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Systems Tableau is suggested as a convenient tool for the 

integration of the three phases of systems theory: the synthesis of 

a model from the analysis of a system; the evaluation of the model; 

and the decision- making process for the design and control of the 

resulting system. 

From a basic consideration of Man- Nature communications, 

several mathematical, biological, engineering, and management 

examples of systems models are examined to develop a unified 

definition of a system. 

Logical, physical, mathematical, graphic, and computational 

requirements are postulated for the methodology of models for sys- 

tems meeting the definition. These requirements are used to formu- 

late the basic tableau as a hybrid of a mathematical mapping matrix 

and a graphical flowgraph that expresses the interrelationships among 

the components of a given system. Thus, a tableau is at once a 

_.__illIll..l_ 



matrix and a network representation of the system. 

The general (connecting), ordinal (dominating), and techno- 

logical (directing) relations in the observation (phase) space are il- 

lustrated on tableaux for social, economic, management, and 

engineering examples. Related mathematics of relations are exa- 

mined. 

The relationships of these descriptive models to normative 

models are discussed as synthesis techniques. Orthogonalization of 

bases, parametric representations (in frequency space as probabil- 

ities and statistical distributions), and reductions in state (solution) 

space are methods introduced with examples in queueing, communi- 

cation, and information models. In normative models, we are af- 

forded some degrees of freedom expressed in terms of choice of al- 

ternatives. This decision requires at least an ordinal, if not cardi- 

nal, characterization of each alternative. 

The ordinally normative models are based on comparatively 

quantifiable relations originally afforded by the uni- directional flow 

of time. Theories of Information, Algorithms, and Games were 

found useful in drawing valuable conclusions (decisions) from these 

models. Puzzles, games, Turing machines, and biological examples 

are discussed. 

The cardinally normative models require decisions based on 

numerical values. A truly cardinal model must be cardinal 



resource -wise, time -wise, and information -wise. This inter- 

dependency of resources in phase space and information in state 

space, as functions of time expressible in frequency space, is the 

basis for the proposal of the Cardinal Utility Hypotheses. This con- 

cept allows the development of relations as peculiar Laplace -Z 

transform -pairs, with the utility of Information (usefulness of data 

for decision- making) serving as the Channel Capacity for a corre- 

sponding communication model. 

The Principle of Optimality of Dynamic Programming was 

found most useful in Tableau, and its continuous counterpart of Maxi- 

mum Principle is expected to take a respective place in the Calculus 

of Variations in Control Theory. 

The relationship of the controllability and observability of a 

system and the diagonalization of its Tableau is also illustrated. 

The linear models of the traditional Tableaux are reviewed 

and interpreted in the light of Systems Tableau Method, These in- 

clude Quesney - Leontief Tableau Économique, Hellerman's Tableau, 

and Critical Path Scheduling Tableau. The obvious advantages af- 

forded by the applications of Huggins' (and others) Signal Flowgraph 

techniques are briefly illustrated. Mention is made of a tableau - 

based computer program that will produce the dual network for 

Ford-Fulker son' s Minimum -cut- maximal -flow Method. A brief 

discussion of the future of Systems Theory concludes the treatise. 
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SYSTEMS TABLEAU: 
AN INTEGRATED APPROACH TO SYSTEMS THEORY 

I. INTRODUCATION 

In Support of the Chosen Title 

To state the fact frankly is not to despair the future 
nor indict the past. The prudent heir takes careful 
inventory of his legacies, and gives a faithful ac- 
counting to those whom he owes an obligation of trust 
(Kennedy, 1961). 

The seemingly pretentious choice of the title is not based on 

any claim to the birth of a new theory, or to the belittling of efforts 

made by many scientists, engineers, and philosophers in what we 

have come to call systems theory. Rather, it is meant to be an invi- 

tation to the readers for further testing of an integrated approach that 

has shown signs of promise in the limited applications we are about 

to present. 

Systems Tableau is a tool conceived to facilitate the commu- 

nication between various major techniques of systems theory. The 

most prominent ones are: group theory, matrix theory, network 

theory, mathematical programming, calculus of variations, and 

other related techniques gathered under the names of systems theory and 

Cybernetics.. In addition, information theory and theory of algorithm 

are used as the general framework of modelling, and the stochastic 



nature of actual systems will be recognized whenever possible. 

An earnest attempt has been made to investigate as many 

and varied fields and disciplines as possible in order to find common 

features underlying today's techniques, especially those emerging as 

the basis for a unified systems theory of tomorrow. Though there 

are several original techniques and concepts included in many phases 

of this presentation, no profound claims are intended in any one par- 

ticular aspect of the systems theory. Rather, theorems and 

examples have been borrowed freely and deliberately from various 

fields, especially those that seemed typical and yet simple enough 

for Tableau applications. Whether this Tableau method can be 

applied as effectively for more sophisticated examples, or whether it 

should be replaced by a more advanced approach in the future, is not 

a question we attempt to answer. Our hope is that the Tableau ap- 

proach will serve as an effective stepping stone for this body of know- 

ledge so urgently needed to cope with the accelerating increase in the 

complexity of our society. 

The use of the name "Tableau" will be justified by showing 

the close similarity between this Tableau and others such as: 

Tableau Économique, Simplex Tableau, CPS Tableau, and 

Hellerman's Tableau. 

This treatise is divided roughly into three parts. The first 

section is an attempt to establish as much mathematical and 

2 
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philosophical basis to the concept of "systems" as we can afford 

without imposing a specialized restriction on the legitimate use of 

this term. The first chapter treats various concepts which formed 

the basis of today's systems theory, and tries to give "group theoret- 

ical" interpretations to these concepts. The second chapter examines 

essential properties of a "system" based on currently accepted defi- 

nitions, and produces a unified definition which we shall adhere to for 

the remainder of the paper. 

The second section purports the gradual development of the 

Tableau method as a synthesis, analysis, and decision- making tool 

in systems theory. The examples in this part come from a wide 

variety of disciplines including sociology, economics, engineering, 

physics, computers, games and puzzles, etc. In each case, the 

emphasis is placed on the various approaches used to cope with the 

complexity of the system. A complex system is usually made ame- 

nable to a systematic study through a series of aggregating processes. 

Homomorphic mapping to produce a finite number of discrete states; 

self- characterization techniques to replace subsystems by equivalent 

fixed components in larger systems study; synthesis of decisions 

based on information available in the reduced systems; development 

of algorithms for decision -making; formulation of optimal policy; 

and finally the recognition of recursive relations that will yield a rule 

for policy formulation are stages that our examples should render 
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plausible, if not formally acceptable. 

The last part is a brief historical recap of the highlights 

and our first and last attempt to define "systems theory. " 

Man and Systems 

... by the mere quantitative differences in scale and 
complexity, modern large -scale systems have become 
qualitatively different from the smaller systems which 
have previously been studied; for the same reason, 
they have become qualitatively more like the two 
systems which have always been the prime objects of 
study of science: man himself and the physical world 
which constitutes his environment (Goode and Machol, 
1957). 

The purpose of this first chapter is to investigate man's 

relationships to what he calls systems. 

A system above all is an abstract concept. Moreover, it is 

a man -made concept. Whether a system is classified as an artificial 

system or a natural system, it is the man who decides the elements 

that will comprise the system. What will or will not be included in 

the particular system is decided by a more or less precise recogni- 

tion of relationships that would associate the particular element to 

the rest of items already in the system. 

Depending on the relationships under consideration, a same 

element may be included in several systems. Mathematics may be 

considered as the cumulation of constant efforts expanded by the 

human race to abstractly express these relationships and the 
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relationships between those of the different systems. This process 

can be perpetuated and used to find the cause -effect relationship of 

interest between elements in two different systems. In short, math- 

ematics is a means that will allow a transition from the system in 

which the cause element (independent variable) is 1 o c at e d [b y 

tracing the relationships between systems (transformations)]until 

the chain of relationships will find the effected element of interest 

(dependent variable). 

Two interesting consequences of this feature are: first, the 

birth of concept of an automation, and second, the use of mathematics 

and automaton in describing the communication systems. The re- 

presentation of a system has been called a "model;' and mathematics, 

par excellence, is a tool for building a "model. " But it does not, 

by itself, indicate the aim for which the model was created, or how 

the system is to operate. The incorporation of the operating proce- 

dure into a model is the basic concept of an "automaton. " Similarly, 

a model was found particularly suited to communicate information 

concerning the relationships to other individuals. In addition, a 

mathematical model could be used to model the "communication 

system" itself. When this modelling was applied to man's own com- 

munication system, his nervous system, this became the McCullock- 

Pitts automaton model for neurology. 

With this very broad context, we may say that there is no 
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systems problems that can be solved without some mathematical 

technique. As the systems have become more and more complex 

with the advance of technology which enhanced our power of "associa- 

tion, " the mathematics to manipulate these relationships had to be- 

come more sophisticated also. 

When the complexity of the system has reached such an ad- 

vanced level, however, to necessitate several specialists to solve a 

particular problem, with each representing a different branch of 

sciences and technology, we suddenly find that the advanced mathe- 

matics is too specialized to be used as a communication tool. It 

could no longer be used as a common language to describe the prob- 

lems involved in the systems. If the problems could be described in 

such a manner, they would no longer be classified as a complex 

systems problem. 

Thus, on order to discuss the problem itself, we have resort- 

ed to a more naive "black box" description resulting in a "block dia- 

gram" specifying the areas of study for each participant. The latter 

is essentially a diagram to show some suspected relationships be- 

tween systems expressed in the form of "blocks" or "black boxes." 

We are essentially back to where we have originally started from: 

the study of more or less defined relationships. 

If a truly basic study is to be undertaken to investigate sys- 

tems theory, it seems therefore that we should start from the very 



beginning, investigating the basis for the mathematical systems 

themselves, namely the Set and Group Theories. 

This chapter will therefore follow this cycle: 

1. The development of simple mathematics of relations, 

namely the Set Theory. 

2. The concept of Automaton: a system with an operating 

procedure. 

3. The application of systems concepts to communication 

systems, including man's own body. 

4. A formal study of the study of model -building: Group 

Theory and Transformations. 

5. The development of the complex applied systems: 

Engineering and Management. 

6. Finally, the need for a basic and systematic study of the 

systems themselves: Systems Science and Cybernetics. 

Before undertaking the reading of the remainder of this 

chapter, our readers should be warned about the seemingly prodigal 

list of time - consuming definitions and trite -looking theorems await- 

ing them in the coming sections. Initially, the study was undertaken 

without this formal structure relying exclusively on commonly ac- 

cepted meanings in interpreting terms used in systems theory. Un- 

fortunately, the study quickly became an impossible task requiring a 

new set of interpretations each time we tried to penetrate a new field 

7 
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in which the systems theory is being used. The difficulty may be 

imagined easily by trying to distinguish descriptively such pairs of 

terms as homomorphism and isomorphism, set and group, identity 

mapping and permutation, endogenous and exogenous variables, 

system and environment, and others, without the help of a formal 

structure. The definitions and theorems are taken from Halmos 

(1958), Stephenson (1965), Courant and Hilbert (1953), and Mostow, 

Sampson, and Meywer (1963) with heavy preference on the last. 

Mathematical Systems 

Car enfin, qu'est -ce que'l'homme dans la nature? 
Un néant à l'égard de l'infini, un tout a l'égard 
du néant, un milieu entre rien et tout.. . 

Il faut se connaître soi -même: quand cela ne servira 
pas à trouver le vrai, cela au moins sert à régler 
sa vie, et il n'y a rien de plus juste (Pascal, 1670). 

For, after all what is a man in Nature ? 
A nothing with respect to the infinite, an all with 
respect to nothing, a medium between nothing and all... 
We must know ourselves: if this does not help to find 
the truth, at least it will serve to regulate our life, 
and there is nothing more just, (From Pensées of 
Blaise Pascal, a French philosopher born in Clermont - 
Ferrand, 1623) 

Set Theory 

The most fundamental concept of a "system" emerges from 
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man's recognition of his own identity. Everything is either "he ", 

the system, or what he can experience directly or indirectly, his 

environment. This philosophy is traceable at least to Pascal, if not 

as far as to Socrates. Each object a man encounters, therefore, can 

be classified into two sets: himself as a system, and nature as his 

environment. 

Definition 1. 1. Set. A "set" is a collection of certain objects, 

called the "elements" of the set. If S denotes a set, x e S will define 

x as an element of S. 

After the man has learned to apply this dichotomy to all ob- 

jects around him, he can then study the interaction between elements 

of the system and those of his environment. He recognizes the 

control exerted on him by his environment (e. g. "I am a victim of 

circumstances ") and his capability to produce some change in his en- 

vironment. Obviously this change is observable only when its feed- 

back affects his system in some way (e. g. "to each action there is a 

reaction "). Thus, he has assumed the ability to associate with two 

objects (the system and its input) a third object (the output) related 

in some way (an operation). In engineering, we would call this a 

"black box concept." Mathematicians preferred to study it under the 

name "Group Theory" (or more broadly under "Set Theory "). 

From the identification of his own entity as a system, our man 

has learned to attribute similar identities to other subsets of his 
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environment (a set). 

Definition 1.2. Subset. A part of S is called a subset of S. 

Thus, it is possible to have: x e A e S, where x may be an element 

of the subset A of the set S. 

The subset of particular interest is the system with which a 

man associates himself. The mere recognition of his own self as an 

entity in his mind means that there is a model of himself recorded as 

chemical or physical changes in his brain. This model is a collec- 

tion of these changes which were created through an electro- chemical 

mapping operation. (Of course, we have yet to master any deep 

understanding of this process. See later discussion on page 24. ) 

Definition 1. 3. Mapping. A mapping of a set S to a set T is 

a rule, or an operation (also called a function or an operation), which 

assigns to every element in S a definite element in T. If f denotes a 

mapping of S to T, then the element of T which f assigns to an ele- 

ment x of S is denoted by f(x) and we say that f sends (or maps) x 

into element f(x), an image of x. 

Definition 1.4. One -to -one mapping. (Mostow, Sampson, 

and Meyor, 1963). A mapping f of a set S to a set T is called one-to- 

one iff (if and only if) the following conditions are satisfied: 

1. For every element y in T there is an element x in S such 

that f(x) = y. 

2. If x and x' are two different elements of S, then 
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f(x) # f(x'). 

Definition 1. 5. Identity mapping, f(x) = x for all x in S is 

called an identity mapping. 

Let us note several fine points. First, if f is a one -to -one 

mapping, then we could assign f(x) = y x such that x and y are both 

elements of the same set S. Such a mapping is usually called 

permutation and not identity mapping. Also let us point out a seem- 

ingly trivial but a vitally important consequence of our definition of 

one -to -one mapping: 

Theorem 1. 1. Existence of inverse mapping. To every one- 

to-one mapping f which sends a set S to T, there exists an inverse 

mapping f -1 which sends the set T to S, and which is also one -to -one. 

Proof of theorem 1. 1. If the mapping f: S -"T is one -to -one, 

then we can define a mapping f -1 by assigning to each f(x) of T the 

element x of S that f sends to T. Now suppose that f -1 is not one -to- 

one. Then there must be at least one element f(x) of T for which f -1 

will send an element z in S different from x. This contradicts the 

definition of f being one -to -one (Definition 1. 4, Part 2), and x must 

be identical to z, or f -1 must also be one -to -one. We say that the 

mapping is unique S T and T S. Q. E. D. 

Definition 1. 6. A X A. Let A and B be sets. A X B is the 

set of all ordered pairs (x, y) with x in A and y in B, 

Using this newly defined set A X B, we notice that what we 

# 
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have been calling a mapping is really a subset of A X B. Our black 

box is a (x, y) relating our input x to our output y. This is akin to 

what we will later consider as "model synthesis. " The next obvious 

step is to find the relation between the input and the black box so that 

the output may be found. This step which will correspond to our 

"model analysis" may be considered as the mapping of A X A into A. 

Obviously, this would be possible only if A is a set of all elements 

including both inputs and outputs. 

Definition 1. 7. Binary operation. A binary operation on set 

A is a mapping of A X A into A. 

Example 1. 1. The simplest example that will illustrate the 

binary operation is probably a binary number system. Let A be a 

set of two possible values: 0 and 1. Then A X A will be a set con- 

taining (0, 0), (0, 1), (1, 0), and (1, 1), the four possible permutations. 

AND. One binary operation will map the first three elements 

of A X A into 0 and the last into 1. This will then become the 

Boolean AND (Intersection) operation. 

OR. Another binary operation is an OR (union) relationship 

that maps the first element of A X A, namely (0, 0) into 0, and the 

remaining three elements into 1. Obviously, our example may also 

generate NAND and NOR in a similar manner. The result may be 

seen in the figure below. 
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AXA AND OR NAND NOR 

(0, 0) 0 0 1 1 

(0,1) 0 1 1 0 

(1, 0) 0 1 1 0 
(1, 1) 1 1 0 0 

Figure 1. 1. An example of binary operations. 

Of course, a binary operation is not limited to a binary number sys- 

tem as it can be applied to any set A and its A X A. We shall use the 

symbol a to indicate a binary operation in any set A. However, we 

must be cautioned that x y tells us nothing about y a 

Automaton Theory 

Matrix representations. The term "binary" is used because 

of pairing of elements in set A (taken in specific order) to produce 

some new element of A. This suggests the representation of binary 

operations in matrix forms with rows and columns corresponding to 

elements of set A. If set A contained four elements a, b, c, and d, 

the general matrix representation of a binary operation would look 

like Figure 1. 2. a. 

One binary operation that we are familiar with is that of 

addition. Figure 1. 2.b shows the + operation for our quadratic sys- 

tem. Replacing a, b, c, and d by 0, 1, 2, and 3 may make the 

meaning clearer. 

Ar 

a 2E, 
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a a b c + a b c d 
a (a, a) (a, b) (a, c) (a, d) a a b c d 
b (b, a) (b, b) (b, c) (b, d) b b c d a 
d (c, a) (c, b) (c, c) (c, d) c c d a b 
e (d, a) (d, b) (d, c) (d, d) d d a b c 

1,2.c. 

1.2.a. 1.2.b. 

OR 0 NAND O 1 NOR 0 1 

o 0 0 1 1 0 0 

1 1 1 1 1 0 0 0 

1.2.d. 1.2.e. 1.2.f. 

Figure 1. 2. Matrix representations of binary operations. 

In Figure 1. 2. c, d, e, . and f we have also illustrated the 

matrix representations for the binary operations of Figure 1. 1. 

State interpretation. Let us now consider a binary operation 

from a subjective point of view. We may, for example, put ourselves 

in a position of the first caveman who recognized himself as a sys- 

tem. Obviously such a genius deserves a name and we shall call 

him " Flintstone. " 

After our man Flintstone has identified every object as an 

element of his universe, a set of his entire knowledge, he has 

learned to take a subset and identify it as a "system. " This system, 

for instance, might be his five fingers on one hand: a, b, c, d, and 

e. From this system of five elements he may formulate a quinary 

addition scheme as shown in Figure 1. 3. Our readers are reminded 

that his "addition" is simply a binary operation relating two elements 

d 

AND 0 1 1 

0 0 0 1 1 

1 0 1 1 
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in his system to an element in the system. For example, a "thumb" 

(element a) and another "thumb" (a) gives an "index finger" (b), and 

so on. 

Addition a b c d e Addition 1 2 3 4 5 
a b c d e a 1 2 3 4 5 1 

b c d e a b 2 3 4 5 1 2 
c d e a b c 3 4 5 1 2 3 
d e a b c d 4 5 1 2 3 4 
e a b c d e 5 1 2 3 4 5 

Figure 1.3. Quinary addition. 

Another interpretation can be considered by Flintstone as: "If I am 

in the state of 'thumb', and if I get another 'thumb', my next state 

will be an 'index finger. ' " Thus, his five fingers are now consti- 

tuting a "black box" with five possible internal states which can ac- 

cept five types of inputs to yield five types of outputs. 

Definition 1.8. Finite automaton. A finite automaton is a 

quintuple: A = (I, 0, S, X, 5) 

where I is a finite set (the set of inputs) 

0 is a finite set (the set of outputs) 

S is a finite set (the set of internal states) 

SxI -. S is the next -state function, and 

5: SxI 0 is the next - output function. 

In this definition (Arbib, 1964), we are using the term "func- 

tion" in preference to "mapping" (Definition 1.3 ). In the case of our 

X 
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man Flintstone who has just learned to count up to e, or 5 if you 

wish, the sets I, 0, and S are all identical and included five elements 

(a finite set) which could be the input, output, or the internal state. 

Nonetheless his binary operation (Addition = X = 6) is a valid automa- 

ton. 

Together with the concepts of "state" and "automaton, " we 

have succeeded in introducing the concept of descrete time. An 

automaton at time t and internal state b will, upon the reception of an 

input c, produce output 6(b, c) = d (in the case of Flintstone) and a new 

internal state X (b, c) = d (in the case of Flintstone) at time t +1. 

Though we have already stated in Definition 1.3 that terms mapping, 

operation, function, and operator are synonymous, we prefer the 

word "function" in this instance to emphasize its connotation with 

"function of time. " 

Adic bases. What happens to our man Flintstone when he 

decides to add elements that cannot be accounted by his five fingers? 

One method is obviously that of increasing his system to include both 

hands and possibly both feet so that he can count up to 20 items. He 

could also initiate a concept of carry such that the thumb in his right 

hand will be worth one set of fingers on his left hand, and so on. 

His concept of 168 might then be: 

Big toe (right foot), Big toe (left foot), Index (right hand), Middle 

(left hand), or 
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1(53) + 1(52) + 2(51) + 3(50) = 168 

Actually, this is less ridiculous possibly than the counting system 

adopted by some nations of today: 

One (mile), One (yard), Two (feet), Three (Inches) 

where inch stands for the length of the first segment of a thumb of 

some king; foot, the length of his foot, and so on, or 

1(1, 760 x 3 x 12) + 1(3 x 12) + 2(12) + 3 feet. 

In each case, especially in the latter, it is obvious that a 

different mapping matrix must be used depending on which state we 

are in: right hand, inch, etc. ... In the case of the latter, the same 

matrix (table) can no longer be used for mapping (computation). 

Inches and feet are like apples and oranges forming two different 

systems. 

The expression of the type; m = a0 + alb + ... + arbr is 

called b -adic (diadic if b = 2, etc. ), and b is called the base. 

Number system. 

The system of the natural numbers 1, 2, 3, etc. , is 
unquestionably the most important mathematical 
system. It is also the most familiar one, and the 
beginning student may wonder what there is to say 
about it that he does not already know. Yet that 
system has such an extraordinarily rich and complex 
structure that it is still the source of some of the 
deepest and most challenging problems of mathe- 
matics (Mostow, Sampson, and Meyer, 1963, p. 28). 

In our decimal system the binary operations obey the same 

mapping rule regardless of the decimal position of the digits. 
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Therefore, if we were to build an automaton for any digit in the 

system, it would have the same next -state function as its next - output 

function. In other words, the table (matrix) to be used for the binary 

operation can also be used to indicate in which state the system is 

(tenth, hundredth, etc. ). Contrast this with the British system 

where we will need one function (matrix) telling us how to add (or 

multiply, etc... ) two elements in inches, and another function 

(matrix) that will tell us which state we are in and to which state we 

should move to next (say feet). The next state will have its own out- 

put function matrix (say an addition table in feet) and the state func- 

tion matrix would have to be consulted again (to move up to yard). 

Because of this ability of a metric system, we can map ten 

elements from our set into a subset, map ten of those subsets into 

another subset, and continue with this mapping until we have enu- 

merated every element in the set regardless of how many elements 

there are, as long as they were finite in number. 

Another concept worth noting is that of "threshold effect. " 

In a decimal counting process, for example, the tenth digit will not 

change until the unit position has exhausted its elements. Until this 

saturation occurs in the lower digit, no change can be preceived in 

the higher digit. 

These two concepts introduce the vital definition of isomorph- 

ism. However, before continuing with our discussion, let us turn our 
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attention to the examples of "threshold" that exists outside of math- 

ematical systems. 

Communication Systems 

We are beginning to see that such important elements 
as the neurons, the atoms of the nervous complex of 
our body, do their work under much the same condi- 
tions as vacuum tubes, with their relatively small 
power supplied from outside by the circulation, and 
that the book- keeping which is most essential to 
describe their function is not only of energy. In 
short, the newer study of automata, whether in the 
metal or in the flesh, is a branch of communication 
engineering, and its cardinal notions are those of 
messages, amount of disturbance or "noise" -- a 
term taken over from the telephone engineer -- 
quantity of information, coding technique, and so on 
(Wiener, 1948). 

External Memory 

When Flintstone used his fingers to do simple computations 

(which are nothing more than a succession of mapping processes), 

his fingers in controlled position (pointing, folded, etc. ) indicated 

the particular state his system was in. For example, folding his 

middle finger might have meant that he had three wives. Adding 

another one would put him in a new state of ring finger, or four. 

Thus, he has learned to code his internal state by causing a change 

in a physical object (his finger) that will retain some information. 

Instead of his fingers he might decide to use markings on the 
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wall of his cave. Three slashes might be used instead of his middle 

finger, and four instead of his ring finger. Considering himself as a 

system, we may look at this marking as an output of his system which 

is clearly observable as a physical change in his environment. When 

he wishes to retrieve his "external memory" (also called memory 

aid), all he needs to do is to look at the wall of his cave. Seeing the 

marking on the wall is an input to his system that has special coded 

information. 

The reason why this is called "external" memory, or 

"memory aid, " rather than "memory, " is that the information has 

been "coded. " In order to do Flintstone any good at all, he must 

remember his code, namely his mapping matrix. Moreover, his 

mapping matrix should be such that there is a one -to -one correspond- 

ence between two sets. Otherwise his retrieval of information will 

be partial at best. Just as he has to rely on an encoder matrix (or 

table), he will have to rely on a decoder to retrieve the message he 

has previously recorded, and as we have seen from our Theorem 1. 1 

the inverse mapping is guaranteed only when there is a one -to -one 

mapping. Figures 1. 4.a and b illustrate a valid mapping, while 

c. and d show useless coding. 
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Fingers Number of Slashes Fingers 
Thumb a / / Thumb 
Index b // // Index 
Middle c /// / / / Middle 
Ring d / /// / /// Ring 
Little e / / /// / / /// Little 

1. 4. a. Coder 1. 4. b. Decoder 

Thumb / 
Index / 
Middle / 
Ring / 

Little / 

/ Thumb, Index, Middle, 
Ring, or Little 

1. 4. c. Many -to -one Coder. 1. 4. d. One-to-many Decoder. 

Figure 1. 4. (En)coders and decoders. 

Communication 

The markings on Flintstone's cave wall are just as observable 

by his friends as by himself. By teaching his friends the particular 

codes he is using, Flintstone can communicate with his friends. 

When this is done, the wall has become a "channel" for communica- 

tion. Flintstone can leave a message on his wall and expect his 

friend to understand it when he sees the markings on the wall. The 

amount of information he can convey is limited by the three factors: 

how good his encoder is, how good his friend's decoder is, and how 

good is his channel. It is clear that some misunderstanding can 

occur in any of these three places: "I didn't mean it "; "I didn't say 

that" or "Didn't you see my note ? "; or "You didn't understand me. 

These disturbances, called noise, are present even in the case of 

" 
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"external memory" but are usually corrected by the internal memory: 

"I don't remember writing this" or "I must have meant this. " 

By now it is obvious that the so- called model- building is an 

external memory device comparable to a communication channel. 

The amount of information that can be conveyed by the communication 

channel is never greater than that of information which the sender 

can retrieve from his own writing. 

Threshold Logic Unit (TLU) 

Figure 1. 5. a shows the communication system between 

Flintstone and his friend. The comparison of this single - channel 

system to the case 1. 5. b where the same coding is used for 

"external memory" will suggest at once how the effect of noise can 

be reduced. In 1. 5. b we are really analyzing a two - channel situa- 

tion (one external and one internal); the error introduced in one 

channel is corrected by the information received from the other. 

If Flintstone wants to be sure that his friend will interpret 

his message correctly, he can increase the number of channels and 

ask his friend to weigh the received signals to decode the message. 

This scheme is called a threshold logic unit and is illustrated. in 

Figure 1. 5. c. Let us next examine our own nervous system as a 

communication system with TLU's. 
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1. 5, a, Single- channel communication system. 

Internal 
Memory 

1. 5. b. Flintston'es external memory. 

1. 5. c. Threshold Logic Unit. 

Figure 1. 5. Communication systems. 

w's are weights. 
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Figure 1. 6, a. Threshold logic for nerve fibers. 
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Nerve Fibers TLU. Recent studies (Galambos, 1962; Arbib, 

1964) indicate neurons to have threshold logic based on the accumu- 

lated responses from all the nerve fibers connected to the neuron 

through synapses. The nerve fibers conduct impulses as a binary 

signal (1 for -70mV difference between its inner ( -) and outer ( +) 

cells, 0 when the potential is collapsed by the flow of ions between 

the inner and outer cells) conducted at about 60 mph through the axon. 

The glia cells between nerve fibers seem to retain information sent 

by the nerves. 

Scale: 
1000 A 
1- --i 
10- cm. 
approx. 

Dendrites 

Nucleus 

Synapse 

Neuron 

(1010 neurons in a human brain) 

Figure 1. 6. b. Schematic drawing of a neuron. 

Membranes (nerve) 

- - - = Impulses 

Axon 

Soma (body) 

A neuron fires only if the total weight of the synapses 
which receive impulses in the period of latent sum- 
mation exceeds the threshold (Arbib, 1964). 

. 
_ 

Qb 
d 



25 

Membrane actions. Each membrane composing the nerve 

fiber appears to be at rest when there are approximately 70mV poten- 

tial difference between the inner and outer cells. (Thus, state 1 is 

normal, and 0 when fired.) This difference in potential seems to be 

caused by the physical composition of the membrane which separates 

the inner and outer cells and which lets smaller ions pass through it 

but holds the larger ones on their original side. Thus, inside the 

membrane we have approximately 410K +, 49Na +, 40C1 ", and other 

ions of both polarities, while on the other side (outside the mem- 

brane) the composition of ions at rest is 22K +, 440Na +, 560C1 etc. 

When the nerve becomes active, it suddenly seems to abandon this 

property of holding larger ions (Na) from entering the cell, When 

Na+ is free to enter the membrane, the unbalance of charge is de- 

stroyed and this message is conveyed along the nerve fiber until the 

synapse is reached, How this signal is transmitted to neuron (or 

muscle) is an unanswered question. 

Neuron as an automaton. Let us quote what Wiener has to 

say about this action of neuron and nerve fibers (1948): 

It is a noteworthy fact that the human dna animal ner- 
vous systems, which are known to be capable of the work 
of a computation system, contain elements which are 
ideally suited to act as relays, These elements are 
so- called neurons or nerve cells. While they show 
rather complicated properties under the influence of 
electrical currents, in their ordinary physiological 
action they confirm very nearly to the "all -or- none" 
principle; that is, they are either at rest, or when they 
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"fire" they go through a series of changes almost in- 
dependent of the nature and intensity of the stimulus. 
There is first an active phase, transmitted from one 
end to the other of the neuron with a definite velocity 
[ (1 to 100 m /sec. )], to which there succeeds a re- 
fractory period during which the neuron is either in- 
capable of being stimulated [ (approx. 1 milli -sec. )], 
or at any rate is not capable of being stimulated by 
any normal, physiological process. At the end of this 
effective refractory period, the nerve remains inactive, 
but may be stimulated again into activity [ (at about 20mV 
vs. 70mV negative inside when at rest)] . 

Thus the nerve may be taken to be a relay with essen- 
tially two states of activity: firing and repose. Leaving 
aside those neurons which accept their messages from 
free endings or sensory end organs [ (some mechanical 
to electrical as in ear or abdomen, some chemical as 
in nose)] , each neuron has its message fed into it by 
other neurons at points of contact known as synapses. 
For a given outgoing neuron, these vary in number 
from a very few to many hundred [ (billions)]. It is 
the state of the incoming impulses at the varipus 
synapses, combined with the antecedent state of the 
outgoing neuron itself, which determines whether it 
will fire or not. If it is neither firing nor refractory, 
and the number of incoming synapses which "fire" 
within a certain very short fusion interval excceds a 
certain threshold, then the neuron will fire after a 
known, fairly constant synaptic delay (Wiener, 1948). 

This rather lengthy quote also points out the advances made by neuro- 

physicists within recent years. The notes within [ O] are from 
1 Dr. Robert Galambos book (1962) 

1In passing, we would like to note that Professor Galambos 
(psychology and physiology at Yale) interrupted his career to obtain 
his medical degree after he had received his Ph. D. from Harvard 
in 1941. He says "Medical training gives point and direction to the 
efforts of many biological investigators, and this it certainly has 
done for me." He received his M. D. from Rochester Medical 
School in 1946. 

. 
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The descrete time model of neuron as an automaton is called 

McCulloch -Pitts Model in contrast to the continuous differential 

model by Peter H. Greene (1962). This concept of neuron as an 

automaton will be developed further in Chapter VI (page 200). 

Transformation Systems 

Thus what usually happens is that the two systems, 
biological and model, are so related that a homo- 
morphism of the one is isomorphic with a homomorph- 
ism of the other. (This relation is symmetric, so either 
may justifiably be said to be a "model" of the other. ) 

(Ashby, 1963). 

The engineer feels he has modeled a system when he 
actually constructed an apparatus which he can hope 
will behave similarly to the original system. The 
mathematician, on the other hand, feels that he has 
modeled a system when he has "captured" some 
properties of the system in precise mathematical 
definitions and axioms in such a form that he can 
deduce further properties of this "formal" (i. e. , 

mathematical) model; thus, hopefully, explaining 
known properties of the original system and pre- 
dicting new properties (Arbib, 1964). 

Group Theory 

Definition 1. 9. Empty set. An empty set is a set containing 

no element. 

Definition 1. 10. Identity element. In a set S with a binary 

operation a, an element e is called an identity element for a if eaa = a 

and axe = a for every element a in S. 
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Let us note that e does not have to be a numerical 1. For 

example, in the case of an addition, e is 0 rather than 1: a + o = a, 

and 0 + a = a (for an integer a). e is 1 for the multiplication: 

a *1 = i *a = a. In Figure 1.2. b we had a as an identity element, 

whereas it was e in Figure 1. 3. (e = 5). 

Theorem 1. Z. Uniqueness of an identity element. In set S 

with a binary operation Et , the identity element e for a, if it exists, 

is unique. 

Proof of Theorem 1. 2. Suppose that the theorem is false, 

then there must be at least two identity elements e' and e" for the 

binary operation Et , From Definition 1. 10, we must have etas, = a 

= e "aa for every element a in S. Let e" be a: e'se" = e" = ase' 

= e "ice' . Similarly, by letting e' be a, we have: a "ae' = e' = ase" 

= e'se ". The comparison of the two equalities forces e' = e" to be 

the only possible solution. Q. E. D. 

Definition 1. 11. Associative axiom. Let S be a set with a 

binary operation a. The operation is said to be associative if, 

given any elements a, b, and ç in S, we have: 

(aiab)ac = a ®(b &c). 

Example 1. Z. In Figure 1.2. b we would have: (a +b) = b 

and (a +b) + c = b +c d. Also a + (b +c) = a +d = d. Thus, associative 

axiom holds for that example. 

Definition 1. 12. Inverse element. Let S be a binary operation 

= 
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and an identity element e for that operation. If a is an element of 

S and if there exists an element a' such that aga' = a'aa = 3, then a' 

is called an inverse of a. 

Theorem 1. 3. Uniqueness of inverse. Let S be a set 

with binary operation a and an identity e for that operation, where a 

is associative. Then no element of S can have more than one in- 

verse. 

Proof of Theorem 1. 3. Let a' and a" both be the inverse of 

a e S. Then, a'aa = a "ga = aga" = e. By associative axiom, on the 

other hand: (a'aa)aa" = a'a(aaa ") = eaa" = a'ae, thus a" = a'. Q.E.D. 

Theorem 1. 4. Concellation. Let S be a set with an associa- 

tive binary operation a and its identity element e. Let a, b, c, and 

c' be the four elements of S, and c' be the inverse of c. Then if 

aac = bac, then a = b. 

Proof of Theorem 1. 4. By Definition 1. 2 we have can' 

= c'ac = e. aac = bac becomes (aac)ac' = (bac)ac' = aa(e) = ba(e), 

or a = b. Similarly, c'a(caa) = c'a(cab) = eaa = eab, or a = b. 

Q. E. D. 

Definition 1. 13. A group. A set G with a binary operation 

a is called a group if: 

(1) The operation a is associative. 

(2) G contains an identity element for the binary operation; 

and every element in G has an inverse in G for the operation a. 

a 
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Example 1. 3. Our example in Figure 1.2. b satisfied both 

conditions. (1) was already verified in the example following 

Definition 1. 11. The identity element was recognized as a. The 

inverses are easily located in the matrix by spotting the identity 

element and recognizing its row and column. For example, a -1 = a; 

b -1 
= d; c -1 = c; d -1 

= b. Since there is one identity element in the 

body of the matrix for each row and each column (2) is satisfied. 

We can repeat the same observation in Figure 1. 3. The 

®1 3 = 2; 4- 1 = 1; 

+ 1 = 5; and 5 + 5 = 5. 

Notice that we adopted the notation a'1 in favor of a' to indicate the 

inverse of a. Also, we shall use the term "Group Operation" or 

sometimes the term transformation to indicate the binary operation 

of a group. The term group will be used to denote both the set of 

elements and the operation that satisfy the Definition 1. 13. Before 

we proceed further, we shall illustrate another example of a group 

which results from permutation rather than rotation as our addition 

examples have been. This is shown below in Figure 1. 8. 

identity element is 5. Thus, 1 
- 1 

= 4; 2 -1 = 3; 

5-1 = 5. Thus, 1 + 4 = 5; 2 + 3 = 5; 3 + 2 = 5; 4 

* a b c d e f 
a c a b e f d 
b a b c d e f 
c b c a f d e 
d f d e b c a 
e d e f a b c 
f e f d c a b 

Figure 1. 8. A permutation example. 
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The identity element in Figure 1. 8 is obviously b; thus the 

inverses are: a 1 = c; b -1 = b; c-1 = a; d -1 = d; a -1 = e; and f-1 = f. 

Note that our concept of 1 = 1 -1 as being a unique element with its 

own inverse equal to itself is not valid in this general group. Indeed 

an integer field is a very special group. 

Homomorphism and Isomorphism 

Now that we know what a group is, we are in a position to 

define homomorphism and isomorphism. The properties of a group 

have not yet been explored to any extent. Since the entire Tableau 

Method is based on the theory of group, it is imperative for us to 

study them in detail. However, we realize that this task may be 

undertaken more satisfactorily in Chapter III where the Tableau 

method will be introduced for the first time. Meanwhile the readers 

are asked to be satisfied with the definitions of the Isomorphism and 

Homomorphism and some explanations to make them plausible 

enough for the pending discussion of Engineering and Management 

Systems. 

Definition 1. 14. Homomorphism. Let f:G -; G' be a mapping 

of one group G to another G', with group operations $ and #, 

respectively. Then f is called a homomorphism if 

f(a$b) = f(a) #f(b) 

for all a, b in G. 
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Definition 1. 15. Isomorphism. An homomorphism f is 

called an isomorphism of isomorphic groups G and G' if there exists 

one -to -one mapping from G to G' such that: 

f(a$b) = f(a) #f(b) 

for their respective group operations $ and #. 

It is to be noted that an homomorphism may be either one -to- 

many or many -to -one. Also an isomorphism is clearly a special 

case of a homomorphism. Let us now look at some practical 

examples. 

Example 1. 4. Homomorphic relations. Let us examine the 

relationship: f(a$b) = f(a) #f(b). In essence it seems to say that the 

mapping f done to the operation a$b in group G, is equivalent of first 

mapping the components a and b into G' and then operating on them 

with a corresponding function #. If a couple married in India is 

transported to the United States, it should be equivalent of trans- 

porting the individuals to this country first and then have them 

married. 

The application of Isomorphism to the Boolean algebra (named 

after George Boole who wrote "Investigation of the Laws of Thought" 

in 1854) resulted in the much - celebrated. DeMorgan's Theorem. 

