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coding messages sent over a continuous Gaussian channel have been in- 

vestigated in papers by Claude E. Shannon and David Slepian of the Bell 

Telephone Laboratories. In these papers the problem is shown to reduce 

to finding the probability that a point on the surface of an n- dimen- 

sional spherical surface will be moved out of a polytope, apex at the 

origin and center line through the point. Using this model Shannon 

determined asymptotic bounds for Qn(wl) and Qn(wl) , the lower and 

upper bounds respectively for the decoding error probability, wi the 

generating angle of the cone which replaces the polytope. Slepian de- 

termined an exact expression for Qn(wl) in terms of a triple recur- 

sion formula. For the upper bound he obtained an integral of the 

function Qn(w) sinn -2w from 0 to wl. This integral had to be 

evaluated by a trapezoidal rule for 150 data points. In the present 

paper three alternative methods are given for determining the lower and 

upper bounds on the probability of error in decoding. The first two 

depend on the tabulations of Poisson's distribution and the Hh func- 

tion. The third is an exact solution in terms of polynomials and ex- 

ponentials in an integrand. Thus a significant simplification of the 

evaluation of the bounds is obtained. 
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ON THE SHANNON- SLEPIAN ESTIMATES OF 

PROBABILITY OF DECODING ERROR 

INTROWCTION 

In 1959 Claude E. Shannon (12) of the Bell Telephone Laboratories 

published a paper describing a method for bounding the probability of 

decoding error for communication using an optimum code on a continuous 

Gaussian channel and determined asymptotic bounds for this error as a 

function of several system parameters. His results enable one to com- 

pare the merits of different codes or, given a communication system, 

to determine the coding of M words to minimize the probability of 

error in decoding. In 1963 David Slepian (13), also of the Bell Tele- 

phone Laboratory, extended the work of Shannon and obtained explicit 

expressions for the error bounds which he evaluated numerically. In 

this paper an alternate approach is used to obtain expressions for the 

error bounds which are at least different from those of Slepian and may 

well be somewhat easier to evaluate, particularly the upper bounds. 

The "Shannon- Slepian" (12, 13) method of determining error bounds 

applies to M-word block codes of length n. That is, codes which map 

the integers 1, 2, ..., M onto the code words ml, m2, ..., mm, where 

each word mi is a sequence of n real numbers silt sit, ..., sim. 

The integers 1, 2. ,.., M represent words in a code book, not to be 

confused with the code words mi. The codes to be used are also re- 

stricted by a transmitter power limitation. In general, each code word 
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is constrained to be transmitted with the same signal power. The 

method, however, may be modified to allow codes where the code words 

are constrained to have a maximum or average signal power limitation. 

It is further assumed by Shannon (12) that the code words have 

equal probability of occurrence and are transmitted over a channel 

having Gaussian noise which affects each component sij of the word 

mi independently of all other components aik, k # j, the variance 

being N for each component. In other words, if the component sij 

is transmitted some other real number sij xj will be received, 

where each xj is an independent Gaussian random variable with vari- 

ance N. 

Code words received at the receiver are decoded according to an 

optimal decoding system. That is, there exists a geometric criterion 

such that the probability of error in decoding is minimized. The 

representation of the code words as a sequence of n real numbers 

suggested to Shannon (12) that he interpret each code word as a message 

point, or a message vector, in n- dimensional space, where the sij 

represent the coordinates of the i -th message point. Adoption of 

Shannon's (12) geometrical viewpoint allows us to visualise coding and 

decoding systems and aids us in analyzing these systems. A decoding 

system is a partitioning of n- dimensional space into M subsets, each 

corresponding to one of the M integers. Decoding is accomplished by 

assigning the value of i corresponding to the subset of n- dimension- 

al space into which a received message point falls to the message. An 

error in decoding occurs when the value of the index assigned differs 

+ 



from that of the word actually transmitted. 

The geometrical interpretation of the channel noise is that of a 

noise vector centered at the transmitted message point in n- dimensional 

space. As remarked above, each of the n components has an independ- 

ent Gaussian distribution with variance N. The effect of this noise 

vector is that of an additive vector which moves the endpoint of the 

message vector to a new point in space. It is this new point that is 

received and decoded. Therefore, an error in decoding occurs when the 

noise vector takes a message point outside its assigned volume of n- 

dimensional space. 

If distance in n- dimensional space corresponds to signal amplitude 

we can also express the limitation on the transmitter power in geo- 

metrical terms. Signal power is proportional to the square of the 

signal amplitude; therefore, requiring each code word to be transmitted 

with the same power is equivalent to requiring that each code word have 

the same absolute magnitude, or, geometrically, that each message point 

lies at the same distance from the origin. If we let nP be the 

transmitter power we then have the requirement that all message points 

lie on the surface of an n- dimensional ball of radius (nP) *. 

