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The production of fuel ethanol from lignocellulosic biomass has the 

potential to replace a significant portion of non-renewable transport fuels. Woody 

feedstocks are composed of cellulose, hemicellulose, and lignin. Glucose, the 

monomer of cellulose, is readily utilized by wild-type S. cerevisiae, but xylose, 

which comprises 60% of the sugar in hemicellulose, is not. To make the process 

economically competitive with conventional fossil fuels, both five and six carbon 

sugars must be utilized efficiently. 

One approach to improving xylose utilization is to convert it to the more 

readily usable xylulose using an extracellular enzyme. Xylulose is taken up by 

wild-type S. cerevisiae and incorporated into the pentose phosphate pathway. To 

our knowledge there are no reports that elucidate the kinetics of this pathway, an 

important hurdle to overcome for strain development. 

This thesis documents the work carried out to gain a better understanding 

of the xylulose utilization pathway in S. cerevisiae. The work was comprised of a 
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series of batch fermentations that identified xylulokinase as a limiting enzyme in 

wild-type strains and transport through the HXT family of hexose transporters as 

a possible limiting step in xylulokinase enhanced strains. Batch experiments with 

HXT knockout strains suggest that alternative modes of xylulose transport are 

possible and may be up regulated in the knockout. An existing genome scale 

model for S. cerevisiae (iMM904) was used as the basis to develop a dynamic 

flux balance model. This model was used to verify the batch fermentation 

findings. The model has strong predictive capacity for xylulose and glucose 

consumption under anaerobic conditions and sugar levels sufficient to support 

growth. 
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! 

Chapter 1 - Literature review: 

1.1 Introduction: Cellulosic Ethanol as a Viable, Sustainable 
Fossil Fuel Replacement 

Despite increasing prices (British Petroleum, 2012) and warnings of 

dwindling supplies, liquid fuels consumption is expected to increase 15% by 2030 

(British Petroleum, 2013). As evidence mounts supporting the role of fossil fuels 

in global climate change, research and government policy has increasingly 

focused on identifying and improving renewable, carbon neutral liquid fuels 

(2007). Starch and sugar derived ethanol have been leading candidates because 

of their infrastructure compatibility (Lynd et al. 1991) and, at least in the US, 

because of the relative abundance of highly subsidized corn (Auld, 2012). 

However, the emissions savings associated with these technologies can vary 

greatly. Using efficient processing technologies, the net reduction in GHGs (from 

both production and use) when gasoline is displaced by corn ethanol can be up 

to 26%. This value increases to 37% if military GHG emissions are included in 

the production of crude oil. The use of less efficient processing technologies can 

push the GHG associated with corn ethanol beyond those of conventional 

gasoline (Figure 1) (Wang et al., 2011). 
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! 

Figure!1:!Life,cycle!GHG!Emissions!of!Petroleum!Gasoline,!Corn!Ethanol,!and!Cellulosic!Ethanol!,!(g!CO2! 
per!MJ)!(Wang et al., 2011)! 

Further supporting a case against corn ethanol, corn is grown on 

agriculturally productive land, often with intensive fertilizer, pesticide, and 

irrigation usage (Yang et al., 2012). Increasing demand for these resources in 

combination with increased speculative trading of corn and ethanol is thought to 

have caused an increase in food cost and price volatility (Demirer et al., 2012; 

Thompson, 2012). 

By comparison, studies have shown that ethanol produced from 

lignocellulosic biomass (termed a second generation biofuel) could reduce GHG 

emissions by 46% to 90% in comparison to conventional petroleum (Borrion et 

al., 2012). Feedstock production is not confined by optimal geographical growing 

regions, land quality, or the need for irrigation in the same way food crops often 

are (Gelfand et al., 2013). If produced from low input biomass grown on marginal 
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land or from waste streams such as agricultural crop residues or forest 

management residues, lignocellulosic ethanol could provide both a greater 

supply and environmental benefits than corn-based ethanol (Hill et al., 2006; Lal, 

2005). 

1.2 General Process for Cellulosic Ethanol Production 

The “conventional” process for conversion of lignocellulosic biomass to fuel 

ethanol can be broken into five main steps: 

1) Pretreatment – breaking down the lignocellulosic matrix of the 

biomass to allow enzymes greater access to cellulose 

2) Detoxification – removal of compounds inhibitory to hydrolysis, 

microorganism growth, or fermentation 

3) Enzymatic Hydrolysis – liberating glucose monomers from 

cellulose chains using a combination of cellulolytic enzymes 

4) Fermentation – the conversion of glucose to ethanol by any 

microorganism, but most commonly yeast 

5) Distillation and dehydration – separation of ethanol from the 

fermentation broth so that it can be utilized as a fuel 

Pretreatment refers to processes meant to disrupt the natural structure of 

a lignocellulosic feedstock to allow for greater sugar extraction (Hendriks and 

Zeeman, 2009). Pretreatment methods include dilute acid, dilute alkali, and 

steam explosion treatments (Table 1) and result in physical size reduction, 

hydrolysis of hemi-cellulose, structural alteration or removal lignin, and disruption 
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of cellulose crystals (Margeot et al., 2009). Effective pretreatment is crucial to the 

economic viability of cellulosic ethanol as it can raise the percentage of sugar 

extraction during hydrolysis (and there by accessible for fermentation) by greater 

than three fold (Kumar and Murthy, 2011; Yang and Wyman, 2008). 

