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ABSTRACT

The influence of boundary layer pumping on an externally forced, synoptic-scale flow is examined. The
results follow earlier theories of stratified incompressible Boussinesq flow theories in that the spin-down
time scale and the penetration depth of the influence of boundary layer pumping are inversely proportional
to the stratification and proportional to the horizontal length scale of the flow. The present development
is performed in isentropic coordinates to construct estimates applicable to the atmosphere. This analysis
indicates that boundary layer pumping could be synoptically important in the lower troposphere under
conditions of significant surface stress and tropospheric stratification.

The estimate of the stratified penetration depth scale is used to construct a simple homogeneous model to
examine order-of-Rossby-number corrections to the quasi-geostrophic vorticity dynamics. Such corrections
result from the influence of accelerations in both the free flow and boundary layer. It is found, for example,
that vorticity adjustments due to various interactions between boundary layer pumping and accelerations
are less important than predicted by scale analyses. Results are interpreted for the case of topographically
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forced flow.

i. Introduction

Non-zero synoptic-scale geostrophic vorticity in the
presence of low-level turbulent momentum transports,
hereafter referred to as boundary layer or frictional
effects, leads to low-level convergence or divergence
and vertical motions (Charney and Eliassen, 1949).
Such frictionally driven convergence is thought to
contribute substantially to the maintenance of clouds
-and precipitation patterns (Petterssen, 1956, Sec. 5.7).
However, in the absence of latent heating, this “fric-
tionally driven” boundary layer “pumping” in turn
acts to destroy the existing geostrophic relative vor-
ticity in the overlying free flow through induced vortex
stretching. The effects of such negative boundary layer
feedback is illustrated in the intermediate stage of
Ekman spin-down or spin-up theory (Greenspan and
Howard, 1963 ; Holton, 1965). As long as the turbulent
Ekman number is small, as is usually the case with
atmospheric circulations, the above spin-down process
is more efficient on a synoptic time scale than direct
turbulent transport or diffusion of vorticity. Thus,
boundary layer pumping is often considered to be an
important interaction between the synoptic scale and
turbulent scales of motion.

However, the interaction between synoptic-scale
vorticity dynamics and boundary layer pumping is
also complicated by accelerations, baroclinity and
stratification, vertical fluxes of heat, latent heat release,
latitudinal variations of the Coriolis parameter, as well
as complications due to interactions with intermediate

scales of motion such as internal gravity waves. For
example, when latent heating is directly coupled to the
boundary layer vertical motion field, the effect of
boundary layer pumping may be quite different than
in simple spin-down (Charney and Eliassen, 1964).
Presently, we focus on the role of accelerations and
free-flow stratification in altering the character of
effects due to boundary layer pumping. Stratification
is generally important on synoptic scales in the atmo-
sphere (Phillips, 1963). Only flows with relatively weak
stratification and/or large horizontal length scale be-
have to a first approximation as a homogeneous fluid.
An example of such flow is discussed by Ingersoll
(1969). In flows where stratification is important, the
intensity of circulations induced by boundary layer
pumping decreases with height (Holton, 1965; Walin,
1969; Buzyna and Veronis, 1971). The flow above a
certain ‘“‘penetration” depth is only weakly affected by
spin-down processes on a synoptic time scale. In the
free flow below the penetration depth scale, where the
mass flux out of the boundary layer is concentrated,
the importance of boundary layer pumping and the
spin-down rate is greater compared to the case of a
homogeneous fluid. Results due to Buzyna and Veronis
(1971) and Walin (1969) also suggest that the depth
of penetration of circulations induced by boundary
layer pumping increases with horizontal length scale of
the flow. We assume the diffusion of vorticity in the
free flow to be unimportant on a synoptic time scale
and thus do not consider the final diffusive stage of
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spin-down (Greenspan and Howard, 1963; Sakurai,
1969).

In Section 3, we address two aspects of stratified
atmospheric flow: 1) When, if ever, is boundary layer
pumping important in a synoptic-scale flow? 2) What
is the penetration depthscale of boundary layer pumping
on a synoptic time scale? The influence of synoptic-
scale accelerations is neglected in this analysis, but
considered in Sections 4-6.

Accelerations in" the boundary layer modify the
‘boundary layer pumping rate while free-flow accelera-
tions alter the rate of free flow vortex stretching due to
a given boundary layer pumping rate. Young (1973) and
Mabrt (1974) demonstrate that the role of accelerations
in the boundary layer of a barotropic atmosphere is
primarily to reinforce free flow vertical motions.
However, the qualitative influence of advective
accelerations on convergence is distinctly altered by
frictional effects (Mahrt, 1975). These studies indicate

that synoptic-scale accelerations can alter cross-isobar .

flow and boundary layer pumping as much as typical
variations of surface stress. At low latitudes, rapid
latitudinal variations of the Coriolis parameter induce
large accelerations which can completely change the
influence of synoptic-scale boundary layer covergence
(Holton, 1975).

In Sections 4-6, we modify the quasi-geostrophic
vorticity dynamics examined in Ingersoll (1969) and
Huppert and Stern (1974) to include the first-order
-corrections due to the influence of synoptic-scale
accelerations in the free flow and the boundary layer.
We choose the simplest possible model which contains
such effects. For this portion of the study, the free flow
is homogeneous, adiabatic, invariant in one horizontal
direction, and characterized by constant Coriolis
parameter. The boundary layer is parameterized in
terms of a conventional pumping law but modified to
include the influence of synoptic-scale accelerations.
The appropriate depth of the homogeneous fluid is
assigned from the stratified flow theory developed in
Section 3. In this manner, the importance of mass
fluxes due to boundary layer pumping relative to the
free flow mass flux is reasonably approximated by the
homogeneous model.

These studies of the influence of accelerations are
applied to the case of a synoptically forced flow.
Results are interpreted in terms of orographical forcing.
On a synoptic scale, orographical forcing or boundary
forcing induces divergence or vortex contraction which
in turn forces vorticity adjustments. As an example,
Hess and Wagner (1948), McClain (1960) and others
have suggested that orographically forced vortex
stretching may significantly contribute to, but by
no means completely explain, the high frequency of
cyclogenesis observed immediately downstream from
major mountain ranges (Petterssen, 1956). '
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2. Boundary layer pumping

We assume that the boundary layer is sufficiently
thin or that it is sufficiently well-mixed, so that we can
neglect the influence of boundary layer stratification
and baroclinity [considered by Kuo (1973)]. The
vertical motion wy at the top of the boundary layer
can then be shown to be proportional to the relative
geostrophic vorticity ¢, at the top of the boundary
layer in which case

wy=F{,+Row,, (1

where Row; is the contribution to the vertical motion
at the top of the boundary layer due to accelerations
in the boundary layer, to bé estimated in Sections 4-6.
Since for constant Coriolis parameter f, the difference
between geostrophic and actual vorticity is O(Ro?) as
can be seen by expanding flow variables in terms of
the Rossby number, we can also write

wr=F{+Row;+0O(Ro?). - (2)

