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PROOFS AND COMPARISONS OF THE MANN-DYSON
ESTIMATION THEOREMS

CHAPTER I
Introduction

Let A and B be two subsets of the set of all non~-negative
integers with 0 ¢ A and 0 e¢ B. The sum of the sets A and B is the
set C=A+B ={a+b:ac A, be B} . For n > 0 we denote the
number of positive integers in A which do not exceed n by A(n).
We define B(n) and C(n) similarly.

In 1931 L. G, Schnirelmann (9) introduced the Schnirelmann
density of such a set A, Letting & denote the Schnirelmann density

of the set A we have

@ = g £.b Aln)
n>0 n

Since the formulation of the Schnirelmann density, many in-
equalities involving the Schnirelmann density of the sets A, B and
C have been proved., Among these is an inequality whose proof was
attempted with little success by many mathematicians. Letting a, B
and vy denote the Schnirelmann densities of A, B and C respectively

it was conjectured that y = 1 or y2>2a +B.



Finally in 1942 H. B, Mann (5) obtained the result C(n) = n,

or both C(n) <n and

C(n) 5 min A(m) + B(m)
n — 1<m<n m
mfC

This result implies the conjecture which has since become commonly
known as the apf Theorem of additive number theory., However, the
interest here is not in the Qp Theorem as such but rather in the lower
bound for C(n) obtainable from the above inequality of Mann.,

The above inequality of Mann is explicitly or implicitly con-
tained in later works by Emil Artin and Peter Scherk (1), A. Y,
Khinchin (4), and Leroy Mitchell Damewood (2).

In this thesis we obtain and compare four lower bounds for
C(n), These lower bounds are consequenees of well known theorems
from additive number theory. The word estimate is frequently used
for such lower bounds which explains the title of this thesis, We

display the four lower bounds for C(n) in the form of inequalities

in the following theorem whose proof is delayed until the next chapter.

Theorem 1,1, Let C=A +B with 0e¢ A and 0e¢ B, If

n >0 then C(n) = n, or both C(n) <n and

A(m) + B(m)
m

(2) C(n) 2 min
1<m<n



(b) C(n) 2 min A(m) + B(m)
1<m<n m
m¢ C
. A(m) + B(m) +1
(c) C(n) 2 min (n+1) - 1,
1<m<n m+l
. Am) + B(m) +1
(d) C(n) 2 min (n+l) ~ 1,
1<m<n m+l
m¢ C

As we point out in Chapter II, part (b) is an immediate conse~
quence of the inequality of Mann (5). Also we show how parts (a)
and (c) are obtained from two results from a paper by J, G, Van der
Corput (10),

Van der Corput credits F, J, Dyson (3) with obtaining part (a)
in a more general form, Van der Corput uses a modification of the
Dyson method to obtain both of his results, Since parts (a) and (c)
are consequences of these two results we refer to parts (a) and (c) as
Dyson's estimates of C(n), Dyson's result in a weaker form also
occurs in a book by Hans-Heinrich Ostmann (8) and in a book authored
jointly by I, Niven and H, S, Zuckerman (7), and part (a) is obtainable
from these works also,

Also we point out in Chapter II that part (d) is an immediate
consequence of a result which appeared in a later paper by Mann (6),

His proof of this result is very condensed and difficult to read,



In Chapter II we establish the four estimates of C(n) dis-
played in Theorem 1,1 as consequences of the above mentioned results
and in Chapter III we compare these estimates,

Since C(n) is an integer, perhaps of greater interest than
the lower bounds for C(n) are the smallest integers greater than
or equal to these lower bounds, With this in mind we establish in
Chapter IV a theorem analogous to Theorem 1, 1, which we recall
yields our estimates of C(n), but with these estimates replaced by
the smallest integers greater than or equal to these estimates, We
then compare these new estimates also,

In Chapter V and VII we rewrite with much greater detail the
proof of the result of Mann (6) which gives part (d) of Theorem 1, 1,

In Chapter VI we give a variation of part of Mann's proof,



CHAPTER II 5

Proofs of the Mann-Dyson Estimation Theorems

In preparation for the proof of Theorem 1,1 we establish a
well known lemma which will be used frequently throughout this thesis,
Also, we list without proof a theorem of Van der Corput (10) and a

theorem of Mann (6).

Lemma 2.1, Let C=A +BwithOe Aand 0e B, If m>0

and rn( C then A(m) + B(m) + 1 < m.,

Proof: For each ae A such that 0 <a <m we have
(m - a) { B, for if we assume (m - a) ¢ B for some ae¢ A then
a t(m - a) =m e C contrary to hypothesis, Also 0<m - a <m,
There are A(m) + 1 such integers not in B, Thus we have

B(m) <m ~[A(m) + 1], or A(m) +B(m) + 1 <m.,

Theorem 2.2, (Van der Corput) Let C = A + B with 0¢ A

and 0 e B.
(a) If
A(m) + B(m) > ym for m = 1,2,...,n, where y <1 and
n is a positive integer, then
C(m) 2ym for m =1, 2, ..., n;
(b) If

A{m) +B(m) +12y(m+1) for m =1, 2,...



vy <1 and n is a positive integer, then

Cm)+12 ym+1) for m=1,2,...,n,

Theorem 2.3 (Mann) Let C=A +B with 0e A and 0 e B,
For n >0 either C(n) =n, or C(n) <n and there exist numbers

m and m, such that m ¢ C, 0<m <n, mlf C, and

0< m, <max(m,n - m - 1), for which

Cm)+l , Afm) +B(m) +1 , | S+l Clm,)+1

n+tl = m+l n+l m, +1

For convenience we introduce some additional notation. Let

f and g be functions of the integer m such that f(m) =

A(m) + B(m)

A(m) + B(m) + 1
— .

m+l

and g(m) = Also, define the sets
of integers S and S* by S = {m: 1<m <n} and
Sk = {m: 1<m<n, m¢ C}. Clearly S* is a subset of S.

We now restate Theorem 1.1 in the following form,

Theorem 2.4 Let C = A +B with 0e¢ A and 0e¢ B. If

n>0 then C(n) = n, or both C(n) <n and

(a) C(n) > min nf(m)
meS

(b) C(n) 2 min nf(m)
me S¥%

(c) C(n) 2 min (n+l)g(m) - 1
me S



(d) C(n) 2 min (n+l)g(m) - 1.
me S*%

Proof, Part (b) is merely the result of isolating C(n) in

the inequality of Mann (5). Thus

C(n) 2 min A(m):lB(m) = min nf(m).