Table!1:!Results!of!Ethanol!Production!Models!Using!Different!Pretreatment!Processes!,!All!results!are! 
per!10,000MJ!functional!unit!unless!mentioned!otherwise.!**!Energy!from!lignin!residue!and!biogas! 
(Kumar and Murthy, 2011).! 

! Dilute!Acid! Dilute!Alkali! Hot!Water! Steam!Explosion! 
Ethanol!Yield!(L/dry!ton!biomass)! 

Thermal!Energy!Use!(MJ)! 

Electrical!Use!(kWh)! 

Water!Use!(kg)! 

Co,Product!Energy**!(MJ)! 

Electricity!Produced!(kWh)! 

256.65! 

8935.31! 

433.61! 

2801.55! 

13,270.54! 

361.25! 

255.83! 

8807.22! 

415.21! 

2850.33! 

13,145.58! 

361.51! 

255.30! 

9087.42! 

439.22! 

2746.31! 

13,696.10! 

384.04! 

230.25! 

6349.34! 

408.85! 

2050.26! 

16,366.41! 

834.71! 

! 

After pretreatment the feedstock stream is split often into a solids stream 

(which contains the majority of cellulose and six carbon sugars) and a liquid 

stream (which contains the majority of the solubilized hemicellulose and five 

carbon sugars). The solids stream will be treated with either acid or a cocktail of 

cellulases and β-glucosidases to release cellobiose from the cellulose and further 

hydrolyze them to glucose monomers (Katz and Reese, 1968; Reese, 1955). 

While many microorganisms can easily ferment free glucose monomers, 

Saccharomyces cerevisiae is used predominantly because of its high conversion 

yield (0.51g ethanol/g glucose) and high utilization rate. 
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High severity pretreatments (with combinations of high temperature, 

extreme pH, and duration) often liberate more sugars from cellulose and 

hemicellulose than gentler pretreatments, but they can also further degrade 

sugars and lignin monomers to produce compounds such as HMF (5-

hydroxymethylfurfural) and 2-furfuralaldehyde (Figure 2) (Kabel et al., 2007; 

Pedersen and Meyer, 2010). 

Figure!2:!Pretreatment!of!Lignocellulose!as!Affected!By!Temperature!and!pH!,!Red!and!orange!illustrate! 
cellulosic!fibrils!and!micro!fibrils;!Gray!represents!lignin;!Black!represents!hemicellulose!(Pedersen 
and Meyer, 2010).! 

These soluble compounds remain in the liquid, five carbon sugar stream 

and must be removed by detoxification before fermentation (Palmqvist and Hahn-

Hägerdal, 2000). Detoxification can be performed through a process known as 

over-liming in which inhibitory compounds are precipitated through a pH shift or 

through filtration over activated charcoal. 
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Following detoxification the remaining sugars are fermented to ethanol. In 

conventional lignocellulosic ethanol production, the five and six carbon sugar 

streams are often mixed for fermentation, but some protocols use separate five 

and six carbon fermentations in hopes of increasing yield or decreasing costs. 

Still other processes (termed simultaneous saccharification and fermentation or 

SSF processes) combine the enzymatic saccharification and fermentation steps 

into one (Olofsson et al., 2008). 

Following fermentation, solids are removed via centrifugation. These non-

fermentable solids are often burned to produce process energy. Finally, the dilute 

ethanol stream is distilled and passed through a molecular sieve to produce 

anhydrous fuel ethanol (Jeong et al., 2012). A generalized process is outlined in 

Figure 3 (Kumar and Murthy, 2011). 
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! 

Figure!3:!Generic!Process!Diagram!For!Ethanol!Production!From!Lignocellulosic!Biomass!,!(Kumar and 
Murthy, 2011)! 

While the basic production process is well understood, several aspects 

(notably feedstock selection, pretreatment, and utilization of five carbon sugars) 

are still evolving (Kudakasseril Kurian et al., 2013; Kumar and Murthy, 2011; 

Matsushika et al., 2009). Competing technologies provide different advantages 

and no technology has a clear path to commercialization. Here we focus on the 

many options for the utilization of pentose sugars, their advantages, challenges, 

and potential. 
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1.3 The Economic Case For Improving Pentose Sugar Utilization 

Going forward, the adoption of biofuels will be driven more by economics 

than by the desire to decrease GHG emissions. Accordingly, the production of 

fuel ethanol at a production scale must be economically competitive with the 

production of conventional gasoline. Techno-economic analyses of lignocellulosic 

ethanol production have identified capital expenditures and the cost of raw 

feedstocks to be the largest contributing factors to final ethanol cost (Sassner et 

al., 2008; Wingren et al., 2003). Lignocellulosic feedstocks are comprised mainly 

of cellulose, hemicellulose and lignin. After pretreatment and saccharification, the 

hexoses produced from the cellulose fraction are readily fermented to ethanol 

and CO2 at efficiencies greater than 90%. The pentose sugar fraction formed 

from hemicellulose is less readily fermentable by industrial yeast S. cerevisiae. 

