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coding messages sent over a continuous Gaussian channel have been in-
vestigated in papers by Claude E, Shannon and David Slepian of the Bell
Telephone Laboratories. In these papers the problem is shown to reducs
to finding the probability that a point on the surface of an n.dimen.
sional spherical surface will be moved out of a polytope, apex at the
origin and center line through the point. Using this model Shannon
determined asymptotic bounds for Qn(“’l) and E,lml) » the lower and
upper bounds respectively for the decoding error probability, oy the
generating angle of the cone which replaces the polytope. Slepian de-
termined an exact expression for Qn("’l) in terms of a triple recur-
sion formla. For the upper bound he obtained an integral of the
function Q (w) sin™ %0 from 0 to w. This integrsl had to be
evaluated by a trapesoidal rule for 150 data points. In the present
paper three alternative methods are given for determining the lower and
upper bounds on the probability of error in decoding. The first two
depend on the tabulations of Poisson's distribution and the Hh func-
tion. The third is an exact solution in terms of polynomials and ex-
ponentials in an integrand. Thus a significant simplification of the
evaluation of the bounds 1s obtained.
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ON THE SHANNON-SLEPIAN ESTIMATES OF
PROBABILITY OF DECODING ERROR

INTRODUCTION

In 1959 Clande E. Shannon (12) of the Bell Telephone Laboratories
published a papar describing a method for bounding ths probability of
decoding error for communiecation using an optimum code on a econtinuous
Geusslan channel and detsrmined asymptotic bounds for this error as a
function of several system parameters. His results enable one to com-
pars the merits of diffsrent oodes or, given a commnication system,
to determine the coding of M words to minimize the probability of
error in decoding. In 1963 David Slepian (13), also of the Bell Tele-
phone Laboratory, extended the work of Shannon and cbtained explicit
sxpressions for the srror bounds which he evaluated mumerically. In
this paper an alternate spproach is used to obtain expressions for the
error bounds which are at least different from those of Slepian and may
wsll be somewhat sasler to evaluate, particularly the upper bounds.

The “Shannon~Slepian” (12, 13) method of determining error bounds
applies to M.word block codes of length n. That is, sodes which map
the integers 1, 2, ..., ¥ onto the code words Mye Moe cavy My, vherse
each word my is a saquence of n real numbers 410 Syge cens Sy
The integers 1, 2, ,.., M represent words in a code book, not to be
econfused with the code words m . The godes to be used are also re-
stricted by a transmitter power limitation. In general, each code word



is constrained to be transmitted with the same signal power. The
method, however, mgy be modified to allow codes where the code words
are constrained to have a maximum or average signal power limitation.

It is further assumed by Shannon (12) that the code words have
equal probability of cocurrence and are transmitted over a channel
having Gaussian nolse which affects each component 84 j of the word
m, independently of all other compoments s, k # j, the variance
being N for each coment. In other words, if the component sij
is transmitted some other resl number s, j +x 3 will be received,
where each :r:‘j is an independent Gausslian random variable with varie
ance N.

Code words received at the receiver are decoded according to an
optimel decoding system. Thst is, there exists a geometric criterion
such that the probability of error in decoding 1s minimized. The
representation of the code words ss a sequence of n real numbers
suggested to Shamnon (12) that he interpret each code word as a message
point, or a message vector, in n-dimensional space, where the 8y 3
represent the coordinates of the i-th message point. Adoption of
Shannon'’s (12) geometrical viewpoint allows us to visualige coding and
decoding systems and alds us in analyzing these systems. A decoding
gystem is a partitioning of n-dimensional spase into M subsets, each
corresponding to one of the M integers., Decoding is accomplished by
assigning the value of 1 oorresponding to the subset of n-dimension-
al space into which a received message point falls to the message. An

error in docod}ng occurs when the value of the index assigned differs



from that of the word actually transmitted.

The geometrical interpretation of the channel nolse is that of a
noise vector centered at the transmitted message peint in n~dimensional
space. As remarked above, each of the n ocomponents has an independ-
ent Gaussian distribution with varisnce N. The effect of this noise
vector is that of an additive vector which moves the endpoint of the
megsage vector to a new point in space. It is this new point that is
received and decoded. Therefore, an error in decoding occurs when the
noise vector takes a message point outside its assigned volume of n-
dimensional space.

If distance in n-dimensional space corresponds to signal amplitude
we can also express the limitation on the transmitter power in geo-
metrical terms., Signal power 1s proportional to the square of the
signal amplitude; therefore, requiring each code word to be transmitted
with the same power is equivalent to requiring that each code word have
the same absolute magnitude, or, geometrically, that each message point
lies at the same distance from the origin. If we let nP be the
transmitter power we then have the requirement that all message points
lie on the surface of an n-dimensional ball of radius (nP)%.

