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PROOFS AND COMPARISONS OF THE MANN -DYSON 

ESTIMATION THEOREMS 

CHAPTER I 

Introduction 

Let A and B be two subsets of the set of all non -negative 

integers with 0 E A and 0 e B. The sum of the sets A and B is the 

set C = A + B = {a + b: a E A, b E B} . For n > 0 we denote the 

number of positive integers in A which do not exceed n by A(n). 

We define B(n) and C(n) similarly. 

In 1931 L. G. Schnirelmann (9) introduced the Schnirelmann 

density of such a set A. Letting a denote the Schnirelmann density 

of the set A we have 

a = g. .Q, b. A(n) 
n>0 n 

Since the formulation of the Schnirelmann density, many in- 

equalities involving the Schnirelmann density of the sets A, B and 

C have been proved. Among these is an inequality whose proof was 

attempted with little success by many mathematicians. Letting a, ß 

and y denote the Schnirelmann densities of A, B and C respectively 

it was conjectured that y = 1 or y > a + ß. 



Finally in 1942 H. B. Mann (5) obtained the result C(n) = n, 

or both C(n) < n and 

C(n) 
n 

min A (m) + B (m) 
1Sm<n m 
m C 
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This result implies the conjecture which has since become commonly 

known as the a ß Theorem of additive number theory. However, the 

interest here is not in the aß Theorem as such but rather in the lower 

bound for C(n) obtainable from the above inequality of Mann. 

The above inequality of Mann is explicitly or implicitly con- 

tained in later works by Emil Artin and Peter Scherk (1), A. Y. 

Khinchin (4), and Leroy Mitchell Damewood (2). 

In this thesis we obtain and compare four lower bounds for 

C(n). These lower bounds are consequences of well known theorems 

from additive number theory. The word estimate is frequently used 

for such lower bounds which explains the title of this thesis. We 

display the four lower bounds for C(n) in the form of inequalities 

in the following theorem whose proof is delayed until the next chapter. 

Theorem 1, 1, Let C = A + B with 0 E A and 0 E B. If 

n > 0 then C(n) = n, or both C(n) < n and 

(a) C(n) > min 
1 <m<n 

A(m) + B(m) 
m n 

- 



3 

(b) C(n) > min 
1<m<n 
m/ C 

A (m) + B (m) n, 

A(m) + B(m) + 1 
(c) C(n) ? min mtl (n+1) - 1, 

1 Sm<n 

(d) C(n) ? min A (m) mB im) + 1 (n+1) - 1, 
1<m<n 
m C 

As we point out in Chapter II, part (b) is an immediate conse- 

quence of the inequality of Mann (5). Also we show how parts (a) 

and (c) are obtained from two results from a paper by J. G. Van der 

Corput (10), 

Van der Corput credits F, J. Dyson (3) with obtaining part (a) 

in a more general form. Van der Corput uses a modification of the 

Dyson method to obtain both of his results. Since parts (a) and (c) 

are consequences of these two results we refer to parts (a) and (c) as 

Dyson's estimates of C(n). Dyson's result in a weaker form also 

occurs in a book by Hans -Heinrich Ostmann (8) and in a book authored 

jointly by I. Niven and H, S , Zuckerman (7), and part (a) is obtainable 

from these works also, 

Also we point out in Chapter II that part (d) is an immediate 

consequence of a result which appeared in a later paper by Mann (6), 

His proof of this result is very condensed and difficult to read, 
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In Chapter II we establish the four estimates of C(n) dis- 

played in Theorem 1, 1 as consequences of the above mentioned results 

and in Chapter III we compare these estimates, 

Since C(n) is an integer, perhaps of greater interest than 

the lower bounds for C(n) are the smallest integers greater than 

or equal to these lower bounds, With this in mind we establish in 

Chapter IV a theorem analogous to Theorem 1, 1, which we recall 

yields our estimates of C(n), but with these estimates replaced by 

the smallest integers greater than or equal to these estimates, We 

then compare these new estimates also, 

In Chapter V and VII we rewrite with much greater detail the 

proof of the result of Mann (6) which gives part (d) of Theorem 1, 1, 

In Chapter VI we give a variation of part of Mann's proof, 



CHAPTER II 

Proofs of the Mann -Dyson Estimation Theorems 

5 

In preparation for the proof of Theorem 1. 1 we establish a 

well known lemma which will be used frequently throughout this thesis. 

Also, we list without proof a theorem of Van der Corput (10) and a 

theorem of Mann (6). 

Lemma 2.1. Let C= A +B with 0e A and O E B. If m >0 

and m / C then A(m) + B(m) + 1 < m. 

Proof: For each a E A such that 0 < a < m we have 

(m a) / B, for if we assume (m - a) E B for some a E A then 

a +(m - a) = m E C contrary to hypothesis. Also 0 < m - a 5.m. 

There are A(m) + 1 such integers not in B. Thus we have 

B(m) < m -[A(m) + 1 ] , or A(m) +B(m) + 1 S m. 

Theorem 2. 2. (Van der Corput) Let C = A + B with 0 e A 

and 0 E B. 

(a) If 

A (m) + B(m) > Ym for m = 1 , 2, ... , n, where Y < 1 and 

n is a positive integer, then 

C(m) > ym for m = 1, 2, ... ,n; 

(b) If 

A(m) + B(m) + 1 > Y(rn+ 1) for m = 1, 2, ... ,n, where 
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y< 1 and n is a positive integer, then 

C(m) + 1 >_ y(m + 1) for m = 1, 2, ... , n. 

Theorem 2. 3 (Mann) Let C = A + B with 0 e A and 0 e B. 

For n > 0 either C(n) = n, or C(n) < n and there exist numbers 

m and m 
1 

such that m / C, 0 < m S n, 

0 < ml <max(m,n - m - 1), for which 

C (n) + 1 A(m) + B(m) + 1 

n+1 - m+1 + 

mu C, and 

C(n)+1 C(m1)+1 

n+1 m1+1 

For convenience we introduce some additional notation. Let 

f and g be functions of the integer m such that f(m) = 

A (m) + B (m) A(m) + B(m) + 1 

m and g(m) = m +1 
Also, define the sets 

of integers S and S* by S = {m: 1 < m < n} and 

S* = {m: 1 < m < n, m j C} . Clearly S* is a subset of S. 

We now restate Theorem 1. 1 in the following form. 

Theorem 2.4 Let C = A + B with 0e A and 0 B. If 

n > 0 then C(n) = n, or both C(n) < n and 

(a) C (n) > min n f (m) 
mE S 

(b) C (n) > min n f (m) 
me S* 

(c) C(n) > min (n+ l) g (m) - 1 

me S 

. 
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(d) C(n) ? min (n+ 1) g (m) - 1 . 

me S* 

Proof. Part (b) is merely the result of isolating C(n) in 

the inequality of Mann (5) . Thus 

C(n) > min n 
A (m) + B (m) min n f (m) . 

m 
1 < m <n m e S* 

m C 

From Theorem 2. 3 we have that C(n) = n, or C(n) < n and 

there exists an m such that m / C, 1 < m < n, and 

C(n) +1 A(m) + B(m) + 1 Thus, 
n +1 - m +1 

C(n) > (n+1) 
A (m) + B(m) + 1 

1 > min (n+1) 
A(m) +B(m) + 1 -1 

m+1 1<m<n m+1 

m C 

= min (n +l)g(m) - 1, 
m E S* 

which establishes part (d). 