1<m<n me S%
m¢ C

From Theorem 2.3 we have that C(n) =n, or C(n) <n and

there exists an m suchthat m§¢ C, 1<m <n, and

C(n)+1 > A(m) + B(m) +1
n+l - m+l

Thus,

A(m) + B(m) +1
m+l )

A(m)+B(m) +1

m+l -1

C(n) = (n+1) 12> min (ntl)
1<m<n

m¢ C

I}

min (n+l)g(m) - 1,
m e S¥

which establishes part (d).
We make use of Theorem 2. 2 to prove parts (a) and (c). First

we prove part (a).

A(m) +B(m) _

If min 1, then in Theorem 2, 2 (a) we
m
I1<m<n
choose y = min w);_B(r_n_) and have
1<m<n

A
C(n) 2 min (m)m+ B (m) , so that
n 1<m<n




1<m<n m me S
A
If min (m) ;B(m) > 1 then A(m) +B(m) >m >m - 1

1<m<n
for allm, 1<m <n, sothat me C by Lemma 2,1 and C(n) = n,
We prove part (c) in a similar fashion,

A(m) + B(m) +1

If min < 1, then in Theorem 2, 2 (b)
m+]1
I1<m=<n
A
we chose y = min (m) +_‘]_31(m)+1 and have
1<m< m
1
9—(-2)% 2 min A(m)r;l|-+]31>(m) L , so that
n 1<m<n
A
Cn) > min (een2@IBEIFL 0 iy e(m) - 1.
- m+l
1<m<n me S
+ +
I min A EBO AL o Am) +Bm) 41 >

m+1]1 or Am) + B(m) >m >m -1 forallm, 1<m <n, so that

me C by Lemma 2.1 and C(n) n,



CHAPTER 111
Comparisons of the Mann-Dyson Estimation Theorems

Having obtained the four lower bounds for C(n) of Theorem

2.4, we now compare them,

Theorem 3.1, Let C=A+B with 0e A and 0e¢ B, If

n~>0 and C(n) <n, then

(2) min n f(m) £ min n f(m);
meS me S¥

(b) min n f(m) < min (n+l)g(m) - 1;
m e S¢ me S*

(c) min n f(m) < min (n+l)g(m) - 1;
me S me S

(d) min (n+l)g(m) - 1 £ min (n+l)g(m) ~ 1;
me S me S*

(e) there exist examples where min n f(m)< min(n+l)g(m)-1,
me S% meS

min n f(m) = min (n+l)g(m)-1, and
me S* meS

min n f(m) > min (n+l)g(m) - 1.
me S* me S

Proof of parts (a) and (d). Since the minimum of a subset is
not less than the minimum of the set we have parts (a) and (d).
To establish parts (b) and (c) we obtain the following

lemma.
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Lemma 3,2, If 0<m<n and g(m) <1, then
(n+l)g(m) « 1 > n f(m).

Proof, We have

mf(m) + 1

> =

and so mf(m) + 1 <m + 1, or f(m) <1, Hence
n-m?> (n - m)f(m).
Addition of m(n+1)f(m) to each member yields

m{n+l)f(m) +n - m > n(m+1)f(m) ,
whence

(n+1){m f(m) + 1] « (m+1)> n(m+1)f(m),

Finally, dividing by m+l we obtain

m f(m) + 1 .

(ntl)g(m) - 1 = (n+l) ]

> n f(m),
Now we prove part (c). Let m, be any m ¢ S for which

(n+l)g(m) - 1 is minimized. Then by hypothesis and Theorem

2.4 (c), we have

n > C(n) 2 min (n+l)g(m) -1
meS

= mtgm)) - 1,

so that n+l > (n+l)g(ml), or g(m;) <1. If m, =n, then
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(n+l)g(ml) -1 =A() +B(n) =n f(ml),
and if m, < n we have by Lemma 3, 2 that
(n+l)g(m ) = 1> n £m),
Hence in either case

min (n+l)g(m) -1 = (n+l)g(ml) -1
meS

2n f(ml) 2 min n f(m),
meS

and the proof of part (c) is complete,

We obtain a proof of part (b) by replacing S by S* and
Theorem 2,4 (c) by Theorem 2,4 (d) in the proof of part (c),

We prove part (e) by giving an example of each type whose
existence is asserted,

Example 1, Let A =1{0, 2, 8,9, -..} and B =
{0, 4,8, 9,---}. Then C=1{0, 2, 4, 6,8, 9, --}. Let n=7,

Then min(n+l)g(m) -1 =8 g(7) -1 = 2, while min n f(m) =

me S me S*
7 £(1) = 0, so that min (ntl)g(m) - 1 > min n f(m).
meS me S*
Example 2, Let A ={0, 1, 2, 11, 12, --+-} and B =

{o, 4, 8, 11, 12,-+.}, Then C=1{0,1, 2, 4, 5,6, 8,9, -+}, Let
n =7, Then min (nt+l)g(m) -1 =8g(7) -1 =3, while min n f(m) =
meS me S

71(7) = 3, so that min (ntl)g(m) - 1 = min n {f(m),
meS me S¥%
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Example 3, Let A ={0, 1, 2, 8, 10, 11, 23, 24,-*-} and
B ={0, 3,5, 8,9, 13, 23, 24,---}. Then C={0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

+++}. Let n=12, Then min (ntl)g(m) - 1 =13g(7) -1 = %Z-
meS
and min n f(m) = 12£f(12) = 9 so that min (n+l)g(m) - 1 <min n f(m).
me S* meS m e S%*

This completes the proof of Theorem 3.1,

Theorem 3,3, Necessary conditions for equality to hold in
parts (a), (b), (c) and (d) of Theorem 3.1 are respectively as follows,
In the case of parts (a), (c) and (d) the condition is also sufficient.

(a) min f(m) = min f(m);
meS me S

(b) min f(m) = f(n);
me S*
(¢) min f(m) = f(n);

meS

(d) min g(m) min g(m).
meS me S¥*

Proof. Parts (a) and (d) are immediate so we turn to parts
(b) and (c).
Proof of part (¢). If min f(m) = f(n), then by Theorem 3.1

meS
(c), we have
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min (n+l)g(m) - 1 2 min n f(m)
me S meS

n f(n) = A(n) + B(n)

(n+l)g(n) -1

2 min (n+l)g(m) - 1,

meS

Consequently, min (n+l)g(m) - 1 = min n f(m),

me S meS
Conversely, suppose min (n+l)g(m) -1 = min n f(m),
me S me¢ S
Let m, by any m ¢ S for which g(m) is minimized, Now g(m1)<1,

for assume g(ml) 21, Then for each me S we have

A(m)+B(m)+ 1
m+l !

