is performed by

10-fold cross-validation, which suggests we need to re-learn the prediction model

only when 10 percent or more of the data has changed1. In summary, the STREAM

system has a low runtime overhead, while offline model learning is costly, but can

be performed infrequently.

Depending on the meta-learning algorithm employed, it’s possible for the STR-

EAM system to make predictions without running all component engines. For

example, if the prediction model is a linear function, there is no need to run the

engines whose coefficients are close to 0. For more complex models, we may create a

decision process that decide at runtime for each input user/item which component

engine(s) to run, taking into account both the prediction model and the values of

the runtime metrics.

1Further experiments show that prediction models learned by leave-one-out and 10-fold cross-
validation have approximately the same performance. Therefore, offline model learning when 10
percent or more of the data has changed is as good as online model learning for every single piece
of new data.



64

Chapter 4 – Integrating Multiple Learning Components Through

Markov Logic

This chapter addresses the question of how statistical learning algorithms can be

integrated into a larger AI system both from a practical engineering perspective

and from the perspective of correct representation, learning, and reasoning. Our

goal is to create an integrated intelligent system that can combine observed facts,

hand-written rules, learned rules, and learned classifiers to perform joint learning

and reasoning. Our solution, which has been implemented in the CALO system

[CALO, 2009], integrates multiple learning components with a Markov Logic in-

ference engine, so that the components can benefit from each other’s predictions.

We introduce two designs of the learning and reasoning layer in CALO: the MPE

Architecture and the Marginal Probability Architecture. The architectures, in-

terfaces, and algorithms employed in our two designs are described, followed by

experimental evaluations. We show that by integrating multiple learning compo-

nents through Markov Logic, the performance of the system can be improved via

a process called relational co-training.
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4.1 Research Background

Statistical machine learning methods have been developed and applied primarily

in stand-alone contexts. In most cases, statistical learning is employed at “system

build time” to construct a function from a set of training examples. This function

is then incorporated into the system as a static component. For example, in the

NCR check reading system [LeCun et al., 1998], the neural network system for

reading check amounts is a sophisticated but static component of the system.

Our aims are more ambitious. We want to address the question of how sta-

tistical learning algorithms can be integrated into a larger AI system through a

reasoning layer. We seek AI systems that exhibit end-to-end learning across all (or

at least most) components of the system after deployment. We also anticipate that

these systems will be built out of many separately-constructed components which

may or may not have learning capabilities. Hence, we cannot insist on a uniform

learning and reasoning algorithm for all of the components of the system. Instead,

we seek to provide a learning and reasoning layer that can interconnect these com-

ponents in such a way that if the components implement specified interfaces, the

system will exhibit the desired end-to-end learning behavior.

In this chapter, we present and evaluate two designs for the learning and rea-

soning layer, both based on Markov Logic [Domingos and Richardson, 2006] as

the reasoning engine. The rest of this chapter is organized as follows. First, we

describe the CALO system, which provides the framework and constraints within

which this work was carried out. Second, we describe the architecture, interfaces,
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and algorithms employed in our two designs. This is followed by two sets of ex-

perimental evaluations.

4.2 Learning in CALO

The work described here arose as part of the CALO project. CALO (Cognitive

Agent that Learns and Organizes) is an integrated AI system to support knowledge

workers at the computer desktop. One of the primary functions of CALO is to

help the user keep files, folders, email messages, email contacts, and appointments

organized. CALO models the user’s computer work life as consisting of a set

of projects, where each project involves a set of people, meetings, files, email

messages, and so on.

Figure 4.1 shows a portion of CALO’s relational model of this information

with objects as nodes and relations as arcs. All of the objects and many of the

relations are observed with certainty (e.g., which files are stored in which folders),

but the associations between projects and all of the other objects are inferred by

applying a mix of hand-written rules and learned classifiers. CALO also provides

interfaces for the user to associate objects with projects, so that when an incorrect

association is made, the user can correct it and establish new associations.

Rules are employed to capture domain knowledge. Some of the rules used in

CALO are shown in Table 4.1. For example, the Attachment Rule says that if a

document is attached to an email message, both the document and the message

tend to be associated with the same project. End-users can write their own rules
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Figure 4.1: A portion of CALO’s relational model. Dashed lines indicate uncertain
relations; asterisks indicate relations learned by classifiers.

as well.