We make use of Theorem 2. 2 to prove parts (a) and (c). First 

we prove part (a) . 

If min A(m) +B(m) < 1, then in Theorem 2. 2 (a) we m 

choose 

1 <m <n 
A(m) +B(m) 

y = min m 
1 <.m<n 

and have 

C (n) > min A (m) + B (m) 
, so that m 

n 1 <m<n 

/ 



A (m) + B (m) 
C(n) > min n = min n f(m). m 1<m<n m e S 

If min 
1<m<n 

8 

A (m) + B (m) > 
1 then A(m) + B(m) > m > m - 1 m 

for all m, 1 < m < n, so that m e C by Lemma 2. 1 and C(n) = n, 

We prove part (c) in a similar fashion. 

If min 
1 <m <n 

A (m) + B (m) +1 < 1, 
m+1 

A (m) + B (m) + 1 we chose y = min m +1 1<m<n 

C(n) +1 

n +1 
min 

1<m<n 

C(n) > min (n+1) 
m+1 

then in Theorem 2. 2 (b) 

and have 

A(m) + B(m) + 1 

m+1 , so that 

A(m) +B(m) + 1 
1 =min (n+1) g(m) - 1. 

If min 
1 <m <n 

1<m<n me S 

A(m) + B(m) + 1 

m+1 > 1 then A(m) + B(m) + 1 > 

m + 1 or A (m) + B(m) > m > m - 1 for all m, 1 < m < n, so that 

m e C by Lemma 2. 1 and C(n) = n. 



CHAPTER III 

Comparisons of the Mann -Dyson Estimation Theorems 

Having obtained the four lower bounds for C(n) of Theorem 

2. 4, we now compare them. 

Theorem 3. 1. Let C = A + B with 0 e A and 0 E B. If 

n > 0 and C(n) < n, then 

(a) min n f(m) < min n f(m); 
meS meS* 

(b) min n f(m) <min (n+ l) g (m) - 1; 

mESic meS* 

(c) min n f(m) < min (n +l)g(m) - 1; 

meS meS 

(d) min (n +l)g(m) - 1 < min (n +l)g(m) - 1; 

meS me S* 

(e) there exist examples where min n f(m)< min(n +l)g(m) -1, 
me S* meS 

min n f(m) = min (n+ 1) g (m) -1, and 
meS* meS 

min n f(m) > min (n +l)g(m) - 1. 
meS meS 

Proof of parts (a) and (d). Since the minimum of a subset is 

not less than the minimum of the set we have parts (a) and (d). 

To establish parts (b) and (c) we obtain the following 

lemma. 

9 
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Lemma 3, 2. If 0 < m < n and g(m) < 1, then 

(n+l) g(m) - 1 > n f(m). 

Proof, We have 

1>g(m) mf(m)+1 
m+1 

and so m f(m) + 1 < m + 1, or f(m) < 1, Hence 

n - m > (n - m) f (m) . 

Addition of m(n+ 1)f(m) to each member yields 

m(n +l)f(m) + n - m > n(m +l)f(m) , 

whence 

(n+1)[m f(m) + 1] - (m+l)> n(m+l)f(m), 

Finally, dividing by m +1 we obtain 

(n+l)g(m) - 1 = (n+l) 
m fmml+ 1 

> n f(m). 

Now we prove part (c). Let m1 be any m E S for which 

(n +l)g(m) - 1 is minimized. Then by hypothesis and Theorem 

2.4 (c), we have 

n > C(n) > min (n+ l ) g (m) - 1 

mES 

= (n +l)g(ml) - 1, 

so that n +l > (n +l)g(ml), or g(ml) <1. If m1 = n, then 

= 

1 
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(n+l)g(ml) -1 = A(n) + B(n) = n f(ml), 

and if m l< n we have by Lemma 3. 2 that 

(n+l)g(ml) - 1 > n f(m1) 

Hence in either case 

min (n +l)g(m) - 1 = (n +1)g(ml) - 1 

meS 

> n f(m ) > min n f(m), 
meS 

and the proof of part (c) is complete. 

We obtain a proof of part (b) by replacing S by S* and 

Theorem 2,4 (c) by Theorem 2.4 (d) in the proof of part (c). 

We prove part (e) by giving an example of each type whose 

existence is asserted. 

Example 1, Let A = {0, 2, 8, 9, } and B = 

{0, 4, 8, 9, }. Then C = {0, 2, 4, 6, 8, 9, }. Let n = 7, 

Then min (n +l)g(m) - 1 = 8 g(7) - 1 = 2, while min n f(m) = 

meS meS* 
7 f(1) = 0, so that min (n +l)g(m) - 1 > min n f(m). 

meS meS* 

Example 2. Let A = {0, 1, 2, 11, 12, } and B = 

{0, 4, 8, 11, 12, } Then C = {0, 1, 2, 4, 5, 6, 8, 9, }, Let 

n = 7, Then min (n +l)g(m) - 1 = 8 g(7) - 1 = 3, while min n f(m) 
meS me Si< 

7 f(7) = 3, so that min (n +l)g(m) - 1 = min n f(m). 
me S me S* 

= 
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Example 3. 

B = {0, 3, 5, 8, 9, 

6, 7, 8, 9, 10, 11, 

} Let n = 12. 

Let A = {0, 1, 2, 8, 10, 

13, 23, 24, } . Then 

13, 14, 15, 16, 17, 18, 

Then min (n +1)g(m) - 1 

meS 

11, 23, 24, 

C =10, 1, 2, 

19, 20, 21, 22, 

= 13 g(7) - 1 = 

} 

3, 4, 

23, 

57 

and 

5, 

24, 

and min n f(m) = 12f(12) = 9 so that min (n +l) g(m) - 1 <min n f(m). 
me S* meS mES* 

This completes the proof of Theorem 3. 1. 

Theorem 3. 3. Necessary conditions for equality to hold in 

parts (a), (b), (c) and (d) of Theorem 3. 1 are respectively as follows. 

In the case of parts (a), (c) and (d) the condition is also sufficient. 

(a) min f(m) = min f(m); 
meS meS* 

(b) min f(m) = f(n); 
m e S* 

(c) min f(m) = f(n); 
me S 

(d) min g(m) = min g(m). 
meS meS* 

Proof. Parts (a) and (d) are immediate so we turn to parts 

(b) and (c). 