Turning to Figures 1. 2. c, d, e, and f, we notice that if we 

substitute the mapping function f by the inverse function yielding 1 for 

0 and 0 for 1, AND in G will become NAND in G', and OR in G 
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becomes NOR in C!. Thus, 

f ( a $ b) f (a) # f (b) may be written 
as: 

NOR = NOT (a OR b) = NOT (a) AND NOT (b) or 

+ b b in a perhaps more familiar 
notation 

Similarly 

NAND = NOT(a AND b) = NOT(a) OR NOT (b) or 

a b = a + b 

This tautology is named after the English Mathematician Augustus 

DeMorgan (1806- 1871). 

Model Building 

The building of models for complex systems is unlikely 
to result in perfect isomorphism; in the case of exceed- 
ingly complex systems, that result will be by defini- 
tion impossible to verify, if not to achieve. The 
system being studied has first to be simplified by a 
many -one transformation. This is what happened in 
Keynesian model of the economy studied by Tustin. 
That model is a homomorphism of the real system. 
Very often in operational research, and in cybernetics 
itself, we are studying an isomorphic machine which is 
not (as we would have liked) a transducer of the inter- 
action of two large systems, but a model of that inter- 
action studied through a homomorphism of each major 
system (Beer, 1964). 

Experiments with black boxes. The concept of models has 

been extended to objects other than the members of the same species. 

In each case an object or a system of objects (actually, any object 

can be considered as a system in molecular level) has been consid- 

ered as a black box and subjected to a variety of inputs. In other 

= 

á = á 
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words, we try to "experiment" with the object as a "transducer" that 

converts our inputs into some outputs. 

This approach, or "Black Box" concept is as basic as human 

nature itself, because of our need to use the physical environment 

as a media to explore the universe. When we have finally succeeded 

to construct a "model" of the system in question, we say that we have 

understood the system itself. This is precisely the same learning 

process that a newly born baby experiences. 

A baby will touch a table, push it, bite it, and otherwise ex- 

amine it until he can create in his mind a model of the table that will 

have the same set of attributes as his experiments afforded him: 

weight, taste, feel, etc. Since his mind is limited (both his memory 

and his power of association and analysis), he must confine himself 

to the set of attributes that are more obviously connected with the 

system and disregard all other sensations which cannot be attributed 

to the presence of the table. It is only after he has accumulated an 

adequate number of these models that he can classify them, genera- 

lize them, draw more abstracts from them, and finally be able to 

communicate with others that have similar models. 

Figure 1. 9 adapted from Iijima's article on pattern recogni- 

tion (1966) illustrates the process by which a model is built in an 

observer's mind. 
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Real World 

Observer's Mind 

U and V are in the real space. 
U* and V* are observation spaces. 
The homomorphie transformations 

, (13, mapping U into U* and 
V into V *. 

Figure 1. 9. Model- building with one input and one output variables 
(a simple transducer). 

Models for communication. When communicating with another 

individual, the process must be reversed. The word "Table" must 

evoke in the correspondent's mind a similar model. "A table is 

sturdy" is the message from the sender conveying the outcome of an 

experiment performed on the "model" of the table in the transmitter's 

mind, such as tilting the table. The receiver can now use his model 

to try a simulation in his mind and compare the outcome. A result 

such as "I don't think so, " is then conveyed back to the transmitter. 

This could result from the difference in their models, the difference 

in their simulations, or difference in their threshold value used as 

criteria. 

Simulation and model are therefore very closely related. 

There are many authors such as: Hostein, Soukup, McMillan, and 

Gonzalez (1965) who openly admit that: "simulation occurs whenever 

I 

1 

I 

j 
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a model of any sort is employed. " 

The term "simulation" is usually associated with a mathe- 

matical model, while an "experiment" is more frequently used with 

actual physical objects. 

Transducers. When the system becomes complex, the homo- 

morphism and eigenvalues are used to simplify the model. In a sys- 

tem "a house in earthquake',' the model of a house composed of all the 

subsystems (transducers) is subjected to various inputs that may 

arise under the condition. The "characteristic" of the table as being 

"sturdy" may lead to the conclusion: "Hide under the table. " Sub- 

consciously the individual has classified subsystems having "sturdi- 

ness" as their characteristics and has selected the one which seemed 

to be the "optimal" shield. "A study of the real world thus becomes 

a study of transducers" (Goldman, 1953). 

Modern Complex Systems 

Engineering and Management 

'I do believe, ' said Alice at last, 'that they live in 
the same house! I wonder why I never thought of 
that before -- But I can't stay there long. I'll just 
call and say 'How d'ye do ?' and ask them the way 
out of the wood... (Carroll, 1865). 

Professional objectives. Engineers and managers share the 

same roof and are usually working for the same ultimate objective: 



37 

to maximize the overall profit and well -being of the particular organ- 

.cation. Both engineering and management may be defined as a 

profession dedicated to serve human society through the optimal 

physical transformation of limited resources. The fact that the hu- 

man society is served indirectly through the particular organization 

for which they have been hired is only an incidental aspect of their 

professional beliefs. 

What then is the distinction between the two professions? 

Perhaps the most basic difference is their interpretations of what 

is meant by limited resources and by optimal transformations. 

To a traditional engineer, the limited resources denote any- 

thing that is convertible to another form of energy: mass, calory, 

chemical energies, nuclear energies, human energies, etc. The 

transformation means the change in form of energies, potential to 

kinetic, thermal to electric, electromagnetic to audio, etc. The 

optimality is measured by converting the input energy and output 

energy (or the desired part thereof) to common unit and finding their 

ratio. The transformation is considered to be more efficient as the 

ratio of useful output to the original input approaches unity. 

Useful 
e < i (Starr, 1964) Input 

To a manager, on the other hand, limited resources are any- 

thing that may become either assets or liabilities, in short anything 

Output 
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that can be traded in for. money. Their transformations are financial 

transactions which must produce higher values in outputs than in in- 

puts: 

Utility. 

$ value of the Output 
$ value of the Input 

The discrepency between the two criteria for the 

evaluation of performance is due to the difference in utility between 

the input and output. By a mere extraction of desirable parts from 

the mixture of desirable and undesirable (or a mixture of individually 

desirable parts, such as petroleum into gasoline and diesel), the 

utility of the output may rise appreciably. Unfortunately, "utility" is 

a highly non -linear see discussion in Ch. ITI7.) function about which 

very little is known to be practical. From the standpoint that man- 

agers recognized financial value as a closer evaluation of human 

wants and needs, we may concede that they have been more realistic 

than some traditional engineers. 

Linearity. On the other hand, by the engineering assumption 

of linearity, especially in the form of Newtonian: Input desired 

output + undesired output, together with the concept of homomorphic 

models, the engineers were able to create a true profession with a 

concrete body of knowledge. 

Thanks to this linearity, without which neither Lagrange's 

equation, nor Kirchoff's laws would have been possible, engineers 

X > 1 
-- 

- 

- 
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have gradually advanced their analytic abilities to where they can 

now handle systems of high complexities: 

Management has been sharply distinguished from 
engineering in literature even though both share 
common principles and philosophy... The engineer 
often sees the manager as superficial and lacking 
in intellectual rigor and depth, even though the 
manager must deal with systems of far greater com- 
plexity than those that the engineer designs. Con- 
versely, the manager sees the technical man as 
narrow and lacking interest in people and social 
problems, even though the engineer i.s designing his 
technical systems on the basis of a body of philosophy, 
attitude, and theory that may help the future manager 
to better understand the complexity of social systems 
(Forrester, 1964). 

Physical 
World 

Performance 

Engineering 
Input Resources > Process >Useful Output + Waste 

Model 

- Utility Function 
if 

Expenses Business -->Revenue 
Model 

Financial Profit 
World 

Utility Function 
41, 

Figure 1.10. Engineering vs. business models. 

What is common between an engineer and a manager is the 

concept of a "system" and its representation as a "model." An 

engineer communicates with another engineer using a "model, " the 

same as managers would in their communications. 

'> 

i 

I 



The Ivory 

40 

Towers of the Modern Babel 

A major obstacle to adoption of the scientific approach 
seems to be a gap between management, who have the 
ability to define problems and to rate their relative 
importance, and the scientific analysts, who know the 
tools but may try to apply them without fully under- 
standing the significance of the problem or without 
being able to communicate with the managers in order 
to find this out (Kozetsky and Kircher, 1956). 

The traditional engineers and scientists who accepted line- 

arity as a basic assumption in building their models have benefitted 

from the simplicity and ease of manipulations afforded by their linear 

models. They have become experts in linearly analyzing complex 

models. When a non -linear system had to be studied, they have 

simply looked for a linear substitute. Multiplications were handled 

by adding logarithms, combinatorial problems solved by adding or 

subtracting "bits" (1 bit = 1 binary digit = 1 binary combination. N 

combinations = log2N = 3.322 log10N). Thus, for example, in infor- 

mation theory two independent classifications of 16 and 2 kinds each 

will give a total combination of log216 + log22 = 4 bits + 1 bit = 5 bits 

= 32 combinations. Similarly, differentiations and integrations were 

reduced to multiplications and divisions by the use of Fourier or 

Laplace Transforms, and when everything else failed they resorted to 

a piece -wise linear models. 

However, it was not until managers realized how cleverly 
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these "square- heads" were treating the problems of uncertainty by 

the use of probability theory and related statistical techniques that 

they accepted the benefit of adopting their techniques. 

On the other hand, the increasing complexities and costs of 

their systems and related experiments have forced engineers to 

justify their work in terms of dollars and cents to the management for 

which they work. 

Engineering models now had to be explained to managers in 

terms of the financial expense and resulting profits, while the man- 

agement problems had to be explained in terms of mathematical 

models to the engineers and scientists. Unfortunately, this has not 

proved it to be an easy task. Even vocabulary used by the two had 

different meanings to the two professions. For example, "variance" 

for an engineer will be a statistical measure of central tendencies, 

while to a manager it means a simple difference between the budgeted 

and actual spending. When a manager talks about conducting an 

"Acid Test, " he is not talking about HC1 or H2SO4. Rather, he will 

want to take a numerical ratio of quick assets (cash, marketable 

securities, and account receivables) to current liabilities. 

In the complex society of today, one must understand a com- 

plete set of jargons before being admitted into a profession, and a 

"profession" that has no profound speciality creates its own jargon to 

safeguard the possibility of being overtaken by a more powerful 
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profession. 

These specialized fields are continually growing and 
invading new territory. The result is like what occur- 
red when the Oregon country was being invaded simul- 
taneously by the United State settlers, the British, 
the Mexicans, and the Russians -- an inextricable tangle 
of exploration, nomenclature, and laws (Wiener, 1961). 

Nature and Management 

Let both sides seek to invoke the wonders of science 
instead of its terrors. Together let us explore the 
stars, conquer the deserts, eradicate diseases, tap 
the ocean depths and encourage the arts and commerce 
(Kennedy, 1961). 

When the managers and engineers have finally succeeded in 

communicating with each other, their problem - solving task begins. 

The system they have elected should perform in an optimal manner 

under the given circumstances or environment. The distinction be- 

tween the system and its environment is made on the basis of the ob- 

jective for which the problem must be solved. The environment is 

simply "the set of all objects, a change in whose attributes affects 

the system, and also of those objects whose attributes are changed 

by the behavior of the system" (Hall, 1962). By considering the en- 

vironment as a willful expression of Nature, we may consider the 

management problem as a Two -person game played against Nature. 

Von Neumann is considered to be the pioneer in the application of 

Game Theory to Economic problems (Von Neumann and Morgenstern, 
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1964) while Wald is credited for recognizing the decision problem as 

a disguised Two -person game against Nature (Wald, 1950). We hope 

the readers will not be offended by our use of the word Nature to in- 

dicate the environment imposing constraints on Management actions. 

Nature 
(Real World) 

Management 

OBJECTIVE 
PRESENT SYSTEM valuatio 

SYSTEM ANALYSIS experiment MODEL SYNTHESIS! 
outcomes simulation '' outcomes 

MODEL ANALYSIS 

solution i 
SYSTEM DESIGN SIGN !DECISION- MAKINGI 

NEW SYSTEM - 

Problem? 

Figure 1. 11. Problem - solving: simplified. 

Figure 1. 11, illustrates the simplest outline of a problem - 

solving procedure. Once the model has been built from the actual 

system, all the study is made on the model of the problem 2 until the 

decision is reached as to which of the alternatives suggested by the 

model simulation should be used, or equivalently, what should be the 

values of the parameters in the actual system. 

The final product is a system which is a compromise between 

the design generated by management and the circumstances decided 

by the Nature. Greeniewski (1965) has termed this: "the subject of 

2 
Also called hypothesis by many authors such as McMillan 

(1965), Bowman and Fetter (1961), etc. 

I 
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planning. " 

A portion of Figure 1. 11 is duplicated below in Figure 1. 12 

to illustrate this view. 

NATURE MANAGEMENT 

Decision -Making!- 

circumstances INPUTS means 

NEW SYSTEM 
(Subject of 
Planning) 

OUTPUT 

Nature and Management respectively determine the uncontrol- 

lable and controllable portions of the inputs. Usually the Nature 

provides the materials (or energy) and time restrictions, while the 

management will determine the actual values of the parameters to be 

used in the system. 

Systems Science and Cybernetics 

What's in a name? That which we call a rose 
By any other name would smell as sweet 
(William Shakespeare: Romeo and Juliet). 

At this point we would like to acknowledge the numerous at- 

tempts made by people in various professions to reconcile their 

1 

- 

-- Objective-- - ---1 

Figure 1. 12. Greniewski's model for 'system planning. 
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differences and bring about a mutual understanding of what systems 

science should be. 

Cybernetics 

Nobert Wiener founded Cybernetics to encompass: "the entire 

field of control and communication theory, whether in the machine or 

in the animal... " (Wiener, 1961, p. 13). The term "Cybernetics" 

was coined from the Greek word "XdpeppiTro" which means "steers- 

man" and from which the Latin word "gubernator, " 
3the French word 

"Gouvernail, "4 and the. English term "governor" were derived 

(Beer, 1964; Guilbaud, 1959). 

Wiener and his associates decided on this name for 
cybernetics in 1947, and he records that the "steering 
engines of a ship are indeed one of the earliest and 
best developed forms of feedback mechanisms. " Plato 
had used the word cybernetics in his time, and Ampère 
had borrowed the term also as a name for the science 
of government; but Wiener must take the final respon- 
sibility for the currency of this ugly word, and also the 
credit for its great aptness (Beer, 1964). 

Systems Engineering 

Many electrical engineers felt that their particular specializa- 

tions have become too complex and comprehensive systemwise and 

3Helmsman. 
4 

A rudder in French. 

5The French word for cybernetics is "Le Cybernétique." 
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that they should be given special titles. They became Control 

Systems Engineers, Communication Systems Engineers, Guidance 

Systems Engineers, Computer Systems Engineers, Information 

Systems Engineers, or just plain Systems Engineers. 

Operations Research 

The organization of the first Operations Research team is at- 

tributed to the Nobel Laureate Professor P. M. S. Blackett of the 

University of Manchester. This multi -discipline team organized in 

1939 to help the British Army's Operational Research group was 

called "Blackett's circus. " It is told by Dean Roy of the Johns 

Hopkins University (Flagle et al. , 1960) as having included "three 

physiologists, two mathematical physicists, one astrophysicist, one 

Army officer, one surveyor, one general physicist, and two mathe- 

maticians. " 

During the last War, a similar organization was established 

in each branch of the United States Armed Forces: "the Operations 

Analysis Group (OAG) with the Air Force, the Operations Evaluation 

Group (OEG) with the Navy, and the Operations Research Office (ORO) 

with the Army" (Flagle et al. , 1960). 

The distinction between the "systems engineers" and the 

"operations researchers" are more historical than real. Dean Roy 

distinguishes the former as being "electronic- communications- 



47 

servomechanisms -human engineering- design" minded while the latter 

is more inclined toward "mathematical models, stochastic processes, 

statistics, probability, economics, and behavior science" orientation 

(Flagle et al., 1960). 

Industrial Engineering 

To an industrial engineer, finally, all these claims seem 

somewhat of an imposture upon their definition of industrial engi- 

neering: 

Industrial Engineering is concerned with the design, 
improvement, and installation of integrated systems 
of men, materials and equipment. It draws upon 
specialized knowledges and skill in the mathematical, 
physical, and social sciences together with the 
principles and methods of engineering analysis and 
design, to specify, predict, and evaluate the results 
to be obtained from such systems (American Institute 
of Industrial Engineers Creed). 

It is, in fact, based on this Creed that this treatise is presented 

justifiably under the auspices of Industrial Engineering. However, 

we have, for the purpose of convenience and in order to avoid any 

possible misunderstanding, chosen the term "Systems Theory" to 

describe the composite of all knowledges and techniques dealing with 

"Systems. " 

Furthermore, we shall make a blunt assumption that Cyber- 

netics will be primarily related to the Model Synthesis, Operations 

Research with Decision -Making, and Systems Engineering with the 
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System Design phase of "Systems Theory. " Our postulate is that the 

Tableau Method may serve as a common language to link these three 

phases of Systems Theory. 

Model Synthesis: 
Tableau Method: 

Matrix Representations 
Network Representations 

Model Analysis: 
Tableau Manipulations 
Eigenvalue Problems 
Transforms 
Linear Models 

Decision- Making: 
Dynamic Programming 
Linear . Programming 
Utility Theory 

Figure 1. 13. Systems Tableau techniques. 

Our first attempt will be to define what we should mean by the 

term "System. " 
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II. SYSTEMS 

Our little systems have their day; 
They have their day and cease to be: 
They are but broken lights of thee. 

And thou, O Lord, art more than they. 
(From "In Memoriam" by Lord Alfred Tennyson, 1869). 

The Black Box Concept 

A system is most commonly represented by a black box with 

an input and an output, Too often it has been used as a convenient 

vindication to conceal one's ignorance about a mechanism too com- 

plex to analyze. We also see it being used as an "action" word 

needed in an attempt to upgrade a concept, especially when the con- 

cept is so poor that it does not warrant any other means of salvation. 

Probably there are very few terms, if any, used under meanings and 

implications as varied as this word "system. " 

Input Transformation 

Figure 2.1. A black box concept 

Output 

However, since the development of servomechanism, control 

theory, automation, cybernetics, management sciences, systems 

engineering, and data processing, the term "system" has slowly 

come to bear an identity distinctly its own in this family of systems 

theory. Several definitions advocated by persons actively engaged in 



systems theory will be examined in order to identify these distinct 

features. 

The Definitions of a System 

50 

The most general and the least sophisticated definition of a 

system is likely to be the one afforded by the Webster's dictionary: 

"A number of things adjusted as a connected whole; a scheme, plan, 

or method." 

W. D. Rowe, the past chairman of the Systems Science and 

Cybernetics Group of the American Institute of Electrical Engineers 

(prior to becoming IEEE) has a similar definition: "A system is any 

large collection of interacting functional units that together achieve 

a defined purpose" (Rowe, 1965). 

The concept of "interacting functional units" may be explained 

in terms of objects (components of the system) and their attributes 

(properties of the objects). Arthur D. Hall, the new editor of the 

Systems Science and Cybernetics Group of the Institute of Electrical 

and Electronics Engineers (IEEE) defines a system as: "A set of 

objects with relationships between their attributes" (Hall, 1965). 

J. S. Frame and H. E. Koenig take a further step by defining 

discretely the components and their attributes: 

By definition, a system is a collection of discrete com- 
ponents, each having certain definable characteristics, 
together with a prescribed pattern of interconnections 
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or interrelations... 

In any case, the system can be repregented by a dia- 
gram as that shown [ (in Figure 2. 2)] where a point of 
contact between any two regions represents a junction or 
interface between two components, and is referred to as 
a terminal of the components (Frame and Koenig, 1964). 

Component A 
(Subset A) 

Terminal 
(an element common 
to two subsets) 

Component B 
(Subset B: the sys- 
tem under consid- 
eration) 

The Set of All Elements 

Component C 
(Subset C) 

Figure 2. 2. A system of interconnected components. 

Once the definition of a system is recognized as an abstrac- 

tion based on the attributes of objects, it becomes possible to define 

a system in terms of its model. 

A system is a mathematical abstraction that is de- 
vised to serve as a model for a dynamic phenomenon. 
It represents the dynamic phenomenon in terms of 
mathematical relations among three sets of variables 
known as the input, the output, and the state (Freeman, 
1965). 

6B rackets and parentheses within a quote [ ( )] will be used to 
indicate remarks made by the author and not by the person being 
quoted. 
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We notice that Freeman's definition is almost identical to 

our definition of an automaton in Def. 1.8. It also reminds us of 

Wiener's concept of today's automata, namely his Cybernetics: 

...we deal with automata effectively coupled to the 
external world, not merely by their energy flow, their 
metabolism, but also by a flow of impressions, of 
incoming messages, and of the outgoing messages. 
The organs by which impressions are received are the 
equivalents of the human and animal sense organs 
(Wiener, 1948). 

The system component B from Figure 2.2 may be redrawn 

in the form of a black box as shown in Figure 2. 3. 

At this point, it may be interesting to recall the definition of 

a graph and compare it to those we have found for a system. 

There are three items which characterize a graph. 
First, there is a set X of elements called points or 
vertices: X {x , x , x3, ... x } ; second, there 
is a function r mapping X into itself; third, there is 
a set U of arcs joining the elements of X according 
to the ruler. 

Any two of these items are sufficient to completely 
define a graph. Therefore, a graph is usually ex- 
pressed as; G(U, r) or G(X, U) (Inoue, 1964). 

If X were to be the set of attributes, U, the set of relations, 

and r, the transformation, this definition of a graph would be 

= 
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essentially identical to that of a system. Moreover, the two com- 

mon expressions of a graph: G(U, F) and G(X, U) correspond to 

our concepts of systems analysis and design! 

Therefore, it seems logical that any system that can be de- 

fined by an input set, an output set, and the relationships between 

them ought to be presentable in a graphic form. 

In the example used in Figures 2. 2 and 2. 3, we have: 

x = {A, B, C} ; U = {(A, B), (C, B), (B, C)} . The transformation rule 

r has not been defined yet, but obviously corresponds to the concept 

of a mapping matrix as we have seen in Chapter I. 

Figure 2. 4. A graph representation. 

0 

One of the most sophisticated descriptions of a system is 

given below by S. S. Sengupta and R. L. Ackoff of the University of 

Pennsylvania. This particular definition recognizes "decision - 

making" as an inherent function of a system. 

Insofar as the purposeful entity is a system, it must 
contain at least two interdependent parts, each of 
which has a different function to perform and has an 
objective associated with its function. Furthermore, 
communication between these parts must be possible. 
Therefore, we conceive of a system as a set of 
activities that are connected both in time and space 
by a set of decision - making and behavior evaluation 
practices (Sengupta and Ackoff, 1965). 

0 ! 
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The recognition of time and space relationships between sys- 

tems components, the acknowledgement of feedback control, and the 

identification of communication (rather than material flow) as the 

essential links make this description one of the most elegant defini- 

tions of a complete system. The recognition of information commu- 

nication is particularly important. A signal or information may be 

copied and be dispatched to several receivers at once even though it 

is true that no transmission of information can occur without some 

form of energy. A process or a material flow, on the other hand, 

can only be used by one person at a time. The energy will have to 

be split among users. A product must undergo one operation at a 

time, Each object is unique and cannot be exactly duplicated. On 

the other hand, a piece of instruction copied from an original is as 

good as the original as long as the error (i. e. noise) does not alter 

the meaning, 

Essential Properties of a System 

Complexity 

The analysis of the common traits in the above definitions 

allows us to make plausible generalizations. The first common 

property of a "system" lies in its complexities. Not only each ele- 

ment composing the system should act as a "transducer" thus 
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relating two other elements, but the system itself should serve as a 

subsystem (another transducer) for a larger system. The need for 

an integrated systems theory arises precisely from the inability of 

older techniques to handle complex systems: 

In the study of some systems, however, the complexity 
could not be wholly evaded. The cerebral cortex of 
the free -living organism, the ant -hill as a functioning 
society, and the human economic system were out- 
standing both in their practical importance and in their 
intractability by the older methods. So today we see 
psychoses untreated, societies declining, and economic 
systems faltering, the scientist being able to do little 
more than to appreciate the full complexity of the sub- 
ject he is studying. But science today is also taking 
the first steps towards studying 'complexity' as a 
subject in its own right (Ashby, 1956, p. 5). 

Observability and Controllability 

Because of the black box concept as the basis for under- 

standing a system, it is evident that a system must respond at least 

partially to the experiments conducted on them. In other words, its 

inputs must be at least partially controllable while its outputs must 

be at least partially observable. A system that satisfies this condi- 

tion will be called an (partially) open system. 

Most... systems are open, meaning they exchange 
energy with their environments. A system is closed if 
there is no import or export of information, heat or 
physical materials, and therefore no change of com- 
ponents (Hall, 1962, p. 69). 

From these considerations, it becomes difficult for us to 
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accept the statement that Ashby makes about Cybernetics (1963, p. 3). 

...whether the system is closed to energy or open is 
often irrelevant; what is important is the extent to 
which the system is subject to determining and con- 
trolling factors. So no information or signal or deter- 
mining factor may pass from part to part without its 
being recorded as a significant event. Cybernetics 
might in fact, be defined as the study of systems that 
are open to energy and closed to information and 
control -- systems that are 'information- tight.' 

The first part of his statement clearly shows that his system 

is meant to be controllable and observable. The information must, 

therefore, enter the system and leave the system, without being af- 

fected by the energy considerations. This is precisely the problem 

that electrical engineers have been tackling for years. They were 

concerned about an electrical system that would accept information, 

process it and return it without the physical restrictions imposed 

by energy consideration. A transistor radio is practically a closed 

system energy -wise. The amount of energy received from the out- 

side is almost negligible, and so is the mechanical energy dissipated 

by an earphone. The information received, on the other hand, has 

undergone a drastic transformation from a controllable input (elec- 

tromagnetic wave) to observable output (audio signal). To build a 

circuit that will have an infinite input impedance and essentially null 

output impedance has been the dream of electronic engineers. Such 

a circuit would be able to accept a faintest signal and distribute its 

information to as many users as desired without having it distorted 



57 

due to the limited energy consideration. 

The only time a closed system would be of interest to us is 

when we are a part of the system itself. But this is possible only 

after we have studied each component as a transducer, an obviously 

open system. 

Possibly what Ashby has done was to misunderstand the dis- 

cussion led by Wiener in recognizing the relationship between Cyber- 

netics and what we call "electronics" (andwhat is called "weak cur- 

rents" electrical engineering in Germany and Japan), as opposed to 

the "strong current" power engineering. The power engineering 

deals with the study of conservative systems (that is closed systems 

in which mass, energy, and momentum, etc. are conserved). In 

electronics the conservation of energy is secondary to the processing 

of information. (Energy -wise, a computer is a very inefficient sys- 

tem if all we are interested in is to have characters printed on a 

sheet of paper. ) But this does not make a system closed informa- 

tionwise. A piece of information is an abstract quantity. To admit 

that a system is closed is to admit that what is called information is 

really not "meaning" but energy carrying the information. This is 

because "meaning" can be distributed to a multitude of receivers with- 

out losing its content. Energy would have to be infinite if each re- 

ceiver is to receive as much as the original energy carrying the 

input information. 
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Of course, this does not subtract anything from the practical 

usefulness of a "closed system" as a concept in systems analysis 

and design. We would only wish to have it correctly interpreted. 

The fact that a system cannot be observed without it being 

perturbed may be true from a Quantum Mechanical point of view but 

certainly not from the Cybernetics point of view, as portrayed by 

Wiener. What he wanted to point out was the importance of the 

"closed loop" or feedback theory and information theory as tools for 

this new science. The servomechanism theory of a closed loop would 

have no use in a closed system, Wiener is also credited as the first 

to bring in uncertainty as an intrinsic characteristic of a complexed 

system. 

This something extra he identifies as uncertainty, 
not only the uncertainty of Heisenberg7, but more 
importantly the uncertainty of statistics, which he 
relates back to the statistical nature of information 
theory and of the inputs to control systems (Goode 
and Machol, 1957, p. 393). 

Again, it is obvious that Cybernetics assumed its systems to 

be open. 

We conclude the discussion of Observability and Controlla- 

bility by illustrating their concepts as shown by Freeman (1965). 

7See page 80 of Chapter III for the statement of the principle 
of uncertainty. 
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Figure 2. 5. A system and its environment. 

Endogenous output is an element in the environment dependent 

on (mapped on by) the selected system. Exogenous input, by contrast, 

is an independent variable of the system. 

These terms and others in the above figure will be defined 

later. Meanwhile,this figure may be taken as their intuitive descrip- 

tions. 

J 
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Time Dependence 

"...Everything changes but change itself" (Kennedy, 
1963). 

There are several reasons why Time plays such an important 

role in Systems. First, the relationships between the components of 

a system are described in some logical manner, technological if not 

mathematical ordering. This ordering concept is possible only be- 

cause we assume time to be a uni- dimensional quantity: "Within any 

world with which we can communicate, the direction of time is uni- 

form" (Wiener, 1961). Thus an open system must be time - dependent. 

Another reason for the need of the system to be time- depend- 

ent is that the system must be physically realizable. All physically 

realizable systems must be non -anticipatory. Since a system cannot 

be controllable and observable if it is not physically realizable, we 

may consider this to be a corollary of the first argument. 

For example, it is possible in designing an electrical network 

in its frequency domain, to arrive at a design that requires physical- 

ly unobtainable components when the results have been transformed 

back into time domain. This may be manifested by a requirement 

that negative inductance or capacitance is required. A further inves- 

tigation may reveal that the designer, in such cases, was trying to 

synthesize a system that depended on future information. 
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To restate the requirement, a system is said to be non- 

anticipatory (or physically realizable), if its state (x) and output (y) 

at any time (to) may be a function of only those input values that have 

occurred at time t < to. Thus, a nonanticipatory system cannot 

respond to input values until after their occurrence. 

A basic characteristic of any ' dynamic phenomenon' 
is that the behavior at any time is traceable not only 
to the presently applied forces but also to those 
applied in the past. The state of the system repre- 
sents the instantaneous content of the 'memory' of 
the system in which the effect of past applied forces 
is stored. The output is determined by the state and 
presently applied input (Freeman, 1965). 

Ashby, on the other hand, violently opposes the concept of a 

"memory" as an intrinsic property of a system. "The possession of 

'memory' is not a wholly objective property of a system" (Ashby, 

1963, p. 116). 

We would also like to call attention to the close similarity 

presented by Freeman's model of a system and our modern digital 

computer configuration. The comparison makes it clear why an 

electronic computer is such a powerful tool for systems analysis. 

Not only is the computer system itself a system in its own right, it 

has the capability of subdividing its own memory to simulate sub- 

systems acting as components of a larger system. It also meets 

the criteria of complexity, controllability, and observability. 

Before leaving this topic of time, we should mention the 
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well-known paradox of "Maxwell demon" discussed by Wiener (1964, 

P. 57). 

Let us suppose a gas in which the particles are moving 
around with the distribution of velocities in statistical 
equilibrium for a given temperature. For a perfect 
gas, this is the Maxwell distribution. Let this gas be 
contained in a rigid container with a wall across it, 
containing an opening spanned by a small gate, op- 
erated by a gatekeeper, either an anthropomorphic 
demon or a minute mechanism. When a particle of 
more than average velocity approaches the gate from 
compartment A or a particle of less than average 
velocity approaches the gate from compartment B, 
the gatekeeper opens the gate, and the particle passes 
through; but when a particle of less than average ve- 
locity approaches from compartment A or a particle 
of greater than average velocity approaches from 
compartment B, the gate is closed. In this way, the 
concentration of particles of high velocity is increased 
in compartment B and is decreased in compartment A. 
This produces an apparent decrease in entropy; so 
that if the two compartments are now connected by a 
heat engine, we seem to obtain a perpetual motion 
machine of the second kind. ... (in solving the paradox) 
the demon can only act on information received, and 
this information... represents a negative entropy... 
under the quantum mechanics, it is impossible to 
obtain any information giving the position or the 
momentum of the particle, much less the two together, 
without a positive effect on the energy of the particle 
examined. (See Heisenberg's principle on p. 80 of 
Chapter III) 
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Figure 2, 6. Freeman's representation of a system. U, X, and Y 

are vector quantities. 

Suboptimization in a System 

The last and probably the most important feature of a system 

is the existence of a purpose for which the system was conceived. 

The degree of attainment of this objective can be measured and com- 

pared with "criteria" to evaluate the effectiveness of the system. 

This implies, in turn, that a system can be optimized by evaluating 

the magnitude of input necessary to attain a common effectiveness 

X 

- 

Arithmetic j \\ Unit 

Control 

Figure 2. 7. A model of an electronic digital computer. 
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with respect to the objectives. 

Since a system is an interacting unit, it may also become a 

sub -system of a larger system with a different objective. The 

larger system must have a "memory" that will be longer than that of 

the subsystem (or at least as long in retention as the longest of sub- 

system memories), and its objective is also likely to be of "longer" 

range. 

Each subsystem will strive to optimize its own objective 

within the constraints imposed on them. The over -all system will 

try to maximize its over -all objective. This problem of suboptimi- 

zation is averted by making a part of its inputs uncontrollable by the 

subsystems and to be controlled directly by the input into the over- 

all system. 

These quantities may be illustrated by the example of the 

free -enterprise system in which we live. Each industry or organiza- 

tion is a subsystem created to attain its own objective, usually to 

bring financial profit to its owners. The overall effect, on the other 

hand, is controlled by the government to produce most benefit to all 

the citizens. 
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The elements of a system may be divided into "variables" 

and "parameters." Variables are the characteristic quantities that 

may assume different values during the experiments. For each 

transducer we shall have a set of independent variables and a set of 

dependent variables. For the overall system, the independent vari- 

ables are referred to as "exogenous" or input variables, while the 

dependent variables are termed "endogenous" or output variables 

(Figure 2. 5). 

The quantities which stay constant during the simulation or 

experiment will be called "parameters. " The distinction between 

a parameter and an independent variable is more theoretical than 

practical. It depends largely on how one defines an "experi- 

ment." F = mx may be simulated on an analog computer by speci- 

fying the parameter m. If the experiment is to find the proper value 

of m to yield the desired F, x may be chosen as a parameter and 

m(t) varied as the experiment progresses. 

The distinction between an endogenous and an exogenous flow 

is equally subject to controversies. If the injection of electrons is 

considered to be an input, would the injection of holes (lack of 
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electrons) be considered an input or an output? Authors such as 

Dantzig prefer to use the term "exogenous flow" to express both 

inputs and outputs (Dantzig, 1963, p. 45). 

Transfer Functions 

The relationship between the independent and dependent vari- 

ables of a transducer is usually expressed as a transfer function, 

sometimes called "transmittance." 

Output Function Transmittance _Output 
Input Function 

A numerical value that can characterize this function is akin 

to the eigenvalue for a given system. Often a linear expression will 

be found in the frequency domain that will describe this transfer 

function and is referred to as a characteristic function. 

Fan -in and Fan -out 

The outputs from several transducers may become inputs to 

several other transducers. This many -to -many relationship could 

be considered as a transducer in its own right. However, it is 

usually more convenient to distinguish this type of transformations 

from the conventional transducers. The reason is that by selecting 

transducers as the subsystems of the larger system we have given up 

our right to interfere with the internal operation of transducers 
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except through their inputs. We can exercise our control in the 

system design at the junction of outputs to inputs. 

The fan -in decisions are usually simple relations such as: 

AND (all outputs from the preceding transducers must be in before 

fan -out decisions can be made); OR (any input received into the junc- 

tion from a transducer is good enough for deciding a fan -out); or NOR 

(not one or the other). 

The fan -out decisions are more elaborate in general: MAX 

(choose the largest of all outputs from the preceding transducers 

and use it as an input to the succeeding transducers): MAXIMIN 

(choose the output vector from the preceding transducers that has 

the largest of the smallest component): AND (use all outputs from 

the preceding transducers), etc. 

The readers are cautioned against including the decisions 

that involve the "anticipatory" knowledge of the following transducers. 

For example, we cannot say "feed the input to the most promising 

transducer." In such a case, what we are really deciding is: "if the 

output from the experiment conducted on a model is higher than a 

particular threshold level, let the preceding transducer be connected 

to the particular transducer. " Though the distinction may seem 

nebulous, we hope the importance of "non- anticipation" will become 

clearer as we proceed with more rigorous models. 
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The Proposed Definition of a System 

Let us now summarize our discussion into a proposed defini- 

tion of a system: 

A system is a purposeful, dynamic entity whose inputs 
are at least partly controllable and whose outputs are 
at least partly observable; it is composed of inter- 
acting elements, each of which possesses the charac- 
teristics of a complete system. 

We shall use this definition in Chapter III to formulate 

our Tableau Method. We have deliberately withheld any concrete 

example or too involved mathematical discussion in the first two 

chapters to allow a systematic introduction of our proposed approach. 

As it has been made clear in our previous discussions, most useful 

and rigorously developed techniques are those concerned with linear 

Junction 

Fan -in Fan -out 

Transducers Transducers 

Figure 2. 8. Fan -in and fan -out. 
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systems. The fields that may prove to be most fruitful in the future, 

on the other hand, are those that are not strictly bound by the 

linearity conditions. In order to keep our Tableau method as versa- 

tile as possible, we shall try to avoid any such particular restriction 

to be imposed on the formulation of Tableau except for those ex- 

plicitly stated in the above definition. In the chapters following, we 

shall try to substantiate qualitative statements and observations 

made in the first two chapters by more quantitative and concrete 

examples and, at the same time, by making use of the Tableau Method 

whenever applicable. 



70 

III. FORMULATION OF TABLEAU METHOD 

And there shall come forth a rod out of 
the stem of Jesse, and a Branch shall grow 
out of his roots... (Isaiah 11:1). 

Basic Philosophy 

Systems Theoretical Considerations 

In Chapters I and II, we have reviewed some of the basic 

concepts that are at the basis of today's systems theory. In Chapter 

I, we have borrowed from pure and natural sciences some basic de- 

finitions and theorems that are at the root of any branch of systems 

theory. On the other hand, we have been very careful not to accept 

any statement, definition, or theorem from Chapter II where con- 

temporarily developing theories were discussed. 

The domain of disciplines represented by today's systems 

theorists is diversified indeed. There were first the Industrial 

Engineers, then various types of Electrical and Electronic Engineers, 

Military, Statisticians and Operations Researchers, Computer De- 

signers and Programmers, Systems and Management Analysts, 

Medical Doctors and Bio- Engineers, Cyberneticians (if such a term 

exists), Social Scientists, Economists, more engineers and others 

(including medical doctors and journalists), and presently, we are 
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facing a sudden inflow of Chemists wishing to enter this field 

(Leondes, 1966). 

It is needless to say that each of these groups have brought 

with them a new viewpoint and an accompanying language to explain 

it. The result is not unlike Japan of the first Centuries when Chinese 

Budhist missionaries crossed the Japan Sea to preach their Faith. 

They taught prayers translated into Japanese using their Chinese 

prayer books. (Japanese 2000 years ago was a well established con- 

versational language but the written language did not become popular 

until the arrival of Chinese missionaries. ) The poor converts had to 

learn the Chinese characters with both Chinese and Japanese pro- 

nunciations, a fact that has resulted in such long -lasting confusion 

that puzzles foreign visitors even today. 

Inspite of the difficulties, we have managed to construct a 

definition for what we understand by the term "system." Let us now 

analyze the definition stated: in Chapter II. 

Definition, 3. 1. A system. A system is a purposeful, 
dynamic entity whose inputs are at least partly con- 
trollable and whose outputs are at least partly obser- 
vable; it is composed of interacting elements, each of 
which possesses the characteristics of a complete 
system. 

This definition is rather remarkable from several points of view as 

we shall see from our discussion in the next section. Meanwhile, let 

us tabulate some of the requirements that we must meet if we are to 
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construct a technique that will represent a model of a system as de- 

fined in Def. 3. 1. 

Postulates for an Ideal Systems Theory Model: 

1. Consistency: The model by itself should not introduce 

illogical factors into the system. 

2. Tautology: The model of each element in the system 

should be identical to, or at least compatible with, the model of the 

subsystem which is represented by that element. Similarly, a model 

of a system should also serve as a model of the subsystem for a 

larger system of which it is a subset. 