Let us now consider the distribution function of the noise in this 

geometrical coding scheme. Let xj be the noise component along the 

j-th coordinate axis, j = 1, 2, ..., n. Each probability density has 

the well -known Gaussian form, 

-aj/2N 

pxj(aj) 
_ (21 * s . -oo < aj < 00 
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and, because of statistical independence, the vector valued random 

variable has the spherical form of the density, 

2 

-1c41 /2'14 

Pia') /2 (1.2) e , 

(2nN ) 

where lá 12 = + 4 + ... + . For the random variable taken to 

be r, the Euclidean distance measured from the message point, the 

density function of interest in later developments has the normalised 

form, 

Pr(4) tn-3)/2 
an-20 > 0, n > 2. (1.3) 

htY') 

Noting that the spherical Gaussian distribution function is mono- 

tone decreasing with distance from the origin, and that the origin of 

the noise vector is a message point, we see that the probability of a 

message point being moved a distance r from the origin decreases with 

increasing r. Therefore, we can minimize the probability of error in 

decoding, or devise an optimal decoding scheme, by decoding a received 

message point as the integer corresponding to the message point nearest 

it in n- dimensional space. Such a system is known as minimum distance 

decoding or maximum likelihood decoding. Geometrically it requires 

the partitioning of n- dimensional space into M n-dimensional polytopes 

whose sides are the n.1 dimensional l perplanes which are the per- 

pendicular bisectors of the set of (2) chords required to connect each 

message point with all the other message points. As each message point 

= 1 

4 

al 
at 

2 
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is at the same distance from the origin of the 000rdinate system each 

polytope will be a symmetric n- dimensional pyramid, apex at the origin 

and axis of sy 1iiletrf passing through the origin and the message point. 

This geometric approach to the coding and decoding problem re- 

duces the problem of determining the probability of decoding error to 

determining the probability that a message point will be moved outside 

its assigned pyramid by the noise vector. 

Let us now consider the problem of placing a lower bound on the 

probability of decoding error, as presented by Shannon (12). Let Pe 

be the probability of decoding error for the code and let Pei be the 

probability of decoding error when the t-th word is transmitted. Re- 

membering that each word is equally likely to be selected for trans- 

mission we then have 

a (1.4+) 

Using our geometrical approach Pei is the probability that the i_th 

message point will be moved by noise outside its pyramid. Let the i..th 

pyramid have the solid angle Wi, where the solid angle in n- dimension- 

al space is equivalent to the area out out of an origin -centered 

spherical surface of unit radius by the pyramid. We can now replace 

the pyramid by a cone of spherical cross- section of degree n same 

apex and line of symmetry as the pyramid. For n = 3 it would be the 

familiar cone of circular cross section. The probability that the 

message point will be removed from the clone by the effect of the noise 

can be shown to be less than the probability that it will be so 

1 
Pe s IT Pei 
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removed from the pyramid, so we can bound the probability of decoding 

error from below by studying the easier problem posed by the cone. 

We can establish this rather simply in the three -dimensional case de- 

picted in Figure 1; 

A3Í1 (r i' A2) 

Message Point 

A2 n (r A3) 

Fig. 1. 

A simplified discussion is available in Reza (10, p. 325 -327); let 

Pr(a) represent a two- dimensional, monotonically decreasing proba- 

bility density, and compare the probability of the randomly placed 

point, distant r units from the center of a circle, falling within 

that circle with the probability of falling within a polygon curve 

which encloses the same area as the circle, Let Ai be the common 

area enclosed, A2 the area enclosed by the circle, A3 the area en- 

closed by the polygon curve. Then 

P[rE P[rE A2] P[rE A1] + PCrE P[rE A2 () (r A3) 7 . 

6 

(1.5) 

Consider now elements of equal area, one within the polygon curve but 

not within the circle, the other element within the circle but not 

within the polygon curve. Because of the monotone nature of pr(a) 

= 



we conclude that there it a smaller probability associated with the 

event that the point falls into the former element. Thus 

P[rEA3n (r4'A2)] E P[rEA2n (ritA3)] . 

7 

(1.6) 

The same will hold true for a cross -section taken perpendicular to 

the axis of symmetry at any distance from the origin, so the probes, 

bility that a message point moved at random will remain within the 

cone so constructed is greater than the probability that it will re- 

main within the pyramid. Hence, the probability of error in decoding, 

Pei' is greater than Q*(Wt), which is the probability that the i-th 

message point be removed from its assigned conical region in 3- space. 

The results hold true for the n- dimensional case, noting that the 

cross -section would be an n -1 dimensional figure. We now have 

Q*(Wi) . (1.7) 

As the pyramids cover all of the n- dimensional apace we also have 

Wi = Wo = W(n) , (1.8) 

where Wo is the solid angle associated with the n- dimensional spheri- 

cal surface. 

We can simplify this bound further by observing that, as the 

density function decreases with distance, Q(W) is a concave function 

Pe > 
i=l 

i=l 
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of W. Referring to Figure 2, which indicates the behavior of Q (W), 

and noting that there are M values of Wi which sum to Wo, we see 

that for each value of Wi less than © /M, Q(Wi) is greater than 

Q(WQ /M). For each value 14 of W greater than ó/M there exists 

at least one value Wk less than ó /M. If we replace both W and 

Wk by 

and replace both Q *(W3) and e(Wk) by 

Q *1 ) Q *( ) 

Q (W1) + Q (Wk) 

2 

(1.9) 

(1.10) 

we do mot change the values of the sums of (1.7) and (1.8). From 

Figure 2, however, 

1 

Q*(Wi )+Q*(Wk) 

Q*(Wi+Wk) 
2 

we see that 

41 i+Wk Wj 

M 
Fig. 2. 