Here F can be interpreted as the thickness required to
produce vertical motion ws in the hypothetical case,
where the cross-isobar flow speed equals the geostrophic
wind speed. In the case of Ekman flow with constant
viscosity or eddy viscosity K (Charney and Eliassen, -
1949),

F=~ (K/2f)}sin2a, 3)
where « is the angle between the surface geostrophic
and actual flows. In the case of a turbulent boundary
layer approximated by use of a linearized drag law
(e.g., Mahrt, 1974)

F=~Cph/(14+Cp?), Cpo=CpU/fh, (4)

where Cp is a surface drag coefficient, U a horizontal
velocity scale or boundary layer geostrophic wind speed
and % is the boundary layer depth. The use of a
linearized drag law allows simple extension of the
pumping law (2) to cases of non-zero accelerations. In
quasi-geostrophic flow, errors resulting from such a
linearization are small or comparable to errors asso-
ciated with uncertainties in the surface drag coefficient.
For synoptically interesting flows, for f=10"* s! and
h=10° m, F can be expected to vary typically from 25
m for Cp=10"% and U=2.5 m s7! to 400 m for Cp
=4X10"% and U=10 m s~.. F may vary substantially
less for boundary layers where mechanical production
of turbulence is important in which case # and CpU
are negatively correlated. In the above two numerical
examples, Cp varies from 0.025 to 0.3 in which case F
is approximately CpU/f. Eq. (3) for K=10 m? s™*
and a=15° yields F~110 m. At lower latitudes, F
and thus the cross-isobar flow for a given geostrophic
wind can be expected to be larger.

Entrainment at the boundary layer/free flow inter-
face does not formally affect the dynamics of vorticity
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F16. 1. Profiles of stability parameters for 50 mb layers from
900-200 mb and 25 mb layers for 200-100 mb. Layer stabilities
are scaled with respect to values in lowest layer (900-850 mb).
Profiles are averaged over the 38 U. S. radiosonde stations whose
surface pressure remains below 900 mb. Each station profile is
the average of 10 Januarys, 1946-55 [see Gates (1961) for analyses
of additional stability parameters for slightly different data set].

adjustments due to boundary layer pumping, but
merits brief consideration. In the case of zero entrain-
ment, the boundary layer top is a substantial surface;
no free flow is entrained into the boundary layer by
turbulent actions at the boundary layer upper edge.
In this case, the time rate of change of boundary layer
depth is equal to the synoptic-scale vertical motion.
In the other limiting case, the depth of the boundary
layer remains fixed. In this hypothetical case, sub-
sidence is compensated by entrainment of nonturbulent
fluid into the boundary layer while rising motion implies
destruction of turbulence energy by dissipation or
buoyancy effects. In this limiting case, the boundary
layer acts as a sink or source of nonturbulent fluid.
The atmospheric boundary layer is generally not well
approximated by either of the above limiting cases
since both entrainment processes and depth changes
are generally important. Not wishing to include an
additional equation for entrainment rate (e.g., Lilly,
1968), we interpret subsequent results by viewing the
boundary layer top to be a substantial surface.

3. Stratified theory

To estimate the depth and time scales describing the
influence of boundary layer pumping as well as its
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importance in the stratified atmosphere on a synoptic
time scale, we derive the adiabatic quasi-geostrophic
“potential vorticity equation” in isentropic coordinates.
We then perform an analysis mathematically quite
similar to that of Walin (1969) and Buzyna and Veronis
(1971) who analyzed spin-down of a stratified, incom-
pressible, Boussinesq flow in Cartesian coordinates.

By using pressure, log-pressure or isentropic coor-
dinates, a Boussinesq-type linearization of the pressure
gradient term is not needed. However, approximate
solutions in isentropic coordinates still require a
Boussinesq-type approximation to the continuity
equation while developments in log-pressure coordinates
require simplification of an extra nonlinear stability-
divergence term in the final potential vorticity equation.

A stability parameter appears as the coefficient of
the second-order vertical derivative of the stream-
function tendency in the potential vorticity equation
of each coordinate system. This stability param-
eter must be assumed constant for convenient
analytical treatment. The stability parameters
resulting from developments in pressure coordinates,
(9¢/0p)(0 In0/3p) [e.g., Haltiner, 1971, p. 154], in
log-pressure coordinates, ~ T2 (9 Inf/ dz) [e.g., Phillips,
19637, and in isentropic coordinates, g(d n8/dz), are
estimated from January radiosonde data averaged over
10 years (U. S. Weather Bureau, 1957) and 38 U. S.
stations in a manner similar to the analyses of Gates
(1961). The mean vertical variations of such stability
parameters are shown in Fig. 1. The stability parameter
in isentropic coordinates is slightly less variable in the
troposphere while the stability parameter in log-
pressure coordinates is least variable for the troposphere
and stratosphere as a whole. However, the stratosphere
is presently not of concern since the important direct
influence of boundary layer pumping on a synoptic
time scale appears to be limited to the lower troposphere
as will be discussed in Section 3c. The stability param-
eter for pressure coordinates is quite variable (see also
Gates, 1961).

Examination of adiabatic flow in isentropic coor-
dinates implicitly includes vertical advections and
vorticity changes due to tilting terms. Such terms are
normally neglected and do not appear even as first-order
corrections in quasi-geostrophic developments where
the basic state is geostrophic. However, immediately
above the boundary layer, they may be substantially
larger than predicted by scale analyses. At this level,
vertical motions and vertical gradients are expected
to be a maximum as a result of exponential-like decay
with height of spin-down influences (Walin, 1969;
Buzyna and Veronis, 1971). Based on the above con-
siderations, we find isentropic coordinates slightly
preferable. However, the choice of the coordinate
system does not seem to influence the qualitative
behavior of the flow solution.
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a. Equations in isentropic coordinates

The governing equations in isentropic coordinates for
frictionless adiabatic hydrostatic flow (e.g., Thompson,
1961) are

du/dt+udu/dx+vou/dy— fo=—aM/dx, ©)
9v/0t-+udv/dx+vdv/dy+ fu=—dM /3y, 6)
M /30=c,T/8, ' )
M=c,T+¢Z, \ (8)
6=T (po/ )% : )

d/0p\ 9 /Op\ O [Op\ Opfou v
D A o)+ ()0, (o)
AN dx\dl ay\db/ d0\dx dy.

where curvature and certain Coriolis terms have been
neglected and all horizontal velocities and gradients are
defined with respect to an isentropic surface. Using
the conventional Boussinesq-type assumption that
compressible effects (dp/d¢) are small in the Cartesian

mass continuity equation but retaining thermodynamic
effects due to compressibility, Eq. (10) becomes

d 10Z YA 3 [0Z\ OZfou v
F O B Gl
3t\o6 dx\a0 ay\ag/ 30 \ox ay

Use of the above Boussinesq assumption avoids need
of a double series expansion solution and does not alter
the interpretation of the results to be made below.
Using the definition of the Montgomery streamfunc-
tion [Eq. (8)], the hydrostatic relationship (7) becomes

oM/ 30=(1/6) (M —gZ). (12)