Let us now consider the distribution function of the neise in this
goometrical coding scheme. Let x‘1 be the noise component along the
J-th coordinate axis, j=1, 2, ..., n. Each probability density has
the well-known Gaussian form,

‘-a§/ 2N
° +» =00 < ay < @, (1.1)

pxj(‘i) = (ZﬂN)



and, becanse of statistical independence, the vector valued random

varigble has the spherical form of the density,

2
-la] /on
/2 ] Ial [} (1.2)

(@) =
Pz (2mi)®

where [a|° = u.i + a,g + oaee aﬁ . For the random variable taken to
be r, the Euclidean distance measured from the message point, the
density function of interest in later developments has the normaliszed

forn,

2
32L oF2e=C /2
@&

pr(a) = 2(!1-5)/ s &> 0: n 2 2. (103)

Noting that the spherical Gaussian distribution funetion is mono-
tons decreasing with distance from the origin, snd that the origin of
the nolse vector is a message point, we see that the probebility of a
message point being moved a distance r from the origin decreases with
increasing r. Therefore, we can minimige the probability of error in
decoding, or devise an optimal decoding scheme, by decoding a received
message point as the lnteger ocorresponding to the message point nearest
it in n-dimensional space. Such a system is kmown as minimm distance
decoding or maximum likelihood decoding. Geometrically it requires
the partitioning of n-dimensional space into M n.dimensional polytopes
whose sldes are the n.l dimensional hyperplanes which are the per-
pendicular bissctors of the set of (;) chords required to connect each
message point with all the other message points. As each message point



is at the same distance from the origin of the coordinate system each
polytope will be a symmetrle n-dirensional pyramid, apex at the origin
and axis of symaelry passing through the origin and the message point.

This geometric approach to the coding and decoding problem re-
duces the problem of determining the probability of decoding error to
determining the probability that a message point will be moved outside
its assigned pyramid by the noise vector.

Let us now consider the problem of placing a lower bound on the
probability of decoding error, as presented by Shannon (12)., Let Py
be the probability of decoding error for the code and let Pei be the
probability of decoding error when the i.th word is transmitted. Re
menbering that each word is equally likely to be selected for trans-

rission we then have

Po=g 4=y Pog o (1.4)

Using our geometrical approach Pei is the probability that the i.th
message point will be moved by nolse outside its pyramid. Let the i.th
pyranid have the solid angle wi. where the solid angle in n-dimension-
al space is equivalent to the area cut out of an origin.centered
spherical surface of unit radins by the pyramid. We can now replace
the pyramid by a cone of spherical oross-section of degree n.l, same
apex and line of symmetry as the pyramid., For n = 3 it would be the
familiar cone of circular eross segtion. The probability that the

message point will be removed from the cone by the effect of the noise
can be shown to be less than the probability that it will be so



removed from the pyramid, so we can bound the probability of decoding
error from below by studying the easier problem posed by the cone.

We can establish this rather simply in the three.dimensional case de-
picted in Figure 13

A3ﬂ (r $ AZ)

. Message Point

Azn (r € A3)

Fig. 1.
A simplified discussion is availgble in Reza (10, p. 325-327); let
pr(a) represent a two-dimensional, monotonically decreasing proba=-
bility density, and compare the probability of the randomly placed
point, distant r units from the center of a circle, falling within
that circle with the probability of falling within a polygon curve
which encloses the same area as the circle, Let A bs the common
area enclosed, Az the area enclosed by the circle, A3 the area en-
closed by the polygon curve. Then

Pr€a,] = Plr€ 4 ] + PIrE A, N (rf4y) ] . (1.5)

Consider now elements of equal area, one within the polygon curve but
not within the cirecle, the other element within the circle tut not
within the polygon curve. Because of the monotone nature of pr(a)



we conclude that there ir a2 smaller probability assoclisted with the

event that the point falls into the former element. Thus

PLrC 4,11 (¢ A1 < Plre A, N (rfAg)] . (1.6)

The same will hold true for a oross-section taken perpendicular to
the axis of symmetry at any distance from the origin, so the proba.
bility that a message point moved at random will remain within the
cone so constructed is greater than the probability that it will re.
main within the pyramid. Hence, the probability of error in decoding,
Pgyr iz greater than Q*(Wi). which is the probability that the i-th
message point be removed from its assigned conical region in 3-space.
The results hold true for the n.dimensional case, noting that the

eross-section would be an n-1 dimensional figure. We now have

M

P

1 L

1

As the pyramids cover all of the n-dimensional space we also have

i W, =W, = W(w) , (1.8)
i=1
where wo is the s0lid angle associated with the n-dimensional spheri-
cal surface,
We can simplify this bound further by observing that, as the
density function decreases with distance, Q(W) is a concave function
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of W. Referring to Figure 2, which indicates the behavior of Q' (W),
and noting that there are M values of wi which sum to Wo' ve see

that for each value of Wy
Q(Wo/M). For each value Wj of W greater than WO/M there exists

less than WOIM. Q(Wi) is greater than

at least one value W, less than WD/M. If we replace both wd and

W, by

/ /
sz Wk

W W
. i.‘zf.k (1.9)
and replace both Q‘(WJ) and Q*(Wk) by

* .
Q (’i}) +Q (W)
2

'Y */
Q (WJ) =Q (W) = (1.10)

we do mot change the values of the sums of (1.7) and (1.8). Fronm
Figure 2, however,
1