Wert) 

* 

Q (W,) + Q (Wk) (1*(Wi 
+ 

Wk) 

2 2 

!:141-!_5( Wj = Wk = 

2 

= 

wo 

> 
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Q*(Wi) + M Q*(Wj + Wk) 

i=1 
2 

9 

(1.12) 

where the prime on the summation symbol means that the index i is 

not assigned the values j and k. Repeating this process for each 

value of Wi > Wo /M, including values of WT and Wk, um will obtain 

finally the sums 

where W*i = Wo /M for all i, and 

Pe -h Q*(WofM) = Q*( ó/M) 
i=l 

(1.13) 

(1.14) 

If we now define wl to be the half angle of the cone of solid angle 

WQ /M we can define Qs(W) = Q(w) and 

Pe á Q(wl) . (1.15) 

This will be our fundamental lower bound for the decoding error. 

To place an upper bound on the probability of decoding error we 

will consider an ensemble of random codes, where each code in the en- 

semble is defined by placing M message points on the surface of an 

n- dimensional ball of radius (nP) *. Each point in a code will be 

M 

W1=Wo . 

1=1 

M 

Pe ? E 



placed independently of all others and with probability measure pro- 

portional to the solid angle W, defined as above. We now observe 

that there must exist at least one code in the ensemble whose proba- 

bility of decoding error is less than the average probability of 

decoding error taken over the ensemble, and, therefore, the optimum 

decoding system must yield an error at least as small. Due to the 

statistical independence of each message point in a code we find that 

the ensemble average probability of error is just M times the 

average probability for any one message point. Let us, therefore, 

consider the probability that the i -th message will be incorrectly 

decoded. The probability that this message will be selected and 

transmitted is 1/M and the probability that the message point will 

be moved into the region between cones of half angle w and w + dw 

is -dQ(w), where the differential is itself negative and w and 

Q(w) are defined as above. An error in decoding will occur when a 

cone of half angle w about this received point contains one or more 

message points. Remembering that each message point is placed with 

probability measure proportional to the solid angle, we see that the 

probability that any message point other than the i -th will be found 

in this received point cone is 

psi = W(w)/Ww) # i 

and the probability that no 

point cone is 1 - [1 

lo 

(1.16) 

such point will be found in the received 
M-1 

] . Averaging over all possible noise 

displacements we obtain for the average probability of decoding error 

. j . 

- W n 



for the i -th message point 

and for the ensemble of codes, 

Note that [1 

Per =_ ! 1.[1. 
0 

W.'w 
]M"1 

W(r) 

11 

dQ(w) . (1.17) 

M-1 
dQ(w) (1.18) 

M-1 
] < 1 ; the well-known inequality (1 -x)n > 

1 - nx may be written in the form 1 - (1 -x)n < nx. so 

and we obtain (recall that dQ is negative) 

Per <.. 
1 

dQ(w) - j dQ(w) 

(1.19) 

(1.20) 

In the second interval of integration the original integrand was simply 

bounded by unity. This gives us 

`al 
Pe < Per 

er 
awl) 

r 
glu J W(m) dQ(w) 

0 

for our fundamental upper bound. Complete inequality stands as 

(1.21) 

n 

Pei a - ) 

Ol 

¡'n 

er 

- W 
w 

M-1 
1_ [1-Wñ ] < MWñ . 

1 M W n 
0 
J 

wl 

ç 



w1 
t Pe < Q(w1) - W W(w) dQ(w) . 

0 

12 

(1.22) 

We now need to express these bounds in terms of the system parame- 

ters, n the dimensionality, M the number of signals transmitted, N the 

noise power, P the signal power. As a first step let us determine an 

expression for w, the half angle of the cone which cuts out the "area" 

W on the surface of the n- dimensional unit ball. The surface of a ball 

nn/ 2R11.1 
of radius R in n- dimensional space is given as n , , a formula re¡ +1) 
which checks out easily for n taken to be 2 and 3. The cross - section 

of a cone in n- dimensional space is an (n- 1)- dimensional surface. To 

calculate the solid angle of the cone of half angle w we can sum by 

integration the contributions to the area cut out on the unit n- dimen- 

signal spherical surface by the cone of (n- l)- dimensional rings of 

width dw. The area to be found is of n -1 dimensions so that a ring 

in n -i dimensions is defined by an (n -2)- dimensional figure which is 

the surface of an (n- 1)- dimensional ball. The differential area of the 

surface of the unit n- dimensional ball is, therefore, given (see Fig. 3) 

by a ring of radius sin w and width dw, 

dig (1.23) 

fQ(w1) 

n-1 
2 n-2 

. 1 ) sin t dt . 