1<g(m,) <glm) =

and so A{m) + B(m) +12m +1>m, Hence me Cby Lemma 2,1
and it follows that C(n) = n, contrary to the hypothesis of Theorem

= n, for assume m_ < n, Since

3.1, Thus g(ml) <1, Now m 1

1

g(ml) <1 then we have by Lemma 3, 2 that

min (n+i)g(m) -1 = (n+1)g(m1) -1
me S

>n f(ml) 2 minn f'(m),
me S

contrary to hypothesis, Thus m, = n, and

min n f(m) = min (n+l)g(m) -1
me S m e

(a+l)gm ) - 1

A(n) + B(n) = n f(n),



14
so that min f(m) = f(n), This conpletes the proof of part (c),
me S

Proof of part (b), This is similar to the necessity part of the
proof of part (c), Suppose min (n+l)g(m) -1 = min n f(m), Let
me S% m e S

m, be any m e S* for which g(m) is minimized, Now g(ml) <1,

for assume g(ml) 21 and let m e S*. We have

A
lsg(ml) < g(m) = (m) +rf+(1m) e )

and so A(m) + B(m) +12 m +1>m, Hence me C by Lemma 2,1,

which is contrary to m e¢ S*, Thus g(ml) <1, Now m, = n, for

assume m, <n, Since g(ml) <1, then we have by Lemma 3, 2 that
min (n+l)g(m) -1 = (n+1)g(m1) -1

me S*

>nf(m.) 2 min n f(m),

I T mes

contrary to hypothesis, Thus m, =mn, and

min n f(m) = min (n+l)g(m) -1
me S* m e S%

= (n+l)g(n) -1

= A(n) +B(n) = n f(n),

so that min f(m) = f(n). This completes the proof of part (b) and
m e S* '

Theorem 3, 3,

We would like to have found that condition (b) is also sufficient
for equality to hold in part (b) of Theorem 3,1 but this is not always

SO
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When n ¢ C condition (b) is a sufficient condition for equality
to hold in part (b) of Theorem 3,1 by a similar argument to that used
in showing that condition (c) is sufficient for equality to hold in part
(c) of Theorem 3,1, That is, if n ( C, then n ¢ S* by our definition

of S*, If min f(m) = f(n), then by Theorem 3,1 (b), we have
me S¥*

min (n+l)g(m) - 1 2 min n f(m)
me S¥ me S*

nfn) = A(n) + B(n)

1

(n+l)g(n) -1

> min (n+l)g(m) -1
me S%

Consequently, min (n+l)g(m) - 1=min n f(m) when ny¢ C and
me S* me S%*

min f(m) = f(n),.
me S*

We now show an example where n e C and condition (b} holds
but equality does not hold in part (b) of Theorem 3, 1,

Example 4, Let A = {0,1,4,6,8,13,14,---} and B =
{o,1,4,5,7,13,14,-+--}, Then C=1{0,1,2,4,5,6,7,8,9,10,11,12,

13,°**}. Let n

12, Then S* = {3}, and so

2 8 _2
min f(m) =£(3) = = and f(n) =£(12) = —= ==~
me S* 3 12 3
However,
min (n+l)g(m) - 1 = 13g(3) - 1 = 13(%) -1 =3-Z— ,
me S*

while
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min n f(m) = 126(3) = 12 (3 = 8.
m € S* 3

Thus condition (b) is not sufficient for equality to hold in part (b) of
Theorem 3.1 when ne¢ C,
We also would like to note that although we have no necessary
and sufficient condition for the equality min (n+l)g(m) - 1 = minnf(m)
me S me S¥

to hold, a necessary and sufficient condition is readily found for the

equality

(3. 1) min n f(m) = min (nt+l)g(m) - 1
me S me S*

to hold, A necessary and sufficient condition for equality (3. 1) to

hold is the condition

(3. 2) min g(m) = min g(m) and min f(m) = f(n).

me S me S* me S

To prove this we see that if condition (3. 2) holds then by
Theorem 3, 3 parts (c) and (d) equality holds in parts (c) and (d) of
Theorem 3,1, Thus equality (3, 1) holds,.

Conversely, if equality (3. 1) holds then equality must hold in
parts (c) and (d) of Theorem 3,1, By Theorem 3, 3 parts (c) and (d)
both parts of condition (3. 2) hold,

We now give a theorem guaranteeing examples for all eight
cases of equality and strict inequality in parts (a) through (d) of

Theorem 3. 1.
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Theorem 3,4, There exist examples where each of the eight

cases of equality and strict inequality hold in the following inequalities:

(a) min n f(m) < min n f(m);
me S me S*

(b) min n f(m) £ min (n+l)g(m) - 1;
m e S¥ me S%

(c) min n f(m) £ min (ntl)g(m) - 1;
meS meS

(d) min (ntl)g(m) - 1 £ min (ntl)g(m) - 1.
mesS me S*

Proof. We consider the following example.
Example 5. Let A = {o,1,2,4,5,...} and B = {0,4,5,...}.

Then C = {0,1,2,4,5,...}. Let n=3. Then

min f(m) = min f(m) = f(n) = 2 and min g(m) = min g(m) = é
meS me S* 3 me S m e S* 4

Since min f(m) = min f(m), then by Theorem 3,3 (a) we
meS m e S¥*
have an example illustrating the equality portion of Theorem 3, 4 (a),
2
Since min nf(m) = 3 = 2 and min (n+l)gm) -1 =
min (m) ) m S*( g(m)

4 (42) -1 =2, we have an example illustrating the equality portion of

Theorem 3, 4 (b).

Since min f(m) = f(n), then by Theorem 3,3 (c) we have an
me S

example illustrating the equality portion of Theorem 3. 4 (c).
Since min g(m) = min g(m), then by Theorem 3.3 (d) we
meS me S%

have an example illustrating the equality portion of Theorem 3, 4 (d).
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Now consider previously listed Example 3 with n = 12, Then

min f(m) = f(n) = -3-, min f(m) = 2 , min g(m) ==, and
meS¥* 4 meS T " meS 8
min g(m) = 10
me S* 13°
Since min f(m)# min f(m), then by Theorem 3.3 (a) we have
meS me S*

an example illustrating the strict inequality portion of Theorem 3, 4 (a).