Several strategies to improve pentose fermentation are discussed below, 

currently no industrial yeast strains with greater than 90% xylose conversion 

efficiencies are commercialized and many techno-economic analyses assume 

currently infeasible xylose fermentation efficiencies to show the potential cost of 

ethanol with improved technology (Sassner et al., 2008). Hemicellulose makes 

up roughly 20 to 50% of common lignocellulosic feedstocks by dry weight (Kumar 

et al., 2012; Sun and Cheng, 2002). Successful fermentation of hemicellulose 

sugars would increase ethanol yield by up to 40% (Figure 4) (Kumar et al., 2012). 
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! 

Figure!4:!Estimated!Ethanol!Yields!From!Biomass!Samples!Using!5!and!6!Carbon!Sugars!–!Samples!were! 
collected!in!the!Pacific!Northwest.!Green!bars!represent!ethanol!produced!when!only!cellulose!is! 
utilized.!Yellow!bars!represent!ethanol!production!when!cellulose!and!hemicellulose!are!utilized! 
(Kumar et al., 2012). 

Based on this increased yield, the average production price for a gallon of 

ethanol is estimated to drop up to 22% depending on the composition of the 

feedstock (Kumar et al., 2012). It is this very real potential cost savings that 

drives this work on pentose sugar utilization. 

1.4 Five-Carbon Sugar Utilization Strategies 

There are three general strategies for optimizing the conversion of five carbon 

sugars (mainly xylose) from lignocellulosic hydrolysates to fuel ethanol. 

1) Modification of a known five carbon fermenter to produce 

ethanol, increase product yield, increase conversion speed, or 

increase ability to ferment 6 carbon sugars (Agbogbo and 
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Coward-Kelly, 2008; Agbogbo et al., 2006; Delgenes et al., 

1996; Du et al., 2010; Verduyn et al., 1985) 

2) Modification of a known ethanol producing, six-carbon fermenter 

to be able to directly utilize xylans.(Johansson and Hahn-

Hägerdal, 2002; Kötter and Ciriacy, 1993; Kötter et al., 1990; 

Richard et al., 2006; Träff et al., 2001; Wang and Schneider, 

1980) 

3) Conversion of five carbon sugars into forms that is more easily 

utilizable by a given ethanol producing organism (Gong et al., 

1981; Liu et al., 1996; Rao et al., 2008; Silva et al., 2012) 

1.4.1 Direct Utilization: Uptake of Xylose and Fermentation To
Ethanol 

D-xylose is the largest component of hemicellulose and the second most 

abundant sugar on earth. It is no surprise then that many microorganisms have 

evolved pathways to break down and utilize xylose in their metabolisms. Pichia 

stipitis has been identified as a good candidate for the production of cellulosic 

ethanol (Agbogbo and Coward-Kelly, 2008; Delgenes et al., 1996). 

P. stipitis and most xylose consuming yeasts and fungi, utilize xylose via 

the same three-step pathway (termed the XR/XDH pathway). Xylose is taken into 

the cell and converted to xylitol by a xylose reductase (XR). The xylitol is 

converted to xylulose by a xylitol dehydrogenase (XDH) (Verduyn et al., 1985). 

This xylulose is finally converted to xylulose-5-phosphate by a xylulose kinase 
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(XK). Xylulose-5-phosphate is incorporated into the non-oxidative branch of the 

pentose phosphate pathway where it is converted to pyruvate. In aerobes 

pyruvate usually oxidized through the citric acid cycle to produce GTP and 

NADH, but during fermentation pyruvate is converted to acetaldehyde by 

pyruvate decarboxylase and then ethanol by alcohol dehydrogenase(Sharma and 

Tauro, 1986). This serves to replenish the stores of NAD+ that act as electron 

sinks when oxygen is limited. 

! 

Figure!5:!Pentose!Utilization!Pathways!From!P.#stipitis#(XR/XDH!pathway)!and!Bacteria!(XI!pathway)!,! 
Here!XI!is!shown!as!outside!the!cell!to!show!how!an!extracellular!enzyme!could!be!used!to!allow!S.# 
cerevisiae#to!ferment!pentose!sugars! 

Most species that consume xylose in this way have an NADPH dependent 

XR and a NAD+ dependent XDH. The difference in cofactor preference between 

the two enzymes often causes cofactor redox imbalance and leads to the 

preferential accumulation of xylitol (Agbogbo and Coward-Kelly, 2008). P. stipitis, 

however is able to largely avoid this imbalance because its XR has dual cofactor 
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specificity for NADPH and NADH. In practice, this allows it to metabolize xylose 

at a sustained high rate, by cycling NAD+ and NADH during the xylose reductase 

and xylitol dehydrogenase reactions. However, P. stipitis is far poorer at 

fermenting hexose sugars than S. cerevisiae. Wild-type P. stipitis displays a low 

specific glucose consumption rate (with a maximum rate approximately 0.3 

g/gDCW-h) compared to S. cerevisiae has been shown to be as (4 g/gDCW-h) 

(Agbogbo et al., 2006; Hanly and Henson, 2011; Sonnleitnert, 1986). 