2 
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Integratun yields 

Plg 3. 

n_1 

w(w) a (n..l)n z 
u, 

¡-- J 8jn 
n-2 
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(n-1 

sin2wi 2 
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(1.28) 

To determine the lower bound Q(w1) recall that Q(w) is the 

probability that a noise vector with distribution function given by 

(1.2) and centered at a message point will move the message point out 

of a cone of half angle w. Let us define a coordinate system in n- 

dimensional space with origin at a message point. Define the axis 

of symmetry of the cone as the y -axis and a radius vector perpendicular 

to the y -axis as the x-axis. Normalise these variates so the radius 

of the spherical surface on which the M message points are uni.. 

formly scattered is (n) A, where A * (P /N) *. The pertinent noise 

density function now has the form 

e 

2 

Y 

2 

( )1 
)n1z 

(1.29) 

As x is rotated about the y -axis it sweeps out an (n-1)- dimensional 

ball and the end of the x vector travels over an (n-1)- dimensional 

surface, so that an element of area dxdy at a distance x from the 

y -axis will sweep out an n- dimensional volume 

n- - n_2 
.1 n x 

dxdy 

The probability element that a message point will be found in this 

volume after being moved by noise is then just 

dv = 

1-1() 
(1.30) 

. 
2) 

' 



n-1 

dP = 
(n,.1)n. xn.2 1 

F(n4.1) ()n/2 

2_ _2 

dxdy : 

integration over the volume of n -space outside the cone yields 

15 

(1.31) 

2 2 
0D xr..h xt]j 

Q(w) = n- dx dy x e , (1.32) 

(2n)2 ((n2 ) ( -tD 

where a = cot w and h (n)A, 

For the upper bound of the probability of error in decoding 

Pe 4(w1) w Q(w1) - g W(w) dia(w) 

0 

OITT'y *1 Q(w) dW(w) . 

0 

(1.33) 

From (1.23) and the formula for the surface of a unit ball in n -space 

(i.e.. W(n)) the upper bound relationship takes the form 

Pe 

M r() ouï n..2 

R(w) sin w dw . (1.34) --- - - 
f (TO- o 

Equations (1.32) and (1.34) allow us to express our upper and 

lower bounds in terms of the system parameters n, M, N and P. Equa- 

tion (1.24) is the same as Shannon's (12) equation (21) and is obtained 

- 2 

1 

have 

n.2- 
( 

J 

we 

(' wi 

< 

( 1-) 

. 
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in the same way. Equations (1.28), (1.32) and (1.33) are the same as 

Slepian's (13) equations (7), (9) and (13), and are obtained in the 

same way. 

For later comparison we will list and briefly describe the 

asymptotic bounds obtained by Shannon (12). The detailed analysis 

involved in obtaining these results is not presented. To quote Shannon, 

"It might be said that the algebra involved is in several places un- 

usually tedious" (12, p. 615). Several expressions occur in these re- 

sults which have not been previously defined (recall that the signal to 

noise power ratio is A = (P/NOT 

.1 
= cot A , 

2 
0(w) = 

1 (A cos w + A cos w +4 ) 

2 

w= the solution of the equation 2 cos w -A 0(w) sin w 0 

2 

EL(w} 
2 2 

AQ cos w - log(0 sin w ). 
Shannon (12) derives an equation comparable to (1.32) with integration 

over the variables w and r , where r = y /soam . After mach algebra 

he obtains 

h2 sin 2w n-2 oo 
n-1 ( r .. h cos w 

(n1) e 2 sin w ` d Q(.) = 
n 

r e 2 

dw 2 (n) (n--1) 0 
2 

2 

dr . (1.35) 

The integral in (1.35) is evaluated asymptotically, using a Lemma due 

wo 

/2 
G = , 

, 

= 
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to David and Kruskal (5), so 
2 

- A + Aß cos 
d Q(w)... _ 1 [Q sin w e 

2 2 
]n , (1.36) 

deu I 2 2 
(nn) (1+0 ) sin w 

a result which requires the asymptotic expression for ['(21). A 

simplified expression is 

-nEL(w) 
d Q(w) .,- a(w) e 
dw 

(1.37) 

Shannon (12) then shows that for wit wo both E(w) and E (w)st 
L 

0. 

Using this he shows that for wo> w > 0 dQ /dw is maximum at w = wi. 