The horizontal equations of motion [(5) and (6)],
the hydrostatic relationship (12), and the mass con-
tinuity-thermodynamic equation (11) then form a
complete set of equations with dependent variables #,
v, M, Z. Interpretation of M/ 96 is facilitated by using
the hydrostatic relationship in Cartesian coordinates
and the definition of potential temperature in which
case we obtain

(11)

ez T

—=—/ (Ta—7),

0 o/

where T's is the dry adiabatic lapse rate and

¥=—9T/dZ. Thus 9Z/ 90 can be interpreted as a tem-

perature normalized with respect to the stratification.
To simplify the basic equations, we assume that the

flow consists of small perturbations about a basic state

of constant flow (zero vorticity):

u=U+u'(2,y,,1)

v=1"(x,y,9,t)
M=M@6,y)+M' (x,3,6,)
Z=Z0,y)+Z' (x,y9,)

3)
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Substituting these definitions into (5), (6), (11) and (12)
and neglecting products of perturbations, we obtain

oM
—=0, (14a)
ox
. oM
fU=———=constant, (14b)
dy
_ oM _ '
M—6—=gZ, (14¢)
. a6
307\ _ 9 [0Z
ERER
AL dx\d0 ,
and
o' _ou oM’
—tU——fo'=——y (15a)
at . ox ox
o oM’
ot ox dy
oM’
M ——=gZ, (15¢)
ot

d/3Z'\ _9 /97 8 /97 d /07
EEEHERH IR
A\ 96 dx\ 96 dx\ 90 y\ 98

AN AL
+(—)(—+——)=0. (15d)
36 /\dx dy
Operating on the basic state hydrostatic equation (14c)

with 82/809x and using the basic state equations of
motion (14b), we obtain

3 107
L)
x\30

. (62) (aZ') ’
6/ \o0 /.0
in which case the perturbation mass continuity thermo-

dynamics is simplified. To estimate the magnitude of
various terms, we scale the variables as

(®y)=L(£,9) )
t=n+f
0=A06-+6,

(' 0" = U (4,9)
M'=fLUM
z'=0° fLU

A
gAe

(16)

. (17)

—

-
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where r is the spin-down time scale to be estimated
later, the scaling for M’ is estimated by demanding the
horizontal pressure gradient and Coriolis term be in
rough balance, and the scaling for Z’ is determined from
hydrostatic balance. 6, represents the potential tempera-
ture at the bottom of the free layer while A8 is the
potential temperature thickness of the free layer in-
fluenced by boundary layer effects (to be estimated
later). Employing scaling (17) and using (16), the
perturbation equations become

Y ) aM
A—+Ro——i=——r\ (18a)
af ot o
89 7] oM
A—+Ro—+d=——i) (18b)
% a7
YA A9 \NO*M
== —(1+—0 ~ (18C)
b 0, / 062
892 392 B (on 9
alad  otab A6 N\\o% &9
(439
6o
1
A=—,
fr
Ro=—,
fL
NFL 6
g Af
30 %
g—
YA
N= ——
7(2)

The stability parameter B represents the relative
importance of stratification and ultimately the im-
portance of baroclinity. B appears in the denominator
since 82/3f depends inversely on temperature. The
stability parameter can also be viewed as the ratio of
the horizontal length scale to the Rossby radius of
deformation. In particular,

A07?
—
NiLo |TH|fLe | fT_L
g A0 L6 ) gas | a0 | A
e—H
o

where H is the fluid depth and Az the Rossby radius
of deformation. The length scales L and A are generally
not independent and in fact are considered to be typi-
cally O(1) for mid-latitude synoptic-scale systems.
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For example, if g=10 m s72, 89/0Z=4X10~% K m™,
L=10°m, f=10"*s!, A9=50 K and T'=270 K, then
N—1=80 s and B=~0.7. We consider B to be O(1). To
simplify the mathematics and emphasize the influence
of boundary layer pumping, we presently assume that
Ro<A. The assumption Ro/AK1 implies that UKL/7
which is equivalent to assuming that the basic flow is
sufficiently weak or the length scale is sufficiently large.
Then advections by the basic flow are small compared
to local changes induced by boundary layer pumping.
After focusing on the influence of boundary layer pump-
ing in this section, we restore the influence of synoptic-
scale accelerations in subsequent sections. We also
implicitly assume that the spin-down time scale is small
compared to the free flow diffusion time scale by virtue
of the neglect of turbulent diffusion in the free-flow
equations of motion. In summary

Rox1

Af
—1
0o

B=0(1).

Examination of (18d) then indicates that, while di/0%
and 83/09 may each be O(1), their sum must be con-
siderably smaller; in fact, the flow is nondivergent up
to O(A). It is then appropriate to expand flow variables
in terms of a power series in A as in Walin (1969). The
zero- and first-order equations are

oM,
do= y (198')
%
oM,
fly= ——, (19b)
a9
EYAS A8 \&*M,
'—:=—(1+—0 ) (19C)
b 0o ) 86*
B2 aﬂo 6‘170
(2, )=o, (194)
26\\ oz a9
(439
6o
and .
ay oM,
— =, (20a)
ot ot
3o EY A
—tdh=— (20b)
ot 7]
8z, AG &M,
—-7=—(1+-0 —,
b o / 362
. (20c)
d aZo B2 01 09,
—‘(—A)+——-(—+—)=o, (200)
i\ af ot Y

A8
(+39)
0o



1510

where the subscript is the expansion index. Combining
the first-order equations (20a)-(20d), assuming B to be
independent of height, and using (19a)-(19c), we obtain
for the zeroth order streamfunction

aro:M, oM, 7 A6\,
—.[ + +B2(1+—0) - ]=0.
oL £z 8y? 6, / o8

(21

Eq. (21) is a linearized version of the quasi-geostrophic
potential vorticity equation in that advections are not
included. As a result of the above-mentioned Boussinesq
assumption and above linearization, this equation is
simpler than .the potential vorticity equation used by
Bleck (1973) for numerical application to actual
cyclogensis.

b. Boundary layer pumping

We presently specify the boundary conditions and
initial conditions for the potential vorticity equation
which is elliptic in 9476/df. The boundary layer pumping
expression (2) is employed as a lower boundary condi-
tion by taking the Lagrangian derivative of the per-
turbation hydrostatic relationship in which case

d aM'\"  dzZ’
_( / _0—) =g—.
a0 dt

(22)

Assuming for the moment ‘that the vertical motion
at the top of the boundary layer is due exclusively to
boundary layer pumping (level terrain), combining (2)
and (22), scaling according to (17), allowing Ro— 0,
multiplying through by A6/6, and rearranging, we
obtain

Al _ AG \OM
RECH
oil. 8, b

gF A0<62M 8T

T pLre\af o
O(Ro) corrections to boundary layer pumping are
neglected since this vertical motion is itself a first-order
contribution to the free flow dynamics. Scaled variables
are O(1) and A8/6,K1, so that for atmospheric flow

problems the primary balance is

d oM

A ——

of 96

gF Ao(a2M aZM)
L\ a2 o/
This balance implies that for a hypothetical “stratified-
barotropic” atmosphere, where vorticity is independent
of 6, the spin-down time scale is -

fL? 6,

rTe=—

gF )
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Choosing this time scale to be the scaling time scale
and expanding the flow in terms of A, as above, we ob-
tain the following zero-order lower boundary condition :

arae AHA\E)M(, M, M,
—-Ali—Mo—' 14+—d -.]= 4
ot 6, 8,/ 061 o op

c. Solution

6=0. (24)