Additionally, P. stipitis requires a tightly controlled oxygen level in order to 

ferment xylose. A low, but non-zero level oxygen is required for xylose 

fermentation and ethanol production, but a too high concentration of oxygen will 

stimulate cell growth (Jeffries and Jin, 2004). Using P. stipitis for the fermentation 

of the hemicellulose stream while fermenting the hexose stream with S. 

cerevisiae is another option, but separate fermentation processes require 

additional capital investments and produces a more dilute beer that imposes 

additional distillation costs. Despite the greater yield of ethanol per ton biomass, 

these factors lead to an increase of production cost of $0.11 per gallon gasoline 

equivalent when both five and six carbon sugars are utilized in this manner (Kazi 

et al., 2010). 

The cost drawback of separate fermentation has focused research on 

cloning the genes from P. stipitis and other natural xylose fermenters into S. 

cerevisiae in hopes of creating a single organism capable of efficiently fermenting 

both hexose and pentose sugars. XYL1 and XYL2 (the genes coding for XR and 
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XDH in P. stipitis) were first expressed in S. cerevisiae in 1985 (Kötter et al., 

1990). This pair of enzymes works well in P. stipitis in part because it requires a 

balanced cofactor pair to operate. XR required NADH to convert xylose to xylitol. 

This reaction also reduced NADH to NAD+, which was required by XDH to 

convert xylitol to xylulose (see Figure 6). 

Figure!6:!Scheme!of!Xylose!Utilization!and!Mechanism!For!Cofactor!Regeneration!in!S.#cerevisiae#.##1=XR! 
(xylose!reductase);!2=XDH!(xylitol!dehydrogenase);!3=XK!xylulokinase);!4=ribulose,5,phosphate! 
epimerase,!ribose,5,phosphate!isomerase,!transaldoase,!and!transketolase;!5=!glucose,6,phosphate! 
dehydrogenase!and!6,phosphogluconate!dehydrogenase.!(Kötter!and!Ciriacy,!1993)! 

While the modified strain was able to metabolize xylose, its utilization rate 

was slow and it appeared to funnel the majority of xylose through an oxidative 

pathway to produce xylitol and regenerate NADP+ (Kötter and Ciriacy, 1993). By 
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utilizing this secondary pathway to produce xylitol, S. cerevisiae may have 

uncoupled the cofactor balance between XR and XDH. This uncoupling and 

resulting cofactor imbalance could have led to the observed low utilization rate for 

xylose. Recent dynamic flux balance modeling has provided support for this 

theory by showing that cofactor imbalanced reaction pairs (XR/XDH) produce a 

slower xylose utilization rate and oxidative regeneration of NADP+ similar to that 

observed by Kotter (Ghosh et al., 2011). 

In an attempt to avoid the cofactor intensive XR/XDH pathway all together, 

some researchers have focused on the bacterial xylose isomerase pathway. The 

gene encoding the xylose isomerase enzyme (xylA) has been isolated from many 

bacterial species including Actinoplanes missouriensis, Bacillus subtilis, 

Clostridium thermosulfurogenes, Escherichia coli, and Lactobacillus pentosus. 

Early attempts to incorporate these enzymes in S. cerevisiae failed to produce 

active proteins. The enzyme from Thermus thermophilus was expressed in its 

active form (Walfridsson et al., 1996), but had only modest activity in the yeast as 

the optimum temperature for the enzyme activity (80°C) was far higher than the 

optimum temperature for the yeast growth (~30°C). A different xylA from 

Piromyces sp. strain E2i with an optimum temperature near 30°C had a strong 

xylitol inhibition resulting in low xylose utilization (Karhumaa et al., 2007). 

Research to overcome xylitol inhibition and increase ethanol production is 

ongoing, but focuses on codon bias matching and removal of enzymes 
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responsible for xylitol production (specifically GRE3) (Ha et al., 2011; Lönn et al., 

2003; Träff et al., 2001). 

1.4.2 Direct Utilization: Uptake of Xylose and Conversion To an
Alternative Product 

The xylose isomerase pathway is less hampered in its native 

microorganisms, but the metabolisms of these organisms rarely produce ethanol 

in high quantities. Three of the common metabolic products produced by these 

organisms include butanol (Jurgens et al., 2012; Lee et al., 2008; Mu et al., 

2011), hydrogen (Cheng et al., 2011), and acetic acid. Butanol and hydrogen can 

be used directly as fuels, but acetic acid must first be catalytically upgraded to 

ethanol or jet fuel before it can be used. These methods of fuel production have 

different challenges and will not be discussed at length here. 

1.4.3 Indirect Utilization: Extracellular Conversion of Xylose to a More
Usable Form, Uptake, and Fermentation to Ethanol 

Xylose isomerase can be used in vitro to convert xylose to xylulose for 

direct utilization of xylulose. Gong et al. (1981) demonstrated that extracellular 

xylulose could be utilized with greater than 80% efficiencies by S. cerevisiae. In 

vitro conversion of xylose to xylulose is attractive for biofuels production as the 

enzyme xylose isomerase (sometimes called glucose isomerase) is a well-

established (widely available and relatively inexpensive) industrial enzyme used 

in the production of high fructose corn syrup. 
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While the promise of indirect xylose utilization pathway is immense, but 

several hurdles remain for use of this strategy in commercial biofuels production. 

1) Production of concentrated xylulose stream (greater than 50g/L): 

Perhaps the most obvious challenge is the production of concentrated 

xylulose. The isomerization of xylose is strongly hampered by product inhibition. 