A key observation of our work is that when rules and classifiers are inter-

mixed, the rules can establish connections between learning tasks. This creates

the opportunity to perform relational co-training. Co-training is a method for

semi-supervised learning in which there is a single, standard supervised learning

problem, but each object has two “views” or representations [Blum and Mitchell,

1998]. Two classifiers are learned from labeled training examples, one from each

view, but with the added constraint that the two classifiers should agree on the

available unlabeled data. There are many algorithms for co-training, e.g., [Blum
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Name Rule
Attachment Rule ∀ E, P, D attached(D, E) ⊃ [projectOf(E, P )

≡ projectOf(D, P )][2.20]
Sender Rule ∀ E, P, H sender(E, H) ⊃ [projectOf(E, P )

≡ projectOf(H, P )][2.20]
Recipient Rule ∀ E, P, H recipient(E, H) ⊃ [projectOf(E, P )

≡ projectOf(H, P )][2.20]
User Input Rule ∀ E, P userFeedback(E, P ) ⊃ projectOf(E, P )[2.94]
Single Project Rule ∀ E ∃! P projectOf(E, P )[1.73]

Table 4.1: Some rules used in CALO. Markov Logic weights are given in square
brackets.
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D: Documents
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A: Documents attached 

to messages
LD: Labeled documents
LM: Labeled messages

Figure 4.2: Venn diagram showing document-email relations.

and Mitchell, 1998; Nigam and Ghani, 2000].

In the case of CALO, instead of multiple views of objects, we have multiple

objects with relations among them. Figure 4.2 is a Venn diagram showing docu-

ments, email messages, and the subset of documents attached to email messages.

The combination of the document classifier fD, the email classifier fM , and the

Attachment Rule creates an opportunity for relational co-training. The two classi-

fiers can be trained on their respective labeled data but with the added constraint

that for the documents and email messages in region A, the predictions should be

consistent. Because this co-training happens through the relations between objects

or the chains of relations/rules, we call this learning behavior relational co-training.
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Through relational co-training, multiple learning components can be integrated

into the CALO system. We now describe two designs for an architecture that can

support this behavior in a general, unified way.

4.3 Integrating Learning and Reasoning

The starting point for our design is to divide the knowledge of the system into in-

defeasible knowledge and defeasible (probabilistic) knowledge. Indefeasible knowl-

edge includes events that are observed with certainty. The defeasible knowledge

includes all things that are uncertain. For example, in Figure 4.2, document ob-

jects, email objects and the attached(D, E) relations are indefeasible knowledge.

The Attachment Rule and predictions from the email and document classifiers are

defeasible knowledge.

The probabilistic knowledge base is represented in Markov Logic. A Markov

Logic knowledge base consists of a set of weighted first-order clauses and a set

of constant symbols. (Conceptually, the formulas that appear in the indefeasible

knowledge base are treated as having infinite weights in Markov Logic.) The

knowledge base defines a probability distribution over the set of possible worlds

that can be constructed by grounding the clauses using the constant symbols and

then assigning truth values to all of the ground formulas. A possible world is a truth

assignment that does not entail a contradiction. Given such a truth assignment α,

let SAT (α) be the set of ground formulas that are satisfied. For each formula F ,

let w(F ) be the weight assigned to that formula in the Markov Logic. The score of



70

the truth assignment is defined as the sum of the weights of the satisfied formulas:

score(α) =
∑

F∈SAT (α)

w(F ).

The probability of truth assignment is then defined as

P (α) =
exp score(α)∑
ω exp score(ω)

, (4.1)

where ω indexes all possible (contradiction-free) truth assignments. The nor-

malized exponentiated sum on the right-hand side defines a Gibbs distribution

that assigns non-zero probability to every possible world. The score of a possible

world α is proportional to the log odds of that world according to α.

If we consider the weight w(F ) on a particular formula F , we can interpret it as

the amount by which the log odds of a possible world will change if F is satisfied

compared to a world in which F is not satisfied (but all other formulas do not

change truth value).

In Table 4.1, the numbers in the square brackets after the formulas are the

weights assigned to them. These weights can be adjusted through a weight learning

process, but that is beyond the scope of this chapter. In this chapter, we assume

that the weights of the rules are all fixed. Weights for the classifiers’ predictions

are assigned by taking the predicted probabilities and converting them to log odds

according to:

w = log
P (Class|Object)

1− P (Class|Object)
, (4.2)
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Figure 4.3: The MPE Architecture.

4.3.1 The MPE Architecture

Figure 4.3 shows our first architecture, called the MPE Architecture. The box

labeled “PCE” denotes the Probabilistic Consistency Engine. This is the in-

ference engine for the Markov Logic system. In this first architecture, its task is to

compute the possible world with the highest score. This is known in probabilistic

reasoning as the Most Probable Explanation (MPE). The grounded Markov Logic

knowledge base defines a Weighted Maximum Satisfiability (Weighted MaxSAT)

problem, for which many reasonably efficient solvers are available. Our implemen-

tation employs a mix of the MaxWalkSat [Kautz et al., 1997] algorithm for fast,

approximate solution and the Yices linear logic solver [Dutertre and de Moura,

2006] for exact solution. The implementation also employs the Lazy-SAT algo-

rithm [Singla and Domingos, 2006] which seeks to compute only those groundings

of formulas that are needed for computing the weighted MaxSAT solution.
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Under this architecture, the learning components draw their training examples

from the MPE and post their predictions into the Probabilistic Knowledge Base.