Since min f(m) # f(n), then by Theorem 3.3 (c) we have an
meS

example illustrating the strict inequality portion of Theorem 3. 4 (c),

Since min g(m)# min g(m), then by Theorem 3,3 (d) we
meS m e S*

have an example illustrating the strict inequality portion of Theorem
3.4 (d)

Now consider previously listed Example 1 with n =7, Then
min f(m) =0 and f(n) =

me S% 7

Since miél* f(m) # f(n), then by Theorem 3.3 (b) we have an
me

example illustrating the strict inequality portion of Theorem 3,4 (b).

This completes the proof of Theorem 3, 4,



CHAPTER 1V 19
Integral Estimates

We proceed now to establish several theorems analogous to
Theorems 2.4, 3.1, 3.3 and 3. 4 but with each estimate replaced
by the smallest integer greater than or equal to the estimate. For
convenience we introduce further notation and establish another

lemma,

Lemma 4.1. Let a be any real number and let {a» denote
the smallest integer greater than or equal to a. Then if b 1is also

any real number and

then
2> 2 (v
Proof: If a = b, then <a> = <b> and the lemma is

true. If a>b then {p)> can be at most equal to {2y . Thus

<a> 2> <b> and the lemma is proved.

Theorem 4. 2. l.et C = A +B with 0e Aand 0Oe B, If
n >0 then C(n) = n, or both C(n) <n and

(a) C(n) 2 <m1n nfm)>

(b} C(n) Z< min n f(m)> ;

me S*

(c) C(n) 2 (nrqneiré (n+1)g(m) - 1 ;
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(d) Cin) Z<Inmlsn>= (n+l)g(m) - 1>?
€ <

Proof: Since C(n) is an integer <C(n)> = C(n), Thus in-
equalities (a) through (d) of Theorem 4, 2 are just the inequalities (a)
through (d) of Theorem 2. 4 with the members of the inequalities
replaced by the smallest integers greater than or equal to the members,
Since the inequalities of Theorem 2, 4 hold, by Lemma 4, 1 the in-

equalities of Theorem 4, 2 must also hold and the theorem is proved,
Theorem 4,3, Let C=A+B with 0¢ A and 0e¢ B, If
n>0 and C(n) <n, then

(a) miré nf(m)> < <min nf(m));

€ m e S¥*

b i f < i +1 -1y
( )<§11:ns*n (m) > (nr:lené [pthg(m) )
(c)<min nf(m)> < <min (n+l)g(m) - 1> ;

meS meS
‘d’<m“:i§ (n+1)g(m) - 1) < <mn;irsl%<n+1)g<m) - 1)
(e) there exist examples where

( min n f(m)> < <min (n+1)g(m) - 1> ,
me S% me S

i f(m)) = in (n+l)g(m) - 1), d
<m1n n m> &qn?g n+l)g(m > an

me S*%

<mn:ig*n f(m)> > <nr:'1€né (n+l)g(m) - 1> .

Proof, We prove inequalities (a) through (d) first, Since

inedualities (a) through (d) of Theorem 4.3 are just the inequalities
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of Theorem 3,1 parts (a) through (d) with the members replaced by
the smallest integers greater than or equal to the members, by
Lemma 4.1 inequalities (a) through (d) of Theorem 4, 3 also hold.

To prove part (e) of Theorem 4, 3 we need only note that the
examples used in the proof of Theorem 3.1 (e) also suffice for the
proof of part (e) of Theorem 4.3, This completes the proof of
Theorem 4. 3,

We now prove one more lemma in preparation for further

theorems,

Lemma 4,4, If a and b are any non-negative real numbers,

m 1is any integer, and n is any positive integer such that

<na +m>=<nb +m> = K,

then
<a> = <b> .

Proof. Let K'=K -1, Thensince na+m = nb+m
=K' + 1, we have na +m=K'+61, where 0<6151, and
nb +n=K'+62, where 0<625_1, Let K" = K' ~m, Then
na = K" + 61 and nb = K" + 62. We may write K'" =kn + r where

k and r are integers and 0 <r<n, Then na=kn+r + 6, and

r+o r+ 6
nb=kn+r+62, Hence a=k+-——n—' and b=k+—-n—-—, Since
0<6lsland 0<r<n, then 0<r<615n, and so

r +6 r+6
0<—+ L <1, Similarly 0< ——=% <1, Finally,
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a = k+1 = b , and the proof is complete,

Theorem 4,5, Necessary conditions for equality to hold in
parts (a) and (d) of Theorem 4, 3 and a sufficient condition for equality

to hold in part (c) of Theorem 4, 3 are respectively:

r;nné *f (m)>

() {min n tm)) = {nfm) .

(a) <rrnnins f(m) »

(b) { min_ g(m) )

Proof, We prove parts (a) and (b) first, If equality holds in
parts (a) and (d) of Theorem 4, 3 then by Lemma 4, 4 equality also
holds in parts (a) and (b) of Theorem 4.5,

We prove part (c) next, If <min n f(m)> = <n f(n)> , then

meS
by Theorem 4, 3 (c) we have

{ r;neiré (n+l)g(m) - 1y > <r;n€iré n £(m))

={n tm)y = (A + B(n)>
= {(n+higMm - )

Zgnrr:ig (ntl)g(n) - 1> 3

Consequently, <m1n (ntl)g(m) - 1> <m1n n f(m)> and part (c) is
meS €S

proved,

Theorem 4, 6, Parts (a) and (b) of Theorem 4, 5 are not

sufficient conditions for equality to hold in parts (a) and (d) .
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respectively of Theorem 4, 3 nor is part (c) of Theorem 4,5 a neces-

sary condition for equality to hold in part (c) of Theorem 4, 3,

Proof: We will give examples which will establish Theorem

4,6, In Example 3 withn = 12 we have

min f(m) = £(7) = 2 ,
meS 7
and
: - -2 .3
mn:uél*f(m) = f(12) = 1 - 3

Thus, <n1:lnin f(m)> = <min f(m)> = 1 and the equality of part (a)
€S m e S%

of Theorem 4,5 holds, However,

min n f(m) = 12f(7) = 48 s
meS 7
and
min n f(m) = 12f(12) = 9,

m e S%
Then <rrr:rnr§ n f(m)> =1k <11;niré>:n f(m)> = 9, Thus the equality of
€ € O
part (a) of Theorem 4,5 is not a sufficient condition for equality to

hold in part (a) of Theorem 4, 3,

Similarly, in Example 3 with n = 12 we have,

. 5
min glm) = g(7) = 3 .
meS
and
10
1 = 1 = ——
rIrlneué*g(m) g(12) 3
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Thus, (rnmig g(m)> = gnmirsl* g(m)> = 1 and the equality of part (b)
€ €

of Theorem 4,5 holds, However,

min (n+l)g(m) -1 13g(7) -1 = .58_7 ’

mesS

and

min (n+l)g(m) -1 13g(l2) -1 =9,

me S*
Then, ¢ min (n+l)g(m) - 1)=8 <nr1nin (n+l)g(m) -1 = 9 so that the
<m € é g > 7 € S g >
equality of part (b) of Theorem 4,5 is not a sufficient condition for
equality to hold in part (d) of Theorem 4, 3.