3. Compatibility; The model should be easily transformed 

into: (a) a visual or graphical display amenable to human inter- 

pretation, and (b) a program easily executable by presently available 

computers (at least in theory, if not in practice). 

4. Exogenous Control: The model should accept exogenous 

input without having to undergo an extensive modification for each in- 

put. In particular, it would be desirable to have a defined model that 

will respond to continual input for simulation studies. 

5. Endogenous Output: The output of the model should be 

obtainable whenever an input is applied. This includes the particular 

case in which the output is a null ement (i. e. lack of signal). 

6. Flexibility: The model should be applicable to all 

branches of Systems Theory Studies, especially in Model Synthesis, 
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Model Analysis, and Decision - Making phases. (More will be dis- 

cussed on this subject under the Mathematical Considerations. ) 

Obviously a model should be easy to build and use. It should 

also be easily adapted to presently available Systems Theory 

Techniques. 

Logical Considerations 

"This statement is false. " A look at our Def. 3. 1 may justi- 

fiably provoke criticisms as to its validity as a definition. The 

definition is tautological since it defines a system in terms of its 

elements which are also systems. A circular definition is incomplete. 

However, if we had built a complete definition, we would most likely 

become inconsistent. The result is the well -known Kurt Gödel's 

Incompleteness Theorem: 

His theorem states that any adequate consistent arith- 
metical logic is incomplete, i. e. , there exist true 
statements about the integers that cannot be proved 
within such a logic (Arbib, 1964). 

For our purpose, the above statement about Gödel's theorem 

should read "logic" rather than "arithmetic logic" and "elements" 

instead of "integers. " The fact that Gödel has used the arithmetic 

logic for representation is incidental to the essence of his theorem. 

Consequently, we may follow a similar line of reasoning for 

our "system. " If we had made our definition about a system 

- 
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complete, then we have to admit that there is a "closed system" that 

is complete by itself. Then we could build a model that would effec- 

tively say: "This System is non- existent, " and in so doing we have 

actually built a model of the system. Assuming that we have not vi- 

olated a grammatical error, the above statement is a perfectly good 

English sentence. Since English Language is a system par excel- 

lence, the statement is a model of the "system" expressed by itself. 

If the statement (the system) does exist, then it cannot exist by the 

power of its own statement; if it does not, then we are denying our 

own definition. If we argue that English is not a system, then we are 

denying the definition itself which is in English. Of course, we could 

also use some other language such as Logic itself: "A ' . A = 6" 

or, in English, "If A, then A is a null set, " which according to a 

"complete" system definition should stand by. itself. 

On the other hand, if we accept the definition we have decided 

in Chapter II (Def. 3. 1), then we are openly admitting that a system 

is only a subsystem of another larger system. Now, the statement 

does not have to stand by itself: "A is an empty set. This system 

is non -existent. " When the previously inconsistent statement is made 

a part of a larger statement, it can make sense. If not, the process 

can be repeated until the system will include enough statements to 

make the sentence a part of a meaningful system. 

Of course, we must assume that the structure of a model you 
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are starting with, is not in conflict with the rules you have decided 

for the consistent modelling. These rules will now have to be dis- 

cussed. However, before we proceed further, let us comment on 

Gödel;'s work. 

Gödel. Gödel's first paper appeared in 1931, when he was a 

25- year -old German mathematician at the University of Vienna. The 

article was entitled: "U ber formal unentscheibare Sätze der 

Principia Mathematica und verwandter Systeme, I" (On Formally 

Undecidable Propositions of Principia Mathematica and Related 

Systems, I)8. The magazine was the German periodical Monthly 

Mathematical Physics ( "Monats, Math. Phys. ", vol. 38:173 -198) 

but the text is now available as "On Formally Undecidable Proposi- 

tions of Principia Mathematica and Related Systems, " translated by 

B. Meltzer, and published from Basic Books, Inc. , New York. 

The "Principia Mathematica" mentioned by Gödel in his title 

is an enormous work by Alfred North Whitehead and Bertrand 

Russell on mathematical logic and the foundations of mathematics 

(1910, 3 volumes). 

The best treatment of Gödel's ideas appears on Nagel and 

Newman's 118 pages "Gödel's Proof" (N. Y. University Press, 1964) 

from which the following statements are extracted: 

8Part II was never published. 
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In the first quarter of the present century a notable 
effort was made to put the foundations of mathematics 
on secure logical foundations, and although few per- 
sons were able to follow the recondite processes of 
reasoning required it was generally accepted in 
philosophical circles that the theorems of mathe- 
matics could all be deduced from a set of axioms 
with the sole help of principles of logic. In 1931, . 

Herr Kurt Gödel, then only twnety -five... chal- 
lenged this belief. Though Gödel's Proof is even 
more abstruse than the beliefs it calls in question 
it has convinced those who are able to follow it... 
(Times (London) Literary Supplement). 

...Kurt Gödel... since 1938 (has been) a permanent 
member of the Institute for Advanced Study at 
Princeton... When Harvard University awarded 
Gödel an honorary degree in 1952, the citation de- 
scribed the work as one of the most important ad- 
vances in logic in modern times (Nagel and Newman, 
1964). 

After having followed the proof of Gödel's theorem: "If arith- 

metic is consistent (statement A), there is a true arithmetic state- 

ment that is not formally demonstrable in arithmetic (statement G), " 

or more concisely "A G, "9 Nagel and Newman say: 

What does this signify? The formula A represents 
the meta -mathematical statement 'Arithmetic is 
consistent. ' If therefore, this statement could be 
established by any argument that can be mapped onto 
a sequence of formulas which constitutes a proof in 
the arithmetic calculus, the formula A would itself 
be demonstrable. But this, as we have just seen, is 
impossible, if arithmetic is consistent... We must 
conclude that if arithmetic is consistent its consistency 
cannot be established by any meta -mathematical 

9A implies G. 

~ 
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reasoning that can be represented within the formalism 
of arithmetic! 

Fortunately, the consistency of arithmetic has been proven by 

Gerhard Gentzen in 1936 using a meta -mathematical principle of 

"transfinite induction" which is outside the frame of arithmetical 

reasoning. 

Consistency of Tableau. Why are we so concerned about this 

particular problem? The Tableau method,we are about to develop, is 

a powerful technique in that it can model systems, ranging from naive 

models of Chapter IV to more sophisticated models of Chapters VII 

and VIII and extending to models not contained in this treatise. Its 

advantage lies mainly in its ability to analyze systems elements into 

subsets of smaller constituents,and to synthesize (using the termin- 

ology of Neumann) supersets using these systems as their elements. 

As the basic frame work, we have heavily relied on Set and Group 

Theories, as A r i t-h rßá e t -.i c s did, and we will usually be forced to 

make use of Arithmetics in reaching solutions. 

The danger becomes great that we will be seriously tempted 

to turn a Tableau into a system in which the whole system of deduc- 

tive reasoning will be incorporated. We start out innocently by using 

a Tableau to show simple relationships (Chapter IV), but as we pro- 

gress, we will make use of results obtained from a Tableau analysis 

to deduce and infer hypotheses of far -reaching consequences. We 
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shall model communication systems and progressively develop a 

utility hypothesis and so on. We find some interesting relationships 

within the Tableau that apply correctly when the Tableau is used as a 

component of a bigger Tableau. We are not restricted in the use of 

Tableau method to represent any system we can make it fit to model. 

But we are not guaranteed to yield a consistent result if that system 

is a meta -mathematical system or contains any reasoning about the 

systems theory itself. We shall try to keep the Tableau Method to be 

a general technique, not bound by linearity (unless the system being 

modelled is considered linear), homogeneity, or other specific re- 

quirements not included in the definition of a system. But it is 

nonetheless a mathematical representation based on the theories of 

sets and groups, and is bound by their restrictions. 

This line of reasoning is directly opposed to Hilbert's propos- 

al of extending his axiomatic approach to a complete formalization of 

a deductive system. 

The import of Gödel's conclusions is far- reaching, 
though it has not yet been fully fathomed. These 
conclusions show that the prospect of finding for 
every deductive system (and in particular, for a 
system in which the whole of arithmetic can be ex- 
pressed) an absolute proof of consistency that satisfies 
the finistic requirements of Hilbert's proposal, 
though not logically impossible, is most unlikely 
(Nagel and Newman, 1964). 

Tableau and computers. In formulating our postulates, we 

have also included a requirement for the model to be executable by a 
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presently available computing machine. In this chapter, we shall 

show how a Tableau model could be executed by a digital computer. 

In Chapter VI, we shall show the close relationship between a Tableau 

and a Turing Machine. Here again, we shall be aware of the implica- 

tion of Gödel's theorem. 

Gödel's conclusions bear on the question whether a 
calculating machine can be constructed that would 
match the human brain in mathematical intelligence. 
Today's calculating machines have a fixed set of 
directives correspond to the fixed rules of inference 
of formalized axiomatic procedure. The machines 
thus supply answers to problems by operating in a step - 
by -step manner, each step being controlled by the 
built -in directives. But as Gödel showed in his in- 
completeness theorem, there are innumerable prob- 
lems in elementary number theory that fall outside the 
scope of a fixed axiomatic method, and that such 
engines are incapable of answering, however, intricate 
and ingenious their built -in mechanisms may be and 
however rapid their operation (Nagel and Newman, 
1964, p. 100). 

If we omit this "Computerizability" requirement, however, 

Tableau Method does present some possibility of solving problems 

that have not been accessible to Arithmetic. A basic Tableau is 

based on the concepts of elements, sets, mapping and groups, but 

is not bound by other restrictions imposed upon Arithmetics such as 

decomposition and factorization rules specified in the "Fundamental 

Theorem of Arithmetic" (i. e. any integer n greater than 1 can be 

expressed as a product n = plp2.... pr of positive prime numbers, 

and this expression is unique apart from the order of the factors 
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(Mostow, Sampson, and Meyer, 1963, p. 59). 

The Tableau's counterpart of these rules are the very lose 

concepts of "fan -in" and "fan -out, " terms adopted to avoid any con- 

notation of rules regulating the processes. 

Details of this discussion as well as that of how we are 

planning to avoid the Inconsistency problem will be discussed later 

in this chapter. 

Heisenberg' s Uncertainty Principle. The importance of 

Gödel's Incompleteness Theorem is probably comparable to what 

Heisenberg has done to Quantum Mechanics with his Principle of 

Uncertainty: 

It is impossible to devise an experimental procedure 
for the measurement of x (coordinate of the physical 
position of a particle) and p (its canonically conjugate 
momentum) that would yield simultaneously absolutely 
precise values of x and p: the information provided by 
any experiment regarding the simultaneous values of 
x and p is always inaccurate to such an extent that 
Ax AID h/4 Tr (= h /2). (h = Planck's constant 
= 1. 05x10- 34joule -sec. ) (Rojansky, 1938, p. 122). 

We have already discussed the example of "Maxwell's Demon" 

by Wiener based on this principle. The important thing to notice in 

both cases is that our presently available techniques do not allow us 

to make any statement about these facts. They do not make any as- 

sertion about the actual outcome. 

Heiseberg's principle does not prevent a particle that will 

pass by a point at x to have a momentum p. Gödel does not say that 
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the truth of a system and its consistence are wrong or cannot be 

proven. He is merely stating that the present system, by itself can- 

not make a statement on itself and be justified by its own system 

of logic. This does not necessarily make the system wrong. The 

fact that the probability of any particular event occurring at a 

certain time is zero does not prevent it from actually happening 

then. 

Let us next examine postulate 3 before returning to other 

mathematical considerations. 

Systems Representation 

Graphic Considerations 

Black box. A black box representation is probably the most 

popular graphic representation used in systems theory today, and 

has the obvious advantage of being suitable for representing a tautolo- 

gous system as defined in Def. 3. 1. It allows a black box to become 

an element of a larger black box, and so on. 

Let us assume that we have identified n elements of a system 

S, and we have recognized the particular mapping operations that 

exist variously among each group of those elements, between the 

groups taken as subsets, and in relation to the external environment, 

i. e. exogenous inputs and endogeneous outputs. The observation that 



x2, one of the n elements, is related to another element x1, by an 

operation (x2, 
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x1) mapping xi into x2, can be expressed in a functional 

form as: f(x2,x1) = f(x2 /xl) = f21( /x1) or simply, = f21( /). Not 

knowing anything about the true nature of the dependency, we are 

only allowed to state that the operation of x2 depends on the condition 

that x1 is present. 

On the other hand, if the relation did become more precisely 

known later, we could either substitute the true relationship for the 

/, or state the function near the black box. 

When left undefined, f21( /) has no more meaning than that 

afforded by the theory of mapping (a topic we shall discuss more in 

detail later in this chapter) and may be interpreted as an expression 

of the relationship of a physical, chemical, sociological, economic, 

mathematical, or other nature. For example, it may mean that x2 

is socially dominated by x1; x2 is a temperature 10° C below that of 

xi; or x2 is the risk involved in a plane trip of x1 miles. To keep our 

example simple, let us assume that f21 is a single- valued function 

that, say, amplifies every input x by a factor of two. 

x2 = f21( /x1) = f21(2 *x1) = 2*(x1) 

Obviously, an alternate method for describing f21( /) may be 

a complete listing of mapping between x2 and x1, not unlike the 

tables provided for such irregular (if not illogical) mapping functions 

as taxes. 

1 



83 

x1 0 1 2 3 4 5 6 

x2 0 2 4 6 8 10 12 .. 

The black box notation will be used directly, except that we 

shall make it contain a / in the box (or the function if it be known 

exactly), and include with it or replace it by a parameter of trans- 

formation if there is no ambiguity (e. g. simple addition or multipli- 

cation by a scalar where the operations are obvious). Also, we 

require the input flow to be perpendicular to the output flow with a 

usual (but not absolutely adherred) practice of arrows pointing in 

counter- clockwise direction. Various possible presentations are 

shown for our simple amplifier in Figure 3. 1. 

xl 
d 

x 41- 
2 

f21(2*) T - x2 xl 

Figure 3.1 . x2 = f21(xl) = 2*xl. 

xl 
1 

f21 ( ) 

Transducers. A transformation is therefore indicated by a 

perpendicular shift in direction from the primary input flow to the 

transverse (transposed) output flow. An input flow through a black 

box without change in direction does not alter the nature of the input. 

In other words, we are assuming that the information flow can have 

as many "fan- outs" as one may wish and that the information input 

received by each black box is identical to that received by any other 

'2 

x2 

.. . 
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on the same line. Of course, part of the message may be lost by the 

transformation that is indicated by the particular box. One such 

element of a particular importance is a "Threshold Element" that 

will yield either a binary "1" when the input signal is larger and 

binary "0" when the input is equal to or less than the threshold value 

of O. This binary detector is the same as the Threshold Logic we 

have described in Chapter I (page 22), 

Several output flows may be joined together to affect the 

dependent variable. x3 = f3[f31(x1), f32(x2)] shown below is such an 

example. The nature of the "fan -in" function f3 must be known to 

compute x3. 

F 

Fan-out A 

x2 = f21(x1)ó 

x3 = f31(x1)U 

x4 = 141(xl)T 

U 

E 

(AND) 

Binary Detector 
x2 

= °bate 2 
if x1 < 0 

Fan -in Rule (f2) 

Fan -in 
= 

13 
[f31(x1)' 132(x2) 

if x1> 0 13 may be (max), x2 = 
(base 2 

(add), (ave). 

Figure 3. 2. Fan -in, fan -out, and binary detector. 

State variables. Since we are defining the system as a set of 

elements, we should attribute to these elements semi -permanent 

characteristics. We shall call these elements the "states" of the 

particular system. Therefore, there will be as many states as 

there are elements in the set or subset being considered, and the 

a 

x3 
J 

11 a 
?, 

II ( 
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complete knowledge of all these states (a state vector) at any instant 

will provide a complete snap -shot of the system at that instant. Each 

state at a time t is a function of its former state and the input re- 

ceived since then. Unless otherwise stated (this is a very unlikely 

occurrence) the state will, therefore, act as a temporary memory, 

or a register, retaining its state condition until an input has changed 

it to a new state condition. In order to avoid the possible misinter- 

pretation, whenever there is a possibility for ambiguity, we shall 

speak of "state variables" as the elements, and "state value" (or 

eigen -cell value) as the numerical expression of the state condition. 

State variables will be shown either as a box with a main 

diagonal (opposite of the I), or as a circle. We shall also try to 

have them arranged such that their main diagonals will form a single 

line (Figure 3. 3). Such a line is called an eigen -line, while the cell 

or the circle representing the state is called an eigen -cell. 

eigen -cell 

eigen-line 

x2 

f3 

Figure 3. 3. States representations. 
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Exogenous 
Input 

Transducer 

System Table au 

Endogenous Output 

Figure 3. 4. Endogenous output, exogenous input. 

Chained transducers. Several operations (mapping, trans- 

ducer, function, operator, ... are all synonyms) may be chained, 

or cascaded to form a single path. An example of a chain formed 

by four of our simple "doublers" is illustrated below in Figure 3. 5. 

cascaded block diagram 

Black Box 

Input value 

state values 

output 
value 

x x x x 

Tableau with x1 =5 

example with x1 =5 

Figure 3. 5. Various representations with a cascaded transducer. 

!9l 

x2 

x3 

x4 

2 

2 

2 

v 
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Flowgraph and Tableau. From this point, it is easy to see 

how a network approach (a flowgraph) or a matrix approach (a tab- 

leau) may be produced for further analysis. Figure 3. 5 showed one 

such example, and Figure 3. 6 illustrates many varieties of configur- 

ations that commonly occur. Clearly, a Tableau is the easiest to 

construct when the relations are most complex, and a flowgraph can 

be generated directly from it later. 

Programming Considerations 

Network structure. Our Tableau method is slowly beginning 

to take shape as the postulates are becoming satisfied one by one. 

Perhaps, this is the time to examine its structure to see whether our 

method is basically compatible with the fundamental structure of a 

modern digital computer (3b, page 72). 

We have not yet decided on the nature of mapping functions 

themselves and we shall try to preserve this generality as far as 

possible. 

Let us assume that we are given a system composed of five 

elements: a, b, c, d, and e. "e, " the endogenous output of the sys - 

te, is a function of the four other variables. The function is then 

decomposed into binary operations using the associative axiom by 

assuming that five elements compose a group. (If such were not the 

case, a smaller group will have to be found first.) Let's formulate 
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this as an example. 

c is 

Example 3. L a and b are "mixed" into a product (say x1), 

mixed in with x1 to produce x2, then d and x2 yields x3 which is 

again mixed in with a as x4, and finally the result x4 is taken out as 

an endogenous value e. 

Polish notation. - The so- called Lukasiewicz, Polish, or 

parenthesis -free form is a "right" or "left" list of an arithmetic or 

logical statement. By this, it is meant that all dependent variables 

are listed to the left (or right if left -listing is used) of the operation 

to which it pertains. For example, a +b will be written ab +, a union 

with b may be written as abU, etc. The independent variables are 

usually grouped by two (or less), followed directly by the operation 

relating the two to produce the dependent variable. 

For example the statement (a system) of Example 3. 1 can be 

written as: 

a b 
xl x2 

d a a a - e 
x3 x4 

The symbol a is the same "mixer" symbol used since Chapter I and 

denotes an unknown mapping corresponding to the / of our graphical 

notation, We have named them for our convenience to be: xl, x2, 

x3, and x4. 

Another example of this notation may be: 

a< c a 
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ab + [ (d +e)a + (d +c)b)e + gf] c which will be written as: 

ab *cde + a *bcd + * + e *fg* + * + 

where * indicates a multiplication (a notion that we shall continue 

using in preference to x) of the preceding two terms, and + indicates 

the addition of the preceding two terms. 

This notation was first proposed by Jan Lukasiewicz in Polish 

and was subsequently translated into English in 1951 as "Aristotle's 

Syllogistic from the Standpoint of Modern Formal Logic, " and finally 

into American as "Elements of Mathematical Logic" in 1963 

(McMillian). 

Tableau in Polish notation. Figure 3.7 shows a Tableau con- 

structed for aba and Example 3. 1. It may be noted that independent 

Figure 3. 7, b. Polish Tableau 

variables have no / in their respective columns (a, b, c, d, and a), 

while the dependent variable (end product "e ") has no / in its row. 

Also the familiar staircase pattern can be recognized relating all 

abacadsase 

Figure 3.7. a. Polish Tableau 
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operations into a single path. The details of these mechanisms are 

similar to those described in prior works written for CPS Tableau 

(Riggs and Inoue, 1965; Riggs, 1966; Inoue, 1964). 

bi4c.ud .mame 

a 

b 

Example 3.3. 

Paths: 

Figure 3. 8. A single chain of operations. 

Macro -programming 

An immediate application of this Polish notation Tableau is a 

simple machine language programming corresponding to the single 

path obtained above in Figure 3. 8. 

Let us suppose that a computer has a three -address machine 

language instruction format as shown in Figure 3. 9. It would then 

be necessary for a higher level language such as FORTRAN or 

Iverson's Programming Language (corresponding to our Polish nota- 

tion) to be converted into this machine language format before it can 

be executed by this particular computer. An algorithm that will be 

used for such a conversion is called a "compiler" algorithm. 

We shall have a more detailed discussion on the nature of 

d 
a-121-&-ist-s-e 
b - ra e 

c ----e 
d-e-g-e 

a-a-e 

O-- 

D'" 

Q 

Era-r4(::-st 

` 
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what should constitute an algorithm later (Chapter VI). For the time 

being let us accept the definition of algorithm as was provided by 

Professor Harry E. Goheen (Inoue, 1964): "An algorithm is an auto- 

matic scheme for manipulating data, guaranteed to yield solution. " 

Operation Address 1 Address 2 
I 

Address 3 I 

Figure 3. 9. A three -address instruction format. 

In the instruction format given in Figure 3. 9, a macro - 

statement such as ab + c - d a '-e will be executed as a series of 

machine instructions involving: 

Operation: a code specifying the particular operation to 

be performed. 

Address 1: the location where the independent variables 

has been stored. 

Address 2: the location of the modifier, 

Address 3: the location where the result of the operation 

should be placed. 

In many computers, including the IBM 1620, the third address 

is omitted. In most operations (at least in additions and subtractions) 

the results are automatically placed in the same address as the one 

specified by address 1, replacing the independent variable. 

The construction of the Tableau will provide a l l four 

pieces of information at once. The operation code is indicated 

I 
I 

* 
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either inside the corresponding cell or on the outside of the grid as 

we have shown. The two addresses are marked by the /'s and the 

third address is obtained by following the single -path as we have 

done in Figure 3. 8 (Example 3. 1). 

a 
b 

Add 
c 

Subtract 
d 

Multiply 
a 

Multiply 
e 

Replace 

ab + c -d * a.* e 
Operation Add. 1 Add. 2 Add. 3 

Add a b 1 

Subtract 1 c 2 

Multiply 2 d 3 

Multiply 3 a 4 

Replace 4 - e 

Figure 3. 10. Micro -programming for Example 3. 3. 

A more sophisticated application to computer programming 

will be shown later by using the Tableau to replace Hellerman's 

Tableau. However, it will be more convenient to delay this discus- 

sion for the time being and go on to other topics first. What we have 

done, meanwhile, is to assure ourselves of a seemingly high com- 

patibility between our Tableau method and modern digital computers. 
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Synthesis and Analysis Considerations 

Mathematical Considerations 

Group theory. It is rather difficult to discuss mathematical 

relations without bringing in linearity as we have discussed in 

Chapter I. On the other hand, it is very important to build the 

Tableau method so that its use will not be exclusively limited to 

linear models. Rather, we would like to have a method which will 

help us start modelling a system even while we are waiting for con- 

crete data to develop so that more exact relationships between vari- 

ables can become known. 

Of course, we are also hoping that the same model will lead 

us, through gradual improvements and refinements, to a highly so- 

phisticated model in which the effects of noise, distortions, and com- 

petitions can all be included stochastically to permit continuous up- 

dating of our policy and decisions in a practical manner (see 

Chapters VI for examples). Then we hope that an automatic learning 

or adaptive process can be incorporated, so that the model will only 

ask management's help when exceptional decisions (i. e. non - routine 

environment or endogenous changes) occur. 

Meanwhile, we are still at the very beginning, trying to build 

a structure for a model of rather nebulous character. Let us turn 
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to Group Theory to see what is available in line of hardware! 

Theorem 3. 1. Identity element and inverses. Let G be a 

group (Def. 1. 13, p. 29) with binary operation a (Def. 1. 7, p. 14. 

Now, (1) if aac = a or caa = a for some a e G, then c must be the 

identity element e of G; (2) if aac = bac or caa = cab in G, than a = b; 

-1 
(3) if aab = e or baa = e, then a = b -1 and b = a 

Proof of Theorem 3. 1. (1) Let albe the inverse of a (from 

Def. 1. 13 (2), page 29, a e G must have an inverse). Then, aac = a 

implies: a- la(aac) = a -1 
;sta. Since a must be associative (page29 ), 

(alaa)ac = (a -1aa) = e, or c = e. Similarly, 

(2) 

(3) 

caa = a =. (caa)aa' 1 = alga-1 c = e. Q. E. D. 

Note: e stands for "an element of" or "contained in." 
= means "if, then..." 

means "therefore" 
means "identically equal to" 
or " 0 " means "if and only if, " or iff. 

By the same token: aac = bac = aacac -1 = bacrac alma a = b 

caa = cab c-1tacaa = c^lscab a = b 

Also, aab = e aabab = eab -1 a = b -1: others follow. 

Theorem 3. 2. Uniqueness of solutions. Let G be a group 

with a. The equations: aax = b and yaa = b have unique solutions for 

x and y, x = a- lab and y = baa for any two aeG and beG. 

Proof aax - -1 ,l -lab= 

x = -lab. Now, if x and x' were two distinct solutions, then: 

wax = b and aax' = b wax = aax' [from Th.3.1(2)1.4 x = x' 

= 

:: 

= 

of Theorem 3. 2, = b = a 

a 

.= 

b 

... 
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A similar proof will show the y to have a unique solution. If G were 

abelian (commutative )'then x = y. 

Theorem 3.3. Source of groups. Let S be an arbitrary set, 

and let M denote the set of all one -to -one mapping of S to itself. 

Then M, with composition of mappings as a binary operation is a 

group. Its identity element e is the identity mapping of S, the in- 

verse of an element f of the group M is the inverse mapping f . 
-1 

Proof of Theorem 3. 3. (This is one of the theorems that 

made Tableau method possible. ) Let f, g be two elements of M, that 

is, two one -to -one mapping S -' S. Then the operator (fg) will be the 

mapping that will send an arbitrary element x e S into f[ g(x)] . Since 

f[ g(x)] = (fg)x, (fg) may be considered as a one -to -one mapping and 

must therefore also be an element of M. Thus, the composition 

of mapping such as the one producing (fg) from f and g, is a binary 

operation in M. Now let us see whether M qualifies as a group 

(Def. 1.13, page 29 ). 

First, as to the associativeness: let f, g, h e M and x e S, 

then f(gh) sends x into f[ gh(x)] = f[ g(h(x) )] . Similarly, we have 

(fg)h sending x into (fg)h(x) = fg[ h(x) ] = f[ g(h(x) )] . Thus, f(gh) = (fg)h 

and this satisfies the associative axiom (Def. 1. 11, page28 ). 

Second, as to the identity element: let e be the identity 

mapping of S, or, e(x) = ex = x for all x e S. Then, fe(x) = f[ e(x)] 

= f(x) and ef(x) = e[ f(x)] = f(x) imply that of = fe = f for any f in M 
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makes e an identity element of M (Def. 1. 10, page27 ). 

Third, as to the inverse: let f -1 be the inverse mapping of f. 

Then, f[f -1(x)] = x = f- l[f(x)] for any x e S. Therefore, ff -1 = 

Cif = e = f 
1 

is the inverse for binary operation as well. 

All conditions are satisfied and M is a group with identity 

element e and the same inverses as S. Q. E. D. 

Definition 3. 2. A subgroup. Let G be a group with operation 

and let H be a non -empty subset of G. Then H is called a subset 

of G if for any elements a, b in H the elements a -1, b -1 and aab are 

also in H. 

Theorem 3. 4. Identity element in a subgroup. Let H be a 

subgroup of a group G. Then: 

(1) G and H have a same identity element. 

(2) The inverse of an element in H is the same as the inverse 

of the same element in G. 

(3) The identity element of any group forms a subgroup by 

its elf. 

Proofs of Theorem 3. 4. (1) By Def. 3. 2 H is not an empty 

group and therefore must contain at least one element "a. " More- 

over, Def. 3.2 requires that its inverse a 
-1 

is also an element of H, 

and the binary operation a also belongs to H as well as to G. Thus, 

aaa -1 = e must be an element of both H and G, and must be unique 

according to Theorem 1.3 (page29 ) 

a, 
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(2) This follows directly from the proof (1) above. The ele- 

ment e is unique in both G and H, and from Theorem 3. 2 (page 96) 

the solution of the equation: asx = e is unique and is equal to 

x = a -lrae = a -1 in both G and H. 

(3) The identity element e by itself meets all the require- 

ments for being a subgroup as specified by Def. 3, 2. e, an element 

of H, its inverse e -1 = e, and exe = e are all in H. 

Model Synthesis 

Group Transformation Table. We have demonstrated that 

the mapping of a group may itself become a group (Theorem 3. 3) and 

that elements of a group may be a subgroup with all the character- 

istics of a group. Let us now examine the relationship that exists 

between a Group representation and a Tableau representation of the 

previous section. 

The matrix of binary operation may now justifiably be called 

Group Transformation Table. Other popular names are Permutation 

Table, Group Multiplication Table (Stephenson, 1965), etc. but they 

all seem to have narrower connotation (for example, one hesitates 

to say "a multiplication table for a binary operation of addition "). 

Let us look at an example of a reduced Flintstone example 

with four fingers e, a, b, and c. The transformation table is shown 

in Figure 3. 1 1. Note that we are essentially looking at a black box 
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with input u and state x and trying to examine the output y. The 

transformation table tells us the results of our "model analysis. " 

State (x) 
(u) e a b c 
I e e a b c 
n a a b c e 
p b b c e a 
u c c e a b 
t Output (y) 

Transformation Table Model Analysis 

Figure 3. 11. Transformation table for model analysis. 

Isomorphism. Let us illustrate some examples of iso- 

morphism. Aside from the usual 0, 1, 2, 3 interpretation of e, a, 

b, c, with the binary operation of addition, we can show two more 

examples that are also isomorphic with respect to Flintstone's four 

fingers. The first one is the complex number set 1, i, -1, -i with its 

binary operation of multiplication. This may also be interpreted in 

the complex plane as a set °, elm /2, ein, ei37/2} of vectors 

cycling around the origin. The second example is a set of four ma- 

trices: 1 0 0 1 (-i 0 0-1 with matrix multiplica- 
0 '1 , -1 0 , 0 -1 1 0 

tion as its binary operation. These two sets satisfy the require- 

ments for being groups under Def. 1. 13 (page29 ) and also for being 

isomorphic under Def. 1. 15 (page32 ). 

Tableau. Before a model can be used for analysis, it must 

first be built from our observation of the actual system (page43 ). 

v 
IF 

{ 

l 
J 
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What we need therefore is a table that will give us the state 

x (the internal condition of the system) for each combination of an 

input (u) and an output (y). For our example, such a table is shown 

in Figure 3.12. 

(u) e 
Output (y) 

a b c 
I e e c b a 
n a a e c b 
p b b a e c 
u c c b a e 
t State (x) Model Synthesis 

e 
a 
b 
c 

a b c 

hL, c b a 
MORN b 
b a ` c 

MICE a ` 
Figure 3. 12. Tableau and exchange table for model synthesis. 

When we connect the identity elements by a line, we suddenly 

realize that the table we have constructed is in fact what we have 

been calling a Tableau. The internal state that gives a particular 

output for a given input is in fact a transducer. What we have been 

calling an eigen cell is the identity element, and the eigen line is the 

line we used in connecting all our identity elements. 

Figure 3. 13. Interpretation of an eigen cell. 

' ¡ 

l 

`y/ 

e 
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We should also test our newly found Tableau to see whether 

the exogenous input and endogenous output relations do hold for each 

eigen -cell as well as for the entire tableau. In Figure 3. 13 we ex- 

amine the cell b and note the fan -in from three transducers b, a, and 

c on the same row, meaning "b state may be reached either by an 

exogenous input b outside the tableau, the output of state e trans- 

formed by b, the output of state a transformed by a, or the output 

from state c transformed by c. " Similar interpretation can be 

given to all the transducers and endogenous output b, on column b 

as the state b may be fanned -out to. 

Definition 3. 3. A Tableau. A Tableau of dimension n is an 

nxn matrix representation of a set of n elements such that an entry 

in a cell aij or row i and column j expresses the mapping of the ith 

element into the jth element. In particular, the cells corresponding 

to elements a.., i = 1, .. , n are called eigen -cells and are trans - 

versed by a main diagonal called eigen -line. 

In this chapter, we have tried to establish Tableau Method 

as a generalized Systems Tool with as little constraints as possible 

that may hinder its application, present or future, in the study of any 

system meeting our Definition 3. 1. To escape from the usual as- 

sumption of linearity (linear matrix models), specialized fan -in and 

fan -out conventions (AND -AND in CPS, OR -OR in signal flowgraphs, 

etc. ), homogeneity (Kirchoff's Laws, Lagrange's conservation of 
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energy, etc. ), commutativity [the so- called Abelian groups, after 

the Norwegian mathematician N. H. Abel (1802 -1829)], and many 

others, we have chosen the most basic mathematical language (the- 

ories of sets and groups) and the most basic graphical representation 

(block diagram) as the two bases for the Tableau Method. 

As far as Gödel's Incompleteness dilemma is concerned, we 

shall try to build our method with three safeguards: (1) avoidance of 

any meta- mathematical, or meta- systematic statement: 

The rule that is most often adopted by mathematicians 
is to declare that the totality of sets is not a set. Even 
more, one never uses ' all the sets such that... , ' but 
rather ' all the subsets of the set A such that... ' With 
such conventions, the Russell paradox ('y is not an 
element of y' by Bertrand Russell in 'Principia 
Matematica') cannot be formulated, and we escape, as 
far as we know at present, the spectre of contradiction 
in logic (Mostow, Sampson and Meyer, 1963, p. 510). 

(2) Adoption of Logical Tautology (the truth of the output depending 

entirely on the truth of the input) which has been proven successfully 

for its consistency (and its incompleteness) by Russell, whenever it 

is conscienciously possible to do so, and (3) denouncement of any 

applicability of Tableau method to problems dealing with reverse flow 

of time (including Minkowski space problems). 
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IV. STRUCTURE TABLEAU 

... we trained hard -- but it seemed that everytime 
we were beginning to form up into teams we would be 
reorganized -- I was to learn later in life that we tend 
to meet any new situation by reorganizing, and what a 
useful method it can be for creating the illustion of 
progress while producing confusion, inefficiency, and 
demobilization -- but what fun [Petronius Arbiter and 
Schwartz, written on a clay tablet, 210 B. C. (Schwartz, 
1966)]. 

Studies of Structures, Relationships, and Organizations 

Sociograms 

The counterparts of flowgraphs in engineering, are called 

graphs of social relations, or sociograms. In the order of strength, 

we may roughly classify them as expressing three types of mapping: 

1. Sociometric relations, where preferred choices of in- 

dividuals are expressed. For example, John wants to sit next to 

Mary, but Mary would rather sit with Mike, etc. A simple example 

is shown in Figure 4. 1 with an equivalent Tableau example. 

Figure 4. 1. Sociometric relations. 

Mary 

John 
Mike 

M J M 
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2, Communication relations, where communication links 

between individuals or groups of individuals are shown, For ex- 

ample, Smiths communicate with Jones and Millers, but Millers and 

Jones are not speaking to each other. Notice that a communication 

relation requires a two -way link rather than a one -way or two -way 

relation permitted in sociometric relation Figure 4. 2 illustrates 

our example. 

Smiths\ 
Millers 

Jones 

Figure 4. 2. Communication relations. 

Smiths 

Millers 

Jones 

M 

Symmetrical 

3. Dominance relations. This is where a social hierarchy 

is established. For example, Mr. Smith is Mr. Miller's boss, but 

Mrs. Miller dominates Mrs. Smith, etc. In contrast to the com- 

munication model, a dominance model does not allow a two -way link 

between any individual or organization and another. Figure 4. 3 il- 

lustrates such an example. 

Mr. Smith Mrs. Smith 
X 

Mr. Miller Mrs. Miller 

Mr. S. 
Mrs. S. 
Mr. M. 
Mrs. M. 

.FAl®. 
MII` M 
OMM` M 
I% NNW 

Figure 4. 3. Dominance relations. Note: Either aid or agi must be 
entered for each pair (i, j). Ji 

S J 

WOEMN rMs 

b6®6 - 
1 
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Exchange Models 

A similar model in Economics is called an exchange model. 

The model may be used to show the flow of goods between various de- 

partments of an organization, between various organizations in an 

industry, between industries in a country, or imports and exports be- 

tween countries. Figure 4. 4 shows an example of trades between 

several countries (fictitious data). 

To 
From 

Red China 
Russia 
Cuba 
Yugoslavia 
France 
Japan 
England 
U. S. A. 
Canada 
Nat. China 

RC R CbY F J EU CaNC 

Figure 4. 4. Exchange model. 

Business Application 

A similar matrix is used in accounting to show the services 

rendered by a department to other departments so that each depart- 

ment may be charged for the actual amount of benefits received from 

other departments. However, this matrix will be of no actual value 

until numerical figures are inserted instead of mere recognition of 

Oa.EIMMENIMM 
rioNIMMMINII 

IN ELMO IINSIIIMMI 
NMI% WIWAM 
MISIUM ̀ MOROM NEU EMU 
IMMINIMPAMI, NE MMOM UMW IIIIIII EN 
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relationships ( /). Therefore, we shall not include it under the 

structure tableau category. 

Engineering Applications 

Engineering applications are very numerous and varied in 

nature. We shall only illustrate few examples. 

Parts explosion model. When a product is assembled, it is 

likely that several components are used at many stages of its as- 

sembly. Screws, paint, electronic subassemblies (micro -module 

circuits), rubber gaskets, etc., are some of the examples. A rela- 

tion matrix is usually employed to show the relationships between 

those components and subassemblies and the final assembly. 

Input A 
Parts B 
and C 

Assemblies D 
E 
F 

Figure 4. 5. Product -explosion 

Output 
Parts and assemblies. 

A B C D E 
0111111111112111111111 

1111 
1111111111111 IBM 

tableau. 

Transportation model. TRW Systems (Company address: 

1 Space Park, Redondo Beach, California) have used a matrix ap- 

proach in finding the best paths of transportation between north- 

eastern cities. This is essentially the same as the Communication 

/ / / lS` 
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models in sociology, and results in a Tableau that is symmetrical 

with respect to its eigen line. Figure 4. 6 shows an illustration. 

7 hrs. 
(5 hrs. ) 

4. 25 hrs. 
(3 hrs. ) 

1. 75 hrs. 

(1 hr. ) 

2. 25 hrs. 
(1. 5 hrs. ) 

6. 75 hrs. 
4 hrs. ) 

7 hrs. 
(2. 5 hrs. ) 

Boston 
New York 

Philadelphia 

Pittsburgh 
Washington, D.C. 

Norfolk 

NY Ph Pt DC NF 

PAT M11111111111 

111,011111 
11111111111111121211111 111`,61 
®111.111rd, 

Figures are transit times in hours. Outside ( ), 

conventional train time. Inside ( ), Tokaido 
type 125 mph train time. 

Figure 4. 6. Northeast corridor transportation. 

The use of this type of Tableau will be very helpful in formu- 

lating the problem before reliable quantitative data become available. 

Often a model is needed precisely for the sake of gathering data 

(chicken and egg, modern version) and obtaining public support for 

further study. Let us quote from Frankel and Gilon (1966) who 

worked on this particular project. 