We need to take care, however, that a learning component does not treat its own

predictions (which may be very weak) as labels for subsequent training. That

is, a prediction such as projectOf(report1.doc, CALO) might be asserted with a

probability of 0.51 (log odds of 0.04). But this might then cause the MPE to

contain projectOf(report1.doc, CALO). If the document classifier treated this as

an ordinary training example, it would rapidly lead to “dogmatic” behavior where

the classifier would become absolutely certain of all of its predictions.

To address this problem, the PCE computes a separate MPE for each learning

component. When computing the MPE for learning component i, the PCE ignores

all assertions that were made by component i. Hence, we call this the “Not Me

MPE” for component i.

In order to be integrated into the architecture, each learning component must be

able to accept (unweighted) training examples of the form “TargetPredicate(Obje

ct, Class)” and produce probabilistic predictions of the form “TargetPredicate(Ob

ject, Class) with probability p”. The architecture ensures that the following three

invariants are always true:

• For each learning component, the set of training examples for that component

consists exactly of all instances of “TargetPredicate(Object, Class)” that

appear in the Not Me MPE for that component.

• For each learning component, the learned classifier is always the classifier that
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results from applying the learning algorithm to the current set of training

examples.

• For each learning component, each Object, and each Class, the Probabilistic

KB has an assertion of the form “TargetPredicate(Object, Class)” with

weight w computed according to Equation 4.2 where P (Class|Object) is the

probability assigned to Class by the current learned classifier.

These invariants are maintained by the following infinite loop:

1. Accept new constants and new assertions.

2. Compute the global MPE and the Not Me MPEs for each learning compo-

nent.

3. Update the training examples for each learning component (if necessary).

4. Recompute the learned classifier for each learning component (if necessary).

5. Update the probabilistic predictions of each learning component (if neces-

sary).

6. Repeat

In practice, these steps are performed concurrently and asynchronously. We

employ anytime algorithms for the MPE calculations.

The MPE Architecture supports relational co-training over multiple learning

components. Consider the Attachment example shown in Figure 4.2. The Not
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Me MPE for the document classifier includes: (1) labeled examples from LD;

(2) documents in region 2 with class labels propagated from email labels via the

Attachment Rule; and (3) documents in region 3 with class labels propagated from

the predicted email labels by the email classifier. The Not Me MPE for the email

classifier is similar.

Then both classifiers will be retrained based on their own Not Me MPEs. Each

classifier will be influenced by the predictions from the other classifier, as trans-

mitted by the Attachment Rule. This may cause the classifiers to change some of

their predictions. This will result in changes in the Not Me MPEs and, therefore,

additional changes in the classifiers, which will cause the process to repeat.

Experiments have revealed that this process can loop. The predicted class

labels of some of the “unsupervised” documents and email messages can flip back

and forth forever. To prevent this, we relax slightly the enforcement of the third

invariant. After a classifier has been retrained, if its predicted probability for an

example does not change by more than ε (e.g., 0.05), then the change is ignored.

Obviously, setting ε large enough will cause the iterations to terminate.

4.3.2 The Marginal Probability Architecture

The MPE Architecture was initially adopted because the MPE computation is

relatively efficient. However, there are several problems with this design. First,

there are often “ties” in the computation of the MPE, because there can be many

literals that can be either true or false without changing the score of the possible
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worlds. We attempt to identify and ignore such literals, but this is difficult in

general. Consequently, some of the training examples can receive random labels,

which can hurt performance. Second, each new classifier that is added to CALO

requires an additional Not Me MPE computation. Since our long-term goal is

to have 10-20 classifiers, this will slow down the reasoning by a factor of 10-20.

Finally, from a learning perspective, this approach to joint training is known to

produce biased results. The MPE approach is directly analogous to the use of

the Viterbi approximation in training hidden Markov models and to the k-Means

clustering algorithm for training Gaussian mixture models. In all of these cases,

it is well-established that the resulting model fit is biased and does not maximize

the likelihood of the training data.

These considerations led us to develop the Marginal Probability Architecture,

which is shown in Figure 4.4. The basic structure is the same. The key change is

that instead of computing the MPE, the PCE computes the marginal probability

of each ground instance of the target predicates for the various classifiers. This is

the probability P (TargetPredicate(Object, Class)) given the contents of both the

Knowledge Base and the Probabilistic Knowledge Base.