Finally, in Example 4 with n = 4 we have

nr:leiré n f(m) = 4f(3) = 4(‘2‘) ='§‘ ’

and

i - L N 1
min (n+l)g(m) - 1= 5g(3) - 1 =5(-1=7

so that <nr:r1in n f(m)> = grqnin (n+l)g(m) - >= 3 and equality holds in
€S €S

part (c).of Theorem 4,3, However, min n f(m) = =

m eS 3

4f(4) = 4 so that { min n f(m)» # {(n f(n)) . Hence, the equality of
m eS Y
€

while n f(n) =

part (c) of Theorem 4,5 is not a necessary condition for equality to
hold in part (c) of Theorem 4,3, This completes the proof of Theorem
4,6,

Theorem 4, 7. There exist examples where each of the
eight cases of equality and strict inequality hold in the following

inequalities:
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(a) mei% n f(m)> < gneiré*n f(m)> ;

(b) mins*n f(m)> < é;neiréén+l)g(m) - 1> ;

(c)<min n £(m) sg;niré (n+1)g(m) - 1) ;
€

meS

(@ ( min (n+1)g(m) - D SQPS% (a+hglm) - 1)

Proof: The examples used in the proof of Theorem 3, 4 will

also suffice for the proofs of the corresponding parts of Theorem 4. 7,
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CHAPTER V

Proof of Mann's Lemma by Mann's Method

In this chapter we prove a lemma in preparation for the proof
of Mann's Theorem (Theorem 2, 3)., We introduce the following addi-

-1 and for n2>2m let

tional notation, For any set let C(-1)

C(m,n) = C(n) - C(m), A gap of C is a positive integer not in C,
Mann's Lemma. Let C=z A+ B, 0¢ A, 0¢e B, For n>0,

n¢ C there exists a number mf¢ C suchthat m =n or 0<m <£21—

for which

Cln)+1, A(m)+B (m)+1 C(n)+1 1
(5.1 Loy SRR L (cmom-1)+1 o nem)] —
Proof: For any n>0, nf C, let n, < n, <--- < n_ =n be

the gaps of C less than or equal to n and form the differences di =

n -n, l1<i<r, Define a sequence of numbers e,,e_,...,e_ and
r i 1’72 J

construct the sequences of sets B = BO’ Bl’ ce s ZBJ and C =

CO, Cl’ s CJ according to the following rules,

Rule 5.1, For 1< j<J, ej is the least number in Bj 1

for which there are integers a e A and ns,nt{ Cj-l such that
2 te +d =n,
{5. 2) a eJ . ¢
(If there exists no e € B0 let J =0, Then the following

lemmas leading to the proof of Mann's Lemma are still true.)
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Rule 5,2, The number ej + dS € B’lJS if and only if equation

(5. 2) holds,

Rule 5,3, For 1<j<J define Bj = Bj-l uB>!j< and Cj =
A+ Bj'

Rule 5, 4. For no numbers ns,nt{ CJ does a + eJ+l+ dS =n
for any a e A, €141 € BJ,

The construction places the numbers n_,n, { Cj-l into the
set Cj if equation (5. 2) holds. Thus n_ and n, are not available
choices of gaps of Cj which will satisfy equation (5, 2) in the construc-
tion of Cj+l‘ Therefore the construction continues until we either
place every n, 1<i<r, into some set Cj’ 1£j<7J, or else
for any n, which are left it is not possible to find an a and an e
satisfying equation (5. 2).

We now prove several lemmas concerning the construction
which will enable us to complete the proof of Mann's Lemma.,

Lemma 5,1, The integer n_ is not in Cj’ 0<j=<17.
Proof, The integer n_ is not in C0 by hypothesis, Assume

1 £j<J. Equation (5. 2) holds if and only if

n_ e Cj’ nr{ Cj-l’

a + ej + dt =n_. Hence equation (5. 2) implies here that a + ej + dr =
n where n ¢ C, .. Since d =0 and e, e B, ,, then n =

u u j=1 r j j=1 u

a+ ej € A+ Bj 17 Cj 1 which is a contradiction,

Lemma 5,2, The sets B,

1 and BﬁJS are disjoint, 1<j< J.
J-
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Proof. Since BJ%< exists then equation (5. 2) holds, Assume

Bj ] and B’lJS have an element in common. Then for some b%* ¢ Bj ]

and some e. + dS € BﬂJS we have b* = ej + ds' Hence nt = a+ ej +

dS = a + b¥*, Since b¥% ¢ Bj ) we have nt € Cj 1 On the other hand

nt{ Cj | since equation (5, 2) holds, This is a contradiction.
Lemma 5.3. The numbers ej form a non-decreasing se-

3 < < « s . <
quence, That is, €, Se, = _eJ.

Proof., If 1<j<J -1 wehave e,,. ¢ B, If ej+1e B

jt+l j j-1

then eJ. < e,

j+1 by the minimal property of ej stated in Rule 5, 1,

If e € B*Jf then e,

= <
j+1 ej+di so that e, < e

j+1 jToite

For the remainder of the proof of Mann's Lemma denote the

least gap of C

i 1< <
by n_. Since nr{ CJ we have Sn_ <n_.

J
Lemma 5.4, C.n -n -1, n) =n,
J'r s r s
Proof. Let n, be any gapof C where n -n -1<n, <n_.
i r s i r
Then 0€<n,+n -n_ <n_ and by our choice of n_ we have
i s r s s
n,+n -n € C_, Hence n,+t+n -n =a+b', b'e B_, thatis
i s r J i s r J
- =b! i
n_-a b' + di' Since n_ { CJ, by Rule 5, 4 we have n, e CJ.