By employing. the coordinate transformation
A
n= ln( 1 +—0) ,
6o

Eqgs. (21), (24), (25) transform to

d I:azM 0, 62M0J /gN‘1>"2<02M0 aMo)]
=0

’

" T +
sil agr ' agr \ fL an*  on
d/ . oMy 6o y0*M, 9°M,
— Mo )=— _|L ) at 'f]=0,
ot an /] A6\ af2 9y

o Go1+Af

My— 0; y=Inl )

6o

We can examine the decay of vorticity with time and
the decrease of the spin-down influence with height by
imposing harmonic side boundary conditions and
assuming that the influence of boundary layer pumping
vanishes at dimensional potential height 6=0,+A8
so that

My(@=1)=0. (25)

We can then separate horizontal and vertical dependen-
cies by Fourier transforming the streamfunction with
respect to horizontal distance, i.e.,

_ Mo(2,9,8,8) =m(8,]) Re{exp[i(ks+I9]}.
The initial condition is then
Mo(£,9,6,0)=1m(8,0) Re{expli (k2-+19)]}.

The system would become mathematically equivalent
to Walin’s equations if we replace § with a constant
value # whenever it appears as a coefficient and if we
assume that A§/6<1. While we find it not necessary to
invoke these assumptions, it will turn out that the
additional generality makes little qualitative differ-
ence. The above system is then converted to an ordinary
differential equation by Laplace transforming the time
dependence. After solving the resulting ordinary dif-
ferential equation, applying the inverse transform,
using the residual theorem, converting back to dimen-
sional variables and allowing A to approach a suffi-
ciently large value so that influences of the upper

boundary vanish, we obtain )

Mo(x,9,6,t; k,1) =Re{exp[i(kx+iy]} ,
X {m(6,0) —m (0,0)[1 —exp(—1/t.)1(6/60) ‘= =%}, (26)
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where
P=P4R

31f(+a)
Fgp?

e\ ?
(]
N

where £ and / are horizontal wavenumbers and ¢, is the
stratified spin-down time scale. As ¢/, — large, the
perturbation flow has been spun down to negligibly
small values by boundary layer pumping. In the
absence of boundary layer pumping, the amplitude of
the flow does not change with time. With increasing
stratification (increasing Brunt-Viisild frequency N),
the spin-down time scale decreases. This is a reflection
of the fact that with increased stratification, the circu-
lation induced by boundary layer pumping is increas-
ingly bottom trapped, thus increasing the divergence
and rate of pressure adjustments immediately above
the boundary layer. In other words, with greater
stratification, the fluxes out of the boundary layer are
absorbed by a thinner free layer so that the secondary
circulation and vorticity adjustments immediately
above the boundary layer are faster. The spin-down
time scale also decreases with decreasing length scale.
The greater the horizontal length scale, the greater the
time scale for a parcel following the frictionally driven
secondary circulation to complete one cycle. Thus,
as the length scale increases or as the stratification
decreases, the relative importance of frictionally
induced pressure adjustments and, therefore, the
spin-down rate decreases.

The spin-down time scale expression can be simpli-
fied by noting that (2¢g/fN)>>1 for most mid-latitude
synoptic flows. For example, for f=10"4s"1, N-1=80s
(Section 3a), and for a horizontal wavelength (e.g.,

distance between two low pressure centers) of
L=2w/?=2X10% m,

e

27g
—=50.
IN

Then, except in the case of very strong stratification,
we have approximately
N—l

to=—.

F¢

@7

The spin-down rate (1/¢,) is proportional to the strati-
fication and the boundary layer pumping efficiency
and inversely proportional to the length scale of the
flow. The spin-down time scale can be expected to
range from ~§ day for N-'=60s, F=250m, L=10°m
to almost 20 days for N"1=100s, F=40 m, L=4X10¢
m. If the initial perturbation streamfunction is inde-
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pendent of elevation m(6,0)=m(0,0), the percentage
decrease of lower tropospheric vorticity due to boundary
layer pumping is exp(—7/%.) after one synoptic time
scale T. For the above two numerical examples, the
reduction of vorticity at the bottom of the free flow
after 3 days ranges from substantial destruction to
almost no effect. In other words, large variations in the
importance of boundary layer pumping can be expected
due in part to the fact that the surface stress can vary
by an order of magnitude depending on surface rough-
ness, boundary layer stratification and wind speed.
For conditions thought to be typical of an average
extratropical cyclone (Figs. 2 and 3), the vorticity in
the lower part of the free flow is significantly reduced
on a synoptic time scale. The above simplified theory
then indicates that boundary layer pumping can
significantly alter the vorticity in the lower troposphere
on a synoptic time scale particularly under conditions
of large surface stress and large free flow stratification.
As is evident from (26), the effects of boundary layer
pumping decrease rapidly with elevation. We define
the penetration depth scale to be the depth at which
the vorticity destruction rate is reduced to 1/e of its
value immediately above the boundary layer. The
potential temperature thickness of this depth is

(6—60) =8ofexp[ —2/(1—a)]—1} (28)

Using the above assumption that 27g/fN>>1 and the
definition of @ and N, this depth scale (28) is approx-i

mately )
f g 867}
R P ER )
tg/L8(Z) 0z
The actual penetration depth is approximately
AN A
H zf(-(—> (—) =— (30)
#\ g 9z N

Thus, the penetration depth scale for the above at-
mospheric flow situation is inversely proportional to
the square root of the stratification and proportional
to the length scale of the flow. The same tendencies are
predicted by Walin’s analyses. This depth scale is an
intrinsic property of the stratified free flow and does
not depend on the nature of the boundary layer
pumping. For example, this depth scale is the same for
any type of forcing at the bottom of a stratified layer
or sublayer as can be shown by redoing the analyses
leading to (26) with constant forcing. A similar decrease
with height of the influence of forcing in a stratified flow
is evident in Kuo’s (1956) analyses of the distribution
of the “influence function” of point forcing. The con-
straining influence of stratification on topographical
forcing is examined by Hogg (1973).

The depth scale describing the portion of the fluid
significantly influenced by boundary layer pumping
increases with time and is proportional to the above
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the relationship leading to (30).

penetration depth scale modulated by an exponential
time dependency evident from (26) or Figs. 2-3. For
f=10"* s7} H varies from 1 km for L=10° m and
N1=60s to ~6% km for L=4X10° m and N-1=100s.
These calculations indicate that boundary layer pumping
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according to number of days after initiation of spin-down.

is likely to influence only a fraction of the troposphere
for small length scale circulations with significant
stratification and perhaps all of the troposphere with
larger length scale circulations with weak stratifica-
tion. In the event the free-flow depth scale is small
enough to be comparable to the boundary layer depth,
then ‘the “boundary layer approximation” leading to
(1) may break down depending on boundary layer
stratification. Furthermore, the quasi-geostrophic as-
sumption may be invalid in such a thin free flow since
the free flow divergence becomes comparable to the
frictionally driven convergence.