In addition, instead of standard training examples, each learning algorithm

that is integrated into the architecture must be able to accept weighted training

examples of the form “TargetPredicate(Object, Class) with probability p” and

produce probabilistic predictions of the same form. The architecture ensures that

the following three invariants are always true:

• For each learning component, the set of training examples for that component
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Figure 4.4: The Marginal Probability Architecture.

consists exactly of the set of all groundings of the form “TargetPredicate(Ob

ject, Class)” weighted by the marginal probability of those ground instances

as computed by the PCE.

• For each learning component, the learned classifier is always the classifier that

results from applying the learning algorithm to the current set of weighted

training examples.

• For each learning component, each Object, and each Class, the Probabilis-

tic KB has an assertion of the form TargetPredicate(Object, Class) with

weight w computed according to Equation 4.2 where P (Class|Object) is the

probability assigned to Class by the current learned classifier.

The PCE computes the marginal probabilities by applying the Lazy MC-SAT

algorithm [Poon and Domingos, 2006]. MC-SAT is a Markov Chain Monte Carlo

algorithm based on slice sampling. It generates a sequence of possible worlds that
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(after convergence) is drawn from the distribution defined by Equation 4.1. Lazy

MC-SAT extends the MC-SAT algorithm to instantiate ground clauses only as

needed. In our implementation, the Lazy MC-SAT sampling process is constantly

running in the background. Because new evidence and new or updated predictions

are continually being added to the indefeasible knowledge base and the probabilistic

knowledge base, the MC-SAT process probably never converges. Consequently, we

base our probability estimates on the 200 most recent samples from this process.

Note that in this design, the predictions of each learning algorithm influence its

own weighted training examples. If the learning algorithm maximizes the weighted

log likelihood of the training examples, then this architecture can be viewed as an

implementation of the EM algorithm [McLachlan and Krishnan, 1997] applied to

semi-supervised learning, and it will converge to a local maximum in the data

likelihood.

The Marginal Probability Architecture also supports the relational co-training

over multiple learning components. In the Attachment example, the document

classifier will be trained with (1) labeled examples from LD; (2) its own prob-

abilistic predictions on unlabeled documents that are not attached to any email

messages; (3) documents in region 2 with class probabilities propagated from email

labels via the Attachment Rule; and (4) documents in region 3 with class proba-

bilities combining the predictions from both the document classifier and the email

classifier. In this example, the marginal probabilities of any document in region 3

computed by the PCE are equivalent to the probabilities obtained by multiplying

the predicted probabilities from the two classifiers for each class and renormalizing
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so that they sum to 1. The email classifier is trained similarly. Then the trained

classifiers will predict the projects of all unlabeled objects and assert the weighted

predictions into the PCE. Again, new marginal probabilities will be computed and

fed to the learning components. This process will iterate until the changes in the

marginal probabilities are smaller than ε.

In practice, in the CALO system, new observations are arriving continually and

both the MPE and the marginal probability computations are only approximate,

so the whole learning and reasoning process never terminates.

4.4 Experimental Evaluations

In order to compare the effectiveness of the two architectures and demonstrate

the performance boost through relational co-training, we have conducted two sets

of experiments. In the first set of experiments, we study the behavior of the

classifiers under the two architectures, both separately and combined together,

and compare their performance. In the second set of experiments, we demonstrate

the performance boost through relational co-training with different sets of rules on

a dataset collected using TaskTracer.

4.4.1 MPE Architecture vs. Marginal Probability Architecture

We conducted our first set of experiments on a dataset with real objects but syn-

thetic attachment relations. This dataset was collected from 14 CALO users (all
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knowledge workers). These users manually labeled their own files into 4 projects.

Each of them labeled about 100 files. The results presented here are averaged

across all 14 users. Unfortunately, these files do not include email messages, nor

are any of the files attached to email messages. Instead, we randomly split the files

for each user into sets D and M of equal size to simulate documents and emails.

Then we generated a set A of attachments by randomly pairing files from D and

M under two constraints: (1) each pair contains one file from D and one file from

M; (2) two files in a pair must be labeled with the same project. By doing this,

we enforce the Attachment Rule to be perfectly true in our experiments. In the

experiments, we vary the size of A to contain 20%, 30%, 40%, 50% and 60% of the

files.

A subset of D was randomly chosen to be Labeled Documents (LD), and sim-

ilarly a subset of M was randomly chosen to be Labeled Emails (LM). All other

files in D and M are treated as unlabeled. We varied the sizes of LD and LM to

contain 4, 8, 12, and 16 files.

Two widely-used learning algorithms, Naive Bayes and Logistic Regression,

were examined in these experiments. Because our aim is to create a general ar-

chitecture in which any learning algorithm can be used, we did not tune the two

algorithms. They are used as black boxes that support the standard learning in-

terfaces: telling examples, training classifier, and predicting examples. The files

and emails are represented using Bag-Of-Words features. The accuracy of the fi-

nal classifiers over all unlabeled documents/emails was measured at convergence.