Hence every integer in the interval n_-n_ - l<x< n_ is in CJ

and since nr{ CJ we have

- -1 = - - -1 -1=
CJ(nr s ? nr) oy (nr Ps ) By

Lemma 5. 5, CJ(nr -n_ - l,nr) - C(nr-nS - l,nr) = BJ(ns) -B(ns).
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Proof, For J = 0 the lemma is trivially true, Hence suppose

J2 1 For each j{l £j<J) we have that Bj = Bj 1 uB’lJS and that

B, mB*j is empty. Hence Bj(ns) = Bj-l(ns) + B*j (ns), and so

J
BJ(ns) - B(ns) = ZB’?(nS) .
j=1

We prove the lemma by establishing a biunique correspondence be-

tween gap n, of C, where n, e C., and n -n -l<nt_<_nr, and

t J r s

integers e +d, where e +d e B¥ and 0<e +d <n .
m t m t m m t s

If n, € CJ, then for some u, m{(l<u<r, 1<mg<J) we

havea+e_+d =n_ where n, n ¢ C
m u t u m

and n,n € C ., Then
t u m

-1 t

ate td =n andso e +d, e B¥, Converselyif e +
m t u m t m m

d, e B¥ (1 <m<J), then for some u(l £u<r) we have a + e
t m m

+d, = d Si
¢ =0y where nu,nt/ Cm-l an nu,nte Cm. ince CmC_ CJ

then nt € CJ.

Now assume that 0<e, +d <n . Then e, +n -n <n
J t s J r s

and so n 2n_-n te.2n -n >n_-n_ -1, By definition n <n .
t r s J r s r s t r

Finally assume n_-n_- 1< n, S_nr. Then corresponding to

n_ we have e +d e B%¥ for some m(l <m <J), Since n ¢ C_,
t m t J r J

< d > >
then n . <n_ and so ¢ 0. Hence e +dt 0., Suppose em+d

m t

>n . Then e >n_+-d =a+b¥* b¥eB_ ., If m<j<J, then
s m s t J

b* ¢ B==Js for if b¥* e B=er, then by Lemma 5, 3 we have e; 2e >a+

b* = a + ej + di > ej, which is a contradiction. Hence since b¥* ¢ BJ
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we must have b¥* ¢ B

. From the manner in which e +d, is
m-l m t

constructed from n_ we have nt[ C_ . Also n_ £ C_ ., since
n_ ¢ CJ. Finally since a + b* + dt =n_ we have from Rule 5, 1 that
e < b* which contradicts e_ > a + b¥* 2b*, Hence e +d <n ,
m m m t s

This completes the proof,

We are now prepared for the proof of Mann's LLemma,

By Lemma 2, 1 we have n_ ZA(ns) + BJ(ns) + 1, By Lemma

i - -1 > "+ 1 i

5. 4 this becomes CJ'(nr ns , nr) _A(ns) + BJ(ns)‘ + 1, Using

Lemma 5.5 we obtain

- . | > 1
C(nr ns ,nr) _A(ns) + B(ns) + 1,

or finally
: 2 + 1 - «1
(5. 3) C(nr) _A(ns) B(ns) +1+ C(nr n_ )

By adding 1 to both members of inequality (5, 3) and dividing by

n + 1 we obtain

A + - - 1) +1
Cln) +1 N (ns) B(ns) + 1‘ . C(nr n_ )
n +1 — n +1 n +1

s s s

Upon multiplying the left member by unity in the form of
n +1+n -n
S r S

I = n +1
T

we have

n +l4+n -n A(ns) + B(ns)+ | C(nr n_ Y+ 1

S
[C(nr)+l][(n +1)(n_+1) 12 n +1 TR A1 ’
] r ] ]
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or

- A +1
n_ n_ o (ns)+B(ns)

. 1
CorI T+ GanmaIni2 n 1 ¥
r S r S

C(nr -n_- 1) +1 |

n +1
s

By distributing [C(nr) + 1} in the left hand member and transposing

we obtain

C(nr)+l A(ns)+B(ns)+ 1 C(nr-ns-l)-i-l [C(nr)-i-l] (nr-ns)

> -
n 41 = n +1 L m +D)(@ +1)
r S S S r

1
By factoring ;—-ﬁ-from the last two terms of the right hand member

s
we obtain
C(n )+l A(n )+B(n )+1 Ch Ml
z > s S +[Cn -n -1) +1 « —=——n -n )] 1
n +1 = n +1 r s n +1 r s n +1 °
r s r s

which is inequality (5. 1) of Mann's Lemma with n_=n and n_ =m,

If n_ < n_, then by LLemma 5, 4 there are no gaps of CJ in
the interval n -n -1<x<n, Hence n <n -n, or
n r s r s r s
n_ < —2£ , which completes the proof of Mann's Lemma.
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CHAPTER VI
Proof of Mann's Lemma by Artin and Scherk's Method

In 1943 Emil Artin and Peter Scherk (l) published a paper in

which they establish the inequality

(6. 1) C(n) 2 A(m-1) + B(m-1) + C(n-m)

for n2m; n, m;( C without the assumption 0 ¢ A, 0 ¢ B.

By a similar construction to that of Chapter V they obtained a
number of lemmas preliminary to inequality (6. 1) which are quite
similar to the lemmas of Chapter V. This similarity in the lemmas
plus the similarity of inequality (6. 1) to inequality (5. 3) of Chapter V
prompted us to attempt a proof of Mann's Lemma by using Artin and
Scherk's method but with the additional assumption of 0 ¢ A, 0 ¢ B.

The following proof of Mann's Lemma will be found to be quite
similar to the proof of Mann's Lemma given in Chapter V. For con-
venience we restate Mann's Lemma.

Mann's Lemma. Let C= A +B, 0e¢ A, 0 e B. Forn >0,
n¢ C, there exists a number m ¢ C suchthat m = nor 0 <m < % )

for which

Ci(n)+1 S A(m)}+B(m)+1
n+l — m+1

C(n)tl 1
(6.2) n+l

+ [Cn-m-1)+1 - (n-m)] 1
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Proof: For any n>0, n¢ C let n1<n2<"'<nr=n be

the gaps of C less than or equal to n_ and form the differences

d. =n -n, 1l <i<r. Define a sequence of numbers e,,e_,...,e
i r i - 1’72 J

and construct the sequences of sets B = BO’ Bl’ R BJ and

C=C.,C.,...,C_ according to the following rules,

J

Rule 6.1, For 1<j<7, ej is the least number in Bj-l

for which there are integers a e A and ns,nt{ Cj 1 such that
(6. 3) ate. +d =n
] ] t

(If there exists no e ¢ BO let J =0, Then the following

lemmas leading to the proof of Mann's Lemma are still true.)’