Using this and arguments involving the behavior of a(w +n 2/3) and 
-2/3 

Et(w +n ), as well as a Taylor series expansion of exp(- nEL(w)), 

he shows that the suey of the integrations of dQ /dw over the 

ranges wl to wl +n,.2/3, wl+n /3 to , 7 to n, which defines 

Q(e1). yields the asymptotic expression (replace wl by w ) 

-nEL(w) . nEL(w) 

Q(w) --- °~4 W) e - 
( (nn) (AG singe- costa MAO ) w 

2 2 
. (1.38) 

Using the change of variable, x = sin w , the mean value theorem and 

the asymptotic expression for F(n), Shannon (12) obtains the 

asymptotic expression 

w 

¡ 

2 

e 

sin 



W(w1) 
.....,.... ., 
W(n) 

n 

sin wi 

(2nrr)sin winos mi 
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(1.39) 

Substituting this expression and the expression for 
d- 

Q(w) into 

(1.33) he obtains a sum of Q(w) and a complicated integral in terms 

of n, P, N, G, w for Q(w). Following the procedures used for evalu- 

ating Q(w) he finds that the behavior of Q(w) depends on whether 

w1 
< wo or wi > wo, the exponential term in the integral having a 

maximum at wo. For wl < wo the integral has a maximum at and 

is evaluated in the same way as Q(w), to give 

t(w.) oos - Aß sing - L(w1) 
__._. (1 _ ` ) e (1.40) 

(n) 2 cos mi- AG sin wi 

For the case where 

integrals over the 

and Q+ n to mi. Using essentially the same arguments as for the 

integral in Q(w) Shannon (12) shows that this integral is asymptotic 

exp(- nE,(ó) -nR) to 

wl > wo the integral is expressed as 

ranges 0 to we- n 215. wo- n -2/5 to 
a sum of the 

wo+ n 215 

cos wean we [nn(wo)(l+G 
2 

(wo)] 

nR 
e = M = W(-- 

W(w1) 

where 

(1.41) 

and R is defined as the signal rate for the code and has units of 

w1 

Q( 

. 

1/2 



decimal digits per dimension. Comparing the exponents in this ex- 

pression and in the expression for Q(w) Shannon (12) shows that 

Me -ngL(wo) 

cos wosin3wo ( nnFL(wo) ] 
C1402(wQ) 

3./2 

19 

(1.42) 

In addition to asymptotio bounds Shannon (12) gives firm upper and 

lower bounds, obtained by consistently overbounding or underbounding 

the expression obtained in evaluating 41(w1) and Q(wl). They are, 

for all values of n, 

Fe > 

(n..l)* p3/2 a nSL(`ul) 

6n(A +l)3 e (A 
+1)2/2 

n(A2 

and if the maximum value of Gn(w) sin2w e 2 

Pe d kti(2n) 

Aß cos w) 

t(A2_ Aß cos Lui) 

an(w1)sin 2 _ wl 

1+ 
nwlmin[A,Aß(w1)sin w1_ cot w1] 

For w1 > we Shannon (12) also obtains the bounds 

2 2 
nCg t ._ e 

Xit(nn)k 

(1.43) 

is at 

1.44) 

(1.45) 

J 

. 

- 

w=wl 

3/2 
e 

1 

L 

- ] 



where 

) 

and 

1 

. 
sin(2sin ) 

(2) 

C-A( E) ] , 
2M-1 2 

20 

(1.46) 

(1.47) 

where cp(x) is the normal distribution function with unit variance. 

For wi near w0, w1 < wo , the asymptotic bounds are very close, 

either one giving a good approximation in the error of decoding. For 

wi near we, however, the bounds diverge. For wl > too and R--.... 0, 

X--.1, the firm upper and lower bounds are nearly equal for large n, 

giving a good approximation for the error of decoding. 

These results may be expressed in terms of the signal rate R and 

the channel capacity C, where 

2 
C log(A + 1) . (1.48) 

The channel capacity is an upper bound for the signal rate. For rates 

less than C arbitrarily small probability of decoding error may be 

obtained for large enough n. For rates greater than C the probability 

of decoding error increases to unity with increasing n (11). For rates 

near the channel capacity such that R < C both the upper and lower 

asymptotic bounds approach 

R a (1 

Pe > 



1 

Pe .., C n (--= 2(R.C)] 
N(P+2N) 

(1.49) 

21 

for large values of n. 

These results enable us to estimate the probability of decoding 

error when the code rate R is less than channel capacity C and 

when n is large. No estimate is given by Shannon (12) for how good 

the approximations are, particularly for small values of n. In order 

to determine the ranges of validity for the approximation and to give 

more accurate bounds David Slepian (13) obtained exact expressions 

for Q(ml) and Q(ml). Ar integrating once by parts in (1.32) he 

arrived at the recursion 

where 

Qn(w) Qn+aJn-2 
n > 3 (1.50) = (n-3) . 

en en-2 

(2/n) 
m (1.51) o 

n ..l . 

and 

2 F( 2) 

oo 
n-1 -11(141m2)r2- 2ahr + h2] 

Jn= 

o 

f r e dr. (1.52) 

The recursion relation 

(1.53) 

+ a Jn_2 

Jn = °h2 Jn-1 + n-2 Jn_2 , n > 2 . 