Q" (W, )+ Q7 (W)

Q*(E"JZ;LJK)

M Fig. 2.
we see that
= * .
W
AL URAL Y (1.11)
2 ’ *

2
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=i

M
!
* W, +

P25 ) QW)+ __;____‘f__) , (1.12)
i=1
where the prime on the summation symbol means that the index 1 is
not assigned the values J and k. Repeating this process for each
value of W, > W_ /M, inclnding values of W, and W, we will obtain

J
finglly the sums

*
Z W= W, (1.13)
=1
whers w';awo/n for all i, and

M
D Qtw ) = QG /) (1.24)
i=1

'
su-

If we now define w, to be the half angle of the cone of solid angle
W /M e can define Q (W) = Q(w) and

2 Qwy) . (1.15)

This will be ocur fundamental lower bound for the decoding error.

To place an upper bound on the probability of decoding error we
will consider an ensemble of random codes, where each code in the en-
semble is defined by placing M message points on the surface of an-
n-dimensional ball of radius (nP)i. Each point in a code will be
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placed independently of all others and with probability measure pro-
portional to the solid angle W,, defined as above. We now observe
that there must exist at least one code in the ensemble whose proba-
bility of decoding error is less than the average probability of
decoding error taken over the ensemble, and, therefore, the optimum
decoding system must yleld an error at least as small. Due to the
statistical independence of each message point in a code we £ind that
the ensemble average probability of error is just M times the
average probability for any one message point. Let us, therefore,
consider the probability that the i~th message will be incorrectly
decoded. The probability that this message will be selected and
transmitted is 1/M and the probability that the message point will
be moved into the region between cones of half angle w and ¢ + dw
is .dQ(w), where the differential is itself negative and w and
Q(w) are defined as above. An error in decoding will ocecur when a
cone of half angle o about this received point contains one or more
message points, Remembering that each message point is placed with
probability measure proportional te the solid angle, we see that the
probability that any message point other than the i-th will be found
in this received point cone is

paj = Ww)/Win) , 341, (1.16)

and the probability that no such point will be found in the received
M=)
point cone is 1 - [1 - %}%}] . Averaging over all possible noise

displacements we obtain for the average probability of decoding error
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for the i-th message point

v [ w(w) 1
P‘i 2 - E l - [1 - ) ] dQ(U)) [ (1017)

and for the ensemble of codes,

U

M.l
Por = = J ‘1 -1 g&% ] ) dQ(w) . (1.18)
0

Mol
Note that [1 - %i%} ]  <1: the well-known inequality (1-x)" >
1 - nx may be written in the form 1 - (1-x)" < nx, so

M1
1- 0 -3 < iy, (1.19)

and we obtain (recall that dQ is negative)

W
1
W
P”s-[ ¥ 1 aq(w) -
0

¥

1
f dQ(w) . (1.20)
b |

In the second intervel of integration the original integrand was simply

bounded by unity. This gives us

'l
o

for our fundamental upper bound. Complete inequality stands as
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o)
o) $7, ) - gy [ W) @@ . (z2)
0

We now need to express these bounds in terms of the system parame-
ters, n the dimensionality, M the number of signals transmitted, N the
nolse power, P the signal power. As a first step let us determine an
expression for w, the half angle of the cone which cuts out the "area"

W on the surface of the n-dimensional unit ball. The surface of a ball

n o/2g0-1
of radius R in n.dimensional space is given as ---[-_‘-i-!;-—-- ,» a formla
-5 + 1)
which checks cut easily for n taken to be 2 and 3. The cross-section

of a cone in n-dimensional space is an (n-1)-dimensionsl surface. To
calculate the solid angle of the cone of half angle o we can mum by
integration the contributions to the area cut out on the unit n-dimen-
sional spherical surface by the cone of (n.l)-dimensional rings of
width dw. The area to be found is of n-l dimensions so that a ring
in n.l dimensions 1s defined by an (n-2)-dimensional figure which is
the surface of an (n-l)-dimensional ball. The differential area of the
surface of the unit n-dimensional ball is, therefore, given (see Fig., 3)
by a ring of radius sin o and width dw, |