Rule 6.2. For 1<j<J let

C’? = {nS: n_ satisfies equation (6. 3)}
B% = {e,+d: n_ e C*%}.
J J s s J

Rule 6.3, For 1<j<J define Bj and Cj by
B. =B, , wB* and C, = C., ., wC¥%,
jooiel o] A EL
Rule 6. 4. For no numbers ns,nt{ CJ does a + © 141 + ds =1

5+1 € By

for any ae A, e
We now state and prove several lemmas concerning the con-

struction which will enable us to complete the proof of Mann's Lemma.,

Lemma 6.1. For 0<j<J the set CJ. is contained in A+Bj'
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Proof: For j =0, C0 = A+ BO’ and the lemma holds
trivially. Assume the lemma is true for j =k (0 <k <J). Let

c be any element of C . If ce.C then c ¢ A+BkCA+B

k+1 k’ k+1°

If ce C’lfd_l, then by Rule 6,1 and 6, 2 there exists an a e A

+d, e B*
i

k+1°

+
and an ni{ Ck such that a + e K41

+d. =
K1 di ¢ where e

which completes the proof of the

L3
Thus ce A + Bk+lCA * B,

lemma,

Lemma 6,2, If a+be A +Bj and 0<a +b,<_nr, then
atbe Cj (0<j;<T).

Proof. For j = 0 the lemma is trivial, Assume the lemma

is true for j = k (0 £k <J), Let a+beA+Bk+l, where ace¢ A

and be B and 0<a+b<n ., If be B, then a+be C CC
r k k+

k+l’ k .
* =
If be Bk+l then a+b=a+ ej+l + di where ni{ Ck' If

%*
at+by Ck then by Rule 6, 2 we have a + be Ck+l Cck+l’ and the

proof of the lemma is complete,
Lemma 6, 3. The integer n_ isnotin C, 0<£j<7J.
J
Proof, The number nr is not in C by hypothesis, Assume
0

n e C,, n_ ¢ Cj 1<j<J. Then equation (6, 3) holds so that

r j 1’

+ + = i + =
a ej di n_ for n_,n ¢ Cj-l' Equivalently a ej n.. Also
a + ej <n_ since di 20, Since a + eJ. € A+ Bj L we have by Lemma

6. 2 that n =a + eJ. € Cj which is a contradiction, Hence n ¢ CJ

l’

are disjoint

Lemma 6,4, The sets B’;,‘ and B*; 1

(1<j<).
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Proof, Let ej +d, be any element of B*Jf. Then for some
i

aeA and n_ ¢ C, we have e, +d, =n_-a, If n -ae B*
k j= J i k

1 K j-1

then a+(nk-a)=n eA+Bj Since 1 <n <nr we have

k 1’ k~—

n, e Cj-l by Lemma 6. 2, contrary to nk/ Cj-l' Thus e +

di/ B*j and B*JE and B*j are disjoint,

1 1

Lemma 6.5. The integers ej form a non-decreasing

h 3 < K v 0. <
sequence, That is, el_ez_ Sey.

Proof, If 1£j<£J -1 wehave e,,, ¢ B If e e B

jtl i’ jtl j=-1

then ej <e, by the minimal property of ej stated in Rule 6, 1,

j+l

If e, . e B¥% then e,
J

= =d hat e, .
j+1 j+1 ej isota eJS.e,

jtl

For the remainder of the proof of Mann's Lemma denote the

i <
least gap of C_ by n_. Since nr/ CJ we have 1$ns <n.

J
Lemma 6,6, For 1<j<J we have C*¥(n -n -1,n ) = B¥(n ).
jir s r j s
Proof, Since n_g C%, then C%(n -n -1,n ) represents
r j jvr s r :

-1l<n, <n.,
1 r

the number of integers n, e CB?‘ such that n_-n
s

For each n, € C’°JE we let correspond ej + di € B”j. This is
a biunique correspondence between C*JE and B*j by Rules 6,1
and 6,2, We have 0 < ej + di < n_, for suppose ej + di> n_. Then
e.”n -d,., Now d, >0 forif d. =0 wehave n -n, = 0 or
s i i i r i
n_=n, But n_¢ C% which contradicts n, e C*, Hence n -d,<n
i r j i j s i s

r

sothat n -d, e C Thus e,”n -d, = a+b¥%, b¥e B_, Since
s i j S i J

I

ej>a+b*< we must have b¥* ¢ B’SE for if b* ¢ B’? we have ej>a+

eJ. +d, which is not possible, Lemma 6.5 extends the exclusion of
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b* to all sets B’rkn,j+l <m <£J, But since b¥%* ¢ BJ we must have

b* € Bj ;- By Rule 6.1 we have ej < b* which contradicts ej > a +b*,
Also since 0<e,+d.,<n, then e, +n -n,<n and so
i s j T i s
n2n -n te, 2n -n >n -n =1, Furthermore n, <n . Thus
i r s j r s r s i r

- - = *
Cym, -m -1, n) = Biln,).
Lemma 6.7, C_(n -n -1, n)=n.
J'r s r s

Proof, Let n, be any integer such that n_-n_- 1< n, < n_.

Then 0 <n, +n -n_ <n . Byour choiceof n wehave n, +n -
i s r s s i s

n € C.. By Lemma 6,1 we have n, +n -n =a +b', b'e B_, thatis, |
r J i s r J

n -a=b'+d,. Since n ¢ C_ then Rule 6.4 tellsus n, e C_.
s i s J 1 J

Hence each n, suchthat n -n -1<n,<n isin C_ and n_¢ C
i r s i r J r J

so that

- -1 - - -1) -1
CJ(nr ns ’ nr) o, (nr ns )

- = - -1 -
Lemma 6. 8, BJ(nS) B(ns) CJ(n nS , )
- -1
C(n n_ , n ).

Proof., By construction BJ =B \.JB*1 ... \JB*& and since

B#% and B* | are disjoint we have

BJ(ns) = B(ns) + B*l(ns) + v +B*3(ns)
or

BJ(ns) -B(ns) = B*l(ns) +---+B>E<I(ns).
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Also by construction C

J

I CuC*lu_,,uC* where C’lJf

are disjoint, Thus

and C*%
J-l

- - - - - - - oo £ - -
CJ(nr n l,nr) C(nr n_ l,nr) C’I"(nr n_ l,nr) + +CJ(nr n_ l,nx)_

By Lemma 6, 6 we obtain
CJ(nr-nsfl,nr) -C(nr-ns-l,nr) = BJ(ns) - B(ns),

which completes the proof of the lemma.

We are now prepared for the completion of the proof of Mann's
Lemma.