It is difficult to compare the above estimates with
actual atmospheric observations since a number of
mechanisms in addition to boundary layer pumping
are operating simultaneously. Although somewhat
inconclusive, the case study of Graystone (1962)
indicates that boundary layer pumping could be
synoptically important. The troposphere can be viewed
as a statistical upper boundary to the direct influence
of forcing at the earth’s surface. However, in a given
situation, the primary influence of nonconvective
vertical motions near the earth’s surface may be con-
fined to a substantially thinner layer. In summary, we
suggest that boundary layer pumping is likely to be
important in synoptic circulations of strong stratifica-
tion and small horizontal length scale. In this case,
mass fluxes out of the boundary layer are concentrated
in the lower troposphere. In terms of the length scale
over which the flow varies by one amplitude, which is
one-fourth of the wavelength for periodic flow, the im-
portance of boundary layer pumping is described by the
depth scale fL/N and time scale L/FN.
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4. Scale analysis for accelerated, forced flow

The influence of accelerations on the role of boundary
layer pumping can be examined with the model in the
previous section by considering fixed relationships
between A and Ro and employing a double series
expansion or finite differencing approach. However, a
more straightforward and perhaps more illuminating
estimate of the influence of accelerations can be
achieved by considering a simple homogeneous fluid
of depth comparable to the stratified flow penetration
depth derived in the previous section [see Eq. (30)].
By choosing this depth, the possible importance of
various acceleration effects in the atmosphere can be
estimated.

A homogeneous, hydrostatic, frictionless free layer
conserves potential vorticity as can be shown by com-
bining the vorticity and mass continuity equations
(e.g., Batchelor, 1970), in this case we have

d (¢+f)/dHr dHp
Sean= DT 0 G
dt H dat at
or alternatively
d i+ f
—<—)=o, (31b)
ai\ H

where ¢ is the relative vorticity, H the variable depth
of the fluid, (¢4-f)/H is referred to as the potential vor-
ticity, and Hr and Hp are, respectively, the elevations
of the upper and lower boundaries of the free layer which
are both substantial surfaces. In the present study, we
consider the flow situation where Hz is constant and Hg
varies due to 1) specified externally forced vertical mo-
tion 4 as would be generated, for example, by flow over
varying terrain height, and 2) frictionally driven con-
vergence or divergence. Employing the boundary
layer vertical motion expression [Eq. (2)] and again
assuming constant Coriolis parameter, the above
vorticity equation becomes

d
—§'= —(%)(F;‘+Row1+A).

p 32)

We define the following scales describing externally
forced synoptic-scale flow: L is the horizontal length
scale of the flow of typical magnitude of 2000 km;
then the terrain slope of interest is 4*/L, where #* is
the bulk surface elevation change over the synoptic
length scale. Here we do not consider interactions with
sub-synoptic, terrain-induced circulations (Sawyer,
1959) such as internal gravity waves (e.g., Klemp and
Lilly, 1975) and small-scale low-level “deflection” or
“blocking” (e.g., Newton 1956). In addition to the
upstream inflow velocity U, the flow is characterized
by the perturbation velocity scale V. Divergence and
vorticity then scale like V/L.

Based on calculations in the previous section, we
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assume that the spin-down time scale is comparable
to or longer than the synoptic time scale T. Then
temporal and advective accelerations scale like

ov Vv

————
y

a T
uv
V-VV~r,
L

Since the synoptic time scale is typically larger than the
parcel time scale L/U (e.g., L~2X10®m, U~20ms7},
then L/U~1 day), temporal accelerations will be
generally smaller than advective accelerations. In the
“slow flow” case, where the inflow velocity is small
compared to the disturbed velocity, then U in the
present analysis can be assigned to be V. The ratio
of the total acceleration term to the Coriolis term is

v
Ro=—n¢/f<1. (33)
fL

The quasi-geostrophic assumption (Ro<1) also im-
poses restrictions on the terrain forced vertical motions
as can be shown from the approximate frictionless
quasi-geostrophic version of the vorticity equation (32):

al fA (34)
a H

where A and H are, respectively, the average forcing
vertical motion and average free-flow depth. The vor-
ticity externally generated during the Lagrangian time
scale L/U then scales like

_ AL
= (35)
HU
in which case the Rossby number becomes
AL
Ro=—. (36)
AU
For topographically forced flow where A~ Uk*/L,
L
H
h*
Ro= - (38)

Thus, quasi-geostrophic theory can be applied to flow
cases where the terrain height is small compared to the
free flow depth scale (Phillips, 1963). Conversely,
the relative importance of orographic effects is indi-
cated by the ratio of the terrain depth scale to the
appropriate free-flow depth scale.
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Scaling the vorticity with (4/H)( fL/U), time with
L/U, vertical motions 4 and w with A, and free-flow
depth with H, the vorticity equation w1th error O(Ro?)
becomes

& (Rof+1)

P H (F*g‘—l—Row1+A ),

(39)
where

- 2)

All dependent variables in (39) are expected to be
O(1). The vorticity dynamics then depend on the
Rossby number and the boundary layer parameter F*.
The latter represents the relative importance of
boundary layer mass convergence. Noting that gen-
erally Cp<<1 (Section 2), then F*~C pL/H and can be
expected to be typically O(10™)-O(1) depending on
the surface drag coefficient and free-flow depth scale
In this respect, the above scale analysis differs from
“that of the quasi-geostrophic theory of tropospheric
planetary waves of Phillips (1963), where F* was
- considered to be O(Ro). In that case the contribu-
tion due to boundary layer pumping would be a factor
of Rossby number smaller. F* is largest and boundary
layer pumping is most important for 1) large pumping
efficiency F, that is, large surface stress such as might
occur with strong winds and/or: large surface drag
coefficient, 2) small free-flow depth in which case the
free flow is more sensitive to mass fluxes from the
boundary layer, and 3) large horizontal length scale
where a given boundary layer pumping rate has more
time to influence a fluid element.

The conventional quasi-geostrophic solution can be
computed from (39) by letting Ro— 0. That is, we
have already divided through once by the Rossby
number in the algebra leading to (39) so that (39)
contains first-order corrections to the quasi-geostrophic
theory of Ingersoll (1969) and Huppert and Stern
. (1974). In the next section we examine the influence
of such accelerations from a Lagrangian point of view.