Without a clear understanding of the issues involved 
in the transportation problem, it is futile to propose 
solutions. For example, considerable attention is 
being paid to 'high -speed trains' as a result of the 
the initial success of the Tokaido Line in Japan. 
This success has spurred U. S. attention towards a 
125 mph train for the Northeast Corridor. The intro- 
duction of such a train will undoubtedly decrease 
travel time ... New York to Washington, 2. 5 hours 
vs. current 4 hours ... Estimates indicate that the de- 
crease travel time between New York and Washington 

h. MOM. 
B 



109 

will cost approximately 2. 5 million dollars per minute. 
... The real issue however is not in the price per 
minute saved but in the public acceptance of such a 
solution. Without public support the solution is an 
academic one (Frankel and Gilon, 1966). 

Data Bank, When Lockheed Missiles and Space Company 

(a group division of Lockheed Aircraft Corporation, Sunnyvale, 

California) was requested to conduct "California Statewide Informa- 

tion System Study" (for $100, 000) in 1965, one of the first things the 

company did was to construct a data interchange matrix,part of which 

is shown on Figure 4.7. 

Based on this, the company has finally recommended an 

Information Center (Data Bank) for the sources of information avail- 

able in the State of California. This center, unlike those usually 

proposed by other projects, acts only as a clearing house and also 

as a library card catalog that will serve the users to look up where 

the information is stored and connect them to these sources, much 

like a telephone exchange system. Figure 4. 8 illustrates this con- 

cept. 

Critical Path Scheduling. In order to render our presentation 

complete, we must include few words on the use of Tableau as a 

matrix representation of arrow network. Unfortunately, when the 

Tableau method was developed for Critical Path Scheduling, we had 

no idea of the potentiality of Tableau method for other uses but 

C. P. S. Because of this particular application, we had, at that time, 
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Figure 4. 7. Lockheed data interchange tableau. 
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Routine report to Department 
of Social Welfare from County 

Franchise Tax Board request for 
individual's address to Department 
of Motor Vehicles. File location 
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Department of 
Motor Vehicles 

Department 
of Employment 

INFORMATION CENTRAL 

Department of 
Social Welfare 

Files 

3, Request from Franchise Tax 
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adopted the transpose of what we now consider the proper representa- 

tion of a Systems Tableau. 

The decision to adopt the present representation as the proper 

one, rather than the one we had advocated for Critical Path Sched- 

uling was a difficult decision to make. However, the readers 

who have already examined several models used by various people in 

various professions, such as those illustrated in this chapter, will 

probably agree that our decision is probably the most plausible one. 

The orthodoxity of this representation will become even more clear 

when we examine Tableau Économique and Simplex Tableau. In this 

era of Western culture, we have adopted the habit of writing equa- 

tions horizontally. This fact which accounts for this particular re- 

presentation, would have been completely different if modern tech- 

nology were developed in China or Japan, where conceivably equa- 

tions would have been written vertically from top -to- bottom. We 

may even amuse ourselves by considering the Simplex Dual in the 

light of Kipling's "Oh, East is East, and West is West, and never 

the twain shall meet" (except upon a Tableau:). 

This paragraph is also presented to our readers as somewhat 

of an apology and justification for our dwelling on applications and 

theories that seem at times tedious, trite, and trivial. This may be 

felt even more seriously later, in view of the fact that the latter part 

of this treatise will have to be greatly condensed and many ideas will 
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have to be presented without proof. However, we feel that being 

careful in the foundation stage is the only possible chance to avoid 

committing sad discrepencies of fundamental nature. This is also 

the reason why we are relying very heavily on the Set Theory and 

Group Theory, and even in these, are trying to follow closely such 

reputable authors as Mostow, Sampson (whom I had the privilege of 

having as an instructor), and Meyer. 

Fortunately, our choice of primary matrix is not detrimental 

to any of our analysis. To show how the critical path scheduling 

problem looks under the new orientation of the Tableau, we present 

the (perhaps overly quoted) example of Patio Construction by Riggs 

and Heath (1963). 

Patio Example. The vacation cabin is situated 100 
miles from the owner's home. He plans to build a 
protected, covered patio at the cabin. Supplies and 
handyman labor are available not far from the cabin 
(Riggs and Heath, 1963, p. 7). 

Figure 4. 9 is the Tableau corresponding to this project. The symbol 

D placed over the / indicates a dummy connection the implication of 

which will be discussed presently. From the network in the right 

top of Figure 4. 9, we notice that an arrow network is composed of 

arrows depicting the states but transducers are completely ignored 

and are understood at the junctions of the arrows. This convention 

works fine if all the fan -ins are identical for all the fan -outs, and all 

the fan -outs are identical for all the fan -ins. In other words, the 
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Lumber A 
Blocks B 
Excavate C 
Foundation D 
Frame E 
Decking F 
Roofing G 
Clean up H 
Windbreak I 

A B C D E F G H I 

'0 OMNI 

mourn' -I 
Figure 4. 9. Patio example. 

transducers which act as an AND fan -in (all prerequisites must be 

in before there can be an output from the transducer) and an AND 

fan -out (all postrequisites receive the same starting signal) are 

understood, This implies that all preceding states (prerequisite 

activities) have the same set of output transducers ( /'s in their 

columns) and all succeeding states (postrequisite activities) have the 

same set of input transducers ( /'s in their rows). When this fails, 

the transducer will have to be shown explicitly, thus, the birth of the 

ghost activity: "dummy." The network on the bottom of Figure 4. 9 

is our regular flowgraph showing explicitly both the states (activities 

in the circles) and the transducers (arrows). 

Dummy examples. In order to find those dummy connections, 

it is only necessary to follow a simple three -step procedure: (the 

example corresponds to Figure 4. 9) 

1. Find all /'s in each row (or column); say a42 and a43. 

A G 

P MEE. 
00`njn`j_,, INn 

H 

42 
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2. Compare all /'s in the columns (rows) corresponding to 

the /'s found in 1; say a42 and a92 in column .2 and a43 in column 3. 

3. Those /'s that are 

contained in the other column 

contained in one column (row) but not 

(row), say a92, corresponds a unique 

transducer, thus, the common transducer, a42, shall now be explic- 

itly shown as a dummy: 1%1. 

Obviously, the method can be used on all postrequisites (as 

shown above) or on all prerequisites (as shown within parentheses) 

and will yield the same dummies. Thus, the method is invariant 

whether systems tableau (Figure 4. 9) or CPS tableau (Riggs and 

Inoue, 1966; Inoue, 1964) is used. 

Several more examples are shown in Figure 4. 10 for those 

interested. 

A B 
C 
D / / 

A B A B C D/ 1]i 

D/ E 10 

F / 

A D ^-----+r- 
B Cw 

A D 

E 
C , 

A C 

\> p r 
B / E 

C B D A C 

D y; A ' ^B DEÌ 

Figure 4. 10. Examples of CPS dummies. 

Tableau 
(Partial illustra- 

tion) 

Systems Tableau 
Interpretation 

CPS Tableau 
Interpretation 

A B 

Iß D / 
E / ' 

A 

.. _ E 
B 

F C 

C 

B D 

C ID / C 

1 

F 

-- ;\ 
/ J 
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Mathematical Manipulations 

Repeated Transformation 

One -step transformation. A Tableau is basically a represent- 

ation of all the one -step transformations that exist within a set of ele- 

ments. Thus, we have the single step connection: state- transducer- 

state which indicates the single relation aij from state j to i. We can 

symbolically express the matrix of the Tableau as A. 

Two -step transformation. Because of the eigen -line identifi- 

cation of states, it is visually possible to identify how two states are 

related through two transducers, by forming all possible two -step 

staircase patterns: state -transducer -state- transducer- state, or: 

aikakj 

k- 1 

We notice at once that this is equivalent of multiplying the matrix A 

by itself, or A2. 

Multiple -step transformation. This process may be repeated 

for any number of steps, The number of transducers involved in the 

staircase pattern determines the corresponding power of the multi- 

plication of the matrix A. Examples are shown below in Figure 4. 11 

(see also page 87), 

a.2 
. _ 



117 

A B C D 
A 
B 
C 
D 

One -steps: A -B, A -C, C -D, B -C, D -A. 
Two- steps: A -B -D, A -C -D, D -A -B, D -A -C, 

B -D -A, etc. 
Three -steps: A- B -D -A, A- C -D-A, B-D-A-C, 

etc. 

Figure 4. 11. Chained transducers. 

Irreducibility 

Definition 4. 1. An independent subset. The subset S of ele- 

ments of the set composing the Tableau T, is said to be independent, 

if and only if the entry aij in T is zero for all jeS and i not in S( OS). 

This means that the subset S may act as a source but not as a 

sink for any other element in the system. In the case of the econ- 

omic trade example, we may say that these countries in S imports 

from each other but not from outside. Just as a sink element will 

have no entry in its column, an independent subset may be recognized 

as a partitioning of the Tableau in the form shown in Figure 4. 12, 

A4 is an independent subset (source). 

Al is a sink subset. 

(A2 may be called a transducer subset. 

Figure 4. 12. Partitioning of a tableau. 

Definition 4, 2. Irreducible Tableau. A tableau T is said to 

be irreducible, if there is no empty subset of T except T itself. 

A2 

o 

\N 
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Definition 4. 3, Irreducible group. A group G contained in 

tableau T is said to be irreducible if and only if it does not contain an 

independent subset, except the group itself. 

This concept of reducibility becomes very important when we 

deal with the eigen value problems. We would like to show its rela- 

tionship to Neumann inverse, and in passing, we shall also show a 

closely related concept of "clique" used in sociology. 

Neumann inverse. By using the numerical value of 1 instead 

of /, we can numerically evaluate the number of paths that are pres- 

ent between any two states with m number of steps or transducers. 

For example, alb) will be the number of two -step chains available 

between j and i, and all') will be the number of m -step chains avail- 

able between j and i. We call such matrix A, a matrix of relation, 

and Am, the mth product of A. 

The matrix which is the sum of all A(m) where m 

is called Neumann Inverse (Inoue, 1964). In particular, the 

Neumann Inverse Q for a matrix A is given by: 

Q _ I +A +A2 +A3 +A4 +.., An +.., = (I -1 

oc± 

hence the name Neumann "Inverse" (Inoue, 1964, p. 53). 

Definition 4. 4. A clique, A clique is any maximal collection 

of three or more elements having the property that any two elements 

in the group is related by a two -way transformation. 

Theorem 4. 1. Clique detection. The ith element of a 

= 1, . 
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symmetric Tableau is a clique if and only if the three -step trans- 

formation of i to i is positive (there is an entry in the eigen -cell i). 

Proof of Theorem 4. 1. If a {3) is positive, there must be at 

least one path 421. aJk aki. Thus, elements i, J and k must form a 

clique. By the same token, if ail) is zero, there can be no group of 

more than two communicating with each other, hence no clique. 

Theorem 4.2. Irreducibility. A Tableau T is irreducible if 

and only if the Tableau corresponding to Neumann Inverse will have 

no empty cell. 

Proof of Theorem 4. 2. Any entry in a Neumann Tableau will 

indicate either a direct or an indirect relationship between two ele- 

ments. Having all cells filled means that there is a two -way rela- 

tionship between all elements, or the entire Tableau is a clique. 

The only possible independent subset is the Tableau itself. On the 

other hand, if a Neumann Tableau would have an empty cell, there 

must be at least one transducer that is missing or at least one ele- 

ment that does not depend on one other state. By a suitable rear- 

rangement of the tableau, the empty cell may be brought to the left 

bottom of the Tableau to present a structure similar to Figure 4. 12. 

Particular Forms of Interest 

Asides from cliques and reducible forms, a structure tableau 

(with suitable rearrangement of rows and columns by reordering the 
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elements in the set) may exhibit particular characteristics. 

FORMS 

O 

O 

A do B are isolated 
and reducible. 

,EXAMPLES 

b 

O 

A is a source (transient) 
C (and possibly B) is a 
sink. 

a 

b 

d is isolated from abc a is a transient state. 

EMI 

The system is periodic 
under repeated mappings. 

a 
b 

c 

d 

Oscillations: 
a-c-a-c-a... 
b-d-b-d-b... 

Figure 4. 13. Particular forms of a tableau. 

Some of those are shown above in Figure 4. 13. 

c 

d d 

CE5.1 

NOME 
MOON ,,ENO 



V. MODEL SYNTHESIS 

It is ironical in science that in order to understand 
we must throw away information. We cannot, at 
least at this level of our intellectual development, 
grapple with a high order of complexity. Consequent- 
ly, we must simplify (Bellman and Kalaba, 1965, p. 5). 

Orthogonalization 

Quantitative Models 
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The use of Tableau method is obviously limited unless we 

are able to evaluate numerical quantities and arrive at quantitative 

as well as qualitative models of actual systems. Acquiring data and 

rendering them suitable to available analytic methods areno doubts 

the two most difficult steps in the Systems Study. Having a structural 

model such as those discussed in Chapter IV may be helpful but is a 

far cry from having synthesized a model for further quantitative 

studies. 

In this chapter, we would first like to discuss orthogonaliza- 

tion and its practical significance away from the usual mathematical, 

physical, or engineering interpretations. 

Next, we would like to discuss some of the assumptions that 

cc;±l::he made in finding discrete parameters to use for models and to 

illustrate some queueing theory applications of Tableau Analysis. 
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Finally, we would like to present a simple model of a communica- 

tion model synthesized using an elementary Hamming's code, and 

briefly discuss the problem of pattern recognition using a State 

Tableau. 

Tableau as an Orthognal System Representation 

Definition 5. 1. An empty Systems Tableau of dimension 

n x n is a representation of a system of n degrees of freedom, each 

eigen cell representing an independent state in which the system may 

find itself. An empty Systems Tableau is defined as a square grid 

of n columns and n rows with no entry in any cell excepting the eigen 

line. 

An empty Systems Tableau of dimension 4 x 4 is shown in 

Figure 5. 1 together with its flowgraph representation. The four 

states were named x1, x2, x3, and x4. 

x1 

x2 

x3 

x4 

x1 
x2 

X4 

O 
x2 

0x3 
® x4 

Figure 5. 1. A system with four- degree of freedom. 

x3 

O x1 
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Definition 5. 2. An orthonormal tableau of dimension n x n 

is defined as a systems tableau of n x n with each eigen cell cor- 

responding to an orthonormal state. 

Theorem 5. 1, From a given system of infinitely many states 

x2, x3, .. , and r of which are linearly dependent for arbitrary 

r, an orthonormal tableau with states yl, y2, ... yr may be ob- 

tained by taking y. as a suitable linear combination of xl, x.. 

Proof of Theorem 5. 1. This is a restatement of Schmidt's 

orthogonalization process. Hadley (1961, p. 47) has an example of 

vector orthogonalization. Courant and Hilbert (1953, p. 50) have a 

discussion of Orthogonalization of Functions. In essence,the proce- 

dure is as follows. 

First, choose xl , any of the given state. Normalize it by 

finding the "length" or the absolute value of the state based on some 

arbitrary measure (an eigenvalue, for example) and dividing x1 by 

it: y1 = xi /IxiI. y2 is then found by making x2 independent of y1: 

y2 [x2 - (ylx2)yl] / lx2 - (ylx2)ylf where (y1x2) is an inner pro- 

duct of the two states. (We may consider this as a dot product of the 

two state vectors, or the projection of a state into the other. 

particular, we define (xlxl) as the length of the state vector xl. ) 

This process is continued by adding a new state each time and de- 

fining an orthonormal state. When we have covered r of them, the 

rest will be linear combinations of the first r orthonormal basis. 

xl, 

... 

= 

In 
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Example 5. 1. Let us illustrate this concept with a very 

simple example, Let us suppose that a newspaper company has three 

shifts of ten working hours each on two newspaper editions (e. g. 

morning and evening). A worker can be in any one of the shifts 1, 2, 

or 3. Shift 1 works exclusively on edition A of the morning while 2 

and 3 will work part -time on edition A and part -time on the evening 

edition B. 

A possible tableau may look like Figure 5. 2, 

Shifts 

1 2 3 
/ indicates the possible relationships 
between the states. For example, a12 
has a / showing that a man in shift 1 

may work on edition A with a man in 
shift 2. 

Figure 5. 2. Non -orthogonal example. 

Now let us assume that we wish to find a set of orthonormal 

bases to form an orthonormal tableau. We select shift 1 to find the 

first basis. Since shift 1 works for ten hours, in this simple ex- 

ample, we may take y1 ; 10x1 /110 I = xl . If the second shift works 

two hours on A and eight hours on B, then, 

y2 = [ 10x2 - (y 1x2 )y 1 ] /110x2 - (y 1x2 )y 
11 

But (ylx2) is essentially the time of x2 spent on y1 (edition A) or two 

hours. Thus, 

y2 = (10x2 - 2y1)/8 

In our particular case, y1 happens to represent the state of working 

S 
h 1 

f 2 
t 

8 3 

,MS 
rdie& r. 
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for edition A, and y2 that of working for B. 

y1 =A 

y2 = b since 10x2 - 2A = 8 hours spent on B, and 8/8 = 1. 

The third shift x3 can now be represented in terms of the two ortho- 

gonal bases y1 and y2, or A and B. Assuming that a worker in shift 3 

devotes eight hours to A and two hours to B, the obvious result is ob- 

tained: 

x3= 10= 8A + 2B 

Thus from three states 1, 2, and 3, we have obtained the two ortho- 

normal states A and B. If all three states were independent from the 

start, we would have obtained three orthonormal states. The inner 

products for the orthonormal states yield: (AA) = 1, (AB) = 0, 

(BA) = 0, (BB) = 1. 

The example was made overly simple to illustrate only the 

concept. Readers can easily make the example more elaborate and 

realistic. For instance, we may say that the second shift spends 

85 percent of the first two hours on edition A, [or even better, at- 

tributes a statistical correlation yielding some sophisticated (ylx 

etc.]. 

The orthonormal tableau is shown in Figure 5. 3 using the 

states A and B instead of shifts 1, 2, and 3. 
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A 
B 

A B 

Figure 5. 3. Orthonormalized systems. 

Definition 5. 3. A transposed tableau is a tableau in which 

each cell aid has been replaced by the cell a.3.. In an ordinary tableau 

the input or exogenous flows are horizontal while the output or endo- 

genous flows are vertical. In a transposed tableau the corre- 

sponding flows would be shifted 90°. 

Note. In many instances such as CPS (see Chapters IV and 

VIII), it may become more profitable to use a transposed tableau 

rather than the primary tableau. The operations described thus far 

are applicable to either provided that the terms "column" and "row" 

are interpreted as "primary input (exogenous) direction" and "trans- 

verse or transposed output (endogenous) direction. " 

Definition 5. 4. A state that is an independent subset (Def. 

4. 1) is called a source, while a state corresponding to an independent 

subset in its transposed tableau is called a sink. 

Probabilistic Interpretation 

Sample space. The tableau representation can be interpreted 

in a probabilistic sense without ambiguity. A tableau is essentially 

a sample space description, where: 

M 
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The sample description space of a random phenomenon 
usually denoted by the letter S, is the space of descrip- 
tions of all possible outcomes of the phenomenon 
(Parzan, 1960). 

The definition may be extended to include impossible outcomes by 

assigning the probability value of zero. Thus, a simple example of 

a toss of a die may be represented by Figure 5.4. An even can 

therefore be considered as a "state." 

Events. Some times a subset of the sample space S is called 

an event. The Tableau's outcomes may be divided into events such 

as: all even numbers A(2, 4, 6); all primes B(2, 3, 5)10 etc. An event 

may contain other events or be contained in other events. For ex- 

ample, a single outcome "2" (say event C) may be a subset of both 

the events B and A, as well as of S. An example of this will be in 

our Figure 5.18 where an event "Subject" included either a noun or a 

pronoun, etc. 

10A mathematician does not consider 1 to be a prime number. 
Otherwise all numbers will be divisible by 1, a prime number, and 
no other number would fit the definition of being a prime number (not 
being divisible by any other integer). 

ra 

Figure 5..4. A toss of a die tableau.. 

EJ EJ 
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Disjoint Events 

Any two events, E and F, that cannot occur simultane- 
ously, so that their intersection EF is the impossible 
event, are said to be mutually exclusive (or disjoint) 
(Parzan, 1960). 

A very good example of this may be seen from our single-toss- 

of-a-die description. We have defined each particular outcome to be 

the state of the die showing one of its six faces in a horizontal plane, 

All other faces are perpendicular to the particular face, except of 

course for the face hidden under. In a sense, this presents a pic- 

torial representation of our "Schmidt's Orthogonalization" we have 

illustrated in Example 5. 1. The transient event, "standing on its 

edge or on its corner," is eliminated by giving a little "perturbation" 

until the die will come to rest in one of the defined outcomes. Al- 

ternately, we could have accepted the transient state and decomposed 

it in terms of the orthogonal basis. For example, standing on an edge 

could have been broken. down into two components corresponding to the 

two adjacent faces, say 2 and 3. Figure 5. 5 may clarify this concept. 

Possible outcomes 
"2" or "3" outcome "2" 

perturbation 

Transient Equilibrium state 
Figure 5. 5. A simple example of orthogonal relationships. 
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In so far as probability theory is the study of mathe- 
matical models of random phenomena, it cannot give 
rules for the construction of sample description spaces. 
Rather the sample description space of a random pheno- 
menon is one of the undefined concepts with which the 
mathematical theory begins, The considerations by which 
one chooses the correct sample description space to 
describe a random phenomenon are a part of the art of 
applying the mathematical theory of probability to the 
study of the real world (Parzan, 1960, p. 11). 

If we remember that the model we like to build of the single 

toss of a die is a probability model rather than a dynamic model, it 

becomes clear that the rules to be used in orthogonalizing the tran- 

sient state must not be a geometric consideration involving the co- 

sines of the angles of the planes of the die and the table on which the 

die is found, but rather a probabilistic consideration based on their 

fundamental axioms. In other words, the transient state of in- 

equilibrium should not be decomposed into (2) -1/2 state 2 + (2)-12 

state 3, but instead into Prob (state 2) and prob (state 3). If the die 

has an equal chance of moving into state "a" as well as the state "3" 

then the probability of transition should be one -half in either case. 

A Tableau representing a system description in terms of 

probabilities of transitions will be called a Probability Tableau, 

Probability Tableau. A probability Tableau is defined as a 

Tableau that meets the three axioms of the probability theory: 

Given a random situation, which is described by a 
sample description space S, probability is a function 
P(.) that to every event E assigns a nonnegative real 
number denoted by P(E) and called the probability of 
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the event E. The probability function must satisfy three 
axioms: 

Axiom 1. P(E) > 0 for every event E. 
Axiom Z. P(S) 1 for the certain event S. 
Axiom 3. P(EUF) = P(E) + P(F), if EF = 0, or in words, 

the probability of the union of two mutually exclusive 
events is the sum of their probabilities (Parzan, 1960). 

The first axiom may be interpreted as the fan-in rule. All 

preceding states should be related to their next states by a non - 

negative transmittance. In other words, no cell may contain a nega- 

tive number. 

The second axiom is the fan -out rule: each column must add 

up to 1 since the tableau is a description of all possible states in 

which the system may find itself. 

The third axiom is the transfer condition that would have been 

satisfied if the tableau were orthogonalized beforehand. 

A simple example of a Markov Process depicting the transfer 

of customers between three firms A, B, and C is shown below in 

Figure 5. 6. (Note that a Tableau is a transpose of the usual Markov 

or Stochastic matrix. ) 

LIM 
MGM vr 

6. A probability tableau example, 
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Queueing Modeis 

Parametric Representations 

Big O, little o notation. Another very legitimate method 

would be to use either Moment Generating Function, or parameters 

of the distribution that characterize the random variable. In such 

cases, it may be necessary to start with a discrete time series and 

work toward a continuous case to obtain the expression needed to 

characterize the state. 

This approach (which could be used in deriving probability 

distributions, for example), was formalized in the so- called "Big O, 

little o" notations by Professor Ronald W. Wolff of the Department 

of Industrial Engineering at the University of California at Berkeley 

(Wolff, 1966). 

According to his notations: 

o(t) denotes any function of time t such that: 

lim o(t) 
= O to t 

0(t) denotes any function of time t such that: 

lim 0(t) - finite. 

and, 

t o 

Then, using these notations, we can develop a peculiar short- 

hand algebra: 

--t 
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o(t) t o(t) = o(t) 

o(t) t 0(t) = 0(t) 

o(t)0(t) = o(t) 

0(t) t 0(t) = 0(t) 

ko(t) = o(t) for a finite k, a scalar. 

o[ 0(t)] = o(t) = 0[ o(t)] 

0[ 0(t) ] = 0(t) 

Even though these results have been used often in the past, and are 

intuitively obvious, no such formalization has been attempted pre- 

viously (to the best of the author's knowledge). 

Derivation of a Poisson distribution. 11 
As an example to 

show how this notation may be used, and also to remind us of the 

origin of Poisson distribution, let us follow its derivation from the 

binomial (Bernoulli) distribution. 

XX 30C X 

to= o 

mT=t1 -to=t1 

IT t 
3C 

Figure 5.7.. Random arrivals. 

3C3C. X X 30C X 

t2 

x: arrivals 
a: arrival rate 

t = co 

11The Poisson probability law was first published in 1837 by 
the French mathematician S. D. Poisson in his book "Recherches sur 
la probabilité des jugements en matière criminelle et en matière 
civile, " (Research on the probability of judgements on criminal and 
civil matters). Thus, the early applications were to such phenomena 
as the suicides of women and children and deaths of Prussian soldiers 
from kicks of horses in Prussian Army (Parzan, 1960, p. 225). 

f 



133 

We take a small segment of time, T, such that mT = t1 - to = t1, 

and assume that the probability for the arrival of one customer in 

that segment T is given by: 

T + o(T) = Probability of arrival of one customer. 

Then, 1 - [ T + o(T)] = 1 - aT + o(T) (from the fifth relation by 

setting k = - ), is the probability that more or less than one customer 

will show up. Since the probability for more than or equal to two 

customers showing up is also o(T), we have: 

Prob(no customer) = Prob(0 or more than 2) 

- Prob(more than 2) 

= - aT + o(T) - o(T) = 1 - aT + o(T) 

from the first relation. 

Thus, applying a binomial distribution to the probability of 

having r number of customers in interval mT, we obtain: 

Prob(r in mT) _ (m) [prob(no cust)] rn r[prob( 1 oust)] 

Prob(r in mT) = lim(m)[1 - aT + o(T)]m-r[aT = o(T)] r 

m - 00 

= lim - aT)m-r(aT)r by neglecting o(T)'s 

t 
And by introducing 1 

= T, we obtain: 

- 1 lim m! 1_ atl m-rar tl 
T 

- r !m--.(rn-r) ! 

( 
m) r m r 

= 

a 
lr lim m i 

lim (1 
r! r m m-.00 m (m-r) m-.00 

r 

i m 
(1 r ! (m-r) ! 

T-.o 
M 00 

atl)m-r 



Now, we note that: 
m! m(m-1)(m-2) (m-r+1)(m-r)(m-r-1) 1 

mr(m-r)! m m m . . . . m (m-r)(m-r-1) 1 

= m (1 - 71)(1 m )(1 - ) (1 - 
r+1 

) 

= 1[ 1- o(1 /m)][ 1- o(1 /m)] [ 1- o(1 /m)] 

and therefore for (1 /m) -' O or m -'oo, we obtain: 

lim( m! 
) 

mr(m -r) ! 

Also: 

lim (1 -at1)m-r'e-atl 

Hence, 
e-atl(atl)r 

Prob(r arrival in t1) _ r! 

Models 
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which is the Poisson distribution. 

Birth and death process. A Tableau is well suited for 

modelling a queueing process, and especially so when the interrela- 

tionships are complex. In order to illustrate how a Tableau can be 

used, we shall borrow an example presented by Wolff. 

Example Problem 5. 2. 

Consider a queue with two exponential stations in tandem, 
each with rate u, and Poisson arrivals at rate v, 
operating with the following rules: 

1. No queue is allowed in front of either station. 
2. Both stations may operate simultaneously ex- 

cept that if an item is station 1 is completed 
while station 2, is busy, it must wait in station 1, 
blocking station 1 from working on a new item 

ra 

m -oo 

(at 
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until station 2, if free. Arrivals to station 1, 
while it is busy or blocked, are lost (Wolff, 
1966). 

In this problem,we are mainly interested in the proportion of arrivals 

lost and the mean number of busy (unblocked) stations. 

Our first attempt in analyzing such a problem would probably 

result in some analysis in phase space. A diagram such as the one 

shown in Figure 5. 8 may be helpful in understanding the problem, 

but utterly hopeless in providing any solution. A description of 

the problem using that diagram will be almost as wordy as the prob- 

lem statement itself. 

No queue 

v if 
no. 1 free 

Station Station 
no. 1 

a 
u if v 
no. 2 free 

no. 2 

Figure 5. 8. Phase space description of the sample queueing 
problem. 

The main difficulty occurs from the fact that the phase space 

does not allow us to identify disjoint events since the same physical 

objects may be in different states in different time. On the other 

hand, we notice that a description of the system in terms of possible 

states has the effect of orthogonalizing the systems description. The 

system can be in one state only at any particular instant of time, and 

all states can be expressed in orthogonal terms by a suitable treat- 

ment of transient states either through some perturbation or by giving 

u 
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recognition of such transition states as legitimate states in their own 

rights. 

Using a shorthand notation (a, b) we can identify the five pos- 

sible states of the system: (0, 0) no station is occupied; (1, 0), only 

the first station busy; (0, 1), only the second busy; (1, 1) both busy; 

and (B, 1) when the first one is blocked by the work in the second. 

Figure 5. 9 shows its Tableau. 

(00) 

(10) 

(01) 

(11) 

(B1) 

00 10 01 11 B1 

Figure 5. 9 . a. State tableau for queueing example. 
outputs 

(column) 

inputs (row 

vp00 + upll u up10 

Figure 5. .9 . b. An example of a birth and death equation. 

After the Tableau has been built, the analysis becomes purely 

mechanical: we merely need to balance input and output at each 

eigen -cell (state). Thus, hyequating columns (input) to rows (output), 

we obtain the birth and death balance equations as follows: 

- 
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State 
(phase) 

Rows 
(Input) 

Columns 
(Output) 

00 up01 = vp00 or p01 = ú p00 = QP 
2 

10 up11 
+ vp00 up10 or p10 

= 
(Q-2 +Q)P 

01 upBl + up10 = (v+u)p01 (redundant) 
2 

11 vp01 = 2up11 
or 

Q P 
pll 

= 

Q2 B1 up11 - upBl or 
pB1 ^ 2 

P 

where pii = Probability (state is a = i, b = j) 

P = P00 = Prob(vacant system) 

Q = 
v 

. 
u 

The total probability for the system is: 

T p00 +p01 +p10+pl1 +p B1 = (ZQ2+ +1)P 

The probability that the system cannot accept a new input (i. e. station 

a blocked or occupied) is: 

p10 +,p11 + pgl (2Q2 + Q)P 

3Q2 And the proportion of arrivals lost is: + 2Q 

3Q2 +4Q +2 

The mean number of busy station is: 

B(Q) P01 + p10 + pB1 + 2p11 
T 

4Q2 + 4Q 

3Q2+4Q+ 2 

and the average number of customers in the system will be: 

L=B(Q)+pBl 5Q2 + 4Q 

3Q2+4Q+ 2 

= 

- 

T 
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Example Problem 5. 3, Erlang Service. Before leaving this 

topic of Queueing models, let us illustrate one more example of 

Tableau using a simple Erlang model. We can conceptually divide 

the system into five parts, each corresponding to 20 percent of the 

work. Each customer must go through k = 5 stages of services at 

the rate of ku. The phase -space model and the state -space Tableau 

are shown in Figure 5.10 below (adapted from Wolff, 1966). 

Arrival 5 1 4 13 1 
21 1 

Erlang System 

i 0 1 2 3 4 5 6 7 8 9 10 
0 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

ku 
ku 

INIIMUNININIESEMIN 

mum manimmimo 
Figure 5.10., Erlang model. 

Departure 

State (i) = 

State{ j +k max(n -1, 0)] 
where: 

i = state identification 
j = phase of customer 

in service 
k = number of stages =5. 

n = number of customers 
in system. 

This is also an example of how a discrete approach can be 

used to simulate a more continuous process. By increasing the num- 

ber of k, the frequency distribution can be made even more accurate. 

, - - - .. 

ku 
ku 

ku 
y ku 

.- 
v ku 

V ku 
v ku, 

ON- 
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Communication Systems 

Coding, Channel, and Decoding 

In Chapter I (Figure 1. 5) we have briefly touched upon the 

subject of a communication system. We would now wish to examine 

a simple example that will illustrate the applicability of Tableau in 

representing and constructing such a system. 

Example Problem 5. 4. Let us suppose that we are interested 

in sending a simple binary message over a noisy channel. The mes- 

sage "yes "(1) or "no" (0) will have to be decoded at the receiving end. 

Definition 5. 5. A binary operation AND will be symbolized 

by a dot () and its ope ration defined by the truth table below: 

A B AB 
0 0 0 A 
0 1 0 B 
1 0 0 AB 
1 1 1 

Figure 5. 11, AND operation. 

A B A B ` 
Definition 5. 6. A binary operation OR will be symbolized 

by a plus ( +) and its operation defined by the truth table below: 
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A B A+B A 
0 0 0 A 
0 1 1 B 
1 0 1 A+B 
1 1 1 

Figure 5.12. OR operation. 

B A+B 

Problem. We wish to synthesize an encoder that will trans- 

late the message x into codes al, a2, and a3; transmit it over the 

channel; and decode the received signal b1, b2, and b3 into the mes- 

sage y. 

Figure 5. 13 illustrates the black box representation of this 

problem. 

Source 

Encoding System Tableau 

Encoder 
Transducer 

Transmission System Tableau, 

Channel 
Transducer 

Receiving 
System 

au 

Noise 
Decoder 
Transduce 

Figure 5. 13. Binary code transmission. Receiver 

In Chapter I we have already shown how "bits" are calculated. 

In our problem the message is a simple binary information (say 

Y 

( 

-1: 

- 
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H = 1 bit /second) while the channel has the possibility of trans- 

miffing 000, 001, 010, 011, 100, 101, 110, 111 or eight combinations 

of al, a2, and a3. Thus, C = 3 bits/ second = channel capacity (no noise). 

Self -correcting code. Hamming has developed a single - 

error- correcting code that will decode the received signal in such a 

way that a single error of 0 being received as a 1 (similar to a 

"False- alarm" or the error of type II) or that of receiving a 1 as a 

0 (a "Miss" or the error of type I) can be corrected automatically. 

The mechanism becomes clear for our simple case by referring to 

Figure 5. 14. Of course, no statement of the quality of the detector 

itself (the device that decides whether 0 or 1 has been received) 

has been made. Figure 5. 14 shows that if "1" has been coded as 111 

and "0" as 000 in a1 a2a3, the received signal b1 b2b3 can still yield 

the correct message even under a distortion causing a single miss 

or false -alarm, if an homomorphic transformation would map 110, 

101, 011, and 111 into y = 1 and 001, 010, 100, and 000 into y = O. 

In other words, we are utilizing the fact that the only way to transfer 

from 000 to 111 in Figure 5.14 is by passing through three edges 

(three mistakes) and there is no shorter path. For more advanced 

types of Hamming's codes, readers are referred to Chu (1962, p. 84), 

Ash (1965, Chapter 4), Arbib (1964, p. 77), etc. 

Encoder and decoder design. Based on the Hamming code the 

encoder tableau and the decoder Tableau have been designed as shown 
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V. L.13 

a 
2 

a 
3 

Encoder 
x al a2 a3 

Channel 
b1 b2 

1 

bl 

b2 

b 
3 

blb 
2 

b 2b 

blb 

Y 

A 

Decoder 
b 

2 
b1b 2 

b 
b 

3b1 

Figure 5. 15. Tableau realization of Hammings` code. 

al 

b 

3 
y 

// 
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on Figure 3. 15. The encoder is essentially an AND fan -out distri- 

bution. If the initial signal is strong enough with respect to the in- 

put impedances of the channels, it can be directly connected to them. 

If not, an amplifier may have to be used. 

The decoder is composed of three AND fan -ins and one OR 

fan -in. It is possible to have used a three -input majority voting 

circuit that would give 1 if two or more of the three inputs were 

1 and 0 otherwise. In the terminology of Nilsson (1966, p. 99) this 

would be a "committee machine" used in a learning machine. 

Figure 5. 16 reveals the striking similarity between our 

Tableau and an equivalent electrical switching circuit that could (at 

least theoretically) perform an actual coding and decoding task ac- 

cording to the Hamming's code. 

Integrated Tableau. The three tableaux corresponding to the 

encoder, channel and decoder may be combined into a single tableau 

as shown in Figure 5. 17. However, in order to simplify this tableau 

further, it becomes necessary to understand the nature of our chan- 

nel. So far the only assumption we have made is the existence of 

some correlation between the a's and the b's. We used the usual 

/ mark to indicate this relationship without having to specify it 

further: e.g. al /bl, a2 /b2, etc. ... 
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Encoder Matrix 

la 
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a3 
X `1 

J 

b1 
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_ ñ_ 

b1b2 b2b3 b3 

b 

b2 
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--bb2 
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b2b3 

b3b1 

b1b2+ b2b3+ b2b1 =y 
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1 if on1 

0 if of4 

r_E 

Figure 5. 16. Diode switching circuit designed from the tableau. 
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a, 
Qa 
as 
b, 

b, 
b,b, 

b,b, 
b, 6, 

x a, aa a3 b, ba -, 0000 
©111111111® 1111111111111111 

11110111111101111111111111 
11,11111100110.111r11 
1111111111111000 11111 

111110011101111111 
111111.1111111111111111©C,7© 

b,, 

f 

Figure 5.17. Integrated Tableau. 

State Tableau Concept 

Swift, a forerunner of Shannon? 

Swift... described a machine invented by a professor 
of Laputa (Gulliver's Travels, Part III, Chapter 5). 
This contrivance was a 20 ft. square frame containing 
hundreds of small cubes linked together by wires. On 
each face of every cube was written a Laputan word. 
By turning a crank, the cubes were rotated to produce 
random combinations of faces. Whenever a few words 
happened to come together and make sense, they were 
copied down; then from these broken phrases erudite 
treatises were composed. In this manner, Swift ex- 
plained, 'the most ignorant person at a reasonable 
charge, and with a little bodily labour, may write books 
in philosophy, poetry, politics, law, mathematics, and 
theology, without the least assistance from genius of 
study' (Gardner, 1958, p. Z). 

For the benefit of our deserving readers who might be tired 

v 
b, 

b bs 

111111111111111 
011111M111111111111 /11 111111111 
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of reading the writing by the author, let us see what our tableau can 

do to remedy the situation and introduce new styling. 

Shannon, in his famous treatise on Communication Theory 

(1949) introduced Markov Process as a model for information 

sources. His model regarded it as the zero -order approximation of 

characters (independent symbols and random choice with uniform 

probability: e. g. XFOML RXKHRJFFJUJ,etc. ); first -order approxi- 

mation of characters (independent but probability based on English: 

e.g. OCRO HLI RGWR, etc. , see Table 5. 1); second -order approxi- 

mation of characters (English probabilities extended to interrelation- 

ships between each group of three or less characters: e. g. ON IE 

ANTSOUTINYS ARE... ); to the second -order word approximation 

(English words are picked according to the probabilities of associa- 

tion: THE READ AND IN FRONTAL ATTACK ON AN ENGLISH 

WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE 

ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO 

EVER TOLD THE PROBLEM FOR AN UNEXPECTED). 

In this last example, Shannon has pr o vi de d correct 
transition probabilities by looking up a word at r a n d o m f r o m a 

pa g e of a book, writing it down, scanning the next page for the 

same word, writing down the word next to it, etc... In this 

manner, he has completely dispensed himself of the random number 
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Table 5. 1. Information theory data. 