By Lfe*mma 2.1 we have n_ ZA(ns) + BJ(ns) + 1,

By Lemma 6.7 this becomes

-n -1 > +1
Cyln -n -1, n)2A()+Bn) :

Using Lemma 6. 8 we obtain

- - >
C(nr nS 1, nr) A(ns) + B(ns) +1,
or finally,
C > A - -1
(nr) - (ns) + B(ns) +1+ C(nr ns ).

But this is just inequality 5. 3 which was seen in Chapter V to imply

Cn )+l A(n )+B(n )+l C(n Yl
d s s +[C(nr-ns-l)+l-

)]

n +1°

> —-r——(n-n
n +1 - n +1 n +1 T s
T s r s



which is inequality (6. 2) of Mann's Lemma with n_=n and n_

If n < n_ then by Lemma 6,7 there are no gaps of CJ

in the interval n -n -1<x<n . Hence n <n -n, or
r s r s r s

n

n <—

2

s which completes the proof of Mann's Lemma.,

’
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CHAPTER VII
Proof of Mann's Theorem

A consequence of Mann's Lemma is the following possibly
more interesting result.

Mann's Theorem (Theorem 2.3). Let C= A+B, 0¢ A,
0e B, For n>0 either C(n) = n, or C(n) <n and there exist

numbers m, m. such that m[C,0<m5_n, mIKC,0<m <

1 1

max(m,n - m - 1), for which

Cln)+l | A(m)+B(m) +1 , |G+l Clm))+1

n+l - m+l1 n+l - m1 +1

(7. 1)

Proof: The proof is by induction, Let n =1, If 1le C.we
have C(l) = 1. If 1 ¢ C then (7.1) holds for m, =m = 1 since
C(l) = A(l) = B(l) = 0. Let k be an integer greater than 1, We
assume that Mann's Theorem is valid if 1 < n < k and show that it
is valid for n = k.,

If C(k) = k the theorem holds trivially, so we assume

C(k) <k, Let k* be the least gap of C. Then k¥ <k. If k* = k

Clk) +1 _A(K)+B (k) +1
k+l =  k+l

then in lviann's Lemma we have m = k and so
Thus Mann's Theorem holds by choosing m = m, = k., Hence we
assume k% < k,

Our hypotheses, including the inductive hypothesis, now include

C(k) <k; 1 £k* <k and
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) +
C(k)+l , Afm") + Bm)+l _ |C(k)+] Clmy) +1
kK'+1 m'+1 K'+1 mi+1 |’

(7. 2)

where m' § C, 0 <m' <k'; m‘lﬁ C, 0< m'l <max(m', k' - m' - 1),
: 5

for all k' such that k* < k' < k, We now consider two cases,

C)+1 _ CkN+1

Case 1, For some k' we have

k+1 = k'+l

Then
Ck)+l | C(k)+1 C(k") +1 +C(k')+l
k+l k+1 T k'+l k'+1

By inequality (7. 2) we obtain

Y+1
C(k)+1 > C(k)tl C(k")+1 +A(m')+B(m')+l N C(k')+1 C(ml)+
k+l = | k+l k'+1 m'+1 k'+l m} +1
"y+1
. AmHIBmMHTL | | SR+ Clmy)+
= m'+l k+l h m!+1 |
where m'y¢ C, 0 <m' <k' <k, m'l{ C, and 0<m'1_<_
max(m', k' - m' - 1) <max(m', k -m"' - 1), Thus the theorem is true
for n = k,
1 1
Case 2. For all k' we have Cll) + < Clki) + 1 If we

k+l k'+1
assume ke C, then C(k) = C(k-1) + 1, Hence since C(k) <k we

have

1

(k+1)[C(k=-1) + 1] (k+1) C(k)

1

k C(k) + C(k)

< kC(k) +k = k[C(k) + 1],
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or

Ck-1)+1 _ C(k) +1
(k-1)+1 Kk+1

But since k-1 is a value of k' this contradicts the assumption of
this Case 2 so that k¢ C.

Since k¢ C, by Mann's Lemma there exists an m* ¢ C,

(N1 oy

m* =k or 0 <m < =, such that

C(k)+1 >A(m*)+B(m>l=)+l " C(k)+1 " 1
(7.3) S 2= +[C ) 41 F T (om)] —
If m* = k we have
C(k)+1 > Ak) +B(k) +1
k+1 - k+1 !
and Mann's Theorem holds with m = m, = k,

1

k
If 0 <m*< > then k - m* - 1 2m%*, Since m#* is an
integer not in C there exists a largest integer not in C which does
not exceed k - m* - 1, Denote this number by m*l so that

m¥ _<_m>li <k -m%* -1, m*l ¢ C. Then by definition of m*l we have

(7. 4) C(k-m*-1) - C(m¥%) = (k-m*-1) - m¥,

Now m*l +12> C(m*l) + 1 so that

(k-m*-1-m¥%) (m¥ +1) > (k-m¥*=-1-m¥)[C(m*)+1]
or

(% +1)[Cm%) +1] + (k-mk =1 -m% ) (m% +1) 2 (k-m#*)[C (m#)+1].
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Factoring m«l +1 from the left hand member we obtain

(m% +1)[C(m#)+1 + (k-m*-1-m#)] 2 (k-m#*)[C(m#)+1].

Thus by equation (7. 4),

(m¥ +1)[C(k-m*-1)+1] > (k-m*)[C(m*)+1],

so that
B 1
5 Cl-m*-1)+1 Clm?h) +
-2) k-m* m>1<1+l

k
Since 0 < m%* < > then

k-m¥
m¥* +1

(7. 6)

Now from inequality (7. 3) we have

C(k)+1 N A(m*) + B(m*) + 1 N [C(k-m>:<-l)+1 _Ck) +1 | K
k+1 - m* + 1 k -m* k+1 mk+1

By inequalities (7.5) and (7. 6) this becomes

%)+1
Ck)+1  A(m¥) + B(m*) + 1 s [C(m ) C(k)+1 ] k-m*
k+l — m* + 1 m*l+l T k+1 m*+1

Since k* ﬁm*l <k -m* - 1 <k, then

%) 4+ 1
C(m#) C(k) + 1

- >0
m*l +1 k+1

by our assumption for this Case 2, Hence, because of inequality (7. 6)

we have
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sk 1
C(k) +1 A(m>!<)+B(m>:<)+l s C(k)+l i C(m l)+

k+1 m+1 k+1 m*l+l

k
Furthermore, 0 < m%* < E< k, m#* ¢ C, m41 ¢ C, and
0< m*1 < max(m*,k - m* - 1), so that Mann's Theorem is again
true for n = k, This completes the proof by induction of Mann's

Theorem, Note that the inductive hypothesis was not used in Case 2,
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