The isomerization of pure xylose in the presence of glucose isomerase and an 

MgSO4 cofactor has been shown to produce xylulose yields of roughly 16% purity 

(Hochster and Watson, 1954). Assuming a feedstock with 30% hemicellulose 

comprised of 60% xylose, and a pretreatment solids loading at 10% w/w, 16% 

conversion efficiency would yield a xylulose concentration of less than 3 grams 

per liter (a full order of magnitude less than the concentration of the six carbon 

sugar stream). The conversion rate could be improved by the addition of borate 

(as sodium tetra borate). Borate removes xylulose from solution by complexing 

with it allowing for further product formation. By this method purities of up to 80% 

have been achieved (Hsiao et al., 1982). However borate has been shown to 

inhibit fermentation in yeasts (Lochhead and Farrell, 1930). This inhibition is 

likely caused by interfering with its alcohol dehydrogenase activity (Smith and 

Johnson, 1976). Since ethanol is the desired product, this inhibition is 

problematic limiting the usefulness of borate. 
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2) Mismatch between the optimal temperature and pH of S. cerevisiae and xylose 

isomerase. 

If yeasts and xylose isomerase could function in the same environment, 

removal of xylulose via consumption by yeast would limit product inhibition for 

xylose isomerase and allow further conversion of xylose to xylulose. However, S. 

cerevisiae ferments optimally at a slightly acidic pH near 5.0 and a temperature 

near 25°C. Even in thermophilic industrial yeast strains, growth is severely 

inhibited at temperatures at or above 50°C (Lin et al., 2012). Conversely, 

commercially available glucose isomerases (such as GENSWEET) act optimally 

at a mildly basic pH of 7-8 and a temperature in excess of 70°C. Research aimed 

at isolating xylose isomerases with a more acidic optimal pH (Liu et al., 1996) 

and the fixation of glucose isomerase in pH microenvironments (Jeppsson et al., 

1996; Rao et al., 2008; Silva et al., 2012) to allow simultaneous isomerization 

and fermentation in a single vessel at two different pHs is ongoing and could help 

increase the yield of ethanol from this strategy. 

3) Xylulose utilization rate in S. cerevisiae. 

Traditionally, pentose utilization rates have been shown to be one to two 

orders of magnitude slower than glucose utilization in modified strains of S. 

cerevisiae. To make co-fermentation of hexose and pentose sugars viable 

utilization rates must be more closely compatible. Directed strain modification 

revolves around the identification and widening of pathway bottlenecks. In 
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accordance with this need our work will focus on better understanding of the 

enzymatic and transport bottlenecks in S. cerevisiae through bench scale 

fermentation experiments and subsequent flux balance modeling. 

1.4.3.1 Enzymatic Limitation 

Competing research groups have focused on different possible 

bottlenecks in the xylulose utilization pathway. Much of the work has focused on 

the improvement of utilization rates by over expressing xylulose kinase (Chang 

and Ho, 1988; Lee et al., 2003; Richard et al., 2006). This has resulted in a 10-

fold increase in ethanol production rate from 0.04±0.02 to 0.23±0.05 g/gDCW-h 

(Lee et al., 2003). This is still significantly lower than the reported ethanol 

production rate from glucose (4 g/gDW-h) (Sonnleitnert, 1986). Other work has 

identified a different set of bottlenecks in the pentose phosphate pathway (PPP). 

When overexpressing the non-oxidative PPP enzymes ribulose 5-phosphate 

epimerase, ribose5-phosphate keto lisomerase , transaldolase, and 

transketolase these groups showed up to a 2.4-fold xylulose utilization rate 

increase from 0.09 to 0.22 g/gDCW-h (Johansson and Hahn-Hägerdal, 2002; 

Matsushika et al., 2012). 

1.4.3.2 Transport Limitation 

The transport of xylulose is not well understood in S. cerevisiae, but it may 

also play a role in the limiting xylulose utilization the pathway. The transport of 

xylose has been more extensively studied (Hotta et al., 2009; Runquist et al., 

http:0.23�0.05
http:0.04�0.02
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2010; Sedlak and Ho, 2004; Tanino et al., 2010). Xylulose transport may use 

similar transporters and transport mechanisms to its isomer xylose. 

Yeasts utilize two main types of sugar transport proteins, namely passive 

diffusion channels (sometimes called facilitators) and symporters. Most sugars 

are relatively large, polar, hydrophilic, uncharged molecules and therefore do not 

pass through the phospholipid cell membrane by simple diffusion as hydrophobic 

molecules such as O2, CO2, steroids, and hormones (Figure 7). In facilitated 

diffusion, a passive, water filled channel (facilitator) is imbedded in the cell 

membrane allowing more hydrophilic molecules enter the cell. Solutes utilizing 

facilitated diffusion must flow down a concentration gradient (from high 

concentration to low concentration). 
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Figure!7:!Permeability!of!the!Phospholipid!Bilayer!to!Different!Molecules!–!the!diagram!examines! 
molecules!of!different!sizes,!polarities,!and!charges! 
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On the other hand, symporters can concentrate a solute by pumping the 

solute against its concentration gradient (Figure 8). This transport is powered by 

coupling the concentration of one solute with the dilution of another. In 

proton/xylose symporters a proton powers the concentration of xylose when it is 

pumped down its electrochemical gradient. Other symporters utilize the potential 

energy stored in other ion concentration gradients (notably potassium and 

sodium gradients), but proton symporters are most common in yeast sugar 

transport. 