5. Lagrangian solution

We now examine the influence of boundary layer
pumping and accelerations on the Lagrangian evolu-
tion of the relative vorticity. Since the Lagrangian
derivative contains nonlinear components, order-of-
Rossby-number corrections to frictionally driven mass
convergence can be most conveniently calculated for
well-mixed flows. Relaxation of the well-mixed assump-
tion requires additional assumptions (Mahrt, 1975) and
will presently not be considered. Following a procedure
outlined in Mahrt (1975), we 1) layer-integrate the
boundary layer equations of motion, 2) assume a
linearized surface drag relationship, 3) scale the equa-
tions in accordance with Section 4 and expand the
horizontal velocity in terms of the Rossby number, and
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4) layer-integrate theé mass continuity equation. The
O(Ro) correction to the vertical motion at the boundary
layer top, scaled with respect to the externally forced
vertical motion 4, is then

. (1 -CYDZ) dfa
'w1=h

(A+Cp22 di
) - (40)
A

ﬁ__ e

HRo h*

where % is again the depth of the boundary layer. Both
k and Cp are assumed to be constant in the above
vertical motion calculation. The relationship between
h and A* makes use of (37). We normally expect the
boundary layer depth to be small compared to the free-
flow depth scale, fortuitously O(Ro) for quasi-
geostrophlc atmospheric flow. Then % is O(1) and Roti,
is truly an O(Ro) correction to the boundary layer
pumping. If k/H approaches O(1), the average first-
order divergence in the free layer is comparable to the
frictionally driven convergence in the boundary layer
and the flow may no longer remain in quasi-geostrophic
balance. R

Since the scaled drag coefficient Cp is generally small
compared to 1 (Section 2), the correction term for
boundary layer accelerations is due primarily to
“frictionless effects’; that is, the acceleration-modifica-
tion of the boundary layer divergence is only weakly
modified by frictional effects and is thus comparable
to the free-flow divergence. In particular for Cp<1,
the acceleration-modification of the boundary layer
pumping rate generates an influence mathematically
analagous to increasing the depth of the free flow
by an amount something less than the boundary layer
depth. In the less common atmospheric case Cp>1,
this effect is actually analogous to decreasing the depth
of the free flow since the net acceleration correction
to the boundary layer divergence is of opposite sign
to that of the free-flow divergence. We formalize -
this similarity by defining an effective free-flow depth

1-Co?
*—H RohA———
H +Ro 0t Opz)z

Then combining (39) and (40) we obtain

d
H*éz—(RoHl)[F*HA(i)]- @1)

For a given forcing A (£), increases in the effective depth
H* due to accelerations in the boundary layer decreases
the vorticity production rate. Accelerations above the
boundary layer influence the vorticity adjustment rate
through the influence of relative vortlclty on the
absolute vorticity Rof+1.

Neglecting variations of the scaled drag coefficient
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Cp and noting from (31b) that the modified potential

vorticity (fRo-+1)/H* is then conserved, the solution
to (41) is easily found to be

{=£(0) exp[ —Ft] )

i
—exp[ —Fi] / exp[Fi14 () (F/F*)di

).

ro (42)

J

Positive initial relative vorticity speeds up the vortex
stretching rate and thus decreases the adjustment
time scale. In the case of constant external forcing,
zero initial relative vorticity and momentarily choosing
H such that H*(0)= 1, the scaled vorticity solution (42)
simplifies to

f=—A/FY[1—exp(—FD], A==1.

In this simplified case, the adjustment rate is propor-
tional to the frictional parameter F* while the steady-
state vorticity is inversely proportional to the frictional
parameter. Of course, the vorticity at a given point in
time decreases with increasing frictional parameter.

6. Steady flow

We now consider steady flow from an Eulerian point
of view in order to examine the spatial distribution
of the relative vorticity with respect to the forcing
field or orography. Assuming steady state and in-
variance in one horizontal direction, we have

d a
—=u—,

dt  ox

43)

Since we wish to examine the influence of boundary
layer pumping and accelerations on synoptic-scale flow,
we scale length by the synoptic length scale L. The
horizontal distance required for boundary layer
pumping to spin-down the vorticity of a moving fluid
element or system is quite variable and may be much
larger than the synoptic length scale. This variability
can be argued from the substantial variation of spin-
down time scales estimated in Section 3. We scale the
advecting velocity by the inflow velocity U which in the
subsequent development is considered to be at least
as large as the disturbed velocity. The vorticity equation
(39) with (43) then becomes

a9 -
Ha£f= — (Rof+1)[F*{+Roin+A4 (£)], (44)

where b is now the contributions of advective accelera-
tions to boundary layer vertical motions. Noting that
two-dimensional mass continuity demands that

Ha=H(0)4(0),
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the vorticity equation (44) reduces to
9 5
B(O)a(O)(-?—j= ~ (Rof +1)[F*¢+Rowr+4 (£)].  (45)
£

The O(Ro) influence of advective accelerations on
boundary layer vertical motions can be computed by
the same procedure leading to (40). After neglecting
terms of O(Ro?), we obtain

. (1—Cp?)
Wp=F*¢j—RoF*— 2

(1+Co?
(ﬂa“oDﬁv) ad
RoA—r— —F¢,.
+Ro (14+Cp2)2 af

As discussed in Mahrt (1975), the advective modifica-
tion term with quadratic dependence on vorticity acts
to reduce the boundary layer vertical motion with
positive vorticity and vice versa. The vorticity ad-
vection-like term acts to shift the maximum boundary
layer vertical motion upstream from the vorticity
maximum advection. It is useful to combine the
boundary layer vorticity advection term with that of
the free flow by again defining an effective flow depth

(46)

a—é ‘ﬂ
H*EH(0)+Roﬁu—)~
2(0) 1+Cp2)2
k (#,—Cod,
B W o M
H 4(0)(1+Cp?)?

where his generally O(1) as discussed earlier. In general,
the effect of boundary layer accelerations again increase
the effective flow depth by something less than the
boundary layer depth. The scaled geostrophic wind
component #, is constant since we have assumed
constant Coriolis parameter and invariance in the y
direction. In the subsequent development we linearize
the vorticity equation by neglecting the generally small
variations of H* due to variations of Cpd,. This
assumption is satisfied if either the flow changes due to
forcing are small compared to the inflow or if Cp<<1.
Using the above definition of the effective depth H*
[Eq. (47)] and the boundary layer vertical motion
expression (46), the vorticity equation (45) then
becomes

d
52= ~A (&) —~[F*+Rod (£)]§ —RoF*Cp¥2, (48)

where terms of O(Ro?) have been neglected and for
notation brevity we have redefined the nondimensional
drag coefficient to be

- 202
D= 1+0D27
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and have specified the advecting velocity scale to be
U=H*u(0).

- The selection of U is reasonable since for quasi-geo-
strophic flow, the non-dimensional constant H* is close
to unity. As before, the vorticity equation reduces to
the classical quasi-geostrophic vorticity equation if
terms of order Ro are neglected. Since we expect
the frictional parameter F* to be typically O(1077)
%although occasionally as large as O(1)] and expect

p and therefore Cp to be typically O(107Y), we
interpret (48) by momentarlly considering F* and
Cp to be less than, say &.

The largest modification due to accelerations is then
the influence of absolute vorticity changes on the
externally forced vortex stretching which is the term
RoA (£)§. For example, with positive relative vorticity,
such as is produced in downslope flow, vorticity pro-
duction is increased. Conversely, the vorticity produc-
tion is decreased in upslope flow. McClain (1960)
suggests that this effect may be in part responsible for
the frequent cyclogenesis downstream from the Western
Cordillera (Rockies, Sierra-Cascade ranges, etc.,) and
apparent absence of a maximum frequency of anti-
cyclonic circulations in the -rising motion upstream
from the Western Cordillera.