Proof of part (c). If min f(m) = f(n), then by Theorem 3. 1 

me S 

(c), we have 



min (n+ 1) g (m) - 1 > min n f(m) 
m e S m e S 

n f(n) = A(n) + B(n) 

= (n +l)g(n) - 1 

min (n +l)g(m) - 1, 

meS 

Consequently, min (n +l)g(m) - 1 = min n f(m), 
me S meS 

Conversely, suppose min (n +l)g(m) - 1 = min n f(m), 
m e S m E S 

Let m1 by any m e S for which g(m) is minimized, Now 

for assume g(m1) ? 1. Then for each m e S we have 

1 < g(m1) 
l ) 

<g(m) 
g(m) m+1 

A(m) +B(m) + 1 

13 

g(ml) < 1 

and so A(m) + B(m) + 1 >m + 1 > m. Hence m e C by Lemma 2, 1 

and it follows that C(n) = n, contrary to the hypothesis of Theorem 

3, 1, Thus g(m1) < 1, Now m1 = n, for assume m1 < n, Since 

g(m1) < 1 then we have by Lemma 3. 2 that 

min (n +l)g(m) - 1 = (n +l)g(m1) - 1 

m e S 

> n f(mi) > min n f (m) , 

meS 
contrary to hypothesis, Thus m1 = n; and 

min n f(m) = min (n+ 1) g (m) - 1 

m e S m e S 

= (n+l)g(ml) - 1 

= A (n) + B(n) = n f(n), 

= 
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so that min f(m) = f(n), This completes the proof of part (c) , 

m e S 

Proof of part (b), This is similar to the necessity part of the 

proof of part (c). Suppose min (n +1)g(m) - 1 = min n f(m). Let 
mES* m ESic 

ml be any m E S* for which g(m) is minimized. Now 

for assume g(ml) > 1 and let m E S*. We have 

A (m) + B (m) + 1 
1 < g(ml) < g(m) - m+1 

g(ml) < 1, 

and so A(m) + B(m) + 1> m + 1 > m. Hence m E C by Lemma 2, 1, 

which is contrary to m E S*. Thus g(ml) < 1, Now m1 = n, for 

assume m1 < n, Since g(ml) < 1, then we have by Lemma 3, 2 that 

min (n +l)g(m) - 1 = (n +1)g(ml) - 1 

me S* 
> n f(m1) > min n f (m) , 

m E S* 

contrary to hypothesis. Thus m1 = n, and 

min n f(m) = min (n +l) g (m) - 1 

meS* mES* 

_ (n+ l) g (n) - 1 

= A (n) + B (n) = n f (n) , 

so that min f(m) = f(n). This completes the proof of part (b) and 
m S* 

Theorem 3, 3, 

We would like to have found that condition (b) is also sufficient 

for equality to hold in part (b) of Theorem 3. 1 but this is not always 

so. 

E 
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When n ( C condition (b) is a sufficient condition for equality 

to hold in part (b) of Theorem 3. 1 by a similar argument to that used 

in showing that condition (c) is sufficient for equality to hold in part 

(c) of Theorem 3.1. That is, if n j C, then n e S* by our definition 

of S * If min f(m) = f(n), then by Theorem 3. 1 (b), we have 
mE S* 

min (n +l)g(m) - 1 > min n f(m) 
me S* ME S* 

= n f (n) = A (n) + B (n) 

= (n+ l) g (n) - 1 

> min (n +l)g(m) - 1 

m E S* 

Consequently, min (n +l) g(m) - 1= min n f(m) when n j C and 
mE S* me S* 

min f(m) = f(n) 
me S* 

We now show an example where n E C and condition (b) holds 

but equality does not hold in part (b) of Theorem 3, 1. 

Example 4, Let A = {0, 1, 4, 6, 8, 13, 14, } and B = 

{0,1,4,5,7,13,14, } Then C = {0,1, 2,4,5,6,7,8,9,10,11,12, 

13, } Let n = 12. Then S* = {3} , and so 

min f(m) = f(3) =1- and f(n) = f(12) = 
82 

= 
2 

mE S* 

However, 

min (n +l)g(m) - 1 = 13g(3) - 1 = 13(4) 
1 34 , m E S* 

while 

- 
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min n f(m) = 12f(3) = 12 (3) = 8. 
me S* 

Thus condition (b) is not sufficient for equality to hold in part (b) of 

Theorem 3. 1 when n e C. 

We also would like to note that although we have no necessary 

and sufficient condition for the equality min (n +l) g(m) - 1 = min n f (rr) 
meS meS* 

to hold, a necessary and sufficient condition is readily found for the 

equality 

(3. 1) min n f(m) = min (n +l)g(m) - 1 

meS meS* 

to hold. A necessary and sufficient condition for equality (3. 1) to 

hold is the condition 

(3. 2) min g(m) = min g(m) and min f(m) = f (n) . 
meS meS* meS 

To prove this we see that if condition (3. 2) holds then by 

Theorem 3. 3 parts (c) and (d) equality holds in parts (c) and (d) of 

Theorem 3. 1. Thus equality (3. 1) holds. 

Conversely, if equality (3. 1) holds then equality must hold in 

parts (c) and (d) of Theorem 3. 1. By Theorem 3. 3 parts (c) and (d) 

both parts of condition (3. 2) hold. 

We now give a theorem guaranteeing examples for all eight 

cases of equality and strict inequality in parts (a) through (d) of 

Theorem 3. 1. 
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Theorem 3, 4. There exist examples where each of the eight 

cases of equality and strict inequality hold in the following inequalities: 

(a) min o f(m) S min o f(m); 
mES mES* 

(b) min n f(m) < min (n+ l) g (m) - 1; 
mES* meS* 

(c) min n f(m) < min (n +l) g (m) - 1; 
mES mES 

(d) min (n +l)g(m) - 1 < min (n +l)g(m) - 1. 
mES mES* 

Proof. We consider the following example. 

Example 5: Let A = {0, 1, 2, 4, 5, ... } and B = {0, 4, 5, 

Then C = {0, 1, 2, 4, 5, ... } . Let n = 3. Then 

min f(m) = min f(m) = f(n) = f and min g(m) = min g(m) = 
mE S mE S* mE S mE S* 4 

Since min f(m) = min f(m), then by Theorem 3. 3 (a) we 
mE S meS* 

have an example illustrating the equality portion of Theorem 3. 4 (a). 

Since 
m E 

min n f (m) = 3 (-) = 2 and min (n +l) g (m) - 1 = 
mES* 

3 
4 (4 - 1 = 2, we have an example illustrating the equality portion of 

Theorem 3.4 (b). 

Since min f(m) = f(n), then by Theorem 3. 3 (c) we have an 
me S 

example illustrating the equality portion of Theorem 3. 4 (c). 

Since min g(m) = min g(m), then by Theorem 3. 3 (d) we 
mE S me S* 

have an example illustrating the equality portion of Theorem 3. 4 (d), 

. . 