Nl

2 ne2
n1l)u
dw = %@é) Sin t dt . (1-23)
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Figu 36
Integration yields
Bl
2 Ne2
W(w) = (n-1)m J sin ¢t dt (1.24)
[’ (9-*51-) 0
du
substituting sin t =u, dt = *.wehtve
2[u(l-u)]
B=d sinz n-3
2 ¥ ne -
Ww) = (n-1)n J u 2 (leu) du . (1.25)
2l_'(£+51)
It is at mce clear that
sinz
“p3y
H(w) = 1 u 2 (1._‘1) i = 3‘. I 2 (E:_]: '-]#) . (1-26)
W(m) Bk 1) 2 aln’e 2 2

the well-tabulated Incomplete Beta Function of Pearson (1,9). The
angle ®w; 1is then given by the relationship



2
H = . (1028)
-1 1
I (n ’ 'é')

oam——

s inzwl 2

To determine the lower bound Q(w,) recall that Q(w) is the
probability that a noise vector with distribution function given by
(1.2) and centered at a message point will move the message point out
of a cone of half angle w. Let us define a coordinate system in n.
dimensional space with origin at a message point. Define the axis
of gymmetry of the cone as the y.axis and a radius vector perpendicular
to the y-axis as the x.axia, Normalige thess variates so the radius
of the spherical surface on which the M message points are uni-
formly scsttered is (n)*&. wvhere A = (B/N)Y, The pertinent noise
density function now has the form

2. 2
- X
) %
px.y(ﬁoS) = (2,1)" L] . (1.29)

As x 1is rotated about the y-axls it sweeps out an (n.l)-dimensional
ball and the end of the x vector travels over an (n.l)-dimensicnal
surface, so that an slement of area dxiy at a distance x from the
y~axis will sweep out an n-dimensional volume

n=1 N2

dv = AB=d)W X g | (1.30)
e

The probability element that a message point will be found in this
volums after being moved by nolse 1s then just
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n-l xix
dpP = (ocn 2 23 . dxdy (1.31)
@D (ol

integration over the volume of n.space cutside the cone yields

mdx Jmu«-b n_z_z_:sﬂ_

Qw) = -
(2“)%29;5r<9_§;) aj -®

vhere a =cotw and h = (n)tA.
Fer the upper bound of the probebility of error in decoding we

have

et

Py < Uwy) = Aoy) - ﬁ%{)’ W(w) aQ(w)
o‘
v (2
= m—; Q(m) dW(W) . (1033)
o‘

From (1.23) and the formula for the surface of a unit ball in n.space
(1.e., W(w)) the upper bound relationship takes the form

P g —-—TF(%) fmlqu o 1.3)
< d . » g
e = '(';)? '_‘(n.—g.—) o [:F ) ®© QW

Equations (1.32) and (1.34) allow us to express our upper and

lower bounds in terms of the system parameters n, M, N and P. Equs.
tion (1.24) is the same as Shamnon'’s (12) equation (21) and is obtained
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in the same way. Equations (1.28), (1.32) and (1.33) are the same as
Slepian’s (13) equations (7), (9) and (13), and are obtained in the
same way.

For later comparison we will list and briefly describe the
asymptotie bounds obtained by Shannon (12). The detalled analysis
involved in obtaining these results is not presented. To quote Shannon,
It might be said that the algebra involved is in several places un.
usually tedious" (12, p. 615). Several expressions ocour in these re-
sults which have not been previously defined (recall that the signal to
noise power ratio is A = (P/N)%}:

=1
woaﬁot Ao

2 2
usa(m)a}z&(Acosw +\/A cos w+ &),

2
0= the solution of the equation 2 cosw-AQ{w) sin w=0 ,

2
A 1
E = o e =AGcosw- log(Gsinw) .
L(w) > > g

Sharmon (12) derives an equation comparable to (1.32) with integration
over the variables w and r , where r = y/cosw. After mich algebra
he obtains

2,2 2
b ;m Y n.2 0 .3 (r-hoosw)
4 q(w) = (n'lr)‘ S T sin o J r e 2 dr . (1.35)
dw Zm &L o

The integral in (1.35) is evaluated agymptotically, using a Lemma due
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to David and Kruskal (5), =o ,

«A 4+ AQ gos w

n-1 1 [(Gsinw o 2 ]n o (1.36)

4. Qw) ~

24 2
dw (nn) (140 ) sin w

a result which requires the asymptotic expression for l_-'(-“%-]:). A

simplified expression is

-nEL(w)

K- Uw) ~ alw) e . (1.37)
dw

Shannon (12) then shows that for = w  both & (w) and E'L(w)s 0.