1+a 1+a 
2 
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may be easily obtained by integration by parts. For Gn = ßn+2 .1 n° °o w 
r () h bn = - , and ß me 

2 , a set of three recursion formulas 

(,(=1) 

Qn(w) = Qn , 2(w) 
+ cos w Gn_2 n > 3 (1.545) 

Gn ti oos w sin w bnGnrl + sin2w Gn_2 
n-2 

, n > 2 , (1.54b) 

bn bn..2 , n>2 . (1.54o) 

z 
with initial values bl = (u)1 , b2 a 2(u)1 , G1 = 2 e sin2w erfc(ô), 

G * 
ñ sin w 

e + sin w cos w G1 Q3(w) 12.2 rfa(a) + cos w G1 
(n) 

where 

co 
2 

erre(x) a - e'y $y , 

(n) 
(1.55) 

will represent a tedious but elementary algorithm for evaluation of 

Qn(w) . For the upper bound Slepian (13) obtains 

Q( ) rl Qn(w) sinn 2w dw . 

(n) 
2 bn-.1 O 

(1.56) 

It is convenient to restrict these expressions to odd values of the 

dimensionality parameter n. 

Numerical values of Qn(w) for given values of h are obtained 

2 I 

= 

---- 

n 
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rather easily from the above recursion formulas. For n = 101 , 

which Slepian (13) takes as a reasonable upper value, 49 applications 

are required. To determine numerical values of Q(wl) a trapezoidal 

method of integration utilizing 150 points is used. For n = 101 

over 7000 applications of the recursion formulas are required to ob- 

tain a value of the upper bound. It is at this point that the alter.. 

nate methods to be presented should have their greatest value. 



EXTENSION OF THE SHANNON- SLI/PTAS RESULTS 

To obtain different results from those of Shannon (12) and 

Slepian (13) let us return to (1.32). Let Qn(w) for any odd integer 

n represent the lower bound of the probability of error in decoding, 

so r(nz) _ (n2 ), , n > 3. By substituting z = y + h and revers- 

ing the order of integration -- certainly permissible for such an into- 

grand --we obtain 

2/2 f._ 1 I h _-iz-h), f 
03 2/2 /2 

Eild 

A 

(2n)12 2 tail) 

r© 
-(z-h)2/2 

('0o n-2 -x2/2 
+ f e dz J x e dx 

-co 0 

For the first special case, 

(2.1) 

i -(z-h)2/2 - z2/2a2 
e dz 3(w) _ ----- e dz + --- 

(2n) 
0 

(2rr) 
0 

¡00 -(u-h cos w)2/2 
= cos w g(0)(h sin w) J e du + Q1(h) , (2.2) 

0 

where a = cot w, the variable of integration has been changed by 

z = u cos w , and 

24 

n 
-2è x J 

I a 
L 0 

. 



(-1) 
Q1(h) 
1 
(h) 

2 
- (h) - 

The Gaussian density function and this form of the error function, 

(0) 1 -x212 
(x) --- s 

(20I 

25 

(2.3) 

(2.4) 
x 

( -1) (0) 

V (x) f V (y) dy, -oo <X<00, 
0 

were well -tabulated by the Computation Laboratory at Harvard Universi- 

ty (4). Note that Q1(h) is the probability that a message point 

will be moved beyond the h point on a line, namely 

03 

Q1(h) = 
S 

h 

(0) 
ap (x) dx 

For n = 5. co 2 o0 

-(z-h) /2 j' 3 -x2/2 
Q (w) .. e dz x dx 

5 S 
2(2n) 0 0 2 

r 
2 

e_(z-h) 
/2dz e 

x 
/2dx 

2(2n)2 -00 0 
CO 2 2 2 2 

1, 
.00 

2 
-(Z-h) /2 -s /2m s 

+ 2)dw + - -- e`(s+h) /gds 
= Je (2 

2(2n) O (2sr) f)` 
Oo 

2 (0) -(Li .+h cos w )2/2 
sin 

cos w ap ( h sin w) 
r 

e u2du + Q3(w) 
2 0 

(2.5) 

(2.6) 

A general recursion formula may be developed by integrating by 

parts; (2.1) may be written in the form (for n odd, > 3) 

= 

p = 

(' 

= 

. 

J 

+ , e 

w 

0 
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ooM(s-102/2 °a 
n-2 -x2/2 

de 
J 

x dx 

(2.7) 

oo -()2/2 °° -x2/2 n-2 
-1 

dz x e dx 

o 

oo 
2 22 -s/2s1 

* 
J 

(s.h)/2 
dz (á + (a..31 

J 
x e dd 
nJ -i /2 n-3 

() ()1 0 a 

cxa 

-(s+h)2/2 
+ 

J 
e dz 

(2r) 0 

(Q) 2 ones ( h sind ) hoes a )/2 n-3 
( u du 

2 
(a:20 

2 

2 oc 
1 

co 
(=-h) /2 

J 
n,.,4 ..x /2 i ¡(s+h)z/Z 

+ dz x dx+ --- 
J 

dz 

(2n)i2 2 (), o á 
()To 

a 

(0) 
)2/2 

. + sin 
2 

2 meow er ( h sin ea ) 
-(u 

.h wow n-3 
, Q _2(m) (- z) j 

( ) a 

n>3 

It is convenient to change the index, 

r= 11.]. (2.8) 

so r takes values 0, 1, 2,... , as n ranges over the odd integers. 

Let Q6(s) be replaced by Pr(w), with, in particular, P0(w) = Q1(h). 