3 

,) 

S 
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Now consider previously listed Example 3 with n = 12. Then 

min f(m) = f(n) = 3, min f(m) = 
4 min g(m) = 5 and 

me S* 4 meS 7 m E S 8 

10 min g(m) = 13 mES* 
Since min f(m) # min f(m), then by Theorem 3. 3 (a) we have 

meS mES* 

an example illustrating the strict inequality portion of Theorem 3, 4 (a). 

Since min f(m) # f(n), then by Theorem 3. 3 (c) we have an 
m e S 

example illustrating the strict inequality portion of Theorem 3. 4 (c), 

Since min g(m) # min g(m), then by Theorem 3, 3 (d) we 
meS m S* 

have an example illustrating the strict inequality portion of Theorem 

3.4 (d), 

Now consider previously listed Example 1 with n = 7, Then 

min f (m) = 0 and f(n) = 
2 

me S* 7 

Since min f(m) # f(n), then by Theorem 3. 3 (b) we have an 
me S* 

example illustrating the strict inequality portion of Theorem 3. 4 (b). 

This completes the proof of Theorem 3. 4. 

, 



CHAPTER IV 

Integral E stimate s 

We proceed now to establish several theorems analogous to 

Theorems 2. 4, 3. 1, 3. 3 and 3. 4 but with each estimate replaced 

by the smallest integer greater than or equal to the estimate. For 

convenience we introduce further notation and establish another 

lemma. 

Lemma 4. 1. Let a be any real number and let Ka> denote 

the smallest integer greater than or equal to a. Then if b is also 

any real number and 

then 

a>_b 

<a> = <b> 

Proof: If a = b, then 4.a> = Kb> and the lemma is 

true. If a > b then (b> can be at most equal to <a> . Thus 

<a> > Kb> and the lemma is proved. 

Theorem 4. 2. Let C = A + B with 0 E A and 0 E B. If 

n > 0 then C(n) = n, or both C(n) < n and 

(a) C(n) > < min n f (m)> 
ME S 

(b) C(n) > < min n f(m)> 
m E S* 

(c) C(n) > m is (n+l)g(m) - 1) 

i9 

; 

; 

; 
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(d) C(n) ?.< min (n+ 1) g (m) 
m e S* 

Proof: Since C(n) is an integer (C(n)> = C(n), Thus in- 

equalities (a) through (d) of Theorem 4. 2 are just the inequalities (a) 

through (d) of Theorem 2. 4 with the members of the inequalities 

replaced by the smallest integers greater than or equal to the members, 

Since the inequalities of Theorem 2. 4 hold, by Lemma 4. 1 the in- 

equalities of Theorem 4. 2 must also hold and the theorem is proved, 

Theorem 4, 3, Let C = A + B with 0 e A and 0 E B, If 

n > 0 and C(n) < n, then 

(a)? min n f(m)> <min n f (m)> ; 

`me S me S* 

(b) < min n f(m)) < <min (n+l)g(m) - 1> ; 

me S* meS* 

(c) < min n f (m) > < <min (n+l) g(m) - 1> ; 

m e S meS 

(d)< min (n +l)g(m) - 1> < <min (n+l)g(m) - 1> 
meS meS* 

(e) there exist examples where 

min n f(m)) < <min (n+l)g(m) - 1> , 

me S* meS 
min n f(m)> < min (n +l)g(m) - 1) , and 

me S* S 

< min n f(m)> > <min (n+l)g(m) - 1> 
me S* me S 

Proof, We prove inequalities (a) through (d) first. Since 

inequalities (a) through (d) of Theorem 4. 3 are just the inequalities 

- 1>t 

< 

< 

< 

, 

; 

= 
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of Theorem 3. 1 parts (a) through (d) with the members replaced by 

the smallest integers greater than or equal to the members, by 

Lemma 4. 1 inequalities (a) through (d) of Theorem 4. 3 also hold. 

To prove part (e) of Theorem 4. 3 we need only note that the 

examples used in the proof of Theorem 3. 1 (e) also suffice for the 

proof of part (e) of Theorem 4. 3. This completes the proof of 

Theorem 4. 3. 

We now prove one more lemma in preparation for further 

theorems, 

Lemma 4, 4, If a and b are any non -negative real numbers, 

m is any integer, and n is any positive integer such that 

the n 

( na + m> = <nb + m) = K, 

<a> - Kb> . 

Proof. Let K' = K - 1. Then since na + m = nb + m 

= K' + 1, we have na + m = K' + 61, where 0 < 61 < 1, and 

nb + n = K' + 62' where 0 < 62 < 1, Let K" = K' - m, Then 

na = K" + 61 and nb = K" + 62. We may write K" = kn + r where 

k and r are integers and 0 < r < n, Then na = kn + r + ô and 
r +6 r 

nb = kn + r + ô Hence a =k+ 
n 

and b = k + 
n . Since 

0 < 51 < 1 and 0 S r < n, then 0< r< 61 < n, and so 
r +6 r +6 

0 < 1- < 1, Similarly 0 < -Z- < 1, Finally, 

+ 6 

-n 
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a = k + 1 = b , and the proof is complete. 

Theorem 4, 5. Necessary conditions for equality to hold in 

parts (a) and (d) of Theorem 4, 3 and a sufficient condition for equality 

to hold in part (c) of Theorem 4. 3 are respectively: 

(a) min f(m)> _ < min f(m)> ; 

meS me S* 

(b) min g (m) > Ç1ing(m)> ; 

meS eS* 

(c) <min n f (m)> = n f (n)> . 

meS 

Proof. We prove parts (a) and (b) first. If equality holds in 

parts (a) and (d) of Theorem 4. 3 then by Lemma 4, 4 equality also 

holds in parts (a) and (b) of Theorem 4. 5. 

We prove part (c) next. If <min n f(m)> = Cn f(n)> , then 
meS 

by Theorem 4. 3 (c) we have 

< min (n +l)g(m) - 
me S 

1> L <min n f (m)> 
mE S 

= < n f (n)> = <A (n) + B (n)> 

= ((n+i)g(n) - 1> 

? (mis (n+l)g(n) - l> 

Consequently, <min (n +l)g(m) - 1> = <min n f(m)> and part (c) is 
meS meS 

proved, 

Theorem 4. 6. Parts (a) and (b) of Theorem 4. 5 are not 

sufficient conditions for equality to hold in parts (a) and (d) 

= 
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respectively of Theorem 4. 3 nor is part (c) of Theorem 4. 5 a neces- 

sary condition for equality to hold in part (c) of Theorem 4. 3. 

Proof: We will give examples which will establish Theorem 

4. 6. In Example 3 with n = 12 we have 

min f(m) 
meS 

= f(7) = 
4 

7 
, 

and 

min f(m) = f(12) = 
9 3 - 
12 mES* 4 

Thus, ` min f(m)> = <min f(m)> = 

Nil ES mES* 
of Theorem 4.5 holds. However, 

1 and the equality of part (a) 

min n f(m) = 12f(7) = 
48 

meS 7 

and 

min n f(m) 
m e S* 

= 12f(12) = 9. 