Using this he shows that for w>w >0 dQ/dw is mn:d.mm/nt w =,
-2/3
Using this and arguments involving the bshavior of al{w +n ) and

EL(w mﬂz/?’). as well az a Taylor series expansion of cxp(-nEL(w)).

he shows that the sum of the integrations of dQ/dw over the

-2
ranges o, to m1+n /3. mrm-Z/B to g R % to n, which defines

Q(wl). yields the asymptotic expression (replace @ by o)

- (w)
G(ﬁ) L] nEL(:)) Q.nEL . (1.38)

QUw) ~ 3 > X
(n) (nm) (AG sin w.cosw )(1+43 ) sin w

Using the change of variable, x = sinw , the mean value theorem and
the asymptotic expression for [ (n), Shannon (12) obtains the
asymptotic expression
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Mo e : (1.39)
W(n) (Zn'n)*sin 0, C08 @)

Substituting this expression and the expression for f- Q(w) into
w

(1.33) he obtains a sum of Q(w) and a complicated integral in terms
of n, P, N, G, o for Q{w). Following the procedures used for evalu-
ating Q(w) he finds that the behavior of a(w) depends on whether

wy < w, or w > @y the exponential term in the integral having a
maxirum at w,. For o) < w, the integral has a maximum at , and

(-
is evaluated in the same way as Q{w), to give

2 -nE; (&) )
QUwy) aley) (1.2 0 M sin o ) v . (1.40)
(n)!

2 cos wy - AG sinzml

For the case where W) > W, the integral is expressed as s sum of the

-2 - -
integrals over the ranges O to w..-n /S.w-nz/stom-rnz/s.

(. ¢ (-}
-2
and w°+ n /5 to . Using essentially the same arguments as for the

integral in Q(w) Shannon (12) shows that this integral is asymptotic
to oxp(-nEL(wo) -nR)

3 > 1/2 ’ where
cos w,sin w, [nnEL(wc)[l"'G (“’e)]]

PR = Wm (1.41)

and R 4s defined as the signal rate for the code and has units of
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decimal digits per dimension. Coumparing the exponents in this ex-
pression and in the expression for Q(w) Shannon (12) shows that

. -nE; (w,)
L]
cos mgs:Lane nﬂEL(wc)[l-l-Gz(wc)J

In addition to asymptotic bounds Shannon (12) gives firm upper and
lower bounds, obtailned by consistently overbounding or underbounding
the expression obtained in evaluating 5((»1) and Q(w,). They are,
for all values of n,

{(n.l )% 03/ 2 e‘nEI‘(ml)

P > (1.43)
e ~ 2
bn(ae1)? o (12
n a2 - %(Az- A3 cos w)
and if the maximum value of O (w) sin “w e is at

m*ml.

2 - 5% a0
P < wl(Zn)% °3/ Gn(wl)sinn-zwl . 5(A cos )

(1.44)
* {1 + 1 *
nwlmin[A.)B(wl)sin - eot ml]

For o > w, Shannon (12) also obtains the bounds

2,2
(R . MA ]
L _ ST (1.45)
J&A(nn)%

e =



vhere
R= (,1.%-)103 1 - , (1.46)
sin(2sin ~2~r)
(27
and
1 24 n i
P, 2§ ol-a2L By, (1.67)
M1 2

vhere ¢(x) 1is the normal distribution function with unit variance.

For wy near w,, w < Wy the asymptotie bounds are very close,
either one giving a good approximation in the error of decoding. For
® near w,, however, the bounds diverge. For wy > w, and R—0,
A—»l, the firm upper and lower bounds are nearly equal for large n,
giving a good approximation for the error of decoding.

These results may be expressed in terms of the signal rate R and
the channel capacity C, where

¢ =L 1og(h”
=3 log{A+1) . (1.48)

The cshannel capacity is an upper bound for the signal rate. For rates
less than C arbitrarily small probability of decoding error mgy be
obtained for large enough n. For rates greater than C the probability
of decoding error increases to unity with inoreasing n (11). For rates
near the channel capacity such that R < C both the upper and lower
agymptotic bounds spproach |
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1
P ol ('n m)z(n.c)] (1.49)
N(P+2N)

for large values of n.
These results enable us to estimate the probability of decoding

error when the code rate R 1is less than channel capacity C and
wvhen n 1is large. No estimate is given by Shannon (12) for how good
the approximations are, partiocularly for small values of n. In order
to determine the ranges of validity for the approximation and to give
more accurate bounds David Slepian (13) obtained exact expressions

for Q(ml) and Ekml). By integrating once by parts in (1.32) he
arrived at the recursion

Qn(w) Qn_z(W)

= (n.3) ———+ad , . n>3, (1.50)
cn cn-2
where
2/n)
cn = n,.i /ﬂ ’ (1'51)
2 (Y
and
| ® a1 -%[(lmz)rz- 2ahr + hZ]
= J r e dr . (1.52)
0