In each single experiment, the two classifiers are trained using the same learning
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algorithm.

4.4.1.1 Results - Single Classifier

Before we can evaluate the effects of relational co-training among multiple classi-

fiers, we want to make sure that if there is only one classifier in the system, the

application of the reasoning layer will not result in any weird behavior.

In fact, it is quite interesting to examine the behavior of a single classifier

under our two architectures. Assume we only have one classifier, the document

classifier. Under the MPE Architecture, the Not Me MPE contains only the labeled

documents in LD, and it will not change. That means the classifier works exactly

as if there is no reasoning layer. Therefore, the performance of the single classifier

under the MPE Architecture can be treated as the baseline measure. Under the

Marginal Probability Architecture, the classifier will be trained with the labeled

documents in LD and its own probabilistic predictions on the unlabeled documents

in D. The training-and-predicting iterations will continue until convergence.

Figure 4.5 shows the learning curves of the single classifier under the two ar-

chitectures. We can see that both learning algorithms show expected learning

behaviors under either architecture. Under the Marginal Probability Architecture,

Logistic Regression performs better than baseline, while Naive Bayes performs

worse. However, the differences are small enough that we can claim it is safe to

integrate single classifiers into the reasoning layer.
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Figure 4.5: Learning Curves - Single classifier.

4.4.1.2 Results - Two Classifiers

Now we integrate two classifiers, the document classifier and the email classifier,

to test their performance under the simulated Attachment scenario.

Figure 4.6 shows the learning curves of the classifiers under the two architec-

tures when 40% of the documents and emails are attached to each other. Note

that the classifiers’ performance under the MPE Architecture is very close to the
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Figure 4.6: Learning Curves - Two classifiers.

Baseline performance. Under the Marginal Probability Architecture, however, we

observe an improvement over the Baseline performance, and Logistic Regression

benefits from relational co-training more than Naive Bayes.

Figure 4.7 shows how the performance of the “integrated” classifiers changes

with the size of the attachment set A. The number of labeled examples is fixed

at 8 in this experiment. As expected, the performance improvement becomes

larger when the number of attached pairs increases, because more attached pairs
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Figure 4.7: Co-training performance with different size of the attachment set A.

lead to more co-training opportunities. Under the MPE Architecture, this trend

is not so obvious, and the performance is close to the baseline even when there

are more attachment pairs. Under the Marginal Probability Architecture, on the

other hand, for both Naive Bayes and Logistic Regression, performance goes up

with more co-training opportunities, and it is significantly better than the baseline

performance.
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4.4.2 Experiments on TaskTracer Dataset

We conducted our second set of experiments on a dataset collected using the Task-

Tracer system. The goal of these experiments is to demonstrate how the perfor-

mance of the classifiers can be improved through relational co-training with variety

of sets of hand-written rules. Unlike previous experiments in which the Attach-

ment Rule is perfectly correct on the data, the rules used in these experiments are

not 100% correct on the data and thus have finite Markov Logic weights.

4.4.2.1 Data Collection

As mentioned in Chapter 2, TaskTracer records user’s activities on the computer,

including accessing files, receiving emails, attaching files to emails, storing files into

folders, and so on. It also associates user’s files/emails with tasks. The dataset

was collected from a user who has run TaskTracer for several years. We collected

all files and incoming emails associated with four different tasks, as well as the

attached relations between them. We also collected the folders that these files are

filed into with fileIn relations, and the contacts that are senders of the emails

with sender relations. Table 4.2 shows how many objects and relations of each

type are collected.

The rules employed in the experiments are shown in Table 4.3. These rules can

be rendered in English as “files and emails attached to each other should associate

with same task”, “files and folders that they are filed in should associate with same

task”, “emails and contacts that send them should associate with same task”.
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Object/Relation Number
File Object 425
Email Object 827
attached Relation 154
fileIn Relation 422
sender Relation 603

Table 4.2: TaskTracer dataset statistics.

Name Rule
Attachment Rule #1 fileHasTask(f, t) ∧ attached(f, e)

⇒ emailHasTask(e, t) [1.69]
Attachment Rule #2 emailHasTask(e, t) ∧ attached(f, e)

⇒ fileHasTask(f, t) [1.61]
Foldering Rule #1 fileHasTask(f, t) ∧ fileIn(f, fo)

⇒ folderHasTask(fo, t)[2.32]
Foldering Rule #2 folderHasTask(fo, t) ∧ fileIn(f, fo)

⇒ fileHasTask(f, t)[0.78]
Sender Rule #1 emailHasTask(e, t) ∧ sender(e, c)

⇒ contactHasTask(c, t)[3.22]
Sender Rule #2 contactHasTask(c, t) ∧ sender(e, c)

⇒ emailHasTask(e, t)[−0.08]

Table 4.3: Rules used in the experiments on the TaskTracer dataset. Weights are
learned from the data.
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Each rule in Table 4.3 has its own Markov Logic weight, as shown in the squared

brackets. These weights are learned from the dataset by running a simple weight

learning procedure: we first count the number of positive (P) and negative (N)

examples for a rule, then compute the weight as the log odds: log(P/N).