Then (rim. in n f(m)> = 7 fr ¿min S n f(m)> = 9. Thus the equality of 
`m Tn * 

part (a) of Theorem 4. 5 is not a sufficient condition for equality to 

hold in part (a) of Theorem 4. 3. 

and 

Similarly, in Example 3 with n = 12 we have, 

min g(m) = g(7) = 5 
me S 8 

mmE 
i% 

* 
g (m) = g (12) = 

10 
13 

= 
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Thus, ( min g(m)> = ¿mis g(m)> = 1 and the equality of part (b) 

of Theorem 4. 5 holds. However, 

min (n +l)g(m) - 1 

mES 
= 13g(7) - 1 

57 

and 

min (n +1)g(m) - 1 

mE S* 
= 13g(12) - 1 = 9. 

Then, min (n +l)g(m) - 1» 8 # Çmin(n+l)g(m) - 1> = 9 so that the 
* 

equality of part (b) of Theorem 4. 5 is not a sufficient condition for 

equality to hold in part (d) of Theorem 4. 3. 

Finally, in Example 4 with n = 4 we have 

and 

min n f(m) = 4f(3) = 4 (3) 3 meS 

mE S 
min (n+l)g(m) -1= 5g(3) -1= 5()-1 = 41 

so that <min n f(m)> <min (n +l)g(m) - i= 3 and equality holds in 
ES ES 

part (c) .of Theorem 4. 3. However, min n f(m) = 
8 while n f(n) = 

m E S 

4f(4) = 4 so that min n f(m)> # Cn f(n)> . Hence, the equality of 
m e S 

part (c) of Theorem 4. 5 is not a necessary condition for equality to 

hold in part (c) of Theorem 4. 3. This completes the proof of Theorem 

4.6. 

Theorem 4. 7. There exist examples where each of the 

eight cases of equality and strict inequality hold in the following 

inequalitie s: 

8 

mE 

_ 

e 

= 

' 
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(a) ( mi% n f(m)> < mirn f(m)) ; 

(b) Cmin n f(m)> < lmin (n+l)g(m) - 1> 
4n E S* in E S* 

(c) <min 
n f(m)> Çmin(n+l)g(m) - 1> 

E S 

(d) ÉnS(n+l) g(m) - 1> < lmi s(n+l) g(m) - 1> 

Proof: The examples used in the proof of Theorem 3, 4 will 

also suffice for the proofs of the corresponding parts of Theorem 4, 7, 

- 
< 

; 

; 



26 

CHAPTER V 

Proof of Mann's Lemma by Mann's Method 

In this chapter we prove a lemma in preparation for the proof 

of Mann's Theorem (Theorem 2. 3). We introduce the following addi- 

tional notation. For any set let C( -1) = -1 and for n > m let 

C (m, n) = C(n) - C(m). A gap of C is a positive integer not in C. 

Mann's Lemma. Let C = A + B, 0 e A, 0 e B. For n > 0, 

n j C there exists a number m C such that m = n or 0< m< 2 

for which 

(5. 
1) 

n+1 C 
1 A(m)+B(m)+1 +[C(n-m-1)+1 -C( 

n+11 
n -m) ] 

1 

m+1 

Proof: For any n > 0, n j C, let n1 < n2 < < nr = n be 

the gaps of C less than or equal to n and form the differences d. = 

nr - ni, 1 < i < r. Define a sequence of numbers el, e2, ... , eJ and 

construct the sequences of sets B = B0, B1, ... , BJ and C = 

Co, C1, ... , CJ according to the following rules. 

Rule 5. 1, For 1 < j < J, e. is the least number in B. _1 

for which there are integers a e A and n , n / C. such that 
s t 3-1 

(5. 2) a + e. + d = nt. 

(If there exists no e1 e B0 let J = O. Then the following 

lemmas leading to the proof of Mann's Lemma are still true.) 

- 

t 

r 

J 
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Rule 5. 2. The number e. + d E 134! if and only if equation 
s 

(5. 2) holds. 

A + B.. 
J 

Rule 5. 3. For 1 < j < J define B. = B. v 134! and C. = 
3 J-1 J J 

Rule 5. 4. For no numbers ns, nt / C does a + eJ +1+ ds = nt 

for any a e A, eJ E B. 

The construction places the numbers ns, nt j C. into the 
J' 

set C. if equation (5. 2) holds. Thus ns and nt are not available 

choices of gaps of C. which will satisfy equation (5. 2) in the construc- 
t 

tion of Cj 
+1. 

Therefore the construction continues until we either 

place every n., 1 S. i S r, into some set C., 1 < j < J, or else i J 

for any n. which are left it is not possible to find an a and an e 

satisfying equation (5. 2). 

We now prove several lemmas concerning the construction 

which will enable us to complete the proof of Mann's Lemma. 

Lemma 5.1. The integer n is not in C. 0 S j <_ J. r J 

Proof. The integer nr is not in C0 by hypothesis. Assume 

nr e C., nr j C. 1 < j < J. Equation (5. 2) holds if and only if 

a + e. + dt = ns. Hence equation (5. 2) implies here that a + e. + dr = 

nu where nu / C. 
1. 

Since dr = 0 and e. e B. then nu = 
J- J J' 

a + e. e A + B. = C which is a contradiction. 
J J -1 j -1 

Lemma 5. 2. The sets B and B* are disjoint, 1<j < J. 
j -1 

J 

+1 

s t 

J 
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Proof. Since B exists then equation (5. 2) holds. Assume 

B. and B4! have an element in common. Then for some b* e B. B. 
J -1 J 

B. B. 

and some e. + d e Bg! we have b* = e. + d . Hence nt a + e. + 
J s J J s t J 

d = a + b *. Since b* e B , we have n e C . On the other hand 
-1 -1 

n t ' C. 1 since equation (5. 2) holds. This is a contradiction. 
- 

Lemma 5. 3. The numbers e. form a non -decreasing se- 

quence. That is, e < e < < eJ' 

Proof. If 1 < j < J - 1 we have e. e B If e. e B 
3+1 j' J +1 

B. 

then e. < ej +l by the minimal property of e. stated in Rule 5. 1, 

If e. a B*i then e. = e + d, so that e. <e. 
J +l j J +1 j 1 J 3+1' 

For the remainder of the proof of Mann's Lemma denote the 

least gap of CJ by ns. Since nr / CJ we have 1 < ns <nr' 

Lemma 5.4. CJ(nr - ns - 1, nr) = ns. 

Proof. Let n. be any gap of C where nr 
i 

- n - 1 < n < nr. 
i s 

Then 0 < n. + n 
s 

- nr < n 
s 

and by our choice of n 
s 

we have - 
ni + ns - nr e CJ. Hence n. + ns - nr = a + b', b' E B 

V 
that is 

ns - a = b' + di. Since ns j CJ, by Rule 5. 4 we have n. E CJ. 