This “frictionless” acceleration effect, however, is
modulated by a generally smaller acceleration-modifica-
tion of that portion of the vortex stretching induced
by boundary layper pumping. This modification is due
to three contributions:

1) Modification of the absolute vorticity due to free-
flow accelerations changes the influence of a given
boundary layer pumping rate on the vorticity dynamics.
This contribution is RoF*{? [ (45) and (46)].

2) Accelerations in the boundary layer modify the
boundary layer pumping rate. This modification is
[—F*Ro(1~Cp?)§¥]/ (14+Cp?). This second effect often
nearly cancels the first effect leaving a generally small
residual RoF*Cp2f2.

3) A third acceleration effect in the boundary layer,
associated with vorticity advection in the boundary
layer, is often only weakly affected by “frictional
influences” and is viewed here as an increase in the
“effective” depth of the free flow [Eq. (47)]. This
contribution acts to decrease the dimensional vorticity
changes.

In summary the net effect of interactions between
accelerations and boundary layer pumping (effects 1
and 2) appear to be important only under conditions
of strong surface stress or thin boundary layer and free-
flow depths or small Coriolis parameter as can be seen
by examining (4), (39) and (48). In particular, such
interactions are important only when F*Cp2~0(1). An
example of such conditions would be Cp=4X 1073,
U=10m s™, f=10~* s, 4=500 m, L=10° km and
H=3 km. In general the most important influences on
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the vorticity field are due to unmodified boundary
layer pumping and to variations of absolute vorticity
associated with free-flow accelerations. In cases of
positive relative vorticity, such as might occur with
forced subsidence as in downslope flow, accelerations
increase the absolute vorticity and vorticity production.
Such an increased vorticity production rate is opposed
by vorticity destruction due to boundary layer pumping.
With negative relative. vorticity such as might be
produced with forced rising motion, both free flow
accelerations and boundary layer pumping act to
reduce the vorticity production. Thus for a given
forcing magnitude, the net vorticity production is
largest in the case of forced subsidence.

For negligible upstream relative vorticity, the fric-
tionally driven vertical motion will oppose the exter-
nally forced vertical motion. Therefore, for a given slope
magnitude, vertical motions are greater in upslope flow
where geostrophic vorticities and Ekman pumping
are weakest.

To illustrate these tendencies we present a numerical
example. Consider a slope of 1073, f=10"*s"*, L=10%m,

=5 km, Cp=1.5X10"3, Cp=0.1 (see Section 2).
Then from Eqs. (37), (39) and (48), we have

Ro=0.2, F*=03, (Cp=0.2.

In this case the scaled free-flow acceleration contribu-
tion is ~0.2¢, the boundary layer pumping term is
~0.3¢ while the interaction term between accelerations
and boundary layer pumping is O(10—%)§{2. Thus in
downslope flow with the above approximate conditions,
acceleration and boundary layer pumping terms
partially cancel in which case the vorticity production
can be estimated reasonably well from quasi-geostrophic
frictionless theory. On the other hand, in upslope flow,
accelerations and boundary layer pumping combine
to significantly reduce the net vorticity production.
Of course, in individual flow situations the upstream
relative vorticity may be of major importance.

a. Constant forcing

In the case of constant forcing, the vorticity equation
(48) can be solved by using the transformation

&= (RoF *Cpin)~1(9n/84).

After solving the transformed equation and applying
the inverse transform, we obtain for A@)=21:
§=— (2 RoF*Cp2)[C(RoA +F*4£1)
Xe-#84Rod +F*—£]/[Ce#£4-1]
£=[(Rod +F*)*—44F* RoCp*]*
= —[2 F* RoCp?¥ (0)+RoA+F*—g£1]
+[2F* RoCp?f (0)+RoA+F*+£1]

(49)

In the case of zero upstream relative vorticity, the
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F1c. 4. Horizontal profiles of scaled relative vorticity magnitudes
predicted by (49) for Ro=0.25, frictional parameter F*=0.1, for
downslope flow with zero initial vorticity (thick solid). Variations
on this prototype are Ro=0 (dotted), upslope flow (thin solid),
and positive and negative nonzero upstream vortices (dashed
lines).

solution simplifies to
f=—(2 RoF*Cp?) (RoA+F*— £ 1) (1—e#/%)
+{[— (RoA+F*—g™)/
(RoOA4F*+£ 1) ]e#/24-1}.

The vorticity solutions (49) and (50) are evaluated for
different values of Rossby number, frictional parameter
F* and initial vorticity in Figs. 4 and 5. To facilitate
interpretation of the vorticity solution, we first tem-
porarily consider an additional approximation. In
general, the net acceleration-modification of the friction-
ally-induced vortex stretching is small as discussed
previously and as is verified by evaluations of (50).
It is then useful to form the ratio of the modification
of £ due to this particular frictional acceleration
effect to £~ computed without this effect. This ratio is

4F *ROCD2A
(F*+RoA)

where P is expected to be generally much less than 1.1

(50)

P

]

1In the case of upslope flow, P will always remain less than 1
for possible atmospheric values of Cp and F* and Rossby number
small compared to 1. Thus, imaginary £, where the vorticity
distribution becomes periodic with distance, is not of present
interest. In fact, for Ro<}, P remains less than 1 even as Cp
and/or F* approach infinity. The most important exception to
very small P is in downslope flow in the special case where
RoA =~ —F*. Then the destruction of relative vorticity by bound-
ary layer pumping is approximately balanced by the increased
externally forced vorticity production associated with increased
absolute vorticity in which case the quasi-geostrophic frictionless
estimate is a good approximation.
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We can then write
£1=(F*+Rod)(1—(1/2)P),

where terms O(P?) have been neglected. The vorticity
solution (50) then simplifies to

1—exp(—£/2)

fA [ ] (51)
Rod+F+*.—[P/(4—P)] exp(—4/€)+1

a
g-

The vorticity amplitude, toward which the vorticity
is adjusting, —A (RoA-+F*)~1, decreases with increas-
ing frictional parameter; the adjustment rate £,
however, increases with increasing frictional parameter.
These tendencies reflect the “damping” nature of
boundary layer pumping. For small Ro and F* the
vorticity at a given point decreases with increasing
frictional parameter as can be seen by expanding the
exponential terms in the vorticity solution (51) or by
evaluating the complete vorticity solution (50) shown
in Fig. 5.

The increase in vorticity production due to accelera-
tions in downslope flow and the converse (evident in
Fig. 4) can be estimated by expanding exponential
terms in (51) for £/£<1 or can be most simply esti-
mated for the case of no boundary layer pumping
(F*=0), in which case
f=—Ro(1—¢4 Ro?)

= —A£+3RoA22—O(Ro?A%7).  (52)

The term 1RoA242, which represents the approximate
influence of relative vorticity on the externally forced
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Fi1c. 5. Horizontal profiles of scaled relative vorticity predicted
by Eq. (49) for Ro=0.2 for downslope flow with zero upstream
relative vorticity for three different values of the frictional
parameter F*,
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vortex stretching, increases vorticity production in
downslope flow and vice versa.