1 ¡' 

Qn(m) n-3 
i 

(2n) 2 ` (2 ) -0 

1 

2 
2 

2 

+ 
J 

0 

1 

0i 

u du 
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Equation (2.7) now takes the form 

2 r -1 (0) 00 2 

sin w cos w cP (h sin w) -(u -hcos w) %, =(w) = Pr -1(w) + (, ) J e u -2du 
2 (r -l)1 

(2.9) 

r = 1, 2, ... , 

By repetitively applying this recursion formula we obtain, finally, 

(0) 
00 
-(u -hcos w) 

2 
/2 

r 
1 2k 2k 

sin Pr u 
31 o(h) + costs.) (h sin w) a w du . 

0 k=0 2k kÌ 

(2.10) 

r>0. 

For relatively small values of r a closed expression would be 

practicable. For larger values of r we are reminded of the cumula- 

tive Poisson distribution, tabulated by Molina (8). He writes 

so 

00 
k -a 

a e 
P(a,a.) = 

2 2 
r-1' 

' 2k 2k 

)' u sin w= 
P u2sn2w F u2sin2w) 

(2.12) e / 

-u sin wl2 

k=Q -k-f- : 
(2.11) 

(r,......,.....) _ (r, k 2k 2 2 

and the lower bound of the probability of error in decoding takes the 

form 
0o 

Pr(w) = P (h) + cos w 
(0) 

( u cos w -h) F(r, 
u2sin2w) 

du . (2.13) r o 
0 

Clearly this integral is dominated by the exponential factor although 

0 

cp 

1- 

) 

. 

o 
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the off -center term in the exponent rules out the several elegant pro- 

cedures which are available for numerical evaluation of integrals 

involving exponential factors. A simple trapezoidal or Simpson pro- 

cedure might well be indicated. 

An alternative procedure is to evaluate the integration in (2.10), 

leaving a finite sum. This may be accomplished in terms of the Hh- 

function, defined as 

00 2 
n -(t+x) /2 /2 

= II e dt. -co < x < oo, (2.14) 

0 n. 

and extensively tabulated by the British Association for the Advance- 

ment of Science (2). Thus (2.10) may be written in the form 

(0) (2k)! 2k 
Pr(w) - Po+ cosmo sp ( h sin ) 

*o 
-L~T sin w Hh (-h (maw ). (2.15) 

-k; 

An exact closed expression for the lower bound of the probability 

of error in decoding is attainable. It is convenient to introduce a 

slight variation of the Hh- function. say 

c° n ..(t -x)2/2 

I (x) 
ni 

= e dt n > 0 . (2.16) 

and to define a set of Hermite polynomials with positive coefficients, 

-x2/2 n x2/2 
Hn(x) = e e 

dx 

The first seven such polynomials are 

(2.17) 

Hh (x) 
n 

e 

2 
2k 

1 
t 

, 

(x)10 

n 

J 
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Ho(x)=1, H4(x) = x + 6x + 3 

5 3 (2.18) 

H1(x) = x2, H5(x) = x + 10x + 15x , 

2 6 4 2 

H2(x)=x +l, 116(x) . x + 15x + 45x 

3 

+ 15, 

H3(x) = x + 3x . 

and, in general. 

n-2k 
x 

(2.19) 
Rn(x) = 

k k=o 2k (n-2k). 

The recursion formula is at once 

Hio,1(x) _ x%(x) + n ñ(x) n > 0 . (2.20) 

Integration by parts in (2.16) yields the recursion formula 

(n+l)I01(x) = xIn(x) + In-1(x) , n > 1, (2.21) 

(-1) 
(o) 

initial values I0(x) = 
1 
+ m (x) and 11(x) = (x)+ xIo(x). 

A few special cases are instructive and a conjecture is rather easily 

arrived at, namely 

(0) 
1 

n IIn(x) = Hn(x) I0(x) + y (x) 
(n-........ _. Hn_2k..1x) 

k=o (n-2k..1) 

(0) 

= Hn(x) To(x) + (x)[ 1111.1(x) 

+ (n.4)(n-5)(n..6)11 (x) + 

n-7 

(2.22) 

+ (n-2)N3(x)+ (11-3)(n-4) (x) H 

(á)! H1(x) , n even, 

+(n..-l.)! ó(x),nodd ]. 

It is sufficient to show that the two easily established recursion 

. 

9 

0 

[i] 

E 

[?] 
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formulas, (2.20) and (2.21), are consistent with this conjecture. That 

is, by rearrangement of terms, 

(nfl)In+l -x In - In-1 a 1 R -x ñ-na 
-1 

] Io(x) 

(0), 
(2.23) 

xl x) n -x ñ-1 - (n-1)H + (n-2)Ean_2 - x ñw3 -(n-3)xn4] n. 