Figure!8:!Symport!and!ATP!Driven!Transport!Across!the!Cell!Membrane!,!Cells!can!use!ATP!fueled!proton! 
pumps!to!create!a!proton!gradient.!This!gradient!can!be!used!with!a!symporter!to!transport!another! 
molecule!(in!this!case!sucrose)!against!its!concentration!gradient. 
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Natural xylose fermenting organisms such as the yeasts P. stipitis, and C. 

intermedia, and the mold N. crassa, have transport proteins with relatively high 

specificity for pentose sugars (Du et al., 2010; Runquist et al., 2010). Most of 

these transport proteins are not substrate specific, but they often have a high 

affinity for pentose sugars meaning that they are saturated at low pentose 

concentrations. Sut1, the nonspecific sucrose/xylose proton symporter identified 

in P. stipitis has been expressed in S. cerevisiae leading to an increased rate of 

xylose transport. Even higher xylose uptake rates were obtained when GXF1 

(Table 2 and Figure 9), a glucose/xylose facilitator found in C. intermedia) were 

expressed in S. cerevisiae. 

Figure!9:!Xylose!Uptake!Rates!of!S.#cerevisiae!Strains!Expressing!Different!Transporters!,!Lines!represent! 
the!calculated!Michaelis,Menten!fits.!Gxf1=square;!Sut1=upward!pointing!triangle;! 
At5g59250=diamond;!control=downward!pointing!triangle!(Runquist et al., 2010). 
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Table!2:!Apparent!Kinetic!Constraints!for!Xylose!Transport!in!S.#cerevisiae#.#Strains!were!grown!on!20! 
g/L!glucose!(Runquist!et!al.,!2010).! 

! Km! 
(mM)! 

Vmax!(nmol/min!x! 
mgDW)! 

Vmax/Km!(min,1!x! 
mgDW,1)! 

TMB!3415!(control)! 

TMB!3416!(Gxf1)! 

TMB!3418!(Sut1)! 

TMB! 

3419(At5g59250)! 

121±44! 

166±6! 

96±11! 

148±39! 

119±17! 

471±10! 

178±16! 

163±7! 

10x1057! 

28x1057! 

19x1057! 

11x1057! 

! 
While each of the transporters discussed above transports xylose to some 

extent, they are all non-substrate-specific. To identify transporters with a singular, 

xylose specificity researchers used the sequence encoding the protein GXS1 (a 

transporter with high D-xylose affinity) from C. intermedia as a probe in BLAST 

(the National Center for Biotechnology’s Basic Local Alignment Search Tool) to 

identify transporters likely to show high xylose affinity. This work lead to the 

discovery of two xylose specific transporters in N. crassa: An25 and Xyp29 (Du et 

al., 2010). 

As S. cerevisiae is not a natural pentose utilizing species, it is unlikely to 

have pentose specific transporters and does not have any known proteins with 

homology matching to known specific pentose transporters. Instead it likely 

utilizes transporters optimized for hexose transporters to transport xylose under 

glucose-limited conditions. This is supported by studies that demonstrated the 

loss of xylose utilization capacity in manipulated S. cerevisiae strains (XR and 

XDH added) with deletion of 18 hexose transporters (Hamacher et al., 2002). 
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Research has shown that over expression of the Hexose Transporter (HXT) 

family of proteins (the major family of putative hexose transporters in S. 

cerevisiae) increases xylose utilization in strains containing the XI pathway (Hotta 

et al., 2009; Tanino et al., 2012). Other studies have suggested that the 

galactose transporter family (GAL), and specifically the protein GAL2, could play 

a role in xylose (and perhaps xylulose) uptake (Sedlak and Ho, 2004). Transport 

protein expression is often strongly linked to the presence or absence of a 

specific sugar. 

The expression of the transport proteins is often not controlled directly 

through the presence or concentration of the sugar it transports, but is rather 

linked via a signaling (phosphorylation) cascade. In the case of the HXT family of 

proteins, glucose levels are sensed by a separate protein (often SNF3), which 

sets off the signal cascade leading to the differential expression of different high 

and low affinity transporters (Figure 10). 

Figure!10:!Representation!of!Three!Mechanisms!of!Induction!by!Different!Glucose!Levels!,!A!line!with!an! 
arrowhead!implies!positive!regulation;!a!line!with!a!bar!denotes!negative!regulation!A=HXT3;!B=HXT2! 
and!HXT4;!C=HXT1!(Ozcan and Johnston, 1995).! 
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The expression of the HXT family of transport proteins is highly correlated 

to glucose concentration. Ozcan et al. mapped the expression levels of HXT1, 

HXT2, HXT3, and HXT4 as a function of glucose concentration and showed that 

they had different expression patterns (Ozcan and Johnston, 1995). HXT3 was 

expressed at all glucose levels (Figure 11), while HXT1 was expressed only at 

high glucose concentration and HXT 2 and 4 were expressed only at low glucose 

concentration(Ozcan and Johnston, 1995). Other studies have show HXT6 and 7 

to be expressed at only at low glucose levels (below 10 g/l) (Diderich, 1999; 

Liang and Gaber, 1996). 