Composition of English Language 

Letter Frequency 

Space 17.0% 
E 8.9% 
T 7. 1% 

A 5.8% 
O 5.0% 
Others 56.2% 

log2N = 3. 322 log10N 

n 

0.0 

0 1 

0.000 

2 

1.000 
10.0 3.322 3.460 3.585 
20.0 4.322 4.387 4.460 
30.0 4.907 4, 955 5.000 
40.0 5.322 5.358 5.387 
50.0 5.644 5.672 5.701 
60.0 5.907 5.931 5.955 
70.0 6.129 6.150 6.167 
80.0 6.322 6.334 6.358 
90.0 6.488 6.508 6.524 

100. 0 6.644 6.658 6.672 

p 0.00 0.01 0.02 

0.0 6.644 5.644 
0. 1 3. 322 3. p84 3. 059 
0.2 2.322 2.252 2. 184 

O. 3 1. 737 1, 690 1. 643 
0. 4 1. 322 1. 286 1. 252 
0. S 1. 000 0.972 0. 943 
0.6 0.737 0.713 0.690 
0.7 0.515 0.494 0.474 
0.8 0.322 0.304 0.286 
0.9 0.152 0.136 0.120 

0.0 0.066 0.112 
0.1 0.332 0.350 0.367 
0;'2 0.464 0.473 0.481 
0.3 0.521 0.524 0.526 
0.4 0.529 0.528 0.526 
0.5 0. 500 0.495 0. 49 1 

0.6 0.442 0.435 0.428 
0.7 0.360 0.351 0.341 
0.8 0.258 0. 246 0, 235 
0.9 0.137 0.124 0.111 

Morse Code 

+ log (n) = bit(1 /n) 
3 24 5 6 7 8 9 

1.585 2.000 2.322 2.585 2.807 3.000 3.167 
3.700 3.807 3.907 4.000 4.098 4.170 4.248 
4.524 4.585 4.644 4.701 4.755 4.807 4.858 
5. 043 5. 098 
5.426 5.460 
5.728 5.755 
5.974 6.000 
6.190 6.210 
6.375 6.387 
6.539 6.555 
6.687 6.701 

5.129 5.167 5.210 5.248 5. 286 
5.488 5.524 5. 555 5.585 5.615 
5.782 5.807 5.834 5.858 5.883 
6.022 6.043 6.066 6.098 6.109 
6.229 6.248 6.266 6.286 6.304 
6.420 6.426 6.443 6.460 6.476 
6.570 6.585 6.600 6.615 6.628 
6.714 6.728 6.743 6.755 6.768 

- log22p = bit(p) 
0.03 0. G'4 0.05 

S. 059 4, 644 4.322 
2.943 2. 837 2. 737 
2. 120 2. 059 2.000 
1. 599 1. 556 1. 515 
1. 218 1. 184 1. 152 

0.916 0. 889 0. 862 

0.06 0.07 0.08 

4.059 3.837 3.644 
2. 644 2. 557 2, 474 
1.943 1, 889 1.837 
1. 474 1, 434 1. 396 
1, 120 1. 089 1. 059 
0, 837 0. 811 0. 786 

0.667 0.644 0.621 0.599 
0.454 0.434 0.415 0.395 
0.269 0.252 0.234 0.218 
0.105 0.089 0.074 0.059 

-plog2p= p bit( p)=H(p) 

0.152 0.186 0.216 0.244 
0.383 0.397 0.411 0.423 
0.488 0.494 0.500 0.505 
0.528 0.529 0.530 0.531 
0.524 0.521 0.518 0.515 
0.485 0.480 0.474 0.468 
0.420 0.412 0.404 0.396 
0.331 0.321 0.311 0.301 
0.223 0. 211 0, 199 0. 187 

0.097 0.084 0.070 0.057 

0.09 

3.474 
2. 396 
1.786 
1, 358 
1. 029 
0. 761 

0.578 0.556 0.535 
0.377 0.359 0.340 
0.201 0.184 0.168 
0.044 0.029 0.015 

0.269 0.292 0.313 
0.435 0.445 0.455 
0.510 0.514 0.518 
0.531 0.530 0.530 
0.512 0.508 0.504 
0.462 0.456 0.449 
0.387 0.378 0.369 
0. 29 0 0.280 0.269 
0. 175 0. 162 0. 150 

0.043 0.028 0.014 
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table, list of vocabulary, and the tedious research associated with 

the compilation of all the data necessary. 

What we would like to propose instead, is to use the logical 

research already conducted on the English language: namely its 

grammatical composition. 

As a very simple example, let us construct an input/trans- 

formation/output type model for simple sentences. We let the sub- 

ject be the input: either a noun (possibly with its article) or a sub- 

jective pronoun. The transformation would be analogous to the verb, 

auxiliary verb plus main verb, or a combination of those with ad- 

verbs. The output may be a simple noun qualified with as many ad- 

jectives as one wishes. The functional relationships may be sum- 

marized as shown on the Tableau below (Figure 5. 18 ). 

In order to synthesize a sentence, we may pick a representa- 

tive book in the field we wish to discuss and try to find the vocabulary 

that is required by the sequence in the Tableau. The fan -in relation 

is OR, i. e. we only need one word, the rule is to take the first word 

that corresponds to the requirement, and the fan -out is also an OR 

type relation where only one word is needed. 

We shall list three examples from Shannon's own book (1963) 

and three from Parkinson's Law (Parkinson, 1964). In the first 

case, the first word of the page has been chosen, in the second book, 

the first word after the fifth line in each page. Apart from the 
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Subject 

Noun 

Pronoun 

Aux. 
Verb 

Adverb 

Verb 

Adj. 

2nd Noun 

Input Transformation 
Subject Action 

(Article) Aux. 
+ Noun Pronoun Verb Adverb Verb 

Output 
Object 

Adj. 
2nd 
Noun 

m 

i 2 3 4 

Figure 5. 18. Grammatical Tableau. 

5 6 

i 

2 

3 

4 

5 

6 

7 

8 

obvious grammatical discrepencies (singular with plural, etc. ) the 

sentence does reflect the vocabulary of the field from which the book 

has been taken (Table 5. 2). 

7 8 
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Table 5. 2. Tableau- fabricated sentences. 

Shannon's Text 

Example 1. 

Page 7 8 9 - 
Element 1 5 7 8 
Word Teletype is dot . 

Example 2. 

Page 10 11 12 13 14 15 
Element 2 5 6 6 6 7 8 
Word We Suppose typical artificial third -order letter 

Example 3. 

Page 56 57 58 59 60 
Element 2 3 5 6 7 8 
Word This Similarly change White surfaces 

Parkinson's Examples 

Example 4. 

Page 15 16 17 18 19 
Element 1 3 6 6 7 
Word leisure does reflect own recruitment 

Example 5. 

8 

Page 20 21 22 24 - Page 23 is a pictorial 
Element 2 5 6 7 8 illustration. Same with 
Word he begun 2000 dockyard . page 65 below. 

Example 6, 

Page 61 62 63 64 66 67 
Element 1 2 4 5 6 6 
Word formula do constantly ask second candidate's 

Page 68 - 
Element 
Word 

7 

majority 
8 

. 

. 

. 
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Pattern recognition through State Tableau. In the previous 

example, we have introduced the concept of a conditional transfer in 

a Tableau. At each state, there were usually several possibilities 

of transfer, The transfer, however, was only effected when the 

given condition has become fulfilled; e. g. an adverb or a verb has 

been found. The state itself became characterized from the word 

found at each state. 

A traditional approach in describing such a scheme has been 

called a state diagram. It resembled the usual flowgraph except that 

the notation (usually a number) on each branch described the condi- 

tion that had to be fulfilled before the transfer could become effec- 

tive. 

In the preceding sections we have discussed the problem of 

transmitting a simple code (0 or 1) through a channel. Let us now 

apply the concept of state diagram to a more complex problem of 

recognizing a pattern. 

Let us suppose for example that the same transmitter we have 

been discussing was used to send a very special code 101011. It may, 

for example, mean that an H -bomb should be dropped at a certain 

target. The transmitter is being used to transmit other messages 

except in emergencies when this special code is sent. How can we 

make sure that this particular code is deciphered correctly from the 

remaining codes of relative unimportant message content? 
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One possible method would be to save each sequence of six 

digits and store them in a memory (say a chain of shift registers). 

Each sequence of six digits can then be decoded in the same way as 

we have done with the Hamming's code. This is shown in Figure 5. 19 

below. (Note that each eigen -cell is made into a register. ) 

\ / 
x2 

x4 

x4 

B 
Shift Registers o 

n 
x1 x2 x3 x4 x5 x6 b 

Z 

I stands for an inverter 
that yields 0 for 1 and 1 

for 0, or x from x. 
Z stands for a delayor 
of a unit time. 

5 

x6 

Bomb 

Z 

Z 

r . I 

Figure 5. 19. Shift register recognition of 101011 pattern. 

The other method (Takahashi, 1966), which could be much 

more logical and efficient would be the use of our state diagram con- 

cept. The difficulty associated with the first scheme, that of being 

caught unaware of the imminant danger may be lessened in the second 

scheme. In the state tableau approach, the approach of the danger 

may be detected by the degree of resemblance of the received signal 

, 
z 4.10 , 

Z a 

omb 
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to the critical signal. For example, we may have a buzzer sound off 

as soon as 10101 has been received to prepare everyone for the pos- 

sible 101011 signal. 

x(0) (1) ( 2) x(3) x(4) x(5) x(6) 

Amore 

Flom 

r 

Figure 5. 20. State tableau and state diagram for pattern recog- 
nition of 101011. 

ísó 

o 
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In the state tableau we shall adopt the convention of writing 

the condition for transfer (input = 0, S = 0, or simply 0) below the / 

in each cell (Figure 5.20). 

Tableau as a Systems Model 

In this chapter, we have examined various means by which 

a system could be represented by a tableau model. 

When the phases of a system were not distinct, an orthogonal 

set of bases for a new sample state description was thought. The 

new bases were either a different set of phases, a probability repre- 

sentation, or a parametric representation of statistical distributions. 

As examples of "source" models for an information commu- 

nication model, we have presented the Markov Chain for English 

language (the Grammatical Tableau), and the Poisson model for 

random arrivals. 

To illustrate the coding and decoding models, we have con- 

structed a Hamming's Code communication model. For the particu- 

lar case of "Decoder with a memory, " we have examined two 

methods by which the "pattern" of a received signal may be decoded. 

The concept of channel as a time - consuming and a contin- 

uously time -dependent model was introduced by queueing models. 

Using an Erlang model, we have also shown how one process may be 

interpreted in terms of stages. 
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The limitation of tableau method is precisely that imposed by 

our ability to formulate an amendable model. Some of the techniques 

have been illustrated in this chapter. Others are available and we 

hope more are forthcoming in the future. 

The considerations involved in selecting possible appli- 
cations are these. First, can the system be adequately 
described by a number of states small enough to make 
the solution of the corresponding simultaneous equations 
computationally feasible? Second, are the data necessary 
to describe the alternatives of the system available? 
If the answers to these questions are affirmative, then a 
possible application has been discovered. There is 
every reason to believe that a possible application when 
combined with diligent work will yield a successful 
application (Howard, 1960, p. 124). 

The remaining of this treatise will treat the various 

methods presently available for solving systems problems. The 

next chapter will deal with the subject of alternatives in decision 

making. 



156 

VI. DECISION TABLEAU 

Management is the process of converting information 
into action. The conversion process we call decision 
making. Decision making is in turn controlled by 
various explicit and implicit policies of behavior 
(Forrester, 1962). 

Decision- making in a Complex System 

When the system under study is complex, a decision can sel- 

dom be made at one level. Rather, it usually involves several 

smaller decisions leading up to the final decision that determines 

the overall outcome. The levels may be stages in time, such as in 

sequential decision -making, a hierarchy in an organization, or a 

combination of both. By the term "sequential, " we usually under- 

stand that the decision itself is made in sequence rather than the 

actions resulting from it. For example, a strategic decision of 

bombing North Vietnam, for example, could be made in a sequential 

manner, even though the bombing itself may occur only once. If a 

policy is changed because of the outcome of an experiment, we shall 

regard this as a reevaluation of the model used, rather than the 

change in analytic procedure. 

In this chapter, we would like to start with an example in 

which we learn to maximize the information obtainable from a series 

of experiments; then we shall introduce the concept of an algorithm as 
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a way to establish a "policy," and finally we would like to formulate 

our decision -making process as a dynamic programming problem 

that can be generalized for other applications. 

Maximizing Information 

Discrete Source, Fixed Number of Possible Outcomes 

Theorem 6. 1. Maximum information. The information 

generated by a discrete source with a fixed number n of outcomes is 

maximized when the n outcomes are made equally likely. 

Problem statement. The amount of information that can be 

obtained from such an experiment is expressed by the entropy: 

n n 

H = h. = -pilog2Pi 

i=1 i=1 

where pi must satisfy the condition that: 

i =1 

In order to find the maximum (an extremum) for this entropy H, it 

seems most natural to employ Lagrange's Multiplier Method. 

Lagrange's method of multipliers (Courant and Hilbert, 1953). 

If the variables are not independent but are subject to 
the restrictions gl(x, y, ... ) = 0, g2(x, y, . . . ) = 0, ... 
gh(x, y, ... ) = 0, we obtain necessary conditions for 
an extremum or stationary point by means of Lagrange's 
method of multipliers. This method consists in the 
following procedure: In order to find a point in the 
interior of the domain of the independent variables at 

n 
pi = 1 

, 
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which f(x, y, ... ) has an extremum or is merely 
stationary, we introduce h +l new parameters, the 
'multipliers, ' X 0, Xi, , ñ and construct the 
function F = X of + X lg1 + X 2g2 + ... + Xhgh. We 
now determine the quantities x0, y0, ... and the 
ratios of X X 1' . , X from equations 

aF 
_ 0, 

8F 
_ 0, 

ax y 

aF aF 
a. 

1 

= g1 = 0, ... , ax - gh = 0, 

the number of which is equal to the number of unknowns. 
These equations represent the desired conditions for 
the stationary character of f(x, y, . , . ) or the extremum 
of f under the given restrictions. If X 0 we may 
(and shall) put X = 1 because F is homogeneous in the 
quantities Xi. The Lagrange method is simply a de- 
vice which preserving the symmetry, avoids explicit 
elimination of h of the variables from the function 
f(x, y, ...) by means of the subsidiary restrictions 
(Courant and Hilbert, 1953, pp. 164 -165). 

Proof of Theorem 6. 1. Applying Lagrange's method, we ob- 

F = H + X pi 
i=1 

X -log2pi)pi - X 

i=1 

In passing, we note that this is an eigenvalue problem for the 

canonized matrix corresponding to the Tableau of Information as 

shown in Figure 6. 1. 

. h 

0, h, 

. 

0 

- 1) 

. 

# 
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8F 
OPi 

Or, 

and 

(H-X pi) = (X -.log2pi) alog - pi 
Opi a pi 

= X - log2pi - 1 = 

log2pi = -1 + X for all pi 

F 
= 

pi - 1 = 0 

i=1 
n 

Therefore, pi = 2k -1 and 2X -1) 

i=1 

X = log2(1 ;-) + 1 

1 g2- 1 pi = 2 lon 
= 

n 

Thus, checking boundary conditions such as: 

we conclude that: 

lim(-p log2p) = 

1 pi = 171.- for all pi 

H = log2n 

= 1 

Q. E. D. 

6. 

1,) 

Figure 6. 1. 

tf" 
J 

l(1 

Entropy tableau. 

O(H -X I) 
o 

O Pi 
Eigen -line represents ( -X I). 

_ O - 

X 

pi 

0 
po 

n 

0 
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The resulting extremum can be verified quickly for n = 2 by looking 

at Table 5. 1 or Figure 6. 2 below. 

1. 0 

.8 

.6 

.4 

.2 

entropy maximum 

1111111' 

Ill 11 
II 

I/I 
NM i; 

0 1 1 

4 2 
3 1.0 p 
4 

Figure 6. 2. Entropy of a binary signal with probability of occur- 
rence = p. 

XXR(12 -ball Puzzle) 

Example Problem 6. 1. We are given a balancing scale (with- 

out weights) and 12 identical balls with exactly the same weight ex- 

cept for one which may be lighter or heavier than the others. We 

shall dubb this problem as an "Executive Execution Routine" or an 

XXR, since it was reported to have cost the career of a computer 

manufacturer's vice -president who became upset upon being asked to 

solve this problem (private communication from Dr. J. L. Riggs, 

1966). 

r_ 

r 

H 
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We shall now examine how the defective ball can be detected 

in three weighings, together with the information as to whether it is 

lighter or heavier than the others. 

Feasibility study. The information that can be obtained from 

each weighing of the balance is one of the three following: (1) the 

pan on the left is heavier than the pan on the right, (2) both pans are 

weighing the same, or (3) the pan on the right weighs more. We 

suppose that the balance has been adjusted beforehand and that the 

pans may contain as many balls as we wish. 

The most information we can obtain from one weighing of the 

balance, according to our Theorem 6. 1, is when the three probabil- 

ities corresponding to the above three conditions are equal, or 1/3 

each. According to Table 5. 1, t h i s corresponds to: 

log23 = 1. 585 bits. 

With two weighings, this maximum information will increase to: 

2 x 1. 585 = 3. 167 bits = log23 x 3 = log29, as you may verify from 

our Figure 6. 2. With three total weighings, the maximum is now 

4. 755 bits. 

Having 12 balls of which one is either lighter or heavier than 

the others (standard = S will be used to indicate normal balls) means 

that there are 24 possibilities. The total entropy for this is: 

1og224 = 4. 585 bits from Table 5. 1. 
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Since 4. 585 < 4. 755, the problem seems solvable. 

First tableau. We shall first label the 12 balls as A, B, C, 

... , L. We know that we must equalize the probabilities of the 

three outcomes in order to obtain most information. We shall 

divide the 12 balls into three groups, n, n, and 12 -2n. If we put 

the first n on one side of the scale and the next n on the other pan, 

the probability of tilting to either side will be: 

p< = p< 
n 

12 

On the other hand, the probability of not tilting to either side is the 

probability that the defective ball is not in either pan, or 

12- 2n 
P_ _ 

12 

Equating the three probabilities, we obtain: n 12-2n 
12 12 

or n = 4 

as the solution. We shall tentatively identify the balls on the left 

pan as ABCD and those on the right as EFGH. The tableau in 

Figure 6. 3 shows the three possible states. If the balance tilts to 

its left, we may conclude that e i t h e r A, B, C, or D is heavier 

than the others, oo r E, F, G, or H is lighter than the others. The 

total amount of uncertainty is _n = 8, or 3. 000 bits. If the scale 

balances, then one of the four: I, J, K, or L must be either heavier 

or lighter than the rest. Thus, n = 8 again gives 3. 000 bits. The 

last case is similar to the first with 3. 000 bits. 

= 



A,B,C,D,E,F,G,H,I, I . K L 

1111 START 

(n=24) 4. 585 bits 4.755 
ABCD vs. EFGH 

.-. . . . 

r 
_ wighings 3. 167 bits ' 

rfij 
n=8 , - r rior 

n=8 

h: I, J, K, L 3 bits 
1: I,J,K,L 3.167 tAiA/r4/011 r ' . 

r,",,Ffr#14 
/ / I! rr1,.c._+_+ 
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n=8 
h: E, F, G, H 

3 bits 1: A,B,C,D 
3. 167 

h: EFG, 1: A:CD 

Figure 6.3. First -balance tableau for 12 -ball puzzle. 

I, 

K 

, II. 

a > 

h: A, B, C, D, 3 bits 
1: E, F, G, H 3. 167 bi s 

b = 

c < 

INN IT OUT PU 

1 a b c 

I 



164 

Second tableau. It is now possible to construct a tableau for 

each of the three possible outcomes from the first weighing. How- 

ever, we shall construct one tableau containing all states for demon - 

stration purposes (see Figure 6. 4 and compare this with Figure 6.3 

and Figure 6. 5). 

In essence, we have 3. 167 bits available and the uncertainty 

is only three bits. All we need is to find a combination of three as 

before, that will give no result that contains more than 1. 585 bits of 

uncertainty. 1. 585, as you recall from page 161, is the amount of 

information that our last weighing can give us at most. 

Weighing ABE against CEF, for example in Ia of Figure 6. 4, 

will lead to three possible outcomes with uncertainties of 1. 585, 

1. 000, and 1. 585 bits each. This is an acceptable choice, since the 

largest is equal to 1. 585, the amount of uncertainty that can be re- 

moved at the last weighing. 

Similar reasonings will lead to the tableau in Figure 6. 4. 

Last tableau. Making the last choices is very easy. Again, 

it is the matter of balancing the three possibilities to have as close 

to the uniform probability as possible. The results are shown in 

Figure 6. 5. It is to be noted that we could have built a smaller 

tableau for each case rather than to have to deal with a huge tableau 

as the one shown. However, the interrelationships between each 

stage becomes very clear by using one tableau. For example, the 
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sA 

R 
T 

I a al a2 a3 b bl b2 b3 c cl c2 c3 

START 
7 

I ABCD vs. EFGH 

. - 

a 

ABE vs. CDF 

2 

3 

> 

1. 58 bits 

= 

1. 00 bits A 

< 

1. 58 bits 

b 

= IJ vs. KS 

/ 

1 

2 

3 

> 
1. 58 bits 

= 

1. 00 bits 

< 
1. 58 bits 

c 

< 
ABE vs. CDF 

1 

2 

3 

> 

1. 58 bits 

= 

1. 00 bits 

< 
1. 58 bits 

INPUT 
1 weighing 1.585 bits. 

OUTPUT h:AB h:C 
1:F 1 :GH 1:E 

h:IJ h:L h:K 
1:K 1 :L 1:I 

Figure 6. 4. Second tableau for XXR. 
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Figure 6.5. Third tableau for XXR. 
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state a in Figure 6. 3 became a tableau with 16 cells in Figure 6. 4, 

each of which was again expanded into 9 to 16 cells in Figure 6. 5 

(see Figure 6. 6). 

Though this may not be a very practical example (unless you 

happen to be a vice -president of a computer manufacturer) it does 

point out the typical features of a Discrete Source Fixed Number of 

Possible Outcomes Experiments. 

We shall next tackle another "game" in which the opponent 

is supposed to be using his wit as fully as we are. Then, in the 

next chapter we shall treat the problems where stochastic forces 

(noises) are disturbing our systems. 

Algorithmic Approach 

Algorithm 

Etymology. The simplest and best known algorithms are the 

four arithmetic operations using Arabic numbers. The term 

Figure 6. 6. The expansion of tableaux. 
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"Algorithm" is usually attributed to the Arabic (Uzbek) mathematician, 

Al- KhowarázmT, whose name literally means "native of Khwárazan 

(or Khiva)" and who is said to have given such rules in decimal sys- 

tem as early as the ninth century. 

Definition 6. 2. Algorithm. An algorithm is a list of instruc- 

tions specifying a sequence of operations which will give the answer 

to any problem of a given type (Trakhtenbrot, 1963: original Russian 

edition appeared in 1960). 

Using another simple game (6. 2) of the type we have just dis- 

cussed (6. 1), but using match sticks instead of balls, we shall try to 

see how an algorithm can be found, and how they can be related to 

the concept of "policy. " 

Six -match Problem 

Example Problem 6. 2. Two players are sitting at a table 

upon which six objects (say matches) have been placed. Each is 

allowed to pick either one or two pieces at a time, playing alter- 

nately. The one who is to pick the last piece is the loser. 

Our objective is to find a scheme, or an algorithm, for win- 

ning the game (that is, if possible). 

If this game seems too trivial, it is for the sake of illustrating 

concepts with a minimum of useless complications. However, for 

those interested, we shall show a 24 -match game with three possible 



169 

moves (take 1, 2, or 3 matches each time) and a way to expand it to 

any size game, at the end of this section. 

Properties of this game. Let us now examine some of the 

peculiar features of this game: 

1. Two -person game: this game involves two players each playing 

alternately until one loses. 

2. Dichotomic ending: either the first or the second player wins at 

the end of a game. There is no draw. 

3. Complete knowledge: each player is given complete information 

on all past moves and what he is allowed to do next. 

4. Free choice: each player can select any move (u) from the set 

(U) of moves composed of all allowed plays: u e U. 

5. Terminal game: the game always terminates within a given num- 

ber of moves. This upper limit of the number of moves (levels) is 

called the order of the game. The order of the six -match game is 

obviously six, corresponding to the slowest game in which each 

player will take only one match at a time. 

Theorem 6. 2. Existence of a winning strategy. In any game 

satisfying properties 1 -5 listed above, there is a winning strategy for 

one of the players. 

Proof of Theorem 6. 2 In order to prove this theorem, we 

must use induction to show that an algorithm can be constructed for 

a game of any order. Let us start with a game of order zero. In 

- 
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this case, the game is predetermined: either the first player (A) 

is a winner, or the second player (B) is a winner, and there is 

nothing (no move) they can do about it (strategy for the winner: do 

nothing). In the order is one, one player is allowed to make one 

move. After he has made one move, the game is reduced to that of 

order zero, and a winner is decided. Thus, there is a definite 

strategy when the order is one. Of course, the winner is not neces- 

sarily the one making the move. To go from a game of order n to 

n + 1, we simply note that having a winning strategy is as good as 

winning a game for a player intelligent enough to follow the strategy 

faithfully. If the player fails to win the game after following his 

winning strategy, his strategy cannot be called a winning strategy. 

Therefore, by considering the game at stage n when there exists a 

winning strategy to be equivalent of a game of order zero, where a 

winner exists for certain, a game at n + 1 is reduced to that of order 

1 when one move will lead to order zero. Continuing this process, 

we can expand the game from order n to n + 1 to n + 2, ad infinitum. 

This concept is best shown using a tableau illustration as in 

Figure 6.7. 

Algorithm for the match -game. Figure 6. 8 is a tableau 

corresponding to the six-match game. For each state, marked by the 

player making the move (A or B) and the number of matches on the 

table (6, 5, 4, 3, 2, or 1), there are two alternatives (decision 1 to 
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take 1 match, or decision 2 to take 2 matches) except for the last 

states where there is only one possible move (take 1 and lose the 

game). 

We assume that each player wants to win, and will choose the 

winning strategy whenever one is available. Then working back from 

the last level, corresponding to a game or order 0, we can work 

backward toward the higher levels by marking the winner (A or B) for 

each strategy by placing A or B inside the eigen -cell, Similarly, to 

facilitate the observation, we have marked each transducer with the 

winner in the next stage (state). In addition, the expression ( -1) or 

( -2) indicates the winning strategy at each level (state). 

From the observation of the tableau, we note that at A4, B4, 

Al, and B1, the player making the move has no winning strategy. 

The trick of the game is to force the opponent into one of these states 

and to keep him in those "lose" states until the end of the game. 

Thus, if A is starting at A6, he will take ( -2) alternative of removing 

two matches forcing B into stage B4, Whatever B does, say by 

taking u numbers of matches (u e U {1, 2} ), A can force B back into 

another "lose" state by removing (3 -u) number of matches (B1). 

This is the essence of the algorithm for winning the game. The ex- 

plicit formulation of this algorithm is what we usually call a "policy. " 

Obviosly, the first item in the policy is not to start the game unless 

you are the first player. 
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24 -match game. The analogy can be extended to winning a 

24 -match game with three alternatives (u e U: {1, 2, 3} ), or to any 

number of matches with as large alternative set as one wishes. 

Figure 6. 9 is a tableau for the 24 -match case. Note that the tableau 

has been reduced to show only the states and not alternatives (except 

as transducers). 

If there are m number of matches, and each player is allowed 

to take up to and including IT number of matches at a time, the "lose" 

states will occur anytime when there are ni + 1 number of matches 

left (n = 0, 1, 2, ... < rn u ). For example, this means 1, 4 for the 6 

matches, and 1, 5, 9, 13, 17, 21 for 24 matches. 

The winning strategy, thus its algorithm, is to first take 

(m -ñú -1) matches where ñ is the highest possible n. Then, from the 

next move on, always take u. + 1 - x number of matches, where x is 

the number taken by the opponent at his previous move. 

If you wish to make the game such that the player starting the 

game will lose the game, it is only necessary to make m = nil + 1. 

Generalizations. We can further extend our Theorem 6. 2 

to cover cases where pJoperties 1 and 2 do not hold but where 3, 4, 

and 5 are still binding. In other words, we may consider cases 

where there are more than two players, or where a tie is allowed. 

By placing a suitable limit (say 20 moves) and allowing "tie" as a 

possible outcome, it is theoretically possible to build a tableau that 
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will yield a winning strategy (or at least a tying one) for one of the 

chess players. A similar comment may be made for the game of 

checkers. There are only a finite number of games that can be 

played in either case. 

In checkers, the total number of continuations [ (a 
probable misprint of 'configurations')] is in the 
order of 1040. Dr. A. L. Samuel points out that 
even if three choices could be examined in every one - 
thousandth of a second, it would take 1021 centuries 
for a computer to consider all of these possibilities. 
Shannon estimated that there are in the magnitude 
of about 10120 120 chess games which can be played 
(Desmonde, 1964). 

Once an algorithm is found, we consider that the particular 

set of problems have been solved. For example, the fact that we 

have never added 1. 41421356, 1. 7320504, and 2. 2360679 together 

does not make us hesitate in considering the problem as good as 

being solved, that is if we were mathematicians. Of course, if you 

are an engineer wishing to use this particular number, knowing the 

algorithm may only be the beginning of a long tedious task of finding 

the answer. (In Chapters I and III we have discussed the marvel of 

our number system which allows us to operate on as large or as 

small numbers as we wish. ) 

Aside from the computational hardships, there are more 

fundamental difficulties. Mathematicians have been struggling for 

ages to find an algorithm that will find other algorithms, or at least 

prove the existence thereof. For example, David Hilbert proposed 
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the famous "Hilbert's Tenth Problem" based on his axiomatic 

approach: "Find an algorithm for determining whether any given 

Diophantine equation has an integral solution" (Trakhtenbrot, 1960, 

p. 6). A Diophantine equation is a polynomial of the form: P = 0, 

such as: x + 2x2 + 4x3 + 8x4 = 0, or x2 + y2 + z2 = 0 where integral 

solutions were sought for polynomials with integral coefficients. 

If we consider x as a mapping operation, the first of these 

reminds us of a chained transducer in our tableau. The temptation 

becomes very great to see whether we could possibly formulate a 

tableau that will tell us whether a tableau can solve a particular prob- 

lem. This is where we must remind ourselves of Gödel's Incom- 

pleteness Dilemma (Chapters I and III). If we could have built such 

a tableau, either our tableau method is inconsistent or our result 

unreliable. 

Then, is it possible to arrive at an algorithm with a tableau 

as long as we stay within the scope of a tableau? Again, unfortu- 

nately the answer is no. We have based our method on the theory of 

Group and used the identity element as the basis for our eigen -line. 

In 1955 P. S. Novikov created a great stir in the 
mathematical world by demonstrating the algorithmic 
unsolvability of the identity problem in group theory 

The existence of the admissible substitutions a 
a e then means that for every elementary trans- 
formation 'a, ' there exists an elementary trans- 
formation a such that the application of 'a' followed 
by a is the identity transformation ... Novikov con- 
structed an example of a calculus satisfying the group 

... 
-. 
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axiom, for which no algorithm exists. Therefore, 
a general axiom for all groups is likewise impos- 
sible (Trakhtenbrot, 1960, pp. 89 -90). 

Suddenly, it appears as though our tableau method is not 

nearly as powerful of a tool as we have originally wished. However, 

if the limitation exists, it is one that no other known tool has over- 

come. 

Before proceeding with the question of decision, we present 

another little game; this time it is a riddle from W. Ross Ashby, 

which we shall dubb "Ashby's ghosts." 

Ashby's Ghosts 

Example Problem 6. 3. 

Dear Friend, 

"Graveside" 
Wit's End 
Haunts. 

Some time ago I bought this old house, but 
found it to be haunted by two ghostly noises - -a ribald 
Singing and a sardonic Laughter. As a result it is 
hardly habitable. There is hope, however, for by 
actual testing I have found that their behaviour is 
subject to certain laws, obscure but infallible, and 
that they can be affected by my playing the organ or 
burning incense. 

In each minute, each noise is either sounding 
or silent - -they show no degrees. What each will do 
during the ensuing minute depends, in the following 
exact way, on what has been happening during the 
preceding minute: 

The Singing, in the succeeding minute, will go 
on as it was during the preceding minute (sounding or 
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silent) unless there was organ - playing with no Laughter, 
in which case it will change to the opposite (sounding 
to silent, or vice versa). 

As for the Laughter, if there was incense burning, 
then it will sound or not according as the Singing was 
sounding or not (so that the Laughter copies the Singing 
a minute later). If however there was no incense 
burning, the Laughter will do the opposite of what the 
Singing did. 

At this minute of writing, the Laughter and 
Singing are both sounding. Please tell me what 
manipulations of incense and organ I should make to 
get the house quiet, and to keep it so (Ashby, 1963, 
p. 60). 

Tableau solution. In order to make Ashby's problem more 

intriguing, we shall impose the condition that the solution cannot 

involve the change of two inputs at the same time. After all, it is 

very difficult to light incense while playing an organ so that it be- 

comes lit the moment you stop your organ music. Also, from the 

description of the present state (both sounds on), it is obvious that 

our friend has his incense lit, but no organ, unless he can write a 

letter while playing his organ (which is another theoretical possib- 

ility). 

Figure 6. 10 shows the tableau solution to Ashby's problem. 

We identified four states by the vector (x1, x2) where x1 indicated 

the singing (1 for on, 0 for off), and x2 indicated the laughter (1 for 

on, 0 for off). Similarly, the control vector is also composed of two 

components,ul for the organ (1 playing, 0 silent) and u2 for the 
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incense (1 burning, 0 extinct). In each state X + (x1, x2), we have 

12 
four possible choices for u = (u1, u2):(0, 0), (0, 1), (1, 0), and (1, 1). 

With each choice of input, there is only one outcome Y at time At 

later, where At is a suitable duration of time corresponding to 

Ashby's "minute. " 

The solution, as it is obvious from the tableau, is the se- 

quence of inputs, or a policy, that will: 

min. 1: extinguish the incense u = (0, 0); x = (1, 1); y = (1, 0) 

min. 2: play the organ u = (1, 0); x = (1, 0); y = (0, 0) 

min. 3: stop the organ u = (0, 0); x = (0, 0); y = (0, 1) 

min. 4: do nothing u = (0, 0); x = (0, 1); y = (0, 0) 

min. 5: burn the incense u = (0, 1); x = (0, 0); y = (0, 0_ 

min. 6... on: same as in min. 5. 

Notice that the state (1, 1) was a self -perpetuating state while 

the incense was burning. This is the condition that prevailed when 

the letter was written, and we recognize this particular pattern as 

the periodic oscillatory form of tableau (p. 120). Similarly, we note 

that the self -perpetuating condition is used in state (0, 0) to keep both 

the singing and the laughter from occurring again (min. 5 on). This 

is another case of a periodic subgroup which i s turned into a sink 

by prohibiting the system to leave the state. By contrast, we may 

12Actually only three because of our added restriction (p. 179) 
of changing only one input at a time. 



say that the state (1, 1) was made into a source state (a transient 

state). Figure 6. 11 shows the reduced forms. 
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Automaton 

Automaton Tableau. By this time, it is becoming rather ob- 

vious that whenever we are trying to solve a problem, we are in 

fact turning tableau into a sort of Turing machine. The fact that a 

tableau is essentially a finite automaton can be seen clearly if we 

compare our last example to the Definition 1. 8 on page 

I, the set of input includes (0, 0), (0, 1), (1, 0), and (1, 1) and 

corresponds to the set of control input U from which one control 

vector u e U is chosen. 

0, the set of output includes (0, 0), (0, 1), (1, 0), and (1, 1) 

corresponds to our set of y e X, 

S, the set of internal state is the same set X as that of our 

output. 

(11) SL 

(10) SL 

(01) SL 

(00) SL 

(11) (10) 
SL SL 

(01) (00) 
SL SL . .01 or 

Avd A 
moKm 

74 

Mein s 

Figure 6. 11. Reduced tableau and flowgraph. 
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Therefore, the next -state function, X, and the next output 

function, a , are also identical, the output of one state being its 

condition at the next time interval. 

Turing machine. How close is a tableau to a Turing machine? 

An obvious limitation of a tableau is its dimensionality. In order to 

have a tableau with a memory comparable to a Turing machine with 

an infinite tape, the tableau must, in essence, become a Hilbert 

space (i. e. an orthonormalized space of infinite- dimension, see 

Courant and Hilbert, 1953, p. 55). However, a Turing machine with 

an infinite tape is as abstract,in a sense,as a tableau with Hilbert 

Space representation. Let us take a few moments to examine a 

Turing machine in more detail. There are several reasons why we 

would like to discuss now the concept of a Turing machine. We 

shall give two main reasons. 

First of all, the concept of Turing machine had a great im- 

pact on Wiener's Cybernetics (Wiener, 1961, pp. 13, 23, 125, 126, 

etc.) and on the development of modern computers. Turing machine 

was first described by the English mathematician A. M. Turing in 

his "On computable numbers, with an application to the 

Entscheidungsproblem" in the Proceedings of the London Mathe- 

matical Society (Series 2, vol. 42), (1936 -37, pp. 230 -265). 

Turing, who is perhaps the first among those who have 
studied the logical possibilities of the machine as an 
intellectual experiment, served the British government 
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during the war as a worker in electronics, and is now 
in charge of the program which the National Physical 
Laboratory at Teddington has undertaken for the 
development of computing machines of modern type 
(Wiener, 1961). 

Wiener has visited Teddington to discuss his ideas of Cybernetics 

with Turing in 1947 prior to the publication of his book on Cyber- 

netics in 1948. 

Second reason is the basic hypothesis of the theory of al- 

gorithms fostered by Trakhtenbrot (1963, p. 77): "All algorithms 

can be given in the form of functional matrices and executed by the 

corresponding Turing machines." 

This claim is well substantiated by Trakhtenbrot, and will 

enable us to generalize our stipulation for the use of tableau in al- 

gorithmic problems if we can show sufficiently close similarity be- 

tween the functioning of the two. 

Turing mechanism. Though a Turing machine is a theoretical 

01 0 lÌ illllololol lo 

x Y 

Figure 6.12. A Turing machine. 
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machine which has not been constructed for any practical purpose 

(some computers have programs simulating a Turing machine), it 

may be considered as a most rudimentary digital computer coupled 

to a magnetic tape unit with an infinite length tape. 

1. Tape unit. The tape is divided into cells containing one 

character each (similar to our concept of a byte or a BCD (binary 

coded decimal character). There is a finite number of symbols 

(alphabets) that can be used for these letters. The tape can be 

moved either to the right (R), to the left (L), or kept at the same 

cell (S). If there is a motion, it can be moved by only one cell at a 

time (P). 

The letter stored in the tape cell being scanned can be read 

in as an input (u), and depending on its content and the internal state 

of the machine (x), a new (or the same) character may be returned 

to the tape cell. The old content of the cell is erased and the new 

information is entered (J). 

2. Machine. The machine itself may be considered as a 

register whose new state (y) depends on its old state (x) and the new 

input (u). 

3. Functional matrix. The new state, the new symbol, and 

the new position are determined by the present state and the present 

input in accordance with a functional matrix provided with each 

machine. An example of a very simple matrix is shown in Figure 
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6. 13. We have limited ourselves to the choice of three symbols: 

0, 1, and blank; and three states: xo, xl, and x2 

State Input 
Next 
State 

y 

New 
Symbol 

Tape 
Motion* 

x u J P 
xo 0 xo 0 R 
xo 1 x2 0 R 
xo blank xo blank S 

x1 0 xo 0 R 

xl 1 xl 1 L 

xi blank x1 blank L 

x2 0 x1 1 S 

x2 1 x2 1 R 

x2 blank x2 blank R 

R: Right Cell 
L: Left Cell 
S : Same Cell 

Figure 6.13. An example of a functional matrix for a Turing 
machine. 

Figure 6. 14 shows an example of what this matrix will do to 

a tape containing information as shown in Figure 6. 12. For our 

convenience, we shall illustrate the step -by -step changes by moving 

the Turing machine rather than the tape. We notice that this par- 

ticular machine moves binary its from left to right so that the num- 

ber of l's on the right will be the sum of the number of l's on the 

right and left of the blank at the beginning (1 added to 110 gave 111). 