Based on the experimental results in Chapter 4.4.1, we chose the Marginal

Probability Architecture as the architecture and Logistic Regression as the learning

algorithm for training classifiers in these experiments.

4.4.2.2 Experiment Design

The experiments simulate the following real usage scenario: the user initially labels

some files and emails to train a document classifier fD and an email classifier fE

with or without the PCE; then these two classifiers make predictions on newly

observed files and incoming emails. We want to show that, by integrating the

classifiers using the PCE and adding relations, the performance of the classifiers

can be improved. Since the relations are obtained for no cost as the system observes

the user’s actions (e.g., TaskTracer and CALO), the performance boost is gained

for “free”.

We identify three scenarios in training the two classifiers:

1. Baseline: This is the traditional supervised learning scenario. fD is trained

on the files labeled by the user, and fE is trained on the emails labeled by

the user.

2. PCE-Attached: We know that some of the user-labeled files are attached to
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emails, and some of the user-labeled emails have files as attachments. When

fD and fE are integrated via the PCE and these attached relations are also

asserted, the labels of the labeled files can be propagated to the unlabeled

emails to which they are attached, and the labels of the labeled emails can

be propagated to the unlabeled files that are attached to them 1. Then the

two classifiers are updated in the EM-style as we described in Chapter 4.3.2.

3. PCE-All: In addition to the attached relations, we assert the fileIn and

sender relations for the labeled files/emails into the PCE. Thus, the labels

on files will be propagated to the folders that contain those files and labels on

email messages will be propagated to the contacts that sent those messages.

Then the labels will propagate to the other files inside folders and other emails

sent by the contacts, as well as additional emails/files through the attached

relations. This will bring more unlabeled files/emails that are connected to

the originally labeled files/emails (through either a single rule or a chain of

rules) into the relational co-training.

In order to simulate these three scenarios, we randomly split the dataset into

three parts: TRAIN1, TRAIN2 and TEST, with 25%, 25% and 50% of the total

data. The idea is that the files in TRAIN1 and emails in TRAIN2 are treated

as labeled objects, and the files/emails in TEST are only used to test the trained

classifiers. The settings of the three scenarios are summarized in Table 4.4. Not all

files in TRAIN1 and emails in TRAIN2 are provided as labeled examples. Instead,

1Since the Attachment Rules are probabilistic, these propagated labels are “soft” labels (prob-
ability distributions over all four tasks).
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we randomly pick 4, 8, 16 and 32 of them to label in order to generate learning

curves.

The traditional way of testing classifiers is to have them make predictions for the

files and emails in TEST one by one. However, in the CALO system, the prediction

for a new object does not come directly coming from the classifier. Instead, the

classifier makes a prediction and asserts it into the PCE. The PCE then assigns

labels to the new object based on its marginal probability computation. In the case

where an email with an attached file is received, fE will predict for the email and

fD will predict for the attached file, and both predictions will be asserted into the

PCE which will then make the final predictions for the email and the file together.

In our experiments, we implement both testing protocols (named SimplePredict

and PCEPredict) and compare them.

4.4.2.3 Results - Comparison of Three Scenarios

Figure 4.8 shows the learning curves of the two classifiers in the three scenarios.

The classifiers are tested using the PCEPredict protocol. Both classifiers work

better for the PCE-Attached scenario than for Baseline, but the improvements

are relatively small. The reason is that the attached relation is quite sparse.2 Even

though the relational co-training does help, the chance of co-training is small under

the PCE-Attached setting, since only a few unlabeled objects are asserted into

the PCE.

2In the dataset, 135 of 827 emails (16.3%) have attachments, and 96 of 425 files (22.6%) are
attached to emails.
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Figure 4.8: Precision of the classifiers under three scenarios.

Both classifiers show greater improvement in the PCE-All scenario. This is

due to the large number of unlabeled objects linked to the labeled objects through

the chain of rules including the Foldering and Sender rules. The improvement is

much larger for the document classifier than the email classifier. We believe the

reason is that the Sender rules are much weaker than the Foldering rules.

This result shows that, by adding relations that connect unlabeled objects to

the labeled objects into the PCE, performance of the classifiers can be improved.
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In the CALO system, these relations (attaching file to email, saving file to folder,

receiving emails, etc.) are captured automatically without extra user interactions.

Therefore, classifiers integrated via the PCE obtain this performance boost for

“free”.