Hence every integer in the interval nr - ns - 1 < x < nr is in C 

and since nr ' CJ we have 

CJ(nr - ns - 1 , nr) = nr - (nr - ns - 1) - 1 = ns 

Lemma 5. 5. CJ(nr - ns - 1, nr) - C(nr-ns - 1, nr) = BJins) - Bins). 

s 

r r 

r 

= 

J 

J 

-1 

r 
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Proof. For J = 0 the lemma is trivially true. Hence suppose 

J > 1. For each j(1 < j S J) we have that B. = B . vB* and that 
J J -1 

B n B* is empty. Hence B , ( n ) = B (n) + B (n ), and so 
J -1 j J s 3-1 s J s 

BJ(ns) - B(ns) _ B*i(ns) , 

j =1 

We prove the lemma by establishing a biunique correspondence be- 

tween gap nt of C, where nt e CJ and nr - ns - 1 < nt < nr, and 

integers em + dt, where em + dt e B* and 0 < em + dt S ns. 

If nt e CJ, then for some u, m(1 < u < r, 1 < J) we 

have a + e + du = nt where nt, nu / Cm and nt, nu E Cm. Then 

a + ern + dt = nu and so em + dt a Bm. Conversely if e + 

dt E B* (1 Sm < J), then for some u(1 < u < r) we have a + e 

+ dt = nu where nu, nt Cm-1 and nu, . n e C Since C C C 
t m m - J 

then nt e C C. 

Now assume that 0 < e. + dt S ns. Then e. + nr - nt < ns 

and so nt > nr - ns+ ej > nr - ns > nr - ns - 1. By definition nt S nr. 

Finally assume nr - ns - 1 < nt < nr. Then corresponding to 

nt we have errs + dt e B for some m(1 Sm < J), Since nr ' CJ, 

then nt < nr and so dt > O. Hence errs dt > 0, Suppose em + dt 

> ns. Then em > ns - dt = a + b*, b* E BJ If m < j S J, then 

b* 334 for if b* e B*, then by Lemma 5. 3 we have e. > e > a + 
J J J m 

b* = a + e. + d. > e., which is a contradiction. Hence since b* e B i 

J 

5.m 

J t J r 
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we must have b* e Bm -1, From the manner in which em + dt is 

constructed from nt we have nt i Cm -1, Also ns / Cm since 

ns i CJ. Finally since a + b* + dt = ns we have from Rule 5, 1 that 

e < b* which contradicts e > a + b* > b *. Hence e + d < n 

This completes the proof. 

We are now prepared for the proof of Mann's Lemma, 

By Lemma 2, 1 we have ns > A(ns) + B3(ns) + 1. By Lemma 

5.4 this becomes CJ(nr - ns - 1,nr) >A(ns) + BJ(ns); + 1, Using 

Lemma 5. 5 we obtain 

C(n r n 
s 

-1,nr )?A(ns )+B(ns )+1, 

or finally 

(5,3) C(nr )>_A(ns ) +B(ns ) +1 +C(n r -n 
s 

1) 

By adding 1 to both members of inequality (5. 3) and dividing by 

ns + 1 we obtain 

C(n) +1 
A(ns) + B(ns) + 1 C(nr - ns - 1) + 1 

n+ 1 - ns + 1 + ns + 1 
s 

Upon multiplying the left member by unity in the form of 

n + 1 + n - n 
s r s 

we have 

n + 1 r 

n +1+n -n A (n ) + B (n ) + 1 C(n -n -1) + 1 
s r s s s r s [C(fl)+l][( 

n +1) (n +1) ] n. + 1 n + 1 
s r s s 

s 

-1 

x s 

s 

+ 



or 

nr - ns A(ns) + B(ns)+1 
LC (n)+11 [ 

n 1 (n 
s 

+1)(n r +1) ] - n +1 r s 

C(n r -ns - 1) +1 

n 
s 

+ 1 

By distributing [C(nr ) + 1] in the left hand member and transposing 

we obtain 

C(n )+1 A(n )+B(n )+ 1 C(n -n -1)+1 [C(n )+1] (n -n ) 
r s r r s r s s 

n r +1 n 
s 

+ 1 n 
s 

+ 1 (n 
s 

+1) (n r +1) 

By factoring 

we obtain 

31 

1 

n + 1 
from the last two terms of the right hand member 

s 

C(n )+1 A(n )+B(n )+ 1 C(n )+1 r s 
n +1 n + ls 

+ [C(nr-ns-1) + 1 - n +1 
(n -n 

ns)] n1+1 r s r s 

which is inequality (5. 1) of Mann's Lemma with n = n and n 
s 

= m. 

If ns < nr, then by Lemma 5. 4 there are no gaps of C . in 

the interval n r - n 
s 

- 1 < x < n r . Hence n 
s 

< n r - n , 
s 

or 
n 

ns < 2 which completes the proof of Mann's Lemma. 

r 

., 

, 

1 

s 
+ 

r 

+ 

' 
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CHAPTER VI 

Proof of Mann's Lemma by Artin and Scherk's Method 

In 1943 Emil Artin and Peter Scherk (1) published a paper in 

which they establish the inequality 

(6. 1) C(n) >_A(m-1) + B(m-1) + C(n-m) 

for n > m; n, m C without the assumption 0 E A, 0 E B. 

By a similar construction to that of Chapter V they obtained a 

number of lemmas preliminary to inequality (6. 1) which are quite 

similar to the lemmas of Chapter V. This similarity in the lemmas 

plus the similarity of inequality (6. 1) to inequality (5. 3) of Chapter V 

prompted us to attempt a proof of Mann's Lemma by using Artin and 

Scherk's method but with the additional assumption of 0 E A, 0 E B. 

The following proof of Mann's Lemma will be found to be quite 

similar to the proof of Mann's Lemma given in Chapter V. For con- 

venience we restate Mann's Lemma. 

Mann's Lemma. Let C = A + B, 0 E A, 0 E B. For n > 0, 

n / C, there exists a number m / C such that m = n or 0 < m < 2 

for which 

(6 2) 
C(n)+1 A(m)+B(m)+1 + [C(n-m-1)+1 _ 

C(n)+1 1 

n+1 - m+1 n+1 m+1 

/ 

m)1 
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Proof: For any n > 0, n j C let n1 < n2 < < nr = n be 

the gaps of C less than or equal to nr and form the differences 

d. = nr - ni, 1 < i < r. Define a sequence of numbers el, e2, ... , e 

and construct the sequences of sets B = B0, B1, ... , BJ and 

C = CO, C1, ... , CJ according to the following rules, 

Rule 6. 1, For 1 < j < J, e. is the least number in B. 
J J -1 

for which there are integers a e A and ns,nt j C. such that 
J- 

(6.3) a+ej+ds=nt 

(If there exists no el e B0 let J = 0. Then the following 

lemmas leading to the proof of Mann's Lemma are still true.) 