The recursion relation

N2

ah
Jn= —-—Z-Jn-1+

5 Jpoo2>2, (1.53)
l4+a
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may be easlly obtained by integration by parts. For Gn = cszncuo W,

"3 n
= » 8nd b6 = 38 set of three recursion formlas
e
Qn(‘”) = Qn-z(‘”) +ecoswlG ,,n>3, (1.54a)

Gueosmainwbnl -—fsiannz,n>2. (1.54b)

D=l
bnﬁmbn_z e N> 2, (1.54¢)
3 . 1 8%, 2
with initial values by = (n) ' b, = 2(m) v 0y =5 e~ sinu erfo(s),
G u-l-'-ain o“°2+-2-°—- ain w cos w G Q(w)a-]‘erfc(b)-rco G

where

m 2
2 l -y
erfo(x) = '(—'-)'; e dy , (1.55)
n

will represent a tedious but elementary algorithm for evaluation of
Qn(w) « For the upper bound Slepian (13) obtains

“1
-2
Q( ):-—-—;——. f (0) &n™ 0 do . (1.56)
b (m)*s n-1l 0 Qn
It is convenient to restriect these expressions to odd values of the
dimensionality parameter n.
Numerical values of Qn(m) for given values of h are obtained
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rather easily from the above recursion formulas, For n =101 ,
which Slepian (13) takes as a reasonable upper value, 49 applications
are required. To determine numericsl values of QJ(w,) a trapesoidal
method of integration utiliszing 150 points is used. For n = 101
over 7000 applications of the recursion formilas are required to ob.
tain a value of the upper bound. It is at this point that the alter.
nate methods to be presented should have their greatest value.



EXTERSION OF THE SHANNON-SLEPIAN RESULTS

To obtain different results from those of Shannon (12) and
Slepian (13) let us return to (1.32). Let Qn(m) for any odd integer
n represent the lower bound of the probability of error in decoding,
so r‘(-'-‘-‘é-]-'- = (251)! » 0 >3, By substituting z = y + h and revers.
ing the order of integratione-certainly permissible for such an inte.
grand--we obtain

oo 2/ (@ 2/2
Qn(m) P 9:3 [ J .*(Enh) dz J xn-Z.-x dx
2 /D~ 0
(zmtz 2 (252 | H (2.1)
0 -(z—h)Z/Z © n2 x?l2 i\
+ Je dz J x e dx| .
-00 4)
For the first special case,
@ 1 ro -(z—h)2/2 - zz/Zazd 1 J-°° ---(a~lrh)2/2d
W) = e z + e <
3 et (2
(©) 00 -(u-h cos w)2/2
= eos w o' '(h sin w) J e du + Ql(h) . (2.2)

0

where a = cot w, the variable of integration has been changed by

g=ucosw, and
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-1
( )(h) . (2.3)

Ql(h) =1 . ®
2
The Gaussian density function and this form of the error functionm,

(0) 1 -xP/2
p (x) = I ° .
(2n)

(2.4)

(-1) (0)
 (x)= J ¢ (y)dy, -~ <x<oo,

0
were well.tabulated by the Computation Laboratory at Harvard Universi.

ty (4). Note that Ql(h) is the probability that a message point

will be moved beyond the h point on a line, namely
®

(0)
Ql(h) = J 9 (x)dx. (2.5)
h
For n=§, [+ 3 2 ©
1 -(z-h) /2 3 <2
Q5(W) = 3 J e de J xe dx
1 -(z-h) /2 3 -X /2
+ T J e dz J‘ xe dx
2(2n)* o0 0
(3 0 2
1 -(z-h)zlz- 52/23252 1 -(z+h) /2
=-?Je (;2+2)dz+ %Jo ds
2(2m)° 0 (2m)
2 % (u~hcosw )2/2
0 -l -
= Hn Y osw «p( )(hsinw) Jo uzdu +Q3(w) .
2 0

A general recursion formula may be developed by integrating by
parts; (2.1) may be written in the form (for n odd, > 3)



1 m‘( h)z 2 [+ . 2 2
Qﬂ(ﬂ)" *Eflg_zz{J.’. /dzJ‘ xn'-z.x/ .
et e . (2.7)
o 2 o0 2 -
-(z+h)"/2 -
+j.o /dzj‘xn.zexlzde
0 0
0 2 23 -s2/2a P N
o\ Bl 2 2 /<G Delb w 2
“i“‘z’f J - )/ﬂ!((ﬁ) e +(n-3ljx oxd:/d
(222 (2] o £
2
., 1 jm;(wx) /?;Jl
; Z
(2n)° 0
, 0 ”
- (_81339)2.21 gose® Q(O)(hmm) ‘-(n-heoam) /2 un..3
@yl o
2 0
1 me) éz f boxf2 f:'(”h)zéf
L ] x
ot &35! g $ (em¥,
=3 (0) ® 2
“o s (d:zm) > cosw @ (rmw J' (ueheosw) /2“\,,,,3(’n '
&l
n>3.
It is convenient to change the index,
- n-l
F oo (2.8)

s0 r takes values 0, 1, 2,++¢ , a8 n ranges over the odd integers.
Let Qn(m) be replased by Pr(w). with, in pacrticular, Pa(“) = Ql(h).
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Equation (2.7) now takes the form

) % (2~ hoos w)?/
(hsinw)J“-'u- c0Ss w u%r-zdu .