4.4.2.4 Results - PCEPredict vs. SimplePredict

Figure 4.9 illustrates the comparison between the two testing protocols — Sim-

plePredict and PCEPredict. For the document classifier, they are almost identi-

cal. For the email classifier, PCEPredict is consistently better than SimplePredict.

Thus, it is a good idea to let the PCE, instead of the classifiers, make the predic-

tions on new objects.
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Figure 4.9: Comparison of two testing protocols.
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Chapter 5 – Summary and Future Work

5.1 Summary

There are two research contributions of this dissertation. First, we demonstrate,

in real-world software systems, how machine learning can be applied to help the

user find information on the computer and in the internet. We also explore the

idea of creating intelligent user interfaces by enhancing existing user interfaces

with machine learning predictions. Second, we propose novel ways of combining

multiple separately-engineered learning components to improve overall system per-

formance. Along this direction, our research work covers both combining learning

components that perform the same task and combining learning components that

perform different tasks. These contributions are presented in the following three

applications.

To help computer users quickly access their files, we applied machine learning

to records of user activity to recommend file system folders. We described our first

application, called FolderPredictor, which reduces the user’s cost for locating files

in hierarchical file systems. FolderPredictor predicts the file folder that the user

will access next, by applying a cost-sensitive online prediction algorithm to the

user’s previous file access activities. Experimental results show that, on average,

FolderPredictor reduces the cost of locating a file by 50%. Perhaps even more
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importantly, FolderPredictor practically eliminates cases in which a large num-

ber of clicks are required to reach the right folder. We also investigated several

variations of the cost-sensitive prediction algorithm and presented experimental

results showing that the best folder prediction combines an application-specific

MRU folder with two folders computed by our cost-sensitive prediction algorithm.

An advantage of FolderPredictor is that it does not require users to adapt to a

new interface. Its predictions are presented directly in the open/save file dialogs.

Users are able to easily adapt to exploit these predictions.

Recommender systems are one of the most popular means of assisting inter-

net users in finding useful online information. Our second application is called

STREAM, which is a novel framework for building hybrid recommender systems

by stacking single recommendation engines with additional meta-features. In this

framework, the component engines are treated as level-1 predictors, with a level-

2 predictor generating the final prediction by combining component engine pre-

dictions with runtime metrics that represent properties of the input users/items.

The resultant STREAM system is a dynamic hybrid recommendation system in

which the component engines are combined in different ways for different input

users/items at runtime. Experimental results show that the STREAM system

outperforms each single component engine in addition to a static equal weight

hybrid system. This framework has the additional advantage of placing no restric-

tions on component engines that can be employed; any engine applicable to the

target recommendation task can be easily plugged into the system.

Our third application is called Integrating Learning and Reasoning, which is a
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part of the CALO project that helps computer users better organize their electronic

resources. In the CALO system, multiple machine learning components (e.g., clas-

sifiers) are employed to make intelligent predictions. Our goal is to combine these

learning components, observed facts, and rules to perform joint learning and rea-

soning. To achieve this, we employed a Markov Logic inference engine, named the

Probabilistic Consistency Engine (PCE). Two designs of the interfaces between the

PCE and the learning components, the MPE Architecture and the Marginal Prob-

ability Architecture, were described and evaluated. Experimental results showed

that both designs can work, but that the Marginal Probability Architecture works

better on improving the performance of the learning components when there are

co-training opportunities. Further experiments with TaskTracer data show that re-

lational co-training via the PCE greatly improves the performance of the classifiers

without requiring the user to label more data.

5.2 Future Work

Beyond the research work discussed in this dissertation, there are several interesting

problems that require further research.

5.2.1 Unsupervised FolderPredictor

The FolderPredictor discussed in Chapter 2 is “supervised” — the user is asked

to declare what task they are working on at each point in time. However, we find
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from user feedback that declaring the current task is the biggest overhead of the

TaskTracer system. Therefore, it would be very interesting to create an “unsuper-

vised” version of FolderPredictor that makes folder predictions without knowing

what task the user is working on. The ultimate goal is to create standalone Folder-

Predictor software that runs silently in the background and provides high-quality

folder predictions to the user without requiring any additional user interaction.

There are several ways to create an unsupervised FolderPredictor. One simple

approach is to assume that there is only one task and just apply the prediction

algorithms proposed in this dissertation. We have implemented this approach

and the initial results look very promising — it shows performance close to the

“supervised” version. Another approach is to use provenence information to make

folder predictions. Provenance relations are the relations that connect multiple

resources, for example, attach files to emails, save files into folders, copy texts

from one file to another, and so on. TaskTracer captures these relations and draws

provenance graphs from them [Shen et al., 2009a]. We could use these graphs to

estimate the distribution of target folder by traversing the provenance graphs that

contain currently active resources.