Rule 6. 2. For 1 < j < J let 

C4! = {ns: ns satisfies equation (6. 3)} 
J 

134! = {e. + d n e CA} 
J J 5 s 

J 

Rule 6. 3. For 1 < j < J define B. and C. by 
J J 

B. = B. vB* and C. = C. vC 
J J-1 j J J-1 j 

Rule 6. 4. For no numbers ns,nt j C does a + e ds = nt 

for any a e A, eJ e BJ. 

We now state and prove several lemmas concerning the con- 

struction which will enable us to complete the proof of Mann's Lemma. 

Lemma 6. 1. For 0 S j < J the set C. is contained in A +B.. 
J J 

+ 

+1 

r 

s 

: 

J 
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Proof: For j = 0, Co = A + B0, and the lemma holds 

trivially. Assume the lemma is true for j k (0 < k < J). Let 

c be any element of Ck +l. If c e ,Ck, then c E A + BkC A + Bk +l' 

If c e C* +l' then by Rule 6, 1 and 6. 2 there exists an a E A 

and an ni / Ck such that a + ek + di = c where ek +l + 
di E 

Bk +l' 
Thus c E A + Bk 

+1CA 
+ Bk 

+1 
which completes the proof of the 

lemma. 

Lemma 6. 2. If a + b E A + B . and 0 < a + b < n , then 
J r 

a+ b E C. (0 <_ j< J). 

Proof. For j = 0 the lemma is trivial. Assume the lemma 

is true for j = k (0 < k < J). Let a + b E A+ Bk +1, where a E A 

and b E Bk 
+1, 

and 0 < a + b < nr, If b e Bk then a + b e CkC Ck +1' 

If b e Bk +l then a + b = a + e. + di where ni / Ck. If 
J 

a + b / Ck then by Rule 6. 2 we have a + b e Ck 
+1 C Ck +l' 

proof of the lemma is complete. 

Lemma 6. 3. The integer n r is not in C., 0 < j S. J. 
J 

and the 

Proof. The number nr is not in C by hypothesis. Assume 
0 

nr e Cj, nr Cj 1 S j S J. Then equation (6. 3) holds so that 

+ a e. + d. = n for n, ni / C. 
1. 

Equivalently a + e. = n.. Also 
J J- J 

a + e. S n r J i since d > O. Since a + e. e A + B, we have by Lemma 
J J -1 

6. 2 that n. = a + e. E C. , which is a contradiction. Hence n / C., 
i J 3-1 r J 

Lemma 6. 4. The sets B* and B' 
j j -1 

(1 < j 

are disjoint 

= 

S J). 

+l 

+1 

I! 
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Proof. Let e. + d be any element of Bt. Then for some 
J i j 

a e A and nk' C. we have e. +di =nk -a. If nk -ae B* 
J- j J- 

then a + (nk - a) = nk e A + Bi Since 1 < nk <_ 11.1. 11.1. we have 
- 

n e C, by Lemma 6. 2, contrary to n ' C. Thus e. + k J -1 k J -l' J 

d' Bt and B' and Bt are disjoint. 
i J -1 J j -1 

Lemma 6. 5. The integers e. form a non -decreasing 
J 

sequence. That is, el <e2< <ej. 

Proof. If 1< j J 1 we have e, e B If e, e B 
3+1 j J+1 j-1 

then ej < ej 
+1 

by the minimal property of e, stated in Rule 6, 1. 

If e, a B*i then e, = e = d, so that e. s. e. 
J +1 j J +l J 1 J J +l 

For the remainder of the proof of Mann's Lemma denote the 

least gap of CJ by ns. Since nr CJ we have i S.ns 
< nr' 

Lemma 6, 6. For 1 S. j < J we have Ct (n -n -1, n) = Bt (n ) . j r s r j s 

Proof. Since n / C *, then C *(n -n -1, n) represents r j j r s r 
the number of integers n. a C'?' such that n - n - 1 < n. < n . 

1 J r s i r 
For each n. e C'k we let correspond e. + d. e B. This is 

1 J J 1 J 

a biunique correspondence between Ct and B* by Rules 6. 1 

J J 

and 6. 2. We have 0 < e. + di < ns, for suppose e. + d.> ns. Then 
J 

e. > n - d.. Now d. > 0 for if d. = 0 we have n - n. = 0 or 
J s 1 1 1 r 1 

n = n. But n r / Ct which contradicts n. e C'*. Hence n - d. < n r 1 J 1 J s 1 s 

so that n - d. C Thus e. > n - d. = a + b *, b* e B Since 
J 

e. > a + b* we must have b* / Bt for if b* e Bt we have e. > a + 
J J J J 

+ e. dt which is not possible. Lemma 6. 5 extends the exclusion of 
J 

/ 

v s J s - 

e 
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b* to all sets B* , j +l < m S J. But since b* e B we must have 

b* e B. By Rule 6. 1 we have e. < b which contradicts e. > a +b *. 
J-1 J J 

Also since 0 < e. + di < n 
s J 

, then e. + n r n < n and so 
J i - s 

n. > n - n + e . > n - n > n - n - 1. Furthermore n. < n . Thus i r s J- r s r s i r 

C4s(n - n - 1, n) = 13':!(n ). Cj(nr s r J s 

Lemma 6.7. CJ(nr - ns - 1, nr) = ns. 

Proof. Let n. be any integer such that n r - n 
s i 

- 1 < n < n 
r i 

Then 0 < n. + n - n < n . By our choice of n we have n. + n - - i s r s s i s 

nr e CJ, By Lemma 6, 1 we have ni + ns - nr = a + b', b' e B that is, 

ns - a = b' + di. Since ns / CJ then Rule 6. 4 tells us ni a CJ. 

Hence each n. such that nr - ns - 1 < ni < nr is in C and nr / CJ 

so that 

CJ(nr - ns - 1, nr) = nr - (nr - ns - 1) - 1 

= n . 
s 

Lemma 6. 8. BJ(ns) - B(ns) = CJ(nr - ns - 1, nr) 

C(n r - n 
s 

- 1 , n r ), 

Proof, By construction BJ = B vB 1 v.. , 'BU and since 

B* and B* are disjoint we have 
J J -1 

or 

B (ns) = B (ns) + Bi (ns) + +B *J. (ns) 

B(ns) - B(ns) = Bi(ns) + ... + B';J(ns). 

- s 
- 

- 
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Also by construction CJ = C v C 1 
v... v 9. where 

and C* are disjoint. Thus -1 

CJ(nr-ns-1, nr) - C(nr-ns-1, nr) = Ci(nr-ns-1, nr) + +C*J(nr-ns-1, nY). 

By Lemma 6. 6 we obtain 

CJ(nr-ns-1, nr) -C(nr-ns-1,nr) = BJ(ns) - B(ns), 

which completes the proof of the lemma. 

We are now prepared for the completion of the proof of Mann's 

Lemma. 