(1‘-1) ! 0

2 Tl (0
- gin oy CoOsw¢
Pr(‘”) Pl‘-l(w) + ( > )

(2.9)

1"51, 2' LA A4 .

By repetitively applying this recursion formila we obtain, finally,

o 2 ra
(0) —(u ~hcosw ) /2 uzksmzkw
P (w)=P (h)+cosuwe (hsinm)fe z du ,
r o
0 k=0 2 ki
(2.10)
r>0,

For relatively small wvalues of r a closed expression would be
practicable, For larger values of r we are reminded of the cumla-

tive Polsson distribution, tabulated by Molina (8). He writes
00

) e
a o
P(e, ' (2.20)
‘ a) = o k. M ‘
30

2 2 r-l 2 2k v
o-u s 0/2 Ny etn ® .. P(r.—----“zsmzw)ﬂ(r.ﬁi-i-'iz—“’) v (2.22)

ko 2%! 2 2

and the lower bound of the probability of error in decoding takes the

form
o

0 2,2
Pr(w) = Po(h) 4+ cosw J ep( )(u cosw =h) l"(r.u sin @

0

yau . (2.13)

Clearly this integral 1s dominated by the exponential factor although
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the off.center term in the exponent rules out the several elegant pro-
cedures which are available for mumerical evaluation of integrals
invelving exponential fasctors. A simple trapezoidal or Simpgon pro-
cedure might well be indicated.

An alternative procedure is to evaluate the integration in (2.10),
leaving a finite sum. This may be accomplished in terms of the Hh.
funoction, defined as

oo 2
tn -(t+x) /2
th(x) = J =| e dt, -00 < x< 00, (2.14)
n
o -

and extensively tabulated by the British Association for the Advance-
ment of Sclence (2). Thus (2.10) may be written in the form

(0) (200 2
Pr('”) = P°+ coswy (hsinw) = -z-l\j sin w® Hth(-h cosw). (2.,15)

An exact closed expression for the lower bound of the probability
of error in decoding is attainable., It is convenient to introduce a
slight variation of the Hh.funection, say

® n -(t.x)z/z
I (x) = — J Ele at , n>o0, (2.16)
n (2m? o ™

and to define a set of Hermite polynomials with positive coefficlents,
2 2,
-x /2 B x /2

Hn(x) = @ e . (201?)

4
&

The first seven such polynomials are
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b 2
Ho(x)ﬂl. Hu(x)sx +6x +3
(x) B(x) = % + 106 + 15 (2-38)
X)) =x, x) =x + 10x + 15x ,
! 2 5 6 4 2
Hz(x) = xB + 1, Hé(x) = x + 15x + 45x + 15,
HB(X) = X + Bx N secesetsserneeve .
and, in general,
(5] n-2k
x
H(x) = n! ” . (2.19)
n kzo 2 k.l (n-Zk)!
The recursion formla is at once
Hml(x) = i (x) + o _,(x) , n>0. (2.20)
Integration by parts in (2.16) yields the recursion formla
()L 4 (x) = xL (x) + T ,(x) , n2>1, (2.21)

(

1 -1) (o)
initial values Io(x) =3 + @ (x) and Il(x) = (x)+ on(x).

A few special cases are instructive and a conjecture is rather easily
arrived at, namely

I (0) (n-k—l) .
ne I (x) = By(x) L(x) +9 (%)

(2.22)
(0)
=8 (x) I(x)+e () lH (=) + (n~2)Hn.3(x)*'(n-3)(n—h)Hn_5(x)
(%)! Hy(x) . n even,

+ (n&)(n-s)(né)i-" (x) # converec (9:2..3:)! H (x) , n odd 1.