! 

Figure!11:!Induction!of!HXT!Gene!Expression!as!a!Function!of!Glucose!Concentration!,!HXT1=closed! 
circle;!HXT2=triangle,!HXT3=square;!HXT4=open!circle!(Ozcan and Johnston, 1995).! 

Protein expression level is an important part of determining the rate of a 

reaction or transport, but it will not provide an absolute transport rate. Michaelis-
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Menten kinetic parameters including the maximum throughput (Vmax) and half 

saturation constant (Km) must be estimated before a rate estimate can be 

determined. These parameters have been calculated for each of the transporters 

HXT1-HXT7 for consumption of both glucose (Reifenberger et al., 1997) and 

xylose (Saloheimo et al., 2006). Based on the physiochemical similarity between 

xylose and xylulose, the kinetics describing their transport through the HXT family 

of proteins may be similar. 

1.4.3.3 Use of Modeling to Understand Xylulose Utilization 

The relationship between transport bottlenecks and internal, enzymatic 

bottlenecks are complex. The understanding of these relationships may best be 

elucidated through modeling. The study of xylose transport and utilization has 

been supported through kinetic modeling, flux balance analysis (FBA), and 

dynamic flux balance analysis (dFBA). For example, Pitkänen et al. was able to 

use a simplified recombinant S. cerevisiae network demonstrate the mechanism 

behind (and the consequences of) the redox imbalance created under conditions 

of xylose fermentation using the XR/XDH pathway (Pitkänen et al., 2003). This 

work confirmed and expanded the redox imbalance which had been identified 

years earlier (Bruinenberg et al., 1983; Kötter and Ciriacy, 1993). Bertilsson et al. 

focused on the transport of xylose through the native S. cerevisiae hexose 

transporter family (HXT family). Using a system of ODE’s based on the known 

transport kinetics of the individual HXT transporters; the model was able to 

accurately represent the consumption of sugars in mixed xylose/glucose 
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fermentation (Bertilsson et al., 2007). Ghosh et al. expanded upon the work of 

both Pitkänen and Bertilsson’s work by considering the ability of a hypothetical 

strain of S. cerevisiae with balanced cofactors to take utilize xylose. The strain 

was modeled using a combination of dFBA and kinetic modeling techniques and 

suggested a potential ethanol yield increase of 24.7% over a strain without 

balanced cofactors (Ghosh et al., 2011). Similar techniques could help to 

characterize the mechanism behind xylulose transport and identify opportunities 

for successful genetic engineering to increase ethanol production via the xylulose 

isomerase pathway. 

1.5 Flux Balance Analysis 

Flux balance analysis is a type of constraint-based modeling that 

uses physical or chemical constraints to define all allowable sets of fluxes 

through a network (Orth et al., 2010). Constraint-based analysis assumes that 

the system is at steady state (i.e. that it is not accumulating metabolites and 

fluxes are constant) and that it is satisfying all phyisio-chemical constraints 

(reaction rates are within allowable ranges and metabolites used in all reactions 

are actually available). In any single analysis there may be dozens or thousands 

of “allowable solutions”. To select a relevant solution an optimization is carried 

out to maximize or minimize a given variable. The maximization of growth rate 

and the maximization of ATP production are common optimization criteria in 

biological systems. 
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The FBA technique was pioneered in the early 1980s by Papoutsakis 

working on a stoichiometric calculation for butyric acid bacteria fermentation 

(Papoutsakis, 1984), but standardized mathematical methods weren’t developed 

until 1991 by Savinell and Palsson (Savinell and Palsson, 1992). As computing 

power, knowledge about metabolic networks, and high throughput genome 

sequencing technology evolved, the number of reactions captured in flux balance 

analyses grew as well. 

To better explain the concepts underlying basic FBA analysis, the steps 

are outlined below and illustrated in Figure 12. 

1.5.1 System Definition and Boundary 

Basic flux balance modeling requires a well-defined system that 

encompasses all relevant metabolites (A, B, C in Figure 12) and the 

stoichiometrically defined reactions for their inter-conversion and manipulation 

(v1-v4 in Figure 12). The advent of genome sequencing and automated genome 

annotation provides a convenient starting point from which to build this network. 

Automated genome annotation looks at sequence data to identify known proteins 

that the cell may be capable of producing. Once the enzymes are identified, they 

are annotated with information about the reaction that they catalyze including the 

identity and stoichiometric coefficients for the products and reactants in the 

reaction. 

Often during this annotation process, reactions in pathways known to exist 

in an organism may not be identified. This can be because of low genome 
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sequencing coverage or failure of the genome annotation software to correctly 

identify protein sequences. To remedy this, unidentified reactions are added to 

the model in a process known as gap filling. In addition to internal reactions, 

transport reactions must be considered (b1-b3 in Figure 12). Some metabolites 

are transported by simple diffusion while aquaporins, symporters, and ATP driven 

active transport pumps transport others. 

Here it is important to note that no implicit regulation is incorporated in this 

model. Within the cell, only a small fraction of the proteins required for the 

reactions defined thus far may be available at any one time. Traditional FBA 

analysis forgoes attempting to impose proteomic regulation on the system and 

instead uses mathematic modeling techniques to predict the optimal flux through 

a given pathway. 