+ (11-3)(11-4)( 1%-4 
-xtn- -(n_5) ñ-6] 

1 

and, of course, each successive group of three terms on the right is 

identically zero. So, (2.10) may be written as 

r - (0) 1 ( } 1 2k 
Pr(w) Po(h) + (2n) coos w ap (h sin w) sin w I2k( h cos ) 

0 (2.24) 
(0) r1 2k 

Po(h)+ (2n) cos w ap (h sin w) sin w[ñ2k(h coses )Io(h coses ) 
k=o 2kk 1 

k-1 
(0) (2k-s-1) + (h cos w) E 

l A2 k..2 j_1( h 
cos w)] 

j=o (2k,2,1_1)! 

This exact solution is relatively easy to evaluate for small values of 

r, and there is no restriction on the value of h eons), which involves 

signal to noise ratio and the number of signal points scattered on the 

spherical surface in n- dimensional space. 

Shannon (12) points out that the lower bound of the probability 

of error in decoding is equivalent to the non -central t- distribution, 

Q (w) = P[n-1, (nA) , (n-1) cot ta] (2.25) 

[ 

+ 

+ 

2-k! 

= 
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which has received much study recently. It was tabulated to some ex- 

tent by Johnson and Welch (7). 

Let us now express our upper bound on the probability of decoding 

error, Qn(wi), using our expressions for the lower bound. From (1.34) 

m11) 
w 
1 n-2 

%(w) sin w dw , (2.26) 

(n)TI (n ) 0 

Pe < 
e 

which may be written in the form 

Mr(r+ 2 
el 

) 2r..1 
(wl) _ 

J 

Pr(w) sin w du 

(n) (r-1)' 

M ( 2r ) Ì 
r 

Dl. 2r..1 

a 

J 

T(W) sin w dw . 

2 r!(r-1)! 0 

The Poisson method of (2.13) then yields 

P ( ) a 
M 
() ̀ C 

w1P0(h) 

uul co 
2r -1 2 2 

+ J cos w sin w dw 
(0) 

(u cos w - h) F(r,u)du 3 . 

0 0 2 

(2.27) 

(2.28) 

Several numerical techniques are available for such an integration over 

a semi -infinite strip. Certainly the various integrand factors are 

very well- behaved. Molina's (6) Table II of P(c,a) has the range 

c = 0(1)153 while a = . 001 (.001).01(.01).30(.1)15(1)100, 6D. 

The Rh method of (2.15) yields 

r 
n(wl) = 

) r 

r 

2 r.(r -1). 

¡' 

J 

r 

p 

r 

! 

J 



_ 
M (2r)1 7: 

:( 6)) r 1 2r i '+ 
w1Po(h) 

2 r.(r-1). 

r-1 wl 2r+2k-1 (0) 

(. cosw sin w (h sin w ) Hh2k(-htos w )dw 3 + f 
k=o 2l 0 
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(2.29) 

For relatively small values of h cosw and r this may also be 

evaluated numerically. The Hh tables have the range x = -7(.1)6.6, 

n = -7(1)21, 10D. 

Finally, the exact expression for upper bound on the probability 

of error in decoding takes the form 

Pr(wi) = 

r-1 
+ (?_.tr) 

k=o 

M (201 
[ w1Po(h) 

2r 
2 r (r-1) (2.30) 

W1 2r+2k-1 (0) 
cos w sin w (hsinw) I (h cos w) dw 

2k 

2k 
2 r.(r-1). 

wlót (2tr) 

(o) 
+ ( h coses) 

1 wl 2r+2k-1 (0) 
coa w sin w rp ( h sin w) 

k=o 2lc. 

H2k( h cos w) Io( h oos w) 

k-1 

(2k-j'1)' H ( h cos w ) dw] 
j=o, (2k-2j-l)i "-2.1-1 

Note that the product of the two Gaussian density functions is a mere 

constant. The presence of the cosw factor in the integrand implies 

that a change of variable of integration might be worthwhile. Set 

x = sin w and 

[ 

kk)! 

M (2r)1 

* 



Pr (w1)= 
M(20! 
2r I I 

wl P 
o 

+ 

2 r.(r-1)._ 

(0) .1/ 2 
+ (h l-x 

k-1 
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xr2k-1 (0) 
hx a ( ) 

(2.31) 

.1 g2k(Ul-x2) I . (hz2) 

( ) 2 1 
H (13/1 -x 2 ) Cix 

(2k-2j-1)i 
2k-2j-1 

Still another form of this would result for x = cosw : 

Pr{) _ 
m (2r)! 

+ 
(2w) 

2r 7.0 
2 r (r-1) 

1 r+k-1 

2-11 

f x(l-x2) ()(1-x2) 
o "oos a 

1 

k-1 

.LH (hx) I (hx) + ()(hx) p2k-j-1)1 H (hx) dx 
2k o 

j=0 (2k-2j-1) 
2k-2j-1 

(2.32) 

The evaluation of the several definite integrals developed above 

should offer no great difficulty as all functions involved are very 

well- behaved. We are assured that trapezoidal rule methods of inte- 

grating apply in each case as the integrand functions have continuous 

derivatives of all orders (6, p.256 -259). A paper by Burgoyne (3) is 

also useful in this context. 

) 

r_1 sin 
, , 

f 

ka0 2kk! o 

3 

r 

1k 
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r 
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