It 15 sufficient to show that the two easily established recursion
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formlas, (2.20) and (2.21), are consistent with this conjecture. That

is, by rearrangement of terus,

s
(n+l)In+1 - xIn - In_l n! [nnﬂ.xnn -nnn_ll Io(x)

(0) (2.23)
+ i‘v (x) [Hn -X Hn-l - (n-l)Hn-z + (n~2)[Hn~2 ~X Hn..j} -(n-B)Hn.“]

+ (n~3)(n-’4)[ﬂn~u -xﬂn-‘S -(n—S)Hn..é] + evevacs jl '

and, of course, each successive group of three terms on the right is
identically zero. So, (2.10) may be written as

-l
(0) < | 2k
Pr(m)sPo(h)i'(Zﬂ)%cosmp (hsinw) Z %’ in wIzk(hcosm )
kmo 2k (2.24)
=P (h)+ (2n) coswe (hainw) Z 2 w[sz(h cosw )I (heoosw)
° o
k=0 2kk|
(0) (N
2 - .
+49 (heosw) Z '("""’"Q"‘sz_zj 1(h cosw) ] ,
320 (2k—2d~1). =

This exact solution is relatively easy to evaluate for small values of
r, and there is no restriction on the value of h cosw, which involves

signal to noise ratlo and the number of signal points scattered on the
spherical surface in n.dimensional space.

Shannon (12) points out that the lower bound of the prebability
of error in decoding is equivalent to the non-central t.distribution,

Q (w) = F{n-1, (nA)%. (n-l)%cot wl] , (2.25)
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which has received much study recently. It was tabulated to some ex
tent by Johnson and Welch (7).

let us now express our upper bound on the probability of decoding
error, an(wl). using our expressions for the lower bound. Fronm (1.34)
W,

- M (B) 1 n-2
Po < Qn(wl) = 1 2 J Qn(w) sin  wdw, (2.26)
(w) ["(g_-é_}_) 0

which magy be written in the form

M (r+3) wi y 2r.1
P (w ) = -—-;--—-- J w) sin  w de
(ﬂ) (r-l) (2‘2?)
M)l 7L 2ra

= —zr-T—-T Pr(w) sin wdw .
2 r.(rl). 0

The Poisson method of (2.13) then yields

(2r)]

P L), [ e (n)
Px-(wl) = or ’ e °(
2 ri(rl)! (2.28)
"1 2r.l (0) 2 2
+Jcoswsin mdqu: (u cosw=~ h) F(r, 2510 )4 7,
2
0 0

Several numerical techniques are available for such an integration over
a semi.infinite strip. Certainly the varicus integrand factors are
very well.behaved. Molina's (6) Table II of P(e,a) has the range
e = 0(1)153 while a = ,001(.001).01(.01).30(.1)15(1)100, 6D,

The Hh methed of (2.15) ylelds
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- M (2r))

Pr("’l) = | | [ o P, (h)
2 r)(r-l)! (2.29)
) (xz(:j J cosestn o ¢ (asine) M (heosw)du .
k=0 2

For relatively small values of hcosw and r this may also be
evaluated numerically. The Hh tables have the range x = .7(.1)6.6,
n = -7(1)21, 10D.

Finally, the exact expression for upper bound on the prebability
of error in decoding takes the form

;r(“’l) = l(_ft)_l._.. [ “’lpo(h)
2 r‘(r-l)l (2.30)
r-l 2r+2k-1 (0)

+ (2m) Z {2k). Jcoswsin o ¢ (hsinw)IZk(hcosw)dm]

!‘-].
| 2re2k-1 ()
= zi (2r). [ w P + (2n) Z lceswsin w v( (hsinw)
2 r! (r—l)'
{ HZk(hcesw ) Io( hecosw)
(0) kel 2Kedn '
+9 (hcosw) (2k-3-1). H2k-23-1( heoosw) dul
= (2230

Note that the product of the two Ganssian density functions is a mere
oonstant. The presence of the cosw factor in the integrand implies
that a change of variable of integration might be worthwhile. Set

x = sinw and
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- | 3 =l B (0)
P(w) = ........(.Er..?._._ P + (2n) Z J mek-l  (hx)
rl r | | 2
o(r"l) k=0
(2.31)
o[ sz(th-x ) Io(hVLx )
(0) \ 2 ki;l (2k..3..1)! (v—)]d
+9 (hVlex ) e Wilex))x | .
jeo (2k-23-1)] Ta23-1
Still another form of this would result for x = cosw:
- ¥ (2r) | 3 = ' 2,71 () 12
Pr(w]_) = ....é.;........-. mlP + (2n) Z -El jx(l-x ) (hV1.x")
2 r'(r-l)' k=0 2Kl 0s ®
(2.32)
k-1 ‘
T (we) T (o) + oDy Y ot ooy (0 Tax | .
o (2k-23-1)} 262

The evaluation of the several definite integrals developed above
should offer no great difficulty as all functions involved are very
well-bshaved. We are assured that trapezoidal rule methods of inte-
grating apply in each case as the integrand functions have camtinuous
derivatives of all orders (6, p.256-259). A paper by Burgoyne (3) is
also useful in this context.
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