Fig. 4 also illustrates the increase in vorticity pro-
duction due to positive initial relative vorticity and
vice versa. Since Ro is larger than F*) in this example,
the enhancement of vorticity production due to accel-
erations (positive relative vorticity) exceeds vorticity
destruction due to increased boundary layer pumping.

b. Generalized forcing

In. general for an arbitrary forcing distribution or
terrain feature, the vorticity equation (48) cannot be
solved analytically. Approximate solutions can be ob-
tained by expanding the scaled relative vorticity in
terms of the Rossby number. The zero- and first-order
equations and solutions are

ok | .
— = —F*f—A ()
ot

?o=e-F*f[fo 0)— / 4 (ﬁ)eF*'fdﬁ]
0

a1 A I

5=_F*;I_A(gf;)gro—F*szgroz , r (93)

fl=e—F*f_[fl<o>— / 24 @)Fo(E)d
0

—F*Cp? / eF‘&‘B‘:o(:e)szﬁ]
. 0

J

where the subscript refers to the series expansion index.

To verify the usefulness of the series expansion solu-
tion (53), we estimate the solution for constant forcing
from (53) for zero initial relative vorticity:

. Lo 4 3
fo+Ro§1=—[ (1—e*%)+Ro—[ — (1 —eF*)
P* F*

+(1=2Co8)F*2eF*5 4 Crrem )L, (54)

Comparison of evaluations of (54) for constant slope
with the exact solution (50) indicates that for F*=0.1
_and Ro=0.25, Eq. (54) incurrs a maximum error of
only 197,
As an example of generation of asymmetries in the
vorticity distribution, we consider flow over a sinusoidal
terrain feature with slope of the form

A(#)=msin(2r£), 0<4£<1,

_ in which case the zero-order vorticity amplitude with
no boundary layer pumping is unity.
The vorticity solution obtained from (53) for the
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above symmetric forcing with zero initial vorticity is
£ (@) =7F1(—F* sin(k£)+ cos(kt) — ke F*%)
—Ron?F e~ F*3F*{ (F F*(Cp2—1)
X F3[ (F* sin(k£) — 2k cos (k£)eF*? sin (k£)
+ (2k2eF*2/F*) — 2k /F*]— Fo(1—cos (k£))
+1/2kF F o[ eF*3(F* sin (2k4)
—2k cos (2k$)+2k]+F 220 p2
X[F*1(1—e F*2) — 2k sin(k4)
+F3 (2F*—1k2eF*5 —_ 2F*—-1k2 ___F*
+-eF*2 cos (k£) (F* cos(k£)+2k sin(k£))) ]},

where

(55)

Fi= (F*2+k2)—1"
Fo=F*1_2F F*Cp?,
Fs= (F¥4-4k2)1,
k=2x.

Fig. 6 shows evaluations of (55). The net production
of relative vorticity is small for F*=0.1 but somewhat
larger for F*=1 (large drag coefficient or thin free-flow
depth). That is, asymmetries in the vorticity profile
and net vorticity production are due to boundary layer
pumping. Since potential vorticity is conserved for a
homogeneous fluid, net vorticity changes over a sym-
metric terrain feature occur only when the boundary
layer experiences a net change in depth (or acts as a
net mass sink or source). As an example, net positive
vorticity production across a symmetric terrain feature
is evident in the laboratory experiments of Boyer
(1971). The net production of nonzero relative vorticity

- associated with boundary layer pumping is small for

typical atmospheric values of the external parameters
as can be seen from evaluations of (55), shown in Fig. 6,
or by integrating (48) for the case of flow over a sym-
metric ridge.

As a result of the destruction of anticyclonic vorticity
by boundary layer pumping in flow over the above
terrain feature, the maximum vorticity magnitude
occurs upstream slightly from the forcing maximum
(Fig. 6). The influence of accelerations (Fig. 6) is seen
to reduce the vorticity production, a result of decreased
absolute vorticity. However, the occurrence of non-
zero accelerations does not generate a significant net
vorticity change since the net change associated with
accelerations is zero without boundary layer pumping
and frictional-acceleration interactions are small.

7. Summary and further discussion

The above simple solutions illustrate the following
flow tendencies partially predicted by scale analysis
of synoptic-scale flow:

1) The penetration depth of the influence of boundary
layer pumping or arbitrary forcing in the atmosphere
is fL/N, where N is the Brunt-Viisili frequency and L
the horizontal length scale of the flow.
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F*=1 (dashed) and Ro=0, F*=0.1 (dotted).

2) The spin-down rate associated with boundary
layer pumping is proportional to the surface stress and
inversely proportional to the above free-flow depth
scale. In particular, the spin-down time scale is N~1L/F,

,where F is the boundary layer pumping efficiency
(boundary layer pumping rate divided by the geo-
strophic vorticity). Calculations presented in this study
indicate that boundary layer pumping may significantly
alter the lower troposphere on a synoptic time scale
with large surface stress and significant free-flow
stratification. Boundary layer pumping appears to have
a small direct synoptic scale influence on the middle
and upper troposphere.

3) For slopes characteristic of the high plains of the
United States and typical wintertime stratification,
orographical forcing appears to be quite important
from a climatic point of view.

4) Effects due to boundary layer pumping and free-
flow accelerations oppose each other with cyclonic
vorticity as is produced in downslope flow while such
effects both act to retard vorticity production in regions
of anticyclonic vorticity. Thus, for a given slope mag-
nitude and zero upstream vorticity, vorticity produc-
tion is greater in downslope flow while vertical motions
are greater in upslope flow.

5) Due to near cancellation of already small effects
from the influence of accelerations on the boundary
layer pumping rate and the influence of free-flow
accelerations on the vortex stretching due to a given
boundary layer pumping rate, the net interaction be-

tween accelerations and boundary layer pumping is
generally unimportant.

6) In flow over symmetric orography or external
forcing, the net production of vorticity is small.

The above study also indicates the usefulness of ex-
amining atmospheric vorticity dynamics with isentropic
coordinates. In such a coordinate system the stratifica-
tion parameter varies slowly with elevation in the
troposphere and tilting and vertical advection terms
are implicitly included for adiabatic flow without com-
plicating the mathematics.

The above theory is useful in predicting the possible
importance of various effects and their qualitative
behavior but cannot predict details of circulation
development in the more complicated atmosphere where
effects due to stratification in the boundary layer,
diabatic heating, and interactions with sub-synoptic
scales of motion are likely to be important. For example,
developments in this study have addressed only
the influence of synoptic-scale boundary layer pump-
ing and have not considered mesoscale structure.
In actual mid-latitude cyclones, much of the low-level
rising motion is concentrated in frontal zones. In
cloudless areas such as frequently occur behind the
cold front or within the warm air mass, nighttime
radiational cooling may lead to substantial stratification
and baroclinity in the boundary layer, resulting in
possible reduction of the frictionally driven circulation
or resulting in local disruption due to drainage flows.
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