By Lemma 2. 1 we have ns ?.A(n) + BJ(ns) + 1. 

By Lemma 6. 7 this becomes 

CJ(nr-ns-1, nr) > A(ns) + BJ(ns) + 1. 

Using Lemma 6. 8 we obtain 

or finally, 

C(n -n -1, n ) > A(n ) + B(n) + 1, r s r s s 

C(n ) r >_A(n 
s 

A(n) + B(n ) 
s 

+ 1 + C(n r -n 
s 

-1). 

But this is just inequality 5. 3 which was seen in Chapter V to imply 

C(n )+1 A(n )+B(n )+1 C(n )+1 

n +1 > 
s 

n +1 
s 

+ [C(n -n - 1) + 1 - n +1 
(n s)] n 1+1 ' r s r s 

C '1! 

J 

r 

J 



which is inequality (6. 2) of Mann's Lemma with nr n and n r s 

If ns < nr then by Lemma 6. 7 there are no gaps of CJ 

in the interval n r - n 
s 

- 1 < x < n r . Hence n 
s 

<n 
r - n 

s 
, or 

n 

n < 
2 

, which completes the proof of Mann's Lemma. 
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CHAPTER VII 

Proof of Mann's Theorem 

A consequence of Mann's Lemma is the following possibly 

more interesting result. 

Mann's Theorem (Theorem 2. 3). Let C = A + B, 0 E A, 

0 E B. For n> 0 either C(n) = n, or C(n) < n and there exist 

numbers m, m such that m / C, 0 < m < n, m1 / C, 0 < m 
1 

< 

max(m,n - m - 1), for which 

C(n)+1 A(m) +B(m) + 1 

(7' 
1 n+l m+1 

C(n)+1 
n+l 

C(m1) +1 

m1 + 1 
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Proof: The proof is by induction. Let n = 1, If 1 E C. we 

have C(1) = 1. If 1 /' C then (7.1) holds for m1 = m = 1 since 

C(1) = A(1) = B(1) = O. Let k be an integer greater than 1. We 

assume that Mann's Theorem is valid if 1 < n < k and show that it 

is valid for n = k. 

If C(k) = k the theorem holds trivially, so we assume 

C(k) < k. Let k* be the least gap of C. Then k* < k. If k* = k 

then in Mann's Lemma we have m = k and so C(k) +1 >A(k) +B(k) +1 

k +1 - k +1 

Thus Mann's Theorem holds by choosing m = m1 = k. Hence we 

assume k* < k. 

Our hypotheses, including the inductive hypothesis, now include 

C(k) < k; 1 < k* < k and 



(7 2) 
C(k')+1 A(m') + B(m')+1 

k'+1 m'+1 
C(k')+1 

k'+1 

C(mi) +1 

mi +1 
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where m' / C, 0 < m' < k'; mi C, 0 < mi S max(m' , k' - m' 1), 

for all k' such that k* < k' < k. We now consider two cases. 

Then 

Case 1. For some k' we have 

C(k)+1 
k+1 

C(k) +1 C(k')+1 
k+l - k'+1 

C(k)+1 C(k')+1 

By inequality (7. 2) we obtain 

k+1 k'+1 
C(k') +1 

k'+1 

C(k)+1 
- 

C(k)+1 C(k')+1 A (m' ) +B (m' ) + 1 C(k')+1 C(mi)+1 

k+l k+1 k'+1 m'+1 k'+1 mi+1 

A(m')+B(m')+1 C(k)+1 C(mi)+1 

- m'+1 k+1 mi+l 

where m' / C, 0 < m' < k' < k, mi / C, and 0 < mi < 

max(m', k' - m' - 1) < max(m', k - m' . 1). Thus the theorem is true 

for n = k. 

Case 2. For all k' we have C(k) + C(k') + 1 If we k +1 k' +1 

assume k e C, then C(k) = C(k -1) + 1, Hence since C(k) < k we 

have 

(k+1)[C(k-1) + 1] _ (k+1)C(k) 

= k C(k) + C(k) 

< k C(k) + k = k[C(k) + 1] , 

/ - 

1 

> 

> 
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or 

C(k-1)+1 C(k) +1 
(k-1)+1 k+l 

But since k -1 is a value of k' this contradicts the assumption of 

this Case 2 so that k j C. 

Since k j C, by Mann's Lemma there exists an m* j C, 

m* = k or 0 < m < 
2 

such that 

(7.3) 
'< 

C(k)+1 >A(m)+B(m*)+1 +[C(k-m-1)+1-C(k)+l (k-m)] 1 k+1 m*+1 k+1 m*+1' 

If m* = k we have 

C(k)+1 A(k) + B(k) + 1 

k+1 - k+1 

and Mann's Theorem holds with m = m1 = k. 

If 0 < m* < 
2 then k - m* - 1 > m *. Since m* is an 

integer not in C there exists a largest integer not in C which does 

not exceed k - m* - 1. Denote this number by m l so that 

m* < m < k - m* - 1, m l / C. Then by definition of m 1 we have 

(7.4) C(k-m*-1) - C(m41) = (k-m*-1) - mg, 

Now m* 1 + 1 > C (m*l ) + 1 so that 

(k-m*-1 -mg) (mg +1) > (k-m*-1-mg)[C (mg )+1] 

or 

(mg+1)[C(mg)+1] + (k-m*-1 -mq) (mg+l) > (k-m*) [C(mi)+ 1] 
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Factoring m1 +1 from the left hand member we obtain 

(mx1 +1)[C(mI) +1 + (k- m *- 1- mI)] > (k- m *)[C(M 1) +1]. 

Thus by equation (7. 4) , 

(rn*j +1)[C(k- m* -1) +1] > (k- m *)[C(m *) +1] 

so that 

(7 5) 
C(k-m---1)+1 

k-m* m * +l 

C(m%) +1 

(7. 6) 

Since 0 < m* < 2 , then 

k-m* 
m*+1 

Now from inequality (7. 3) we have 

C(k)+1 A(m B* + 1 rC(kkmm,1l)+1 
C(k+1 1] m-m* 

By inequalities (7. 5) and (7. 6) this becomes 

C(k+1 1 A(m*) 
m(ml) 

+ 1 +[C(m',1+11 C(k)+1 
] m-I+1` 

1 

Since k< <mi <k -m* - 1 <k, then 

C (m%) + 1 

m* 1+1 
C(k) + 1 

k+1 

by our assumption for this Case 2. Hence, because of inequality (7. 6) 

we have 

> 

> 0 

- 



C(k) +1 A(m*)+B(m*)+1 
k+1 m*+1 

C(k)+1 C(m-1)+1 

k+1 m 
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Furthermore, 0 < m* < 2 < k, m* C, m -í ji C, and 

0 < mil max(m *, k - m* - 1), so that Mann's Theorem is again 

true for n = k. This completes the proof by induction of Mann's 

Theorem. Note that the inductive hypothesis was not used in Case 2. 

/ 

I 
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