Tableau vs. Turing machine. The similarity between a 

tableau and a Turing machine is rather evident. Figure 6. 15 shows 

* 



187 

1S010101 1111111010[ 
T 
xl 1 xl L 

J y p 

)010101 11 1110101 

xl l xl L 

?010101 1 1:11 010 111 

xl 1.x1 L 

i 111:1101o1 

xl 

vo1 o1 1 1 r'1100 

xl O R 

mnnrnrannna , 

b x1 L 

o10I I 1 f 1 Ii IoM 
T 
x0( sink) b x0 S 

Figure 6. 14. A sample operation for a Turing machine. 

nnnesn©nosso , 
®. 

onnnonnee T i 
inoo.nononM ir 0 0 0 

MEIODMIEWIDOCILILIt 

x 

xz 1 s 



188 

J=.F(x,u,t) 

Figure 6. 15. A tableau interpretation of a Turing machine. 

the tableau's interpretation of a Turing machine. In a tableau, the 

content of the eigen -cell (which may be listed on the side of the 

tableau, rather than inside the crowded cell) corresponds to the in- 

formation on the tape. Depending on the information received(u)and 

the state(x)of the system, a transducer is chosen that will condi- 

tionally ( /P) determine the new state(y). How we can use the 

tableau to update the information will become clear when we shall 

tackle the Toy -maker's problem in the next chapter. Let us close 

this section with some quotes: 

... any process which can be carried out by a digital 
computer can also be carried out by a Turing machine. 
... we are tempted to make the following hypothesis, 
following Turing in his original 1936 paper: Turing's 
hypothesis: The informal intuitive notion of an ef- 
fective procedure on sequences of symbols is identical 
with our precise concept of one which may be executed 
by a Turing machine (Arbib, 1964). 

Definition 6. 3. Recursive function. A function is called 

T 
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recursive if there is an effective procedure for computing it. 

Besides the Turing functional matrices, several other 
methods were proposed. For example, A. A. Markov 
arrived at the normal algorithm... and Gödel and 
Kleene arrived at the concept of recursive algorithm 
(recursive function). It turned out that all these are 
equivalent (Trakhtenbrot, 1960). 

Decision -making 

Game Matrix 
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Comparison of three examples. In this chapter, we have thus 

far examined three example problems. The first one involving 12 

balls was a problem where the outcomes were completely at the 

mercy of Nature. In the second example of six -match game, we 

have assumed an intelligent opponent who will always choose a 

winning strategy whenever one was available. In the last example 

of Ashby's Ghosts, we (management) had the complete control and 

the Ghosts (Nature) were supposed to follow a deterministic pattern 

without any choice. Obviously, the first and the last are particular 

cases of the second, and the second problem can be turned into 

either extreme by specifying appropriate constraints. As a matter 

of fact, by assuming that our opponent will always choose a winning 

strategy, we have done precisely that. The problem has become 

deterministic since in most cases our opponent would have had only 

one choice (the winning strategy),and where he had a choice, it did 
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not really matter which one he has chosen (the "lose" cases). 

Once the problem has been reduced to a deterministic game, 

it is usually possible to turn our tableau into a Turing machine to 

solve the algorithm. The key question is not how to run a Turing 

machine or use a tableau, which we know already, but how can we 

construct a deterministic rule or a "functional matrix" that will 

lead us to the solution. For this, we would like to go back to our 

six -match problem and examine our strategies more carefully. 

Toy Tableau. The assumption we have made in solving the 

six -match problem can perhaps be best illustrated by considering a 

toy "computer" that will tell any kid what the winning strategy is for 

such a game. Figure 6. 16 shows a reduced (five -match) version of 

this "toy. " It consists of a grid of wire, nine vertical and nine 

i 

Figure 6. 16. Toy Tableau. 
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horizontal, each vertical wire coupled to one horizontal wire at its 

eigen cell. The horizontal lines are marked B5, A4, B3, etc. The 

vertical wires corresponding to Al and B1 are connected to two light 

bulbs, one marked "A wins" (B1), and the other "B wins" (A1). The 

other side of the light bulb is routed through a ground to one side 

(say negative) of a battery. The positive side of the battery may be 

connected to any horizontal wire. Obviously, if Al is touched with 

this probe "B wins" will light up, while if B1 is touched "A wins" will 

light up. At the intersections of vertical and horizontal wires, there 

are female sockets that can be shorted by inserting a male plug. Of 

course, in order to avoid the reverse flow of signal under illegal 

conditions, a more expensive version of this toy may have plugs that 

will connect the horizontal and vertical wires through diodes. 

This toy can now be used in the very same manner our tableau 

was used to find the winning strategy. Instead of placing a / in the 

appropriate cells corresponding to either the strategy of taking one 

match or to the one of taking two matches, the male plug can be in- 

serted. If the light bulb that indicates your winning is lit, the 

strategy is optimal. On the other hand, if the opponent's light 

lights, obviously it is the wrong strategy. If both light bulbs are on, 

the strategy cannot guarantee your winning. 

The deterministic nature of the game i s forced on, by not 

allowing the conditions in which both lights are on. The opponent is 
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supposed to use only one plug per state and this i s to be his winning 

strategy if one exists. , If. this law is obeyed, (when you choose a 

strategy) only one light will light and both lights will never light 

simultaneously. 

Of course, we must assume that a proper procedure has been 

followed in constructing the winning policy. The strategy must be 

chosen one at a time starting at B2, then A2, B3, and up. At each 

stage, the battery probe must be plugged into the appropriate hori- 

zontal wire (B2, A2, B3, etc... ). 

This little toy was originally a part of an analog demonstrator 

that was used to simulate a Critical Path Scheduling Tableau and was 

equipped with a potentiometer bridge that measured voltages cor- 

responding to the Earliest Start, Earliest Finish, Latest Start, and 

Latest Finish Dates for each activity and for the entire project. 

The device has successfully demonstrated the theoretical 

feasibility of such an analog computation but also its practical dif- 

ficulties (nonlinear voltage drop, Zener effects, etc. ). 
13 

Two -person game. The deterministic behavior we have as- 

sumed, is obviously very unrealistic. Even a genius makes a mis- 

take, and the objective for playing a game is not always so clearly 

13Turing had his "machine;" Babbage had his "engine, " and 
Ashby his "homeostat" (Ashby, 1963, p. 83), none of them workable 
at the time of their conception. Perhaps we may take our consola- 
tion from the fact that we can at least guarantee our toy's workability 
when it is reduced to the simplicity of a five -match model. 
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defined either. What do we really mean by "a winning strategy "? 

To limit our discussion to the realm of materialism, let us 

assume that the winner is paid ten dollars from the loser at the end 

of the game. Also let us identify ourselves with player B so that A 

is our opponent. 

As usual, we start our investigation from the last state. 

When we are confronted with only one match which must be picked 

up, we have no choice but to lose the game. We shall say that our 

game is costing us ten dollars, or J = -10. If Al, rather than B1 

occurs, we know that our opponent has no choice but to lose the 

game, and we can confidently say that J = +10. So far, our rea- 

soning is "deterministic. "14 When the situation is B2, however, we 

have two choices, take one and win the game, or take two and lose 

the game. Obviously, the optimum strategy is to take one for J *.= +10, 

and the winning strategy is the optimum strategy u* corresponding 

to ( -1). Figure 6. 17 illustrates our one -sided (player B's) viewpoint. 

At stage B3, the picture is no longer as clear -cut as before. 

For certain, we do have a winning strategy u* = (- 2 ),but the outcome 

of what happens when we choose u =( -L) depends on A's next move. 

If he takes u = ( -1), we lose with J = -10. If he takes u = (-2), on the 

14_ "This corresponds to the case where "A win" bulb lights up 
in our Toy Tableau regardless of the alternative chosen. 
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-2* A4 -1 B3 +10. 

-2 B2 +10 

- 1* A4 -1 B3 +10 

-2 B2 +10 

-1 B2 +10 

-2 B1 -10 

-1 B2 +10 

-2 B1 -10 

-1 B1 -10 
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-1 A2 
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Figure 6.17. Six -match game against nature. 
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other hand, we win with J = +10. The value of the game at this 

stage, therefore, will be p( -10) + (1- p)( +10) where p is the probab- 

ility of A choosing his winning strategy. Previously, we have as- 

sumed an intelligent opponent (p = 1), who is eager to win. But in 

practice his objective function may not be as simple. Aside from the 

obvious case where he has no intelligence (say p = 1/2 for a random 

choice), it is possible that he is taking other factors into considera- 

tion such as the duration of the game. For example, each move 

made by him or us may be costing him $10 per move. His objective 

function J will indicate that he is indifferent to either strategy: -10 

in either case. By offering him 50 cents5it is very likely that you 

can persuade A to lose the game. 

This is not unlike what happens on a negotiation table during 

a strike. The strike that is costing a fortune per day)may be settled 

by making an almost trivial concession. Because of the pride and 

bias involved, we often need a third party to realize such a conces- 

sion. 

The case of B4 is even more interesting. 

By redrawing Figure 6.8 as in the cases of B3 and B4 shown below 

in Figure 6. 18, we realize that a game matrix is essentially a snap- 

shot of a system relating its alternatives to their outcomes. 

In B4, we have the familiar zero -sum, two -person game. 

In order to call it a true game, we should add the constraint that A 

Zero -sum game. 
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B4 

A3 

Figure 6.8. p. 151 

B3 
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Al 

Figure 6. 18. Tw -person games. 
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should make up its mind before B shows his move. But even if this 

were not the case, as far as B is concerned, the game approach may 

be the only way to salvage any chance of winning. As long as p is 

not 100 percent but say 95 percent, there is definitely a chance 

(five percent that A will make a mistake) for B to win, especially 

if there are many moves to be made before the end of the game is 

reached. 

Advantages of tableau over game matrix. A game matrix 

may be an ideal representation,when there are only two persons and 
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where the outcomes are readily found and are computable. However, 

when the game becomes complex, for example, in the case of our 

24 -match game, constructing a matrix for the "lose" state of B21 

will not be an easy task. A tableau has the advantage that the sub - 

tableau at each stage may be considered as a summary and the de- 

tails of any particular immediate outcome may be traced to another 

sub -tableau giving the information needed. This process may be 

continued until the very end of the game is reached (assuming a ter- 

minal game) or until a steady -state condition is reached (assuming 

an ergodic process). 

After the desired information is obtained to fill a game ma- 

trix from the study of a tableau, all the wealth of Game Theory may 

be tapped to analyze the situation. 

According to Dr. Melville C. Branch, the Chairman of 

Planning of the Los Angeles City Commission, there appeared re- 

cently an article titled "Magic Number 7 +2'1 by a renowned mathe- 

matician, discussing the limitation of human ability to manipulate no 

more than about seven variables with about seven alternatives. 15 

15This is another "marvel of our decimal system" in that we 
have chosen the limit of our mental capability as the range of digits. 
Twelve would have been too many for us to distinguish, less than 
ten, say four, would have made the expression of larger quantity too 
cumbersome, At any stage of our numerical computation, we are 
only confronted with a simple choice of ten alternatives: e. g. , the 
unit position of two numbers being multiplied is either 0, 1, ... , or 
9, etc. 
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A tableau can be constructed to meet this requirement. It can be 

subdivided so that a decision -maker is never confronted with more 

than seven alternatives at a time. Each alternative's outcome might 

have been computed by a management level below using a sub - 

tableau that also confronted them with seven alternatives or so, The 

expected payoff for those alternatives might have come from a 

management level that is using a sub - sub -tableau, and so on. This 

process is pictorially represented in Figure 6. 19. 

The top management's decision to select an alternative is, 

therefore,based on a weighted average of results forwarded from 

various sub -tableaux. Once the weighted average exceeds a certain 

threshold, the input (alternative) is decided. This is essentially 

what we will call a "Bang- bang" control: a discrete control based on 

more or less continuous input functions. 

This discussion could lead us into Wald's consideration of 

decision process as a Nature vs. Management game involving sto- 

chastic considerations, the application of Bayes' theorem for esti- 

mating opponent's (Nature's) behavior, and other interesting topics 

such as Stochastic Programming and so on, But before we can even 

talk about these topics, it is necessary to discuss what Dynamic 

Programming is and how it can be implemented on a tableau (the sub- 

ject of the next chapter). Before closing this chapter, let us con- 

sider one more topic that is closely associated with the discussion of 
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Decision Level 1 (Top Executive Decision). 

Alternatives 

Decision Level 2 

Decision Level 3 

Decision Level 4 

Outcome s 

A Tableau -tree Concept 

Figure 6. 19. Tableau as a management decision -making tool. 
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an Automaton, namely the subject of neuron net as we have intro- 

duced in Chapter I (page 22). 

Modular Network 

Finite Automata and Modular net. In our formulation of 

Tableau Method in Chapter III, we have made our tableau representa- 

tion completely interchangeable with a network representation of a 

system. In this chapter, we have shown the great similarity that 

exists between such things as Algorithm, Turing machine, Automaton, 

and our Tableau. In discussing how a top- management can use a 

tableau to initiate a Bang -bang control based on a weighted average 

of expected payoffs, our readers were reminded of the TLU 

(Threshold Logic Unit) discussed in Chapter I. 

We can now conceive how our brain and our nervous system 

can be represented by a modular net, and every modular net inter- 

preted as a finite automation. This concept, now considered as an es- 

sential part of Cybernetics, was initiated by two neurophysiologists: 

Warren S. McCulloch and Walter Pitts who first published their work 

in 1943 as "A logical calculus of the ideas immanent in nervous ac- 

tivity" in the Bulletin of Mathematical Biophysics (vol. 5). 

Mr. Pitts had the good fortune to fall under the 
McCulloch's influence, and the two began to work 
quite early on problems concerning the union of 
fibers by synapses into systems with given overall 
properties. Independently of Shannon, they had used 
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the technique of mathematical logic for the discussion 
of what were after all switching problems. They 
added elements which were not prominent in Shannon's 
earlier work, although they are certainly suggested 
by the ideas of Turing: the use of the time as a 
parameter, the consideration of nets containing 
cycles, and of synaptic and other delays (Wiener, 
1960). 

Figure 6. 20. A sample modular net. 

McCulloch -Pitts model. In order to point out the exceptional 

ressemblance of McCulloch -Pitts model of neurophysical study to 

what we have been calling an automaton, and to suggest the theoreti- 

cal possibility of representing this biological system by a tableau, 

we will have to ask our readers to be satisfied with the comparison 

of the definitions of a module and a modular net which we will quote 

below with the definition of an automaton as we have been using 

(page 15). 

Definition 6. 4. Module (formal neuron)(Arbib, 1964). 

A module is an element with, say, m inputs x1, .. , 

xm (m > 1) and one output d. It is characterized by 
m +1 numbers, its threshold 0, and the weights w1, .. , 
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wm, where w. is associated with xi. The module 
operates on a discrete time scale t = 1, 2, 3, ... 
the firing of its output at time n +l being determined 
by the firing of its inputs at time n according to the 
following rule: The module fires an impulse along 
its axon at time n +l iff the total weight of the inputs 
stimulated at time n exceeds O of the neuron. If we 
introduce the symbolism 

m(t) = 0 for 'm does not fire at time t' 
m(t) = 1 for 'm does fire at time t' 

(where m may be an axonal output or a synaptic input 
of a neuron), we see that the above rule may be ex- 
pressed as: 

d(n +l) = 1 iff wx(n) > 6 

Note that a positive weight wi > 0 corresponds to an 
excitory synapse (i. e, , module input) whereas a nega- 
tive weight wi < 0 means that xi is an inhibitory input. 

Definition 6, 5. Module net (Arbib, 1964). 

A modular net is a collection of modules, each with the 
same time scale, interconnected by splitting the output 
of any module into a number of lines and connecting 
some or all of those to the inputs of other modules. An 
output may thus lead to any number of inputs, but an 
input may only come from at most one output. 

Philosophizing. If our hypothesis is correct, and if indeed 

our brain can be thought of as an automaton, or an expression of al- 

gorithms, then Gödel's Incompleteness Theorem should equally apply 

to our thinking which makes use of our brain. If we can think of 

Nature as the Algorithm that created these sub -algorithms (men, 

animals, etc. ), then we may conclude that the true understanding of 

the Algorithm cannot possibly come from the use of the sub - 

algorithms. In other words, to understand the Metamathematical 

Truth, we cannot use mathematics to reason. Thus, in order to 
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understand Nature truly and completely, we cannot make use of our 

brain alone, but we need a Mechanism that functions at the Meta - 

mathematical level. Such a mechanism must possess both the mathe- 

matical nature (our brain) to communicate with us, and a meta - 

mathematical Nature that is of the same level as the Algorithm that 

created our brains and other algorithms of our level. For such a 

Mechanism, the Time constraint does not have to hold any more 

than other dimensional constraints under which we must operate. If 

death is our liberation from our thinking being bound to operate 

through our brains, and if our thinking can operate without our 

brains after our death, there is a possibility that we may then 

understand truly all of the metamathematical truth. Of course, then, 

it becomes impossible for us to communicate back any truth we have 

found: "Within any world with which we can communicate, the 

direction of time is uniform" (Wiener, 1960) and helas, we have then 

lost our measure of "time" (we are only conscious of time as a con- 

cept resulting from our observation of change in our physical system 

or its environment). 

This is not a treatise in theology, and we do not intend to 

make reference to any religious truth. This discussion is presented 

merely to point out how far our system's philosophy could extend our 

thinking, and how our past "intuitive" feelings that resulted from the 

consideration of cosmos as a system, does agree rather closely with 
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a more materialistic, if methodical, formulation of systems theory. 

Pascal once remarked "S'il n'y avait pas de Dieu, it fallait 

L'invinter" (If there were no God, we should invent Him). In order 

to give meanings to our systems, we must assume a Meta - system, 

so that all our systems can be considered as sub -systems obeying 

the incompleteness, and thus consistent nature of Gödel's theorem. 

Let us close this chapter with a quote from Stafford Beer 

(1959, p. 97): 

Moreover, a rather more subtle logical argument shows 
that (since the route to a given state may have followed 
several circular paths) it is not possible to work out in 
retrospect the correspondance of machine's states to the 
passage of time. Hence argued McCulloch and Pitts, 
the human being's knowledge of the external world is 
necessarily incomplete. The human brain is compelled 
to abstract from its experience, and is incapable of 
becoming a machine for slavish repetition of its own 
reactions. Not, of course, that this is disadvantageous: 
the process is in fact precisely the one which enables us 
to systematize, codify and make use of our experience. 

The concept of Homomorphism is now seen as the cause (at least to 

our thinking) of the irreversibility of the flow of time. We could 

conceivably slow down the flow of time as a dimension, but not re- 

verse it without having to rely on some other system beside our 

brain. This, of course, is dependent on the assumption that 

McCulloch -Pitts model is a sufficiently adequate presentation of our 

actual brain. 
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VII. MULTISTAGE DECISION PROCESS 

In the period following World War II, it began to be 
recognized that there were a large number of inter- 
esting and significant activities which could be clas- 
sified as multistage decision processes. It was soon 
seen that the mathematical problems that arose in their 
study stretched the conventional confines of analysis, 
and required new methods for their successful treat- 
ment. The classical techniques of calculus and the 
calculus of variations were occasionally useful in these 
new areas, but were clearly limited in range and 
versatility, and were definitely lacking as far as fur- 
nishing numerical answers are concerned (Bellman 
and Dreyfus, 1962). 

Dynamic Programming 

Synopsis of this Chapter 

This chapter is divided into three main parts. In the first 

section, we shall develop the tableau as a tool in solving Dynamic 

Programming Problems. 

In the second part, we will devote our attention to a very 

simple but important development from the application of Dynamic 

Programming, namely the Utility Theory. 

In the last section of this chapter, an attempt will be made 

to view the Control Technique field and it s relationship to tableaux. 
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Sequential Decision Process 

Present state of art. The optimization method to which the 

Tableau Method is particularly well suited is a multistage sequential 

decision process where the return function is monotonic. Without 

explicitly defining as such, we have already been solving problems 

of this nature in Chapter VI. Dynamic Programming is a term 

coined by Richard Bellman, supposedly while he was in search for a 

"dynamic" word to describe his brain child, a new development in 

mathematical programming (Denardo, 1966). 

His book "Dynamic Programming" which appeared in 1957 

from Princeton, is usually considered to be the foundation for this 

theory. 16 The subsequent development is mainly due to Bellman 

[he is ahead of others by some 200 publications (Wolfe, 1966)], but 

important contributions are acknowledged by Bellman as due to: 

S. Dreyfus, M. Aoki, T. Cartaino, M. Freimer, O. Gross, R. 

Howard, S. Johnson, R. Kalaba, and W. Karush (Bellman and 

Dreyfus, 1961). Of those, we shall only examine the works of Dreyfus, 

Kalaba, Howard and his colleague Kimball. 

Computer programs. The major disadvantage of Dynamic 

Programming stems precisely from the too versatile nature of its 

16_ 
he computational techniques were developed by Bellman 

at RAND in the early 1950's. 
i 

e 
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Principle of Optimality. This all- encompassing principle has made 

Dynamic Programming to be applied to such diverse problems in 

varied fields that a proper unified codification and standardization of 

algorithm has not been possible. In spite of the development of 

Policy Improvement procedure by Ronald Howard and his claim: 

Note that all arguments above (Policy Improvement) 
apply equally well to both the discrete and continuous 
cases. As a result a single computer program may 
be developed to solve both types of processes (MIT, 
1959, p. 173). 

no universally known standard program has been developed for 

Dynamic Programming. 

This fact should be contrasted with the case of Linear 

Programming where a Simplex (or a modified Simplex) Method 

Program is available for practically any major commercially avail- 

able computer produced in any country (USA, England, France, 

Japan, and Russia). There are other non -linear programming 

techniques which are also available today: 

Quadratic Programming (RAND) 

Gradient Projection Technique (Rosen) 

SUMT (Sequential Unconstrained Maximization or 

Minimization Techniques by Fiacco- McCormick, RAC) 

Separable Programming 

Others (Wolfe, 1966). 

A Dynamic Programming problem, on the other hand, is 
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usually programmed individually each time a problem is to be 

solved. Since writing a program is a major task even when the 

algorithm is known, many Dynamic Programming problems are 

being solved by one of the above methods for which a standard pro- 

gram is available. 

Consider first the one resource process... the simplest 
type of dynamic programming process. The coding of 
such a program for a high -speed computer..., can be 
accomplished in a couple of days using Fortran 
(Bellman and Dreyfus, 1961). 

Concept of a "State" 

Set theory. Every so often,it becomes necessary for us to 

review our path and to understand the new concepts in light of what 

we have examined in the past. Before we start our formal discussion 

of Tableau Application to Dynamic Programming problems, perhaps 

we should review how our concept of a "State" has come to exist 

(see Chapter III, p.84 ). 

Essentially a "State" is but an element of a subset. We may 

use the term "State Space" to determine the subset that is composed 

of all the elements which we consider "states." In the case of our 

Grammatical Tableau (p. 149 ), the state spaceRwas composed of 

three elements: input, action, and output. In the case of the six - 

match game discussed in Chapter VI (p.170, for example), the state 

space may be defined as: 
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Il = {Start, A6, B6, A5, B5, A4, B4, A3, B3, AZ, BZ, Al, B1, 

Awin, Bwin} 

In the case of Ashby's Ghost (p. 178 ) we had: 

n ®{11,10,01,00} 

In each case, our knowledge of a particular state was con- 

fined to "how to get there" (controllable input',which told us how a 

state could be mapped into this element, and "what happens then ?" 

(observable outputl_ which told us the outcomes to which this element 

can be mapped to. This "black box" concept makes us realize that a 

state is an agent relating two subsets, an independent subset which 

we call "inputs" and a dependent subset which we call "outputs. " 

The mapping relationship with the first subgroup was called "fan -in, " 

while the mapping relationship with the latter, "fan- out. " The fan -out 

was usually determined by Nature (we usually had no control: Ghosts 

in Ashby, Opponent in six -match game) while the fan -in relation was 

"decided" by the management from a set of possible alternatives. 

Of course, there have been systems where this fan -in was not con- 

trolled by the management but by Nature such as the random choice 

according to an a priori probability in our "Grammatical Tableau, " 

or by a truth known only to Nature as in the case of the twelve -ball 

game (p. 160 ). 

In the Dynamic Programming applications, we are especially 

interested in cases where these decisions are left to the Management. 
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Dynamic Programming tells us which alternative should be chosen 

to yield the highest utility for the overall system. 

Figure 7. 1 below shows the State Space for our Grammatical 

Tableau example. 

Control theory. While mathematicians are concerned with 

the relationships between the state as an element and other elements 

constituting its environment, control engineers would like to call 

these alternatives in mapping, "inputs" or "controls. " A computer 

programmer would prefer the term "conditional. branches, " while 

an Operations Researcher would prefer the word "decisions. " With 

some generalization, we observe that "the law of jargon" (p. 41 ) 

prevails here too. The less a system is understood, and the less 

freedom is left to make a choice, the more ostentatious the word 

becomes to describe these inputs. A "management decision" will 

be based on "experiences" of managers who listen to their OR men. 

n 

State Space n n = {l, A, o} 
States 

Decisions Alter- 
natives 1, 2, 3 

Figure 7.1. State Space for Grammatical Tableau. 

. 
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It becomes an "executive decision" when irreducible factors are 

taken into considerations by the top management which listens to 

its m i ddl e - managers' management decisions. The pell -mell of all 

the past executive decisions becomes a bible called "corporate policy" 

which should be consulted for future decisions, When the society 

becomes used to decisions based on these policies, it starts to call 

them "social ethics, " "right to ... , " and other unwritten rules. 

If there is, however, one common feature that everybody 

agrees, that is the grave "consequences" that may result to the 

"state" of the system depending on the input made. Nobody really 

knows what the "state" of the system is, but everybody is certain 

that the input will have some effect on it. Thus, when the necessity 

arises to describe the system, instead, we give an account of the 

inputs to affect its state. 

A fundamental notion is that of the state of a system. 
The prior inputs that a system has experienced will 
generally affect its state (or condition of being) at any 
instant. That is, the net effect of all past inputs may 
be summarized by specifying the state of the system 
at that instant. Two different prior input patterns that 
result in the same state of the system at a given in- 
stant may therefore be considered to be identical inso- 
far as the future evolution of the system is concerned 
(Huggins; Flagle et al. , 1960, p. 668). 

Multi -stage decision process. When the tableau is empty, it 

may represent a state space but will not provide adequate descrip- 

tions about the states themselves. A state can be adequately 

. 
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described when we know either the entry into its own eigen -cell or 

all the transducers feeding into and from it. Thus, a transducer 

may be considered as an information channel that serves to describe 

a state. Perhaps, an adequate definition of a "state" is the one given 

by Denardo (1966): "A state is a synopsis of history sufficient for 

costing future actions. " A more complete one is given by Kimball 

and Howard: 

In any system undergoing a process of the multistage 
decision type, certain information is needed at each 
decision point in order to make that decision... The 
term state will be used to denote all the information 
needed to describe the system at any stage. The stage 
is usually described in terms of the values of the set of 
variables. In some cases, these variables are discrete, 
in others they are continuous. As the process we are 
considering proceeds, the state of the system is 
ordinarily constantly changing (Kimball and Howard, 
MIT, 1959). 

Multi -stage Decision Problem 

Decisión rule. The problem that we deal under the name of 

multi -stage decision process, is the one that includes a discrete 

number of decision points, states at which management has control 

of alternatives. The decision to select the particular alternative, is 

essentially the problem of selecting the control input u1 e U from the 

subset U of transducers available at that state. 

The dilemma is presented because each alternative has a 

different effect on the state. The solution to this dilemma is to 
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choose an alternative or a weighted combination of the available in- 

puts. In order to yield an objective decision, each alternative's 

total benefit (profit) must be shown in a numerical value, i. e. the 

objective function must really be a functional that will yield a numer- 

ical evaluation of each alternative that can be compared against a 

threshold value 0, a number in the same measure. 

Boundary conditions. The system is supposed to be in a 

given state xo = x(to) at the beginning: t = to. This initial state is 

usually described and given, though in some cases (as we shall see 

in ergodic cases) it is neither given or needed. 

A decision process may be terminated in three ways: 

1. When time t reaches a certain predetermined terminal 

time t1. For example, t1 = 5 years (to = 0 automatically assumed). 

2. When a terminal state is reached by the system. x(ti) 

is given. For example, x(ti) = 50, 000 miles. 

3. A combination of both, or a function of both. 

T[ ti, x(t1)] = 0, a terminal condition, is specified. For example, a 

guarantee on a car that lasts five years or 50, 000 miles, repair or 

replacement to the option of the manufacturer (a sequential decision 

process if the car breaks down often). 

Another interpretation of this termination is the concept of 

limited reward: "The simplest multistage decision processes are 

those in which a state is reached such that the rewards stop when that 
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state is reached" (Ronald Howard: MIT, 1959, p. 157). 

Allocation Problem 

Example Problem 7. 1. Let us consider a simple allocation 

problem in which we are to distribute a limited amount of resource, 

say 1, 000, 000 dollars, to six projects, 1, 2 ... 6. 

Our aim is to maximize our total satisfaction. Obviously, 

this is easier said than done. Each project has a certain amount of 

risk involved with it, and the decision -maker (the player, manager, 

etc.) must be able to attribute a functional17that will yield a numeri- 

cal "value" for each project taking into account these risks. Formu- 

lating each project as a separate identity is itself a job, to attribute 

a common numerical scale of utility is almost an impossibility, but 

to assume the existence of a common base for comparison is cer- 

tainly outrageous. Nonetheless the modern utility theory does give 

us some help toward this direction: 

In brief, the current theory shows that if one admits the 
possibility of risky outcomes, i. e. , lotteries involving 
the basic alternatives, and if a person's preferences are 
consistent in a manner to be prescribed, then his prefer- 
ences can be represented numerically by what is called a 
utility function. This utility has the very important 

17 A transformation from a function to a number is called a 
functional: a transformation from a function to a function is called 
an operation" (Bellman and Kalaba, 1965, p. 5). 
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property that a person will prefer one lottery to another 
iff the expected utility of the former is larger than the 
expected utility of the latter. Thus, the assumed in- 
dividual desire for the preferred outcomes, becomes 
in game theory, a problem of maximizing expected 
utility (Luce and Raiffa, 1957, p. 4). 

Classical approach. Let us suppose, for convenience, that 

we have managed to arrive at the utility functions for the six projects 

to which the fund of $1000G is to be allocated. 

Figure 7. 2. An approximation to a utility function. 

Moreover, let us assume that we have conveniently found that each 

utility function can be approximated by a positive square root func- 

tion as shown in Figure 7. 2. In other words, we are assuming that 

the operation (with $1M) will be in the region of diminishing return 

for each project. 
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Another blunt assumption we make, is that the utilities ob- 

tained from the various projects are additive, Later discussion on 

utility will clarify some of these assumptions (page 233). 

$1M\\\\\\ 

/ 
Project No. i 

/// ` 
81(x1)-x1/2 

No. 2 

(x ) 

/2 
No. 3 

g 
3 

(x3) 

á'2x1/2 
1 

No. 5 

g 
5 

(x5) 

1/2 

Figure 7. 3. Tableau interpretation of the Problem 7. 1. 

Thus, the problem is essentially: 

(maximize)V(x) = g1(x1) + g2(x2) +g3(x3)+g4(x4)+g5(x5 

6 i b z 1 i i i 
= x + 3x2 + 2x3 + 4x4 + 3x5 + x = áixi 

i =1 

subject to the constraint: 

+g6(x6) 

No. 4 

g4( x4) 

-4x1/2 

Li 
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1, 000, 000 = 1000G (we shall conduct our compu- 
i=1 

tations in G's rather than in $'s). 

We should not forget that our analysis is possible thanks to 

the celebrated Weierstrass' theorem of extremum. 

Theorem 7. 1. Weierstrass' Theorem. Every function which 

is continuous in a closed domain G of the variables possesses a 

largest and a smallest value in the interior or on the boundary of the 

domain ( cf. Courant and Hilbert, 1953, p. 164, etc.). 

The readers may realize that we have been somewhat sloppy 

in our use of Lagrange Multiplier method to prove the maximum in- 

formation theorem (p. 158 ), in that we have not checked for our 

boundary conditions, The criticism is legitimate but an intuitive 

justification was given in the form of Figure 6. (p. 160) showing 

that the extremum we had found was indeed the maximum, minimum 

occurring at the boundary, 

We can take the same method to solve our problem: 

Our function F becomes: 

F = 

6 6 

- A x. 
i 

i=1 i=1 

where gi = aix 
i 

and therefore: X gi (xi)2 = i aixi 2 for i 

ai or x 
a(xi)l 

ai 

4X 2 

= 

Z 

i(xi) - 

= = 1, ... , 
1 1 1 1 

6. 

X = - 

6 



thus, 

and 

X 

X = 

2 
a. 

i 

2 
- 4x 

that is if: al = 1, 

X, = 
i 

i=1 1=1 

a?/4A = 1000G 

40 1 

- 4000 - 100 or X = 0. 1 

a2 = 3, a3=2, a4=4, a5=3, and a6=1. 
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The budget can be obtained from: 
2 

x. 12 = 25 a. (in G's) 

The budget is shown below, and the maximum satisfaction is about 

6324. 6, compared to 4000. 0 if the manager invested all funds into 

the highest gain investment: project no. 4. 

Budget: 

Project no. 1: $ 25, 000 
Project no. 2: 225, 000 
Project no. 3: 100, 000 
Project no. 4: 400, 000 
Project no. 5: 225, 000 
Project no. 6: 25, 000 

Total Budget 

Figure 7. 4. Budget result for Example 7.1. 

$1, 000, 000 

Approximations of utility functions. If we were to simulate 

the lower portion of the utility function, an expression of the type 

gi(xi) = aix2. If such functions were used, our formulation would 

have yielded minimum rather than maximum at the value of X . The 

maximum would have occurred at the boundary, suggesting that the 

i.=]. 

2 

6 

1 

_ 
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investment should be concentrated to one project with the largest 

ai. 

The morale of the story is: "If you are rich, diversify: if 

you are poor, specialize." 

Between the minimum and the maximum problems for the 

Lagrange Multiplier, there is of course a problem that will yield an 

infinite number of solutions. This is the case where the power of x 

becomes unity, or where gi will be a linear function of xi. The 

manager will be "indifferent" to the choice of satisfaction /projects 

levels as the ratio will then be a constant. When we actually face 

such a degeneracy, the solution most usually adopted is to perturb 

our utility function by adding some so- called irreducible factors 

such as "customer image, " "social responsibilities, " "safeguard 

against future government interference, " or "labor good -will, " to 

render the function non -linear (ever so slight) and to settle on one 

solution. 

Another very powerful approximation of a utility function is 

the use of logarithmic expression. We have a rather interesting in- 

terpretation of this particular topic, but we would like to postpone 

this discussion until the discussion of "Efficient Gambler" (Problem 

7. 4) where we shall actually make use of a logarithmic utility func- 

tion. 

Classical vs. Dynamic Programming approach. The rather 
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naive example of 7. 1 does point out several features of the classical 

analysis technique. First of all, the amount of efforts and assump- 

tions necessary in obtaining suitable data is overwhelming. Asking 

a manager to give an ordinal measure of utility (e. g. no. 4 is better 

than no. 5, etc. ) is already a difficult task, but to demand a cardinal 

measure (e. g. how much of no. 4 for so much of no. 5, etc. ) that is 

continuous to satisfy Weierstrass' theorem, is an impossible assign- 

ment. The utility function should not have any discontinuity and must 

be monotonically increasing. A point of inflection would give a false 

indication of an extremum. Also, we have the annoying task of 

checking for boundaries. Bellman likes to give heated arguments 

against the classical methods (as it is obvious from almost any of 

his writing) and most of them are valid. They were useful in pro- 

moting his Dynamic Programming when it was relatively unknown. 

But now that Bellman's principle of optimality is found to be closely 

related to the classical calculus of variations (see discussion later 

in this chapter; Bellman and Dreyfus, 1962, p. 180; or Leitmann, 

1962, p. 255) it seems that more efforts should be directed toward 

sharing their strengths than to attack their weaknesses. We are here 

to show the applicability of Tableau method and not to condemn any 

particular method. Solving Problem 7. 1 by Dynamic Programming 

would indeed be a much slower task. 

Principle of optimality (Bellman, 1956). An optimal policy 
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has the property that whatever the initial state and initial decision 

are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision. 

Basic optimality functional. The basic idea of the principle 

of optimality is the same as the one involved in a tournament or in a 

contest: the champion will be a champion regardless of where he 

comes from originally and how the grouping is organized up to 

where he is recognized as a champion. Counties may elect their 

champions, states from county champions, and the nation from the 

state champions, and the Olympic champions will be selected from 

the athletes representing nations. In each case, the decision should 

be the optimal with regard to the champions represented in the par- 

ticular tournament, and should be a part of the optimal policy that 

would eventually select the world's champion. 

A more formal derivation of the principle of optimality's 

basic functional follows. 

Given a value function: 

VN(x) = max{ gN(xN) + gN -1(x11 1) , . , + + 82(x2) + g1(x1) 

over the region x. > 0, ) xi = x, where x may assume any positive 
i=1 

value and N is any positive integer, we may split the region x into 

two parts, xN and x -xN; then, the maximum should be held maximum 

regardless of how they were split as long as the maximum is taken 
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over both regions. 

V (x) = maximum [ gN(xN) + g (x ) + + g (x 
1 )] N x 

N 
= x N N-1 N-1 1 

1 
x 0 

= maximum [ maximum (gN(xN) + g N- 1(xN -1) + ... + g 1(x1)) 
0<xN<x x1 +... +xN 

-1 --x -xN 

= maximum 
0<xN<x 

= maximum 
OxNx 

gN(xN) + maximum (gN- 1(xN -1) + . . . +g 
x1 + + xN-1 = x-xN 

xi 
i 

[ gN(xN + VN-1(x-xN)] 

)) 

The latter is called the basic functional of the principle of optimality. 

Causality principle. The principle of optimality may be con- 

sidered as an application of the principle of causality. While the 

principle of causalitydeals with multistage processes the principle of 

optimatility deals with multistage decision processes. To clarify 

this relationship, we cannot think of better explanation than to pre- 

sent the direct quotation from the authorities in Dynamic Program- 

ming: 

The equations above [ (talking about various multistage 
processes)] are all particular examples of relations 
obtained from the principle of causality, or, equivalently, 
of determinism. Let the state of a system at time t be 
represented by f(c, t), where c is the state at time t = O. 

We can think of the system as starting in state c at 
t = 0 and evolving for a time s + t, in which case its 
terminal state will be f(c, s +t), or we can think of it 
as starting in state c at time t = 0, evolving for a time 
t, in which case its new state will be f(c, t), and then 
continuing for an additional time s, in which case its 
terminal state will be f[ f(c, t), s] .. . 

+ ... + 

] 

0 
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Determinism asserts that both procedures lead to the 
same terminal state. Hence, we have the fundamental 
functional equation f(c, s +t) = f[ f(c, s), t] [ (Figure 7. 5)1. 
From this many further results can be obtained... 

Figure 7. 5. Bellman and Kalaba's explanation of 
principle of causality. 

(Bellman and Kalaba, 1965, p. 20). 

Optimality interpretation of Example 7. 1. Let us view our 

allocation Example 7. 1 in light of this basic functional of our newly 

found Principle of Optimality. In a nutshell, it means that if the 

budget as set out in Figure 7. 4 (p. 218) is truly optimum, then taking 

any project N (say no. 6) away from the available project and its 

gN(xN) from the fund (1, 000, 000 -25, 000 =975, 000) will still yield an 

optimal budget with respect to the remaining x -xN (975, 000). 

This is obviously true since our formula is applicable re- 

gardless of the size of x, and in fact the same results will be ob- 

tained by using x = 975, 000 and only the first five projects. 

We could use the allocation procedure to show the Dynamic 

Programming procedure, but it is far easier to present other ex- 

amples which are simpler in structure and thus easier to follow. 18 

1<3 Allocation problems are used as introductory problems in 
many dynamic programming texts (Bellman, 1957 >Sasieni, Yaspan, 
and Friedman, 1959> Hadley, 1964). 

0 
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Simpler allocation problems, with discrete return table, can be 

solved intuitively by considering marginal profits. 

In contrast to the classical approach where all project costs 

were computed at once, the dynamic programming takes the approach 

of allocating the budget to one project at a time, using the basic ob- 

jective functional to determine which would be the optimal budget at 

each stage. 