5.2.2 Learn to Select the Best Folder Prediction Algorithm

In Chapter 2.4, multiple folder prediction algorithms are proposed. Experiments

show that, on average, the best algorithm is the AMCSP algorithm. However,

instead of implementing only the AMCSP algorithm in FolderPredictor, a smarter
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approach might be to run all the algorithms to make different predictions and

select the prediction that has the minimum expected cost. The reasons are:

1. The average performance of other prediction algorithms, comparing with that

of Windows Default, is relatively close to the AMCSP algorithm.

2. User behaviors are quite different from each other. The AMCSP algorithm

may not be good for everyone.

3. The AMCSP algorithm is not necessarily the best algorithm at each single

prediction point.

The challenge is how to select the algorithm. We can formulate this as an

online learning problem and train a classifier to predict which algorithm to use at

each prediction point. The input features can include historical precision of each

algorithm, historical precision of each algorithm for the current task, predicted

folders from each algorithm, user’s current desktop environment (e.g., windows

opened/shown, applications in use, current action is open vs. save), and so on. A

possible start point might be [Herbster and Warmuth, 1998].

5.2.3 Discovery and Selection of Runtime Metrics

The ultimate goal of the STREAM project is to enable construction of application-

specific hybrid recommendation systems from sets of individual engines by a com-

puter engineer who is not an expert in recommender technology. However, the

runtime metrics used in our experiments are manually defined by domain experts
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who have some knowledge of how properties of the input users/items are related

to the quality of the engines’ predictions. Automatic or semi-automatic discovery

of runtime metrics given the target application and the individual engines would

be an interesting subject of future research.

On the other hand, given a set of runtime metrics, we want to further investigate

how to identify the best subset. As shown in the experiments, incorporating more

runtime metrics does not necessarily increase the performance of the system. There

is also a tradeoff between system performance and computational cost. Since the

runtime metrics are employed as additional input features to the machine learning

problem, it would be natural to apply feature selection techniques to select runtime

metrics.

5.2.4 Combining Other Kinds of Learning Components with the

PCE

In Chapter 4, the learning components integrated with the PCE are supervised

classifiers (document classifier and email classifier), and the interface protocols are

defined specifically for this type of learning component. However, there are many

other forms of reasoning and problem solving that remain beyond the scope of

our current designs. Some that we hope to incorporate in the near future include

entity resolution, ranking, and information extraction. The long term goal is to

support all kinds of reasoning and problem solving found in AI systems.
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5.2.5 Weight Learning and Rule Learning within the PCE

Another direction we want to pursue is to have the PCE automatically adjust

the weights of the rules in the Probabilistic Knowledge Base. Humans are good

at writing rules but not so good at assigning weights to the rules they write. A

solution is to let the PCE assign weights to the hand-written rules by running

a weight learning algorithm on the data stored in the PCE. In Chapter 4.4.2,

we employed specifically-written weight learning routines that simply count the

number of positive and negative examples for each rule. When the rules are not

known in advance, we could apply other general purpose weight learning algorithms

like the one from Alchemy [Lowd and Domingos, 2007].

Another important direction is to investigate methods for allowing CALO to

learn its own rules. There are two ways to do this: (1) employ a Markov Logic rule

learning algorithm like the one in Alchemy [Kok and Domingos, 2005] that learns

rules and weights together, or (2) run a first-order rule learner like FOIL [Quinlan

and Mostow, 1990] to learn the unweighted rules and then separately learn weights

for them. Preliminary experiments on the TaskTracer data show that the second

method (FOIL + Weight Learning) works better. We can successfully learn rules

like the Attachment and Foldering Rules in Table 4.3. Some other interesting rules

are also learned, for example, “If a folder contains two files and both files belong

to task T, then the folder belongs to task T”.

We anticipate that running weight learning or rule learning procedures every

time a new piece of data comes into the PCE will be extremely time-consuming.
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Therefore, a good practice will be to run them at night, or when a certain percent-

age of new data arrived since the last run.

5.2.6 Controlling the Semi-Supervised Learning within the PCE

Marginal Probability Architecture

In the PCE experiments on the TaskTracer data presented in Chapter 4.4.2, not all

unlabeled objects were included in the EM-style semi-supervised learning (SSL).

Instead, we only included those (relatively few) unlabeled objects that were related

to the labeled objects by one of the key relations (attached, filedIn, sender).

The reason is that when we included a large number of unrelated objects in our

preliminary experiments, SSL did not work well and in some cases performed worse

than the baseline.

Therefore, the aspect of the experiment design, in which the EM-style SSL was

limited only to objects that are meaningfully connected to labeled objects through

relations, was important. This is a way of fusing the graph-based approach to

SSL [Zhu, 2005] with the EM approach to SSL. A topic for future research is to

understand why and to understand how to automatically control SSL within the

PCE marginal probability architecture.
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