An essential difference between the two methods is 
that the recursive (dynamic programming) approach 
changes one problem in n variables into n problems, 
each in one variable. In more complicated examples, 
the simultaneous equations resulting from the clas- 
sical calculus approach may be extremely difficult to 
solve; and, if more than one solution exists, we must 
ascertain which solution yields the absolute maximum. 
Worse still, the calculus approach will not necessarily 
reveal the maximum, subject to constraints, if it lies 
on the boundary of the admissible region or if we are 
dealing with non- differentiable functions (Sasieni, 
Yaspan, Friedman, 1959, p. 274). 

In the examples to follow, we shall try to take as much of 

the "veil of mystery" away from our computational procedure by 

exposing as much of the details as possible. As it is becoming in- 

creasingly obvious, we have already been using the Principle of 

Optimality in solving problems in the last chapter. We shall adopt 

the same format (state, alternatives, output) in the expanded form 

as much as possible, resorting to the reduced form (as we did with 

the 24 -match game) only when it is necessary. However, it should 

be noticed that the tableau is amenable to computations carried out 
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directly on reduced form (as the computations have been done using 

CPS Tableaux), the only disadvantage being that the computations 

are harder to follow until the algorithms have become familiar, On 

expanded form, they are usually obvious. 

Itinerary Problem 

Example. Problem 7. 2. Fairy -tale version. An Oregon 

State University engineering student has decided to elope with the 

daughter of a Corvallis millionaire (supposing that there is one). 

He has mapped out all the different routes by which he can drive 

from Corvallis to Reno, Nevada, where he plans to get married. 

Each route has some advantage of being faster, more pleasant, and 

more or less conspicuous to the State Patrol, Since the girl is still 

a minor, and her father is suspecting of their plot, main highways 

offer greater risks per mile than less frequented paths for the 

couple of becoming arrested by the informed State Patrol or paid 

detective. Which road should he take to Reno, if his reward of 

ruching Reno is evaluated at 30 utils, while that of risking the 

chance of being caught on each road is as shown on Figure 7. 6? 

Example Problem 7. 2. Industrial version (originally from 

Denardo, 1966). A small manufacturing plant has three departments: 

Turning, Boring, and Shaping. In the first department, we have the 

choice of using engine lathe, turret lathe, or automatic machine lathe. 
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In the second, either a boring mill or a drill press may be used. In 

the third, the choice is between a milling machine or a shaper. A 

product will usually go through the three departments in the order 

above, andwill incur the expense at each machine as shown in 

Figure 7. 6. The final product is sold at the price of $30 a piece. 

The expense of machine includes the discount that may be made on 

the final product (say $26 instead of $30) because of the lower quality 

of the particular machining operation. 

Solution to Problem 7. 2. The seemingly unrelated problems 

mentioned above, are essentially identical. They are both made into 

the non -probabilistic dynamic programming problem by giving data 

in terms of expected values (g = p..r ) rather than returns (r..). 
31 

However, to keep our format uniform throughout our presentation in 

this chapter, we shall introduce a probability factor p., of going from 
31 

state i to j. For the time being, we shall assume all p..'s to be one. 

The column headings are in Polish notation so that: p..r..V.+ 
31 31 J 

means (r.. + V.) *p., and so on (Chapter III, p. 91 ). i indicates the 
J1 J 1 

state, k the alternatives, and j the outcomes or the states to which 

the choice of alternative will lead to. We shall use the Diamond to 

mark the states which act as decision points (except the last state 

which is an endogenous output and which will also be marked by a 

Diamond: the EDP's conditional branch). 

The flowgraph is shown in Figure 7. 6. 

J1 

* 
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Corvallis 
Albany 
Monroe 
Coos Bay 
Eugene 
Klamath Falls 
Grants Pass 
Medford 
Susanville 
Redding 
Reno 

Turning Department 
engine lathe 
turret lathe 
automatic 

Boring Department 
boring mill 
drill press 

Shaping Department 
milling machine 
shaper 

Final Product 
+30 

Figure 7. 6. Example Problem 7. 2 flowgraph. 

The corresponding tableau is shown on Figure 7. 8. The cal- 

culation could also be carried out directly on the tableau as shown 

below in Figure 7. 8, but Figure 7. 7 is perhaps easier to follow at 

first. The computation starts at the bottom where the terminal con- 

dition is given as +30 for the empty state (terminal or endogenous 

output) q5: r($) = 30. Using this as the we we we we can compute upward 

by using the basic functional, which can be written as: 

k k k k k 
= Vi = max{ ; pji (rji + V.)] = max (Vi ) max [ E P.i(Rji)] 

k j k k j 

This is the same basic functional as the one we have derived on page 

222, except that we have added the transition probability. Note that 

the notation pji is the transpose of the usual p.. used used in so- called 

Markov matrix. The advantage of our notation, aside from being 

consistent of its location in the tableau, becomes clear when the 

ij 

V6, 
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Figure 7. 7. Tableau solution to the itinerary problem. 
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Figure 7. 8. Internal flow of data in a tableau. 
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Markov matrix is to be multiplied by a column vector which usually 

represents the state of a Markov chain. 

The notations: 

and 

R. = r. + V. (Polish notation +) 

V. = jiR. = L pji(r. + V) (Polish notation 

J J J 

are introduced for bookkeeping sake. Our Polish notation makes 

them superficial as far as the computation is concerned but we cannot 

talk about + and } without causing some confusion. 

When the basic functional is applied to the last department 

(no. 3), then we have: 

becomes 

V = max 
i 

(x31 + V.)] 

V3 = maximum [ pk3 (r 
ke {a, b} 

or J =c 

V3 maximum [ps3(rs3 + Vs)] 
kc {a, b} 

a a b b 
= max [ p (63(rs3 + Vs), ps3 (ro + Vs)] 

= max{ l*( -3 +30), 1 *(- 6 +30)] = max(27, 24) = 27 

The process is recursive and will then be repeated for Department 2 

and Department 1. 

V2 = max [ 1 *( -13 + 27), 1 *( -5 + 27)] = 22 

J, 

+ Vi)] 

= 

) 
Li 

[ 

k 
k 
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V1 = max [ 1*( -11 + 22), 1 *(- 8 +22), 1*(- 13 +27)] = 14 

This explanation may seem extremely detailed at this stage where the 

problem can be solved almost intuitively, but it is far easier to see 

the procedure when the problem is simple than after it has become 

cumbersome. 

Reduced form of Problem 7. 2 tableau. The computation re- 

quired could have been carried out using a reduced tableau, or could 

be put into a reduced form before being presented to a higher level 

management. In such a case, only the optimal transducers (alter- 

natives) will be shown on the tableau. For example, between state 1 

and state 2, the transducer lb will be selected and shown as (14 

meaning that the conditional transfer lb will produce an expected re- 

turn of 14. Similarly between state 1 and state 3 we have (14 /1c); 

between 2 and 3 (22/2b); between 2 and ((17/2a) and so on. 

Of these transducers which are optimal with respect to the 

particular transition between the state i to state j, we use * to indi- 

cate that will form a part of an optimal policy. Thus, 2b* is a part 

of the optimal policy 1- 1b*- 2- 2b *- 3- 3a* -(6, but not 2a, and so on. 

Both lb* and lc* are acceptable, and the top management is happy to 

be able to exercise their irreducible criteria to determine which al- 

ternative to choose. Figure 7. 9 below shows the reduced form. 
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State i 

i 
Transducer ji 

1 2 3 

.4. 
14 

14 
lb* 

22 

1 <2 
13* 

27 

127 
30 

3a*. 

1 

2 

3 

3 v 
1 -- -b 

V'. v2 
lb* VANN= 

v4 

Figure 7. 9, Reduced tableau for Problem 7. 2. 

In contrasting this with Figure 6. 9, we notice that the re- 

duced form has all eigen -cells filled. Or, more exactly, the problem 

is solved when we have found the entries into the eigen -cells of the 

reduced tableau. 

The optimal policy is obvious but we shall mention it for the 

sake of completeness. The couple should take either Corvallis, 

Monroe-Eugene-Grants Pass- Medford -Susanville -Reno or Corvallis - 

Coos Bay -Medford- Susanville -Reno for the total utils of 14 (since 

its positive, it's worth eloping). 

The manager should have the product manufactured by using 

either Turret -press- milling machine combination, or just automatic - 

milling machine combination. In either case he can expect $14 profit 

per piece. It is interesting to note that essentially he has the choice 

of either making it cheap and quick, or more elaborate and careful. 

Obviously, other irreducibles (such as customer relations) must come 

into play before management decision should be made. 
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Example Problem 7. 3. Fairy -tale version. Mary is the 

fairest maiden in a little village. When she became of age and de- 

cided to settle down, she made a careful survey of all the young eli- 

gible bachelors in the village and selected three most eligible bach- 

elors she would be willing to marry. She has already been asked to 

marry from all three boys, but is not quite sure which one she would 

be most happy with. She decided to get engaged to find out more 

about the fellows, but obviously this is possible only if she selects 

one at a time. She may become engaged to the first fellow for one 

month and decide whether or not to marry him. If he is not of the 

caliber she expected in the beginning, she may break the engagement 

and proceed with the second fellow, and so on with the third fellow. 

However, the fellow that she would have broken her engagement with 

would not be available later even if she found out later that he was the 

best, for by then he would be married to the second fairest maiden 

in the village. 

The solution she reached, with the help of "Dear Abby" was to 

make a numerical rating of 0 to 100 to be given to each fellow after 

one month of engagement. If the rating of her fiance i were above a 
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certain threshold Oi get married to him, otherwise go on to the next 

fellow. If none of them suits her, she could still join the Marine 

Corps, though she is not as inclined to become a Woman Marine 

Officer as to settle down as a plain housewife. She thought that the 

last alternative was worth 20 points. 

Unfortunately "Abby" has not told her how to determine her 

6's, the threshold criteria to be used in judging the three fellows. 

What should they be to assure her the highest expected happiness in 

her future? 

Example Problem 7. 3. Industrial version I. The LIB Coffee 

Company has received a shipment of a ton of coffee beans smuggled 

in from Cuba. The company may inspect the quality of the beans and 

sell them as they are, or process them into ground coffee and sell 

them under their brand. If the quality as ground coffee were not 

satisfactory, it could be processed further into instant coffee. As a 

final resort, the product can always be made into caffein tablets 

"Never Doz" and always sold to local universities' graduate students 

for a total profit of $20. 

Assume that each stage of process will cost $10 and that the 

price at which the product can be sold at each stage is directly pro- 

portional to its quality. Furthermore, the quality is distributed uni- 

formly between 0 and 100 ($0 to $100) and is independent of the quality 

at other stages. 
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What would be the best decision criteria for processing this 

shipment and what would be its expected value? 

Example Problem 7. 3. Industrial version II (Ronald Howard's 

problem on carpenters, MIT, 1959). The personnel department of a 

company advertised for a position to be filled and four applicants 

applied for the position. The union requires that these must be inter- 

viewed in the order of arrival and each applicant must be hired or 

told to go elsewhere before the end of the interview when a new appli- 

cant is brought in. The company needs to have this position filled so 

that at least the last man will have to be hired. What will be the best 

criteria for the four applicants if the interview scores are uniformly 

distributed between 0 and 100? 

Interpretation of Problem 7. 3. All three versions are essen- 

tially three variations of a same problem. Moreover, the dynamic 

programming solution to this problem is very similar to the problem 

faced by a TLU in our nerve system. When a TLU keeps receiving 

the same signal several times within a short interval, we have the 

impression that it adjusts its own threshold to suits the exogenous in- 

puts, For example, when we immerse our hand in a hot water 

bucket, the initial impulses of signals travelling down the nerve 

fibers are felt more strongly than the subsequent pulses which are 

transmitted after the initial impulses collapsed and recovered the 

nerve fibers to their excitable state (see Chapter I, p. 24). 
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Dynamic programming solution is akin to the way TLU's face 

their signals. We start from the last "empty state $, " of Mary been 

settled, coffee having been sold, position failled, and no signal for 

the neuron. We progress next to the state of Marine Corps, Never 

Doz, last applicant, and the first set of impulses arriving at the 

TLU. This process is repeated until either a steady state condition 

has been reached or the number of states exhausted. At each stage, 

the threshold is readjusted regardless of whether more signals are 

coming in or not. Thus, we may look upon dynamic programming 

as an adaptive approach based on non- anticipation. This principle 

of optimality in terminology of a communication engineer, acts as a 

matched filter for a physically realizable system. Dynamic pro- 

gramming has the effect of creating an optimum weighting function 

that has the form of signal "running backward" starting from the 

fixed time t1. A filter with this effect in communication engineering 

is called a matched filter. [ Of course, this is but one case of a 

matched filter. A matched filter is a filter that maximize s 

signal -to- noise ratio. For a discussion of matched filters, readers 

are referred to Davenport and Root (1958, p. 244), Middleton (1960, 

p. 714). J More will be discussed on the topic of Information after 

Example 7. 4. 

Calculus solution of 7. 3. The solution of this Problem 7. 3 is 

orthodox and could make use of calculus. We shall take the most 
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complete example, industrial version I, and solve for this particular 

problem. Others will be considered as its special cases. 

At a state i, where i is the number of remaining states, we 

have the alternative b of accepting the particular product or alterna- 

tive a of going on to another process. If the threshold were Oi on the 

scale of 0 to 100 on which the quality of the product were to be dis- 

tributed uniformly, then the probabilities will be given by: 

e. Oi a p and p b 
pJi 100 

= 1- pji a m 1- 
100 

The quality, if accepted, will range uniformly between Oi and 100: 

ri = Oi + z(100 - 0i) = 50 +10i 

If the product is rejected, the quality will be the expected quality 

of the product of the next process minus the quality (also the cost) 

lost by the processing, say c = $10. Thus, 

ra. = -c = -10 and V., or R.. = -c + V. 
J1 J J1 J 

and finally: 

Vi = (100 ) (V] - c) 
+ (1 

- 100 ) (50 + 10i) 

Differentiating once with respect to O. and equating it to 0, we obtain: 

or 

dVi 1 
0 d 

dOi ° 100 [- Oi + (V. c)] 

Oi=Vj -c where c = $10. 

For this value of O., we obtain the maximum for Vi 

(Vi c)2 
V. = 50 + 

1 200 

1 

_ 

- 

- 

_ 
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The solution is as shown on Figure 7. 10, and means: accept 

the first process if its quality is better than 57. 5, accept the second 

product if its quality is better than 50, and accept the third for 20 or 

better, otherwise push Never -Doz. The expected value of the ship- 

ment of coffee beans is 60.8 in this manner, instead of only 50.0 if 

the beans were to be sold without checking for possible future pro- 

cessing. 

The dilemma of Mary is a same problem, except that c 0 

Its reduced tableau is shown on Figure 7. 10 together with those of 

industrial versions. Marry the first fellow if he scores better than 

63. 52, marry the second for 52 or better, marry the last for 20 or 

above, otherwise join the Marine Corps. Since c = 0 (we assume 

that the enjoyment she receives during the courtship annuls any 

disadvantage), the expected value is a lot higher than in the coffee 

case, 70. 17 instead of 60. 8. The morale of the story is that a girl 

should date more, or better, marry the first person who solved this 

puzzle for her. 

The last case of personnel department is similar. We have 

to hire the last fellow for an expected value of 50 if the first three 

do not qualify. 

Dynamic programming solution of 7. 3. Dynamic program- 

ming may bypass the need for calculus, that is if we are careful. It 

is very important in dynamic programming that all the management 

= 
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1st Fellow 3 70. 17 

2nd Fellow 2 0 r <63: 52_ 
63. 52 

3rd Fellow 1 0 52. 00 

Marine Corps 0 0 <20 20. 00 

Future Decided 81, 7 
3.52 

76 /: >52 
60 

>20 
20 

-0 0, 00 O 
Figure 7. 10. a. Mary's problem. 

Coffee Beans 3 5. 53 

Coffee Grinds 2 -1 / <51.1.7 61. 17 

Instant Coffee 1 
-10 

<40.5 50. 50 

Never Doz 0 -10 X10 20. 00 

Sold 80.6 
51.17 

75.3 
40.5 

55 
> 10 

20 
? 0 \0.00 

Figure 7. 10. b. LJB coffee problem. 

1st Applicant 4 74. 17 

2nd Applicant 3 
<69.53 69. 53 

3rd Applicant 2 0 
<62.50 

62. 50 

4th Applicant 1 

$ 84, 
69.53 

81. 25 

62.50 

0 
<50.0-f 

75 
50.00 

50. 00 

50 
> O. 0 

O. 00 Position Filled 

Figure 7. 10. c. Personnel problem. 
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alternatives have been considered. For example, what were the 

alternatives facing the LJB Coffee Company management when it has 

received the shipment from Cuba? To accept to sell as is if its 

quality is above 03 and to process it into ground coffee if below 03? 

If we think so, then, we have been trapped. This is not really a 

management choice, it is actually Mr. Nature's turn to play. He 

can specify what the quality of coffee should be, but not us. The 

real choice that the management has is whether or not to let Mr. 

Nature have the pleasure of deciding the quality of beans or not. 

other words, the management has the alternatives of whether or not 

subject the beans to the test and let Mr. Nature decide if they should 

fall below the threshold value or above the threshold value. The 

threshold value is essentially the rule of the game that we decide be- 

fore the play starts. We cannot let the outcome of this game in- 

fluence the rule to be used in the game. If we did, we will again be 

violating our non -anticipation. law. 

In the case of dynamic programming, 0's are determined by 

first computing the "Do Not Test" case: V(i.2) = V. - c. Then, in 

the case of testing, it is obviously advantageous to catch those that 

are above that expected value without inspection and to sell them. 

Thus, 0i = V. - c. The detail of the work is shown on Figure 7. 11. 

In 
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Utility Hypotheses 

Price of freedom. The implications that can be brought on 

from the results of Problem 7.3 are far greater than just those of 

dynamic programming techniques. In order to appreciate what we 

have produced, let us plot the results on a graph as shown on 

Figure 7.12. 

The shape of resulting curves, especially that of LIB Coffee 

problem, is a striking facsimile of what we have been calling a 

utility function. 

The saturation point for the diminishing return is reached at: 

(V -c)2 
V = 50 + 200 

or, completing the square and taking the negative root: 

V = c - (200c) + 100 for 0 < c < 50 

which comes out to be: 

V = 100 for c =0 

V = 65.28 for c = 10 

V = 50 for c = 50 

If c were greater than 50, the problem is not even worth considering 

(i. e. don't test coffee beans, sell them as they are). 

Whether this is actually a utility function or not is a disput- 

able but intuitively plausible hypothesis. The utility of Mary's charm 

would asymptotically reach 100,if more boys were available: i. e. 
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Mary 

Personnel 

Coffee 

o 1 2 3 5 

Figure 7. 12. Threshold problems solution curves. 
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she could wait for ever until a mate with 100 rating appears and 

meanwhile enjoy her courtships fully. 

In the case of LTB Coffee, regardless of the ingenuity of its 

engineering department to devise more ways of converting their 

product into profitable merchandise, the utility of having more means 

will not be greater than 65. 28 percent. 

This limitation is similar to what we experience daily. We 

have a limitation as to how much we can enjoy ourselves at any 

particular time. At each moment, we have to decide which of the 

possible alternatives of actions we shall take at the next moment. If 

we have been working hard, we would like to take a rest. If we have 

been sleeping, perhaps we would like to get up instead. 

Having more resources means that we will have more alter- 

natives. But the utility of having too many is not really so welcomed. 

Most Americans are happy to be either a Democrat or a Republican, 

to watch either American League or National League, or tune into 

one of three major TV networks. It all stems from the fact that we 

can consider at most "7 +2" numbers of alternatives at once, and that 

we judge each alternative on a dichotomic basis. We create a set of 

elements of what we like, and for each element we decide whether it 

does or does not belong to the set, Each element is usually a feature 

of a particular alternative, and each alternative will be considered 

from several points of view. And yet, we are very uncertain to the 
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actual effectiveness of the chosen alternative to satisfy our wants. 

This decision process is usually a task that requires some amount of 

mental concentration as well as some physical effort (examining 

various merchandises, measuring sizes, or just plain watching and 

listening to TV commercials). After we have examined the seventh 

decision or so, we are tempted to make the final choice from what 

we have already examined. Coincidentally, i = 7 would be a reason- 

able cut -off point of Figure 7. 12. 

The general economic meaning of the term utility 
is the power to satisfy human wants. The utility 
that an object has for an individual is determined 
by him. Thus the utility of an object, like its 
value, is not inherent in the object itself but is 
inherent in the regard that a person has for it. 

Utility and value in the sense here used are 
closely related. The utility that an object has for 
a person is the satisfaction he derives from it. 
Value is an appraisal of utility in terms of media 
of exchange (Thuesen and Fabrycky, 1964, p. 18). 

Larger the value of c is, faster the saturation is reached. In 

our example, Mary is a gay, charming, and joyful type that fully 

enjoys her boyfriends' company (c = 0). If she were a shy type to 

whom meeting a boy was more of a chore than pleasure, the value 

of c would have been positive. 

The recursive expression can be made to look like: 

Zj 
+1 = 

a + 
1 Z 

by letting Zi = (Vi - c) /100 and a 
5100c 

so that all evaluations will = 

2 
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be made on a scale of zero to one, rather than zero to one hundred. 

The expansion of the expression in terms of j does present a series 

that may perhaps be forced into a more meaningful form. Bellman 

and Freyfus use 

ri(x) =vi(1- (1_e- ai /X)xi 

for utility ri(x) or resource x, from an item i with market competi- 

tion level of ai and maximum potential profit vi ( Bellman and Dreyfus, 

1962, p. 56). 

More research is needed in this area before any more con- 

crete remark can be made. 

Discount factors. 1n order to proceed with the next example, 

we should mention one more possible approach to utility functions. 

One factor that does take utility into account and which does 

seem to be working rather well, is the discount factor. Originally, 

the discount factor was computed on a discrete basis to compensate 

for the "time utility of money" at the beginning (or end) of each 

financial period. 

Discrete discount factor 7 (l +r) -t 

where r = interest (or discount) rate, t = number of periods. 

For a continuous case, it was found that a continuous factor 

could serve just as well: 

Limit (l +r) -t = e -rt Continuous discount factor. 
t -` co 

: 

= 



The actual difference between the two can be made obvious by ex- 

panding both expressions in McLaurin Series (or Taylor's): 
2 r3 f(r) = f(0) + rf' (0) + hf" (0) + 31 f "'(0) + .. . 

For continuous case: 

-rt = 1 - rt + (rt)2 (rt)3 (rt)4 
- . . 2! 3! 4! 

and in discrete case: 

r 2[ t(t 
2! 

(1+r)-t = 1 - rt + 

i=0 

co 

i=0 

r3[ t(t )(t+2) 1 

3! 

ri 
1 

(t+J:) 

a=0 

r4[t(t+1)(t+2)(t+3)7 
4! 
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The actual differences for the cases of five percent and ten percent 

are shown in Figure 7. 13. 

The distinction between the discrete and continuous discount 

is reminescent of the difference between a Laplace Transform and a 

Z- Transform. If the discount factor were to be a time utility of money, 

perhaps the role of r and t should be perfectly interchangeable as in 

the case of the continuous discount factor. 

Now, if our hypothesis that the coefficient rt (or -rt) indi- 

cates a time utility of money were indeed true, then we could extend our 

hypothesis to convert the resource utility of money in a similar man- 

ner. Thus, the utility of a fund F = Ae -rt could be characterized by 

its natural logarithm: 

ln(F) = in(Ae-rt) 

- 
= 

+ ( -1)i 
i 

CO 



rt t e-rt (l+r)-t (1-r)t t r e-rt (1+r)-t (1-r)t 

. 05 1 5% .95123 .95238 .95000 

.10 2 5% . 90484 . 90703 .90258 1 10% .90484 .90909 .90000 

. 50 10 5% .60653 . 61391 . 59879 5 10% . 60653 . 62092 . 59049 
1.00 20 5% .36788 . 37 689 .35842 10 10% .36788 .38554 .34868 
2. 00 20 10% . 13 534 . 14864 . 12158 

Figure 7. 13. Discount factors comparison. 
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= ln(A) + ( -rt) 
resource utility time utility 

This will lead to the concept of exchangeability between the 

time utility and the resource utility. Thus, two funds F1 and F2 can 

be equated, if: 

ln(A1) + ( -r1t1) = ln(A2) + ( -r2t2) 

or ln(A1 /A2) = -(r2t2 - r1t1) 

As an example, we let r1 = 5 %, t1 = 10, r2 = 10 %, t2 = 10: 

then, from Figure 7. 13, we have: A 2= 0. 60653 A as it should be. 

Noisy Communication Problem 

In order to show the advantage of the logarithmic concept of 

utilities and to demonstrate how information theory keeps reappearing 

from behind the scene in systems theory, we shall now discuss the 

problem of "Efficient Gambler, " originally presented by Bellman and 

IÇalaba (1965, p. 86), 

Example Problem 7. 4. a. Perfect information. Suppose that 

an unscrupulous gambler operates by receiving over a Walkie- talkie 

information concerning the outcomes of sporting events. If he has x 

dollars initially, and if his utility is a logarithmic function of x, he 

may bet his x dollars for double or nothing and expect to make a 

gross profit of 2x dollars or ln(2x) utils. 

Vmax = ln( 2x) = ln(x) + ln( 2) 
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Example Problem 7. 4. b. Noisy information. Suppose that 

the information received was disturbed with background noises and 

statics because of the limited capability of the Walkie- talkie. The 

gambler wishes to take his chance anyway but hesitates to bet his 

entire fortune (x). In order to safeguard his possible misfortune, he 

wishes to make a wager of y dollars only and use the difference (x -y) 

as a hedge. If his a priori probability of winning were p, how much 

should he bet? 

Example Problem 7. 4. c. Uncertain information. Suppose 

that the gambler has received a message (without noise) over the 

telephone about the present -state of the game a few minutes before 

the end of the game. According to the information, one team has a 

large lead over the other and the chance is slim (1 -p) that the op- 

ponent will win. Using this information, how much should the gam- 

bler bet? 

Solution to Problems 7. 4. b and c. Obviously, as far as the 

gambler and his unsuspecting customers are concerned, it makes 

very little difference whether the case is b or c. The tableau is 

on Figure 7. 14. We obtain in the case of gamble (if p > 4): 

1 = p ln(x +y) + (1 -p) ln(x -y) E E (E is used for convenience) 

The maximum is then obtained by: 

O=dY =p(x+y)dy+{1-p 
d(x-y) 
(x-y)dy 
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Figure 7. 14. Efficient gambler - single decision. 
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0=xp 
Y x®p Y 

oryT(2p- 1 ) x 
- 

The maximum value of V is then: 

maximum if p> 
minimum if p < 

E = V I = p ln[x + ( 2p , l )x] + (1-p) ln[x - (21-1)x] max lmax 

= p ln(2px) + (1 -p) ln( 2x- 2px) 

= ln(x) + ln(2) + p ln(p) + (1 -p) ln(1 -p) 

We recognize the first two terms from the case 7. 4.a of perfect in- 

formation. The last two terms are both negative since i <p< 1. If 

we had used the logarithm of base 4 instead of e, we could have rec- 

ognized p log2(s) as the equivocation due to the lossiness of the 

channel and (1 -p) log2(1 -p) as the irrelevance due to the noisiness 

of the channel. 

The transformation between the Naperian19 (natural) logarithm 

of base e = 2. 718281828459045 . , . and the logarithm of base two is 

merely a matter of adjusting for convention: i. e. a simple multi- 

plication by 1n2. ln(x) = ln(2)lpg2x where ln(2) = O. 30103. 

Information utility. The surprising results which stemmed out 

of our simple hypothesis of a logarithmic utility function does not 

stop here. If we rewrite E in terms of the conversion factor to max 
adjust to bits, we obtain: 

19 Named after the Scotch mathematician John Napier, the 
inventor of Napier's Bones and Lord of Merchiston (1550- 1617). 

1 
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Emax = ln(x) + ln(2) + p ln(2) log2(p) + (1 -p) ln(2) log2 (1 -p) 

= ln(x) + ln(2)[ 1 + p log2(p) + (1 -p) log2(1 -p)1 

resource) (potential utility gained from 
utility + additional information 

Just as our utility hypothesis has allowed us to separate the time 

utility from the resource utility, we have here an expression that 

clearly indicates the incremental utility the gambler has obtained 

thanks to the private communication from the "clairvoyance, " in this 

case, his friends at the race tracks. 

Since utility is an expectation of use to be gained from the 

future applications, it is always a "potential" resource, If utility is 

to be a "potential, " then where is its corresponding "kinetic" form? 

Obviously, that must be the "value" that we have used to find the 

"utility" form. "Dollars" derive their values from their circulations. 

Owning a dollar bill has the potential utility for the circulation value 

of a dollar. If we can identify "circulation" as an expression of 

"freedom',' then we have come back to the reasoning that led us to 

these exciting results. 

Van Neumann's foresight, If we consider p as the individual 

probability for gaining satisfaction, then the resource utility part of 

the function may be considered as a universal function. The individ- 

uality of utility function is due to the other factors, such as; the way 

a person values his time, whether he is optimistic or pessimistic 

Í 
) 
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(larger or smaller p), what he can do with the money (larger the 

number of desirable alternatives, larger the value of p will be), and 

so on. The resource utility, on the other hand, will be determined by 

the society, and may be considered invariant within the same society 

at a given time. (Obviously, government,for example, could change 

the utility of the resource within the country. However, we shall 

assume this to be a gradual, time - consuming change. ) 

The apparent connection between the "utility" and "entropy" 

is particularly significant. Von Neumann2 and Morgenstern, yet 

unaware of the subsequent development of the information theory 

based on the concept of "entropy, " had obviously guessed intuitively 

the close similarity between the heat -temperature relationship and 

utility- information relationship. We quote from their book, origi- 

nally written in 1943: 

... It seems however that even a few remarks may be 
helpful, because the question of the measurability of 
utilities is similar in character to corresponding 
questions in the physical sciences. 

Historically, utility was first conceived as quantitatively 
measurable, i. e. as a number. Valid objections can be 
and have been made against this view in its original, 
naive form. It is clear that every measurement - -or 
rather every claim of measurability- -must ultimately 

20Von Neumann has been quoted as the one responsible for ap- 
plying the work of Boltzmann and Gibbs in statistical mechanics to the 
study of information content of physical measurements with particular 
reference to quantum theory, thus creating (with Szilard) the founda- 
tion for Shannon's Information Theory (1925 -1930) (MIT, 1959). 
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be based on some immediate sensation, which pos- 
sibly cannot and certainly need not be analyzed any 
further.21 In the case of utility the immediate sensa- 
tion of preference - -of one object or aggregate of ob- 
jects as against another -- provides this basis. But 
this permits us only to say when for one person one 
utility is greater than another. It is not in itself a 
basis for numerical comparison of utilities for one 
person nor of any comparison between different persons. 
Since there is no intuitively significant way to add two 
utilities for the same person, the assumption that 
utilities are of non -numerical character even seems 
plausible. The modern method of indifference curve 
analysis is a mathematical procedure to describe this 
situation. 

All this is strongly reminescent of the conditions 
existant at the beginning of the theory of heat: that 
too was based on the intuitively clear concept of one 
body feeling warmer than another, yet there was no 
immediate way to express significantly by how much, 
or how many times, or in what sense. 

This comparison with heat also shows how little one 
can forecast a priori what the ultimate shape of such a 
theory will be. The above crude indications do not dis- 
close at all what, as we now knew, subsequently hap- 
pened. It turned out that heat permits quantitative de- 
scription not by one number but by two: the quantity of 
heat and temperature. The former is rather directly 
numerical because it turned out to be additive and also in 
an unexpected way connected with mechanical energy 
which was numerical anyhow. The latter is numerical, 
but in a much more subtle way; it is not additive in any 
immediate sense, but a rigid numerical scale for it 
emerged from the study of the concrodant behavior of 
ideal gases, and the role of absolute temperature in con- 
nection with the entropy theorem. 

The historical development of the theory of heat in- 
dicates that one must be extremely careful in making 
negative assertions about any concept with the claim 

21Such as the sensations of light, heat, muscular effort, etc. , 

in the corresponding branches of physics. 
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to finality. Even if utilities look very unnumerical 
today, the history of the experience in the theory of 
heat may repeat itself, and nobody can foretell what. 
ramifications and variations.22 And it should certainly 
not discourage theoretical explanations of the formal 
possibilities of a numerical utility (Von Neumann and 
Morgenstern, 1964, p. 16). 

Transform Theory 

How can we put our utility hypotheses to work? The basic 

concept we have introduced in the form of "logarithmic" expression 

may be restated as: "The change of utility is a function of the rela- 

tive importance of the change of the value, " or in the case of time - 

resource trade -off: d(rt) = Á which becomes: rt = 1nA. By any 

chance, do we already possess such transformation pairs? For- 

tunately, the answer seems positive. Economists may argue that 

what we are doing is reinventing funds -flow formulae, and indeed 

the results become equivalent in the case of time - resource relation- 

ships, but we believe that our outlook will provide insights not 

available or not as obvious in the classical theory. And it has the 

side benefit of introducing both Laplace and Z- transforms needed to 

show further applications of tableaux. 

22A good example of the wide variety of formal possibilities is 
given by the entirely different development of the theory of light, 
colors, and wave lengths. All these notions too became numerical, 
but in an entirely different way (Von Neumann and Morgenstern, 
1964). 
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Definition 7. 1. Dirac delta function. The Dirac delta func- 

tion 6(t-T) is defined by: 

c S6(t-T)f(t)dt = f(T) 

which causes a sampling of f(t) at the instant t = T 

Definition 7. 2. Unit -impulse train: A unit -impulse train 

ST is defined as an ideal sampler which becomes effective with 

intervals T: 

Z,(t) = 8(t-nT) 

Definition 7. 3. Laplace transform.. Laplace transformation 

of a function f(t) which is zero for t < 0 is defined by: 

F(s) = Cf(t)e -stdt = L[f(t)] 
0- 

F(s) exists if f(t) is sectionally continuous and if it does not grow 

faster than exponentially. In other words, for t co, there must 

23Named after Paul Adrien Maurice Dirac, a French Quantum 
Physicist who introduced the concept in 1947 in connection with the 
orthonormality of eigenfunctions (Schiff, 1955; Mandl, 1957; etc. ). 

24Named after P. S. Laplace, a French mathematician. His 
major work "Théorie analytique des probabilités" was first published 
in 1812. 

0o 

..x 

. 

00 

00 



exist a finite number c such that f(t) e -ct is bounded. 
25 

Now, if we take the Laplace transform of the Dirac delta 

function, then we would obtain: 

co 

L[ 6(t -T)] = J 6(t- T)e -stdt = e -sT 

0 

Similarly for a unit -impulse train, we have: 

L [ 6,T(t)] 

n_0 

e -nT s 
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1 + e -Ts + e -2Ts + ... = (1 - -Ts) 

By replacing sT by rt, we recognize that we have a series of time 

values with a discount rate e -rt 

At each period nT from the time t = 0, the discount rate 
-rnt will allow us to convert a single future payment An to the 

present worth A n 
e -rnT This rate is sometimes called "single - 

payment present -worth factor" for continuous compounding interest 

('ihuesen and Fabrycky, 1964, p. 83). 

25Of course, Laplace transform is but a special case of 
integral transformation 

F(s) = QJ K(s, t)f(t)dt 

with Kernel K(s, t) = e -st. This is essentially a mapping process 
from the t- (time) domain to s- (frequency) domain. A Kernel is a 
subgroup of the time domain which consists of all elements mapped 
into the identity element in the s- domain; in this case, just one ele- 
ment e -st. C defines the path of integration. 

= C (t-nT)etdt 
0 n-0 

e 
-1 

co 

n 

(r' 
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The Laplace transform of a unit -impulse train can then act 

as a "carrier for amplitude modulation" 26 r a discrete "time -value 

series" that will convert the set of future payments (or incomes) to 

the present -worth. 

In general, a function f(t) can be sampled by this ideal 

sampler to yield- f *(t) as shown in figure 7. 15: 

f*.(t) ú f(t)6T(t) = f(t) 

n=0 

00 

8(t-nT) _ f[nTS(t-nT)] 
n=0 

Its Laplace transform becomes: 

F*(s) = L[ f*(t)] = L 

CO 

n=0 

( T)6(t-nT) 

and using the results obtained for the Laplace transform of Dirac 

delta function, we can write this as: 

F*(s) = f(nT)e 

n =0 

which bears a striking ressemblance with the defining equation: 

00 

F(s) C -stdt 
0 

Example Problem 7. 5. Rent -a -car system. An airport rent- 

a-car system estimated that the yearly income from the rent of a car 

26Again, 
we come face to face with the information theory of 

Shannon: PCM (pulse code modulation) and PPM (pulse phase modu- 
lation) (Shannon, 1949, p. 3). 

00 
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is inversely proportional to its age. If the discount factor were ten 

percent and its first year income were $10, 000 what would be the 

present worth of a new car? 

Solution to Problem 7. 5. It is interesting to note that our 

sampler is incapable of recognizing whether the original function is 

f(5) or f(nT). In both cases, we obtain the same F*(s). In this par- 

ticular example, we may use: f(nT) An where A = 10, 000 /(n -1). 

Thus, setting s = 0. 10, we obtain: 

F*( s=10%) = 

00 

n=0 

-nTs -. 1 -. 2 Ae A e o+Al z 
+ Ae + A e + n 

= 10, 000 + 4, 524 + 2,046 + 926 + 

What we have done in fact is to turn Laplace transform into a gener- 

ating function. But we already know a generating function of a very 

similar nature, namely the Z- transform. 

Definition 7. 4. Z- transform. The Z- transform of a variable 

f(n) which takes on values at n = 0, 1, 2, 3, . is defined as27 

F(z) 

00 

f(n)z-n 

n=0 

27 

The striking thing is that Z- transform is obtained from F*(s) by 

setting: z eTs or s = ln(s)/T 

27 
Some authors use z+n instead of z n. Very unfortunately 

Ronald Howard happens to be one of them (Howard, 1960, p. 7). 
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Ts was found to be the rt in the discount factor which we have already 

identified as "Time Utility, " while ln(z) is what we have hypothesized 

as the "Resource Utility. " 

To convert utility into value, or vice versa, transforms may 

be compared using the specific time function (figure 7 16). 

Econometrics 

Definition 7. 5. Econometrics. "Econometrics is the appli- 

cation of a specific method in the general field of economic science 

in an effort to achieve numerical results and to verify economic 

theorems" (Schumpeter, 1933). 

Before leaving the subject of utility hypotheses, let us briefly 

examine the field of econometrics to see whether there is any evi- 

dence that supports our utility hypotheses. 

We have postulated that there can be a cardinal function of 

utility which is composed of resource utility, time utility, and in- 

formation utility. Each component is evaluated as a logarithmic 

function and is additive, while the values derived from the utility 

are exponential and multiplicative. 

Henry Schultz's study of demand function for wheat. In 1938, 

Henry Schultz published a book entitled "The Theory and Measure- 

ment of Demand" in which he has succeeded to derive the statistical 

demand function for wheat in the United States for the period 
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1921 -1934 using Bureau of Labor statistics (Tinter, 1952, p. 38). 

The least square multiple regression analysis yielded the 

following result: 

ln(x) = 1. 0802 0. 2143 ln(p) 0. 00358 t - 0. 00163 t2 

x is the quantity of utilized wheat less seed in bushels per capita. 

p is the deflated (using Bureau of Labor statistics) farm price of 

wheat in cents per bushel. t is the time with 1928 taken as t = 0. 

The above equation can be rewritten as: 

5. 05 = 4. 66 ln(x) + ln(p) + 0. 0167 t + 0. 0076 t2 

5. 05 = ln(p *x4. 66) + (1. 67%)t + ln(2) 0. 00252 t2 

Is it assuming too much to interpret this relationship as: 

Utility = resource utility + time utility + information utility? 

Obviously we should await the results of much more extensive study 

before speculating the validity of our hypothesis. However, in the 

event that our hypotheses do become verified, we can expect a very 

interesting study of relationships between the information utility and 

such factors as: the economic prospect of a nation, optimistic or 

pessimistic outlook of an industry, raising or lowering of interest 

rate by the Federal Reserve Board, and so on. 

Other econometric studies. Unfortunately, this treatise is 

not a proper place to extend our study of utility hypotheses any 

further. Let us merely mention that other studies conducted by 

F. V. Waugh (1935) and R. Frisch (1932) seem to reveal similar 

- - 
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logarithmic characteristics. Undoubtedly, there must be other 

statistics which may or may not support our hypotheses. 

Other utility function studies. The question of integribility of 

the total demand in a model in which each customer acts according to 

a cardinal utility function and has a fixed monetary income, has been 

studied by E. Eisenberg of Hughes Aircraft Company (Veinott, 1965, 

p. 296). The axiomatization of utility in the line of von Neumann and 

Morgenstern was pursued by the Stanford Value Theory project by 

Patricks Suppes, Muriel Winet and others (Veinott, 1965, p. 284). 

Ergodic Processes 

Efficient Gambler Recursion. 

If the efficient gambler of Problem 7. 4 were to continue his 

gambling every day, the principle of optimality will yield a recur- 

rence relationship: 

Vn = maximum [p Vn-1(x+y) + (1-p) Vn-1(x-y) ] 
0 < y < x 

with V1 as calculated on page 252 (V1 = V1 
= Emax). max 

with 

We can rewrite this as: 

V1(x) = ln(x) + K 

K = ln(2) + p ln(p) + (1-p) ln(1-p) 

k = 

if p > 2 (gamble) 

if p < 2 (do not gamble) 

n 

0 
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Then, Bellman shows inductively that (Bellman and Kalaba, 1965, 

p. 88) 

Vn(x) = ln(x) + nK 

by writing (assuming the above relationship to hold for n): 

V n+1(x) K = maximum [ p ln(x+y) + nK] + (1-p) [ ln(x-y) + nK] 
0 < y< x 

ln(x) + (n +l)K 

Since the relationship is true for n = 1, the assertion has been 

proven. 

The name "efficient gambler" now becomes clear, We can 

safely venture to assume that Bellman and Kalaba mean an "asymp- 

totically efficient" gambler. 

Markov Chains 

Defintion 7. 6. Markov chain. A system with r states is said 

to be a Markov chain, iff the conditional probability of transition from 

the present state i to the next state j does not depend on how the sys- 

tem arrived at state i. 

Definition 7. 7. Ergodic process. If all states in a Markov 

chain communicate and if a state i exists such that pii > 0, then the 

Markov chain is said to be ergodic. 

From our discussion in Chapter IV (Theorem 4. 2) we note 

that a tableau must be irreducible to be ergodic. The additional 

= 
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requirement is that there is a trapping state with self -feedback loop 

Definition 7. 8. Ergodic set. A subset of states in a system 

such that once the system entered a state in the subset can never be 

left is called an ergodic set. Its states are referred to as recurrent 

states. 

Thus, if a tableau contains a subtableau meeting the require- 

ment of Definition 7. 7, that portion forms an ergodic set. 

If a Markov system is a true description of a system, it must 

contain at least one ergodic set. In other words, regardless of what 

state the system is in, that state must be included in the Markov sys- 

tem. 

Theorem 7. 2. Limiting states. For an ergodic system, all 

the limiting state probabilities are independent of the system's initial 

states. 

Howard's policy improvement scheme. Ronald Howard used 

this property to formulate: 

V(n large) = ng + V 

which became the basis for his value iteration (Value Determination 

Operation) and policy improvement scheme (Policy Improvement 

Routine) developed in his Sc. D. thesis of 1958 (Howard, 1960). Un- 

fortunately, we have no time to discuss his theory in conjunction with 

the tableau using z- transform. Instead,we will show Howard's 

pii' 0. 
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toymaker's problem and equipment maintenance problem solutions 

on tableaux in Figure 7. 17 and 7. 18. The procedure followed is iden- 

tical to that used in previous examples, except that iteration is used 

for n = 0 (the last state), n = 1 (one before last), and so on. We shall 

state the problems and briefly comment on the solutions. Both ex- 

amples, as well as the one for the efficient gambler, are obviously 

ergodic processes asymptotically converging toward Howard's 

formula. 

Example Problem 7. 6. Toymaker's problem. A toymaker 

wishes to sell his business within three months. Each month, he can 

be in either of two states: successful or unsuccessful. If he is suc- 

cessful, he can advertise or not advertize during the following one 

month. If he is unsuccessful, he can either spend money in R + D or 

let the fate decide how successful he will be the following month. The 

transition probabilities and expected profits (or expenditures) are as 

shown on the tableau. What policy should he adopt to present a most 

prosperous picture of his business at the time of sales? 

Solution to Problem 7. 6. For the first two months of the 

three, he should advertise if he is successful, and he should do R + D 

if unsuccessful. The last month, do neither. 

Example Problem 7. 7. Maintenance problem. A taxi -cab 

company expects to trade in their fleet for new models within six 

months. The cabs may be either running in optimal condition 
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(economic gasoline consumption, etc. ) or in suboptimal conditions. 

In either case, the monthly service may be obtained from a quality 

garage for a premium fee, or from a cheap neighborhood garage for 

nominal fee. The fees and the expense of running under the given 

condition for a month is shown on the Tableau in Figure 7.18. From 

the data given on the transition probabilities determine the optimal 

policy for the last six months. 

Solution to Problem 7. 7. Use quality service for the first two 

months regardless of the condition. Use quality service on cabs with 

good running condition only during the next three months. Use the 

cheapest service in both cases in the last maintenance job. 

The value of g is found to be 11.67. 

Control Theory 

Convolution Summation Method vs. State Method 

There are two ways in which discrete time control problems 

are formulated. The first is a weighted sequence of past inputs to 

determine the present state of system. The second is the familiar 

state -representation. It can be shown that both methods are equally 

easily represented by tableaux. In addition, we note that we may in- 

clude the z- transform concept and use z -1 as a delayor relating state 

n to n + 1. The problem of the controllability and observability of a 
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system then becomes the simple problem of finding the eigenvalues 

and diagonalizing the tableau. These are shown on Figures 7. 19 and 

7. 20. 

Continuous Cases 

In general a control problem can be classified as follows: 

1. static vs. dynamic. 

2, continuous vs. discrete. 

3. deterministic, stochastic, adaptive. 

A problem is considered continuous if the time interval 

to < t < tl is examined continuously. 

The following classification of problems and techniques are 

due to D. Michael Intrilligator of the Economic Department of the 

University of California at Los Angeles. 

The formulation was based on his presentation at the 

"Modern Systems Theory and Applications to Large Scale Systems 

Seminar" held at U. C. L. A. during the Summer 1966. 

Control Problem 

Find u(t) that will maximize J, the objective functional of u(t): 

('tl 
maximize J[u(t)] = J I(x, u, t)dt + F[x(tl), ti] 
u(t)eU t0 

f(x, u, t) 
x(to)= 
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z-1 

24 -17 3 

1 

xl(k+1) = x2(k) + 7u(k) 

x2(k+l) = x3(k) + 3u(k) 

x3(k+1) = xi(k) 
24 

x2(k) + x3(k) + u(k) 

y(k) = 3x1(k) - 17x2(k) + 24x3(k) 

X 
1 

= 1/2; 

26/24 -X -9/24 1/24 

1 -X 0 = 0 

0 1 -X 

A = 1/3; X.3 = 1/4 

Figure 7. 19. Original control tableau. 

3 1 

z-1 

1 

z 1 

4 24 

y(k) 

4 
3 

3 
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x3(k+1) 

x3(k) 

x2(k+1) 

x2(k) 

x1(k+1) 

Controllable 
Non- observable 

OUTPUT 

C7--"'"u(k) , 
1 , 

1 

4 

- 
z 1\ 

I 3 

11111 
1 

I 
, 
1-1, 

_ Ilk 
. 1 

1 

N 
P 
U 
T 

cNon -controllable 
g Observable 

C c ntrollable 
Otservable 

Figure 7, 20. Diagonalized tableau. 

l 

X1(k) 

y(k) 
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This was first presented by ), Bolza in 1909 in his "Vorlesungen 

Uber Variationsrechnung" ( "Lecture on calculus of variation, " 

Tebner, Leipzig) and is called problem of Bolza. When F E 0, and 

J = Si, I(x, u, t)dt, this is called problem of Lagrange, while when 

I 0, and J = F[x(t1), t1] is called problem of Mayor.(Cf. figure 7.21), 

Special Cases of the Functional J 

Static case. to = ti (e. g. linear programming problems). 

J(u) = F(x, t) = F(x) 

Minimum time. (e. g. critical path scheduling, PERT). 

J = -(ti-to) or minimize (t1 -to) 

This can arise either: 

by setting I = -1 and F = 0 or, 

by setting I = 0 and F = -t1 (assume to = 0) 

Maximize average value. 

t1 
J - 1 S1(x,u)dt 

1 - to t 
0 

by setting F = 0 and I = 
1 I(x, u) ti - to __ 

Maximum present value. (e. g. engineering economics). 
tl 

J = Serttdt 
t® 

where e -rt is the discounted factor, r is the interest rate. 



Control Variables 
u(t) 

Performance 
Index 

J 

State Variables 
x(t) 

Given 

To be determined 

Types of problems 

re 7. 21. Intrilli ator's Dias ram. 

Objective 
Function 

J(x) = f I(x, u, t)dt 

1 + F x(t1), tl 

Initial State 

x(t ) = x 

Cgpol 

Closed -loop 
Problems 

O 
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Servomechanism problem. 

x(t) = desired state at time t. 
tI 

J = - \ ,,[x(t) - x(t)]dt 
to 

where z = [x(t) - x(t)] is the error at time t. 

(i) n = 1 4j(z) = z2 minimum square error. 

(ii) n > 1 Lp(z) = z'Wz where z'Wz is the weighted square. 

Methods of Solution (to i& ti) 

Calculus of variations (classical approach). Calculus of 

variations deals with the optimization of problems of Lagrange; 
tl 

namely, the cases where F = 0 and J(u) = 1 I(x, u, t)dt, where u(t) 
t J 
0 

is continuous and 3E = u. The standard solution is obtained from the 

Euler's equation: 

aI d aI 
8xát(a) 

Dynamic programming (attributed to Bellman, 1957). This is 

based on the familiar principle of optimality. The objective function- 

al becomes: 

J*(x, t) = maximum [I(x, u, t)dt + J*(x+dx, t+dt)] 
u(t)eU 

where J* must be continuous. 
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Expanding the latter part of the integral in Taylor's series, 

we obtain: 

J *(x +dx, t +dt) = J*(x, t) + aJJ`dx + 
8J 

dt + . .. - ,- ax - at 
This can be used to write the original functional as: 

aJ dx J* 
J *(x, t) = maximum [ I(x, u, t) + J *(x, t) + _ ] 

u(t)eU a x dt a t 

Since J *(x, t) is a term added to each factor evaluated for maximum, 

we can cancel it with the term on the left. By writing dx as f , we 
dt 

obtain Bellman's equation: 

aJ-' maximum [ I(x, u, t) + a J ' f 
at u e U ax 

Of course, the problem is to find the solution to the Bellman's 

equation using presently available methods and equipments, a dilem- 

ma dubbed "curse of dimensionality" by Bellman. 

Maximum principle. This method was developed in the U. S. 

by M. R. Hestenes while at U. C. L. A. in 1958, and by L. S. 

Pontryagin in Russia in 1957 and which appeared in the article, 

"Some mathematical problems arising in connection with the theory 

of optimal systems of automatic control, " in the Proceedings of the 

Academy of Science, USSR (vol. 11, pp. 107 -117, 1957). 

The control problem is solved by introducing the dual vari- 

ables, called variously auxiliary variables, Lagrange multipliers, 

costates, shadow prices, etc. 

P(t) = [pi(t), ..., pn(t)] 

* 

- 

] = . 
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Thus, the problem of maximizing J has become an alternate problem 

of maximizing a Hamiltonian (so named because of its obvious simi- 

larity to the classical mechanics' Hamiltonian, see for example, 

Goldstein, 1950, p. 217, p. 243, etc.) by the proper choice of 

u *(t), the optimal control vector. 

H(x, u, p, t) = I(x, u, t) + p f(x, u, t) 

maximum H(x, u, p, t) = H *(x, p, t) = H(x, u*, p, t) 
u e U - - - 

The procedure is similar to the method of Lagrange multiplier we 

have used to verify the Maximum Information Theorem. 

Since f(x, u, t) = *, we can find p from the following 2n 

equations: 

* _ - 
aH* and f _ a 

a - ax 
with the given boundary conditions: ¢(to) = x. 

The similarity between this approach and Bellman's becomes 

obvious at once: 

a 3* a J* 
- a t = max(H) = maximum [ I(x, u, t) + ax f] 
(Bellman)(maximum) u e U 

An interesting discussion showing the relationships between the 

Pontryagin maximum principle and calculus of variations and dynamic 

programming is presented by Richard E. Kopp (Leitmann, 1962, 

p. 255). 

_ 
- 
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VIII. PAST, PRESENT, AND FUTURE OF TABLEAU METHODS 

'Beauty is truth, truth beauty, ' 

-- -this is all 
Ye know on earth, 

and ye need to know. 
(From "Ode on Grecian Urn" by John Keats) 

Past 

s Tableau Économique 

F. Quesnay (1694 - 1774). The term "tableau" was first used 

by François Quesnay in 1758 to describe a mathematical model of a 

system. His original tableau dealt with the interdependence of eco- 

nomic activities in a farm and showed the repercussion that a given 

increment in output would have on the rest of wealth -producing activ- 

ities. Later he published an expanded version of his tableau to show 

the entire French economy of his time. The reprint of his first 

book (published in Versailles, 1758) was later published by H. Higgs 

in London (1894) (Tintner, 1952, p. 63; Miernyk, 1965, p. 5). 

The current introduction of linear programming in 
economics appears to be an anachronism; it would 
seem logical that it should have begun around 1758 
when economists first -began to describe economic 
systems in mathematical terms. Indeed a crude 
example of a linear programming model can be found 
in the tableau economique of Quesnay, who attempted 
to interrelate the roles of the landlord, the peasant, 
and the artisan (Dantzig, 1963, p. 16). 
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L. Warlas. The concept of the general equilibrium of ex- 

change is usually attributed to the 1874 work by Léon Walras 

"Elements d'économie politique pure" in which an attempt was made 

to simultaneously determine all prices in an economy, including fac- 

tors of production ( "fixed technological coefficients ") as well as the 

prices of finished goods (Miernyk, 1965). The concept of partial 

static equilibrium initiated by Quesnay was made into a general equi- 

librium theory by Walras, and the work was pursued by others such 

as Gustav Cassel of Sweden, Vilfredo Pareto of Italy, and G. C. 

Means of the United States. Means used simple regression tech- 

niques to derive relationships between economic variables such as 

production, employment, and construction. 

W. W. Leontief. The modern Input- Output analysis based 

on tableaux economique is attributed to Professor Wassily W. 

Leontief of Harvard who developed a general theory of production 

along with the first complete input - output tableau for the American 

economy. 

Leontief's basic ideas were first published in his 
article "Quantitative Input -Output Relations in the 
Economic System of the United States, " The Review of 
Economics and Statistics, XVIII (August 1936), 105 -125. 
These ideas were expanded in other journal articles, 
and in 1941 Leontief's first book on input- output eco- 
nomics was published under the title The Structure of 
American Economy, 1919 -1929. An expanded version 
of this book, covering the period 1919 -1939, was 
published by Oxford University Press in 1951 (Miernyk, 
1965, p. 6). 



283 

Figure 8. 1 shows Leontief's tableau économique for the 

year 1939. The figures are in billions of dollars, and the tableau 

is essentially that l a i d out by Leontief, except,of course, for the 

eigen line. The exogenous inputs are listed to the left of the tableau, 

and the endogenous outputs, to the bottom. They are the total sums 

produced or consumed by the respective industries. "n. e. c. " 

stands for chemicals, lumber, and wood industry, furniture, paper, 

printing, and construction. "Other industries" include banking, 

insurance, advertising, various services, rents, laundry, amuse- 

ments, etc. The grouping and figures are from Tintner's book 

(1965, p. 64). 

Matrix Theory 

Linear models. The input- output analysis is but an applica- 

tion of matrix theory taking advantage of the linearity of the eco- 

nomic exchange model. 

While it is certainly dangerous to construct linear 
models of real -world problems, it is difficult to 
forego the esthetic pleasure involved in obtaining 
explicit solutions. How to reconcile the two is one 
of the challenges of model -building (Bellman and 
Dreyfus, 1962, p. 297). 

It is probably not an overstatement to say that the entire linear 

theory is based on the Fundamental Theorem usually called 

"Fredholm's Alternatives. " 



Distribution of 
Outlays Inputs 1 2 3 4 5 7 8 9 10 11 

1. Agriculture and 
food 17.0 0.6 0.6 0.6 0.7 14.5 

2. Minerals 3.8 0. 1 1.2 0.2 1.3 0.9 0. 1 

3. Metal 
fabricating 12.3 0.7 0.1 0.3 0.1 0.3 1. 1 2. 1 0.3 4.2 3.0 

4. Fuel and 
power 8. 9 0. 4 0, 3 0. 4 0. 1 0. 3 0. 7 0. 4 0. 2 2. 6 3. 5 

5. Textile, leather 
and rubber 7. 0 0. 1 0. 3 0. 2 0. 1 0. 8 5. 4 

6. Railroad 
transportation 4.3 1.3 0.3 0.4 1.0 0.5 0.1 0.7 

7. Foreign 
trade 2.8 1.0 0.4 0. 1 0.2 0.5 0.6 

8. Industries 
n. e. c. 19. 2 0. 9 0. 1 0. 4 1. 0 0. 5 0. 6 0. 4 4. 6 5. 2 5. 6 

9. Government 
(taxes) 13.8 1.1 0.2 0.2 0. 1 9.7 2.6 

10. Other 
industries 60.9 8. 2 1. 5 3. 4 3. 1 3. 1 0. 7 0. 1 9. 1 2, 8 28. 9 

11. Household 
(consumption) 

68 68.8 4. 2 1. 1 6. 7 3. 6 2. 9 2. 5 5. 5 7. 9 34. 5 

Outputs 218.8 18.0 3. 8 13.0 9.3 7.5 4.4 3.3 20.2 15.9 59.2 64.3 

Figure 8. 1. Leontief's tableau. for 1939 U. S. economy. 

6 

' 
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Theorem 8. 1. Fredholm's alternatives. For the system of 

equations: 

or AX = Y, 

a 
11 

x 
1 

+a 
12 x2 + . . . + a.lnxn = yl 

a21x1 + a22x2 + . . . + a2nxn 
y2 

an1x1 + an2x2 + . . . + annxn = yn 

j =1 

aijxj = .) with given coefficients a..'s, the following 

alternatives hold: 

(1) Either it has one and only one solution X for each arbi- 

trarily given vector Y, in particular the solution X = 0 for Y = 0; or 

(2) Alternatively, the homogeneous equations arising from 

AX = Y for Y = 0 have a positive number k of nontrivial (not identi- 

cally zero) linearly independent solutions X1, X2, ... , X, which 

may be assumed to be normalized. In the latter case,the transposed 

(dual) homogeneous system of equations: 

A' X' = 0, 

j=l 
al xj 

=l 

aijx = 0) (i .- 1, . . . , n) 
(J = 1, . . . , n) 

where al. = aji, also has exactly k linearly independent nontrivial 

solutions for just those vectors X1, X2, ... , Xk. The inhomogeneous 

system AX = Y then possesses solutions for just those vectors Y 

which are orthogonal to X', , X' . These solutions are de- 
1 

termined only to within an arbitrary solution of the homogeneous 

= 

XL, 

( 

( = ) 



286 

system of equations, i. e. if X is a solution of the inhomogeneous 

system AX = Y and X m is any solution of the homogeneous system 

AX = 0, then X + Xm is also a solution of the inhomogeneous system 

AX = Y (adapted from Courant and Hilbert, 1953, p. 6). 

Example Problem 8. 1. Exchange model. Assume a simpli- 

fied economic tableau with three industries: food, clothing, and 

shelter. By dividing each exchange by the total output of the corre- 

sponding industry, we can obtain a technological coefficient tableau 

as shown in Figure 8. 2. We shall call this Tableau A. Then, the 

input vector X will yield AX = Y output. From our discussion from 

Chapter I (page 38), we have: 

Y Output value 
= 

X - Input value 

However, when the output and input are taken at exactly the same 

instant (zero time interval), or equivalently, when the system is 

static (independent of time), the ratio must approach unity. Thus, 

X = Y for X = 1. Therefore, AX = X, or (A -I)X = 0, and from the 

Fredholm's alternative (2), the determinant of (A -I) must vanish. 

This is equivalent of an eigenvalue problem where X = 1 in (A -X I). 

No. 1 Food 

No. 2 Clothing 

No. 3 Shelter 

Ó.2 0. 3 0.0 

0. 0 0. 0 0. 4 

0. 8 0. 7 0'6 

0. 3 

Figure 8. 2. Exchange model for three industries. 
0, 6 

X) - 
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The eigenvector X turns out to be: 

/0. 15a\ 

X = 0. 4a with +a = Xm any positive number. 

\a / 
Gale (1960) shows how this concept can be extended to tableau 

containing several irreducible subsets. Figure 8. 3 shows how he re- 

arranges a tableau to produce irreducible subsets (very much like 

the Schmidt's Orthogonalization Process) and by finding eigenvectors 

for each subset, obtains the overall tableau vector. 

1 

2 
3 

4 
5 

6 

7 

1 3 4 6 7 

Ó. 2...0. 1 0. 3 

0. 0. 5 

0.2 5 9 0. 
0. 4 

0. 5 O. 1 0.2 
0.8 0.7 15'' 6., 

0. 5 6:'3, 

0. 15a 
0 

1. 8b 
Eigen- vector X = 0. 4a 

b 
a 
0 

1 

4 
6 

3 

5 

2 

1 5 

1/40.20.3 0. 0 0. 1 0. 0 

0. Ó 0. 0 0.4 0. 0 0.0 
0.80.70.6 

"Ó. 
0.-00.0 

5 0,90.20.0 
0.50.10.00.2 

'1/4-0. 2 0. 5 

0.5l0. 

Figure 8. 3. Gale's example (Gale, 1960, p. 271). 

Linear Programming 

Transportation tableau. The stepping -stone method used in 

transportation tableaux is very similar to the staircase chaining 

5 

2 

7 

I 

3 7 2 4 6 2 
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method we use in tracing the flow within a tableau. The transporta- 

tion method is usually credited to T. C. Koopmans (Dantzig, 1963, 

p. 18)1but A. Charries, W. W. Cooper and many others are also in- 

volved in the development (Hadley, 1962) so that it is impossible to 

single out a person as an originator. The merit of the transportation 

tableau is obviously in the explicit use of Primal -Dual relationship 

in reaching the optimal solution. 

Simplex tableau. On the other hand, very few people will dis- 

pute the origin of Simplex tableau. This is clearly the work of 

George Dantzig. One way of interpreting the Simplex method is as a 

very clever use of linearity in solving Lagrange Multiplier problems. 

Because of linearity, taking a derivative becomes simple division. 

Comparing the ratios will determine which of the gi = 0 is the most 

constraining restriction. By using the Dual, we can decide which is 

the steepest gradient to the extremum. 

Of course, there are many interpretations of Simplex method. 

We shall show, later in this chapter, how a Simplex problem could be 

solved within the framework of our tableau. 

Present 

Critical Path Scheduling 

C. P. S. Tableau. The C. P. S. Tableau method was 
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developed in 1964 to assist in the solutions of various problems con- 

nected , with project scheduling. The paper presented at the AIIE 

national convention in 1966 (Riggs and Inoue, 1966) shows the close 

connection between CPS and dynamic programming, and tableau and 

Ford Fulkerson's network problems. In particular, CPS tableau was 

shown to be capable of generating its own cut network (dual network 

of the original problem) so that Ford -Fulkerson's min -cut max -flow 

algorithm could be applied. Until then, the only available method 

was a graphical technique by which a dual graph was lifted from the 

primal. This method had not only the disadvantage of being inacces- 

sible to the operation by computer, but also proved to be impossible 

when the primal network was not planar (Vajda, 1961, p, 55; Inoue, 

1964). 

Although the theoretical problem is thus solved, 
there is still the practical question of finding the 
minimal cut -set. Ford and Fulkerson have given 
a computational algorithm for finding the maximal 
flow... If the network is planar (in the two terminal 
sense) we can draw its dual, assign edge weights 
equal to those of the corresponding edges in the 
original, and use Moore's technique for finding the 
shortest path through a maze. Since the shortest 
path corresponds to a minimal cut -set, the problem 
is solved (Seshu and Reed, 1961, p. 273). 

The algorithm we have derived works equally well for planar as non - 

planar networks. In essence, it is a method by which all communica- 

tions between states are found (either by taking Neumann Inverse, or 

by using CPS tableau's chaining method) and non -communicated states 
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(activities in CPS) which form the edges of the original network are 

identified as sets of states which may co -exist (corresquisite 

activities). This is accomplished by taking the "negative" image of 

the communicated tableau (either the result of Neumann Inverse or of 

chaining process). Thus, we will have an entry (1 or /) in the cell 

corresponding to an empty transducer in the communicated tableau, 

and no entry in the cells corresponding to existing transducers in the 

communicated tableau. If the chain method does yield a path in the 

new dual tableau, this path forms a part of the dual network. 

The computer program for finding all dual paths for a given 

primal network (tableau size 10x10) is shown in the listing of 

Figure 8. 4. Though the program is limited and is rather inefficient 

(FORTRAN),it is operational and has been used successfully on 

IBM 1620. 

Before we leave the topic of computer, let us show another 

application of CPS tableau to computer programming: 

Parallel processing. 

New methods, together with extensions and generaliza- 
tions of old methods, are required to answer the new 
and more exacting questions of modern science and 
technology and, in particular, to make fuller use of 
that scientific factotum, the Sorcerer's Apprentice, 
the digital computer. This remarkable device, even 
in its infancy, with scant understanding on our part of 
its use and potential, has already significantly and 
indeed irrevocably altered the ground rules of mathematics 
and science (Bellman and Kalaba, 1965, p. 3). 
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C THIS PROGRAM WILL PRINT OUT THE TABLEAU SO THAT A DUAL NETWORK MAY BE 

C FOUND ACCORDING TO THE ALGORITHM DEVELOPED IN THE DISSERTATION. 
DIMENSION TITLE(20), ACT( 10, 10), JD( 10), KD( 10, 10) 

C INITIALIZATION. 
1 DO 100 I =1, 10 

DO 100 J =1, 10 
100 KD(I,J) =Ö 

READ 10, ( TITLE(I), I =1, 20) 
10 FORMAT(20A4) 

PRINT 11, (TITLF(I), I =1, 20) 
11 FORMAT(20A4 //) 

PUNCH 11, (TITLE(I), I =1, 20) 
PRINT 12 

12 FORMAT (15HINITIAL TABLEAU!) 
MAX =0 

200 READ 20, ID, CAP, ( ACT(ID, 41=1, 10), (JD(J), J=1.10) 
20 FORMAT (12, F8. 2, 10A4, 1013) 

IF (ID)201, 202, 203 
201 PRINT 13, (ACT(I), I =1, 10) 

GO TO 200 
203 MAX =MAX +1 

DO 300 I =1, 10 

IF (JD( I))301, 300, 302 
301 KD(JD(I), ID)=1 

GO TO 300 
302 KD(ID,JD(I))=l 
300 GO TO 200 

PRINT 15, MAX, MAX 
PUNCH 15, MAX, MAX 

15 FORMAT (12HTABLEAU SIZE, 12, 1HX, 12//23H ACTIVITY DESCRIPTION, 20X. 
131HCAPACITY ID 1 2 34567 89 10) 
DO 400 IN=1, MAX 
PRINT 16, (ACT(IN, J =1, 10), CAP, ID, (KD(ID, I)I =1, MAX) 
PUNCH 16, (ACT(IN, J =1, 10), CAP, ID, (KD(ID, I)I =1, MAX) 

16 FORMAT(10A4.F8.2, 13, 1012) 
400 CONTINUE 

IF (IEXIT) 410, 600, 410 
410 PRINT 1M 

17 FORMAT ( / / /21HCORREQUISITES TABLEAU //) 
PUNCH 17 

DO S00 IL=1, MAX 
NI= MAX -IL 
DO 500 J1 1, MAX 
NJ=MAX-JL 
IF(K(NI, NJ ))501, 500, 501 

501 DO 500 KIr1, 10 

K(NI, KLpK(NJ, KL)+K(NI, KL) 
500 CONTINUE 

IEXIT =1 

DO 530 I =1, 10 

(continued on next page) 
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DO 5301=1, 10 

IF(K(I, J)530, 520, 530 
520 K(I,J)K(J, I) 
530 CONTINUE 

GO TO 202 

600 CONTINUE 
PAUSE 

GO TO 1 

END 

Figure 8. 4. FORTRAN II listing of dual network generation 
algorithm. 
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In electronic data processing where speed of execution of a 

program is one of the primary considerations along with the preci- 

sion and reliability of its operation, it is being recognized that the 

computers of tomorrow (and some of today) will be of multi -processor 

construction. In essence, this means that there will be several pro- 

cessing units (each equivalent of a central processor (CPU) of today's 

computer) working together on a "pool" of works. The pool will con- 

tain all works to be done which are ready for the processors. Each 

processor will pick up a work and return the result to the pool. A 

control unit will use the result in producing further work available 

for processors, or send it to an output unit or a memory storage 

unit. 

All in all, this resembles a cooperative job shop with several 

workers whose activities are coordinated by one foreman. There are 

several advantages to this scheme. The foreman may assign a same 

work to two individuals so that it may compare the results to make 

sure of their accuracy. When a worker is sick or absent for a 

periodic check -up, the factory will only suffer in speed of production 

and not in its capability. 
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Storage BUS 

Storages 

Proc. Proc. Proc. Proc. 
1 2 3 4 

Figure 8. 5. Machine organization for parallel execution 
(Hellerman, 1966: modified). 

Parallel programming. When a computer has parallel pro- 

cessing capability, a series program cannot make a full use of this 

advantage. Traditionally,a statement written in a high -level pro- 

gramming language, such as FORTRAN, had to be changed into a 

chain of single -step machine operations. 

With the advent of a parallel -processor computer, there will 

be a need for generating parallel programs that may be executed by 

several processors at once. H. Hellerman from IBM Corporation 

Systems Research Institute has proposed a "tableau" and "tree" 

approach to the algorithm of generating processor assignment of ma- 

chine operation steps. 

For example: ab + 
{ (d +e)a + (d +c)b] e + gf } c, his "tableau" 

will result in Figure 8. 6. 

Imi 
L 

Central 
Control 

._/P-1 '`- 
-1-- 

Input / Output 

Proc. 
n 

I 



a b * c d e + a * b c d + * + e 

1* 2* 3w 4* 5* 6* 
/ / 1 / / 1 / / 1 

/ / 2 / / 2 

* f 
7:4c 

g 

8* 9*10*11* 
/ 1 

/ 4 
/ / 5 

/ 
/ 6 

/ 
/ 7 

The check marks ( / ) indicate the operands for the operation to their right 
numbered according to their level. The starred numbers are operation 
identification numbers. All operations in one level can be performed simul- 
taneously. All operations corresponding to the smaller level numbers are 
supposed to have been performed previously. 

Figure 8. 6. Hellerman's tableau. 

* + * + 

/ 

/ / 3 

/ 
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The concept of our Polish tableau can be applied directly to 

produce results obtained from Hellerman's tableau. This is shown 

in Figure 8. 7 where ES, EF, LS, and LF are computed according 

to the algorithm developed for the CPS tableau (Inoue, 1964). 

Start 0 
ES +ET =EF 

11 

1 2 3 456 7 8901 
ab*cde+a*bcd+*+e*f *+*+ LF-ET=LS Y 

0 0 0 a / 5 0 5 

0 0 0 b / 5 0 5 

; 0 1 1 

0 0 0 

1= /a<1 6 1 5 

c / c 5 0 5 

0 0 0 d / d 0 0 0 

0 0 0 e / e 0 0 0 

( 0 1 1 2+ / +2 1 1 0' 
0 0 0 a / a 1 0 1 

( 1 1 2 3* / *3 2 1 1 

0 0 0 b / b 1 0 1 

0 0 0 c / c 0 0 0 

0 0 O d 
, 

/ 
, 

d 0 0 0 
. 

( O 1 1 4+ / +4 1 1 0' 
( 1 1 2 5* / *5 2 1 1, 
( 2 1 3 6+ / +6 3 1 2 

0 0 0 e / e 3 0 3 

( 3 1 4 7* 
. . . _ . / *7 4 1 3 

0 0 0 f / f 3 0 3 

0 0 0 g / g 3 0 3 
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in this example. 

End 

Figure 8.7. Polish tableau for parallel programming. 

By letting ET (estimated time) for each operation to be one machine 

cycle, we have arrived at the same result as indicated by Hellerman. 

. 

-. 
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Hellerman's tableau has levels corresponding to the EF (earliest 

finish) in the tableau above, and are referred to as "earliest- stage- 

assignment rule. " Hellerman recognizes that sometimes it is pre - 

ferrable to follow the "latest- stage- assignment rule" though he does 

not show how this is obtained. The levels corresponding to the 

"latest- stage" can be obtained directly from the Polish tableau by 

consulting the LF (latest finish) column. The two schedules were 

constructed by Hellerman as "execution trees" and are shown. on 

Figures 8. 8 . a and b. 

Several advantages of the Polish tableau over Hellerman's 

tableau are obvious. First, it allows the scheduling of various ma- 

chine operations of uneven lengths. It is hardly likely that a simple 

addition takes as much time as a multiplication or division. Second, 

we can also include the "fetch" time, or the time required for 

"access." For example, one time unit may be assigned to the value 

of "a" for getting ready for the next operation. In this manner, we 

can schedule both the "instruction" and the "execution" phases. 
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0 1 2 3 5 6 7 Level 

Figure 8. 8. a. Earliest- stage -assignment. 
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Internal Tableau Operations 

Signal flowgraph techniques. One of the major advantages of 

our tableau method is that the flowgraph compatibility built in the 

method (Chapter III) allows us to make a full use of available signal 

flowgraph techniques. Any operation that can be performed on a 

signal flowgraph can be performed on a tableau as well. Let us pre- 

sent a simple but well known example of economic equilibrium be- 

tween the rate of investment I, and the savings S (Hirsch, 1966). 

Figure 8. 9 should be self- explanatory. 
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I : Rate of Investment 
P: Production of Consumption Goods 
Y: Personal Income 
C: Purchases of Consumption Goods 
S : Savings 
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Conclusion: Rate of Investment = Savings. 

Figure 8. 9. Signal flowgraph example. 
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Simplex Example 8. 2. Restaurant problem. A man has just 

purchased a restaurant with 18 tables and 60 chairs. He has the 

choice of setting one table with two chairs (expected profit $4 per 

hour), one table with four chairs ($8 per hour), two tables with four 

chairs ($10 per hour), or two tables with six chairs ($14 per hour). 

How many of which arrangements should he have to maximize his 

profit? 

Solution to Example 8. 2. Figure 8. 10 shows how this problem 

could be solved by the internal manipulation of the tableau. 
xi 

III Ai 
111111) 

Optimum Solution: 
x4= 6 

x =6 

2x1 + 4x2 + 4x3 + 6x4 < 60 chairs 
1x1 + lx + 2x3 + 2x4 < 18 tables 
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Future 

What we have said is enough to show that the three 
subjects, communication, organization, and control 
are linked in so many ways that the discussion of one 
of them inevitably brings in the two others. Random- 
ness, errors, information, meaning, value, which we 
have mentioned, are important and correlated ideas. 
The new field of engineering that embraces them all, 
called 'systems engineering, ' has absorbed a number 
of earlier technical developments, such as circuit 
theory or those connected with the design and utiliza- 
tion of automatic computers. It is still too early to 
say where systems engineering will lead; while it was 
originally an engineering technique, it is now being 
applied to problems arising in the life sciences, the 
social sciences, and even, in some cases, the 
humanities. Other developments concern logic and 
philosophy (Le Corbeiller, 1963). 

Future Areas of Research 

Considerable amount of work is needed in practically every 

subject we have treated in this treatise, and-undoubtedly there are 

many areas we have not touched which will be vitally important in 

the future of Systems Theory. 

Communication. If we are forced into making the choice of 

area most imminently needing of research, we will not hesitate to 

choose communication and information. The first reason is obvious- 

ly the ever -increasing need for a universally acceptable "language" 

for systems study. Today's complex systems require specialists 

from various backgrounds to work together on a problem, and this is 

- 

e 
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becoming increasingly difficult. Of course, this is precisely the 

reason why the work on this particular treatise was undertaken. 

The second reason is, simply because everything we do is a 

communication of one form or another. Not only will the study of 

communication render our actions more efficient and rational, but it 

will help us to understand our own nature. Perhaps it is not so 

surprising that our nerve system acts according to principles dis- 

covered in Information Theory. After all, it is a communication sys- 

tem in its own right, But what is surprising is that we seem to have 

been coded according to the principles we have uncovered in Informa- 

tion Theory. According to the Nobel Laureate George W. Beadle, 

we are the product of information carried by DNA (Deoxyribonucleic 

acid) and transmitted by the messenger RNA (ribonucleic acid) to 

the ribosomes in the cytoplasm, for the specific synthesis of protein. 

DNA may be described as a four - symbol language, 
while, in the same terms, proteins are 'written' in 
a twenty - symbol language. How is one translated into 
the other? One possibility, considered early in de- 
coding game, is that 'three- letter words' in DNA, of 
which there are sixty -four possibles if the molecule 
is read in one direction only, somehow specify single 
amino acids. Substantial experimental evidence is 
now available supporting the hypothesis of protein 
synthesis... (Beadle, 1963). 

It is even hypothesized that our evolution is the result of mutation in 

the transmission of information due to "noise." 

All these point out to us engineers, that perhaps we should 
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turn our attention to the study of "natural" systems in trying to find 

solutions to some of our most complex systems problems. For in- 

stance, the problem of "adaptive control" or "learning machine" may 

find its answer in deliberately bringing in randomness (a heuristic 

approach rather than deterministic). 

The problem of utility may likewise find its solution in natural 

systems. How does an organism show a preference? Does it have 

a cardinal utility function or only an ordinal one ?, etc... 

Organization. From a purely engineering point of viewla 

more deterministic approach may be easier at first. From this 

standpoint the use of a tableau or a network may provide a suitable 

framework in the study of problems involving stochastic properties. 

We have so far dealt with decision- making problems in which the 

process was Markov in nature. Obviously, the next step will be to 

add a new dimension. This new dimension may be brought in by 

having several decision criteria, by having transition probabilities 

depend on "memory, " or by bringing in "noisy" or "lossy" decision 

criteria, and so on. In other words, the added dimension in an 

added degree of freedom in the corresponding tableau which may be 

manifested physically, time -wise, frequency -wise (probability is an 

expression of frequency), state -wise, or phase -wise. As far as a 

tableau is concerned, it can accomodate any of these dimensions 

with equal ease. Ronald Howard conceived his dynamic programming 
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as a three dimensional model (present state, alternatives, suc- 

ceeding states: 1960, p. '33). This imposed an artificial restriction 

that made dynamic programming problems to be one level lower than 

the recursive games proposed by Luce and Raiffa (1957, p. 461). A 

tableau, as we have seen from Chapter VI, provides an excellent re- 

presentation for tracing back the "memory" or to figure out the 

future strategies to be taken by opponents in a game. 

Control. The problem of control is probably the most diffi- 

cult of all three fields. In order to control,we need a criterium. In 

all likelihood, some sort of utility function will have to be used. The 

application of Bayes' rule in estimating uncontrollable inputs should 

be investigated also. We have the suspicion that the use of trans- 

forms may be very profitable in both cases. The amount of control 

which can be exerted on a model, may perhaps be investigated by 

considering the information capacity of the model as a channel. And 

this brings us back to our starting point: the investigation of informa- 

tion and communication theory problems. 

Systems Theory 

The study of a system became essentially that of communica- 

tion, organization, and control of the system. The communication 

phase corresponds to receiving information, or analyzing the system. 

The organization is obviously the synthesis phase of the systems 
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theory. The control is the decision -making process concerning the 

state of the system. This is indeed what we have proposed in the 

start of our study. 
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