1.5.2 Mass Balance 

After the list of all reactions and metabolites are compiled, a framework for 

global mass balance is derived. This framework is composed of a series of 

ordinary differential equations with one equation representing the stoichiometric 

flux of all metabolites through a reaction. When compiled, this list of ODEs can 

be represented in matrix notation. Here ‘S’ is an m x n matrix that represents the 

stoichiometry of all of the reactions in the cell. Each row in ‘S’ is an individual 

reaction and each column is an individual metabolite thus the number in element 

(m,n) is the stoichiometric amount of metabolite ‘n’ associated with reaction ‘m’. 

‘V’ represents the molar flux through each reaction. When the elements in ‘V’ are 
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such that S!V is equal to zero all metabolites in the system are mass balanced 

and the steady state assumption is met. 

1.5.3 Model Constraint 

The framework to fulfill the steady state assumption provides the first set 

of constraints for the model, but because the number of reactions is greater than 

the number of metabolites the solution set for reaction fluxes remains 

unbounded. In order to find a unique solution set, further constraints are required. 

These constraints are formed by identifying measurable fluxes within the network 

and defining flux rates (values of elements in ‘V’) for those reactions. Often, exact 

flux rates are unknown or vary with environmental conditions and an allowable 

range of fluxes will be defined in the model. Additional constraints can also be 

imposed based on experimental insights, reaction thermodynamics, or 

hypothetical situations to be tested (for example a gene knockout). 

1.5.4 Identifying Optimal Solution 

With constraints in place to produce an allowable solution set, the optimal 

solution can be identified by employing a linear mathematical solver to optimize a 

biologically relevant objective function. The objective function, termed ‘Z’, is most 

often a weighted combination of reaction fluxes. In matrix notation Z=C!V where 

‘C’ is the weight applied to each of the fluxes defined in ‘V’. Commonly used 

objective functions maximize biomass growth, ATP production, or the synthesis 

of a specific metabolite. 
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! 

Figure!12:!Methodology!for!Flux!Balance!Analysis!,!(a)!A!model!system!comprised!of!3!metabolites!(A,!B,! 
and!C)!with!three!reactions!(including!one!reversible!reaction),!and!three!exchange!fluxes!b.#(b)!Mass! 
balance!equations!accounting!for!all!reactions!and!transport!mechanisms!are!written!for!each!species.! 
These!equations!are!then!rewritten!in!matrix!form.!At!steady!state,!this!reduces!to!S!V=0!(c)!The!fluxes! 
of!the!system!are!constrained!on!the!basis!of!thermodynamics!and!experimental!insights.!This!creates!a! 
flux!cone!corresponding!to!the!metabolic!capacity!of!the!organism.!(d)!Optimization!of!the!system!with! 
different!objective!functions!(Z).!Case!I!gives!a!single!optimal!point,!whereas!case!II!gives!multiple! 
optimal!points!lying!along!an!edge!(Kauffman et al., 2003).! 

1.6 Building Upon the Traditional FBA: Second Generation FBA
Techniques 

1.6.1 Time Course Experiments; dFBA 

Traditional FBA captures only a snapshot of the rate of reaction fluxes in a 

cell or cell population. Varma and Palsson expanded the method in 1994 as to be 

able to capture a time course experiment, a technique known as dFBA (dynamic 

flux balance analysis) (Varma and Palsson, 1994). In this technique the time 

course was divided up into small time intervals. Initial conditions were provided 

for the first time step and an FBA was carried out producing the vector ‘V’ 



!     

             

            

             

            

        

            

            

       

           

            

         

           

           

             

           

              

         

   

       

          

        

 

Page 32 

containing all of the fluxes within the cell and the fluxes through transport 

reactions by which the cell interacts with the environment. Varma assumed that 

over the small time step the optimal flux through the cell was likely to remain 

constant. By multiplying the rates of flux through the transport reactions by the 

length of the time step, Varma could estimate the changes in media composition 

and use the new composition as initial values for the next FBA iteration. This 

process could be repeated indefinitely providing a projection of the system. 

1.6.2 New Classes of Objective Function; MOMA and ROOM 

Traditional FBA predicts the optimal, steady state fluxes within a cell under 

the assumption that the cell has evolved to favor growth. However, in genetically 

modified organisms that have acquired or lost genes without prolonged 

evolutionary pressure and in organisms cultured in pressures unlike those that 

shaped their evolution, this assumption does not hold true. For example, a model 

of E. coli growth on glycerol (a suboptimal substrate) was shown to match 

experimental measurements after 40 days of culturing in a glycerol medium, but 

not at the start of culture (Ibarra et al.). Traditional objective functions did not 

consider the cost associated with the cell’s metabolomic reorganization and were 

not designed to identify sub optimal solutions. Minimization of Metabolic 

Adjustments (MOMA) and Regulatory On-Off Minimization (ROOM) constitute a 

second generation of optimization functions (for use with GMOs) that target 

solutions with sub-optimal flux through a given pathway while minimizing 

metabolic changes. 
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Segre et al. first introduced MOMA in 2002 in an attempt to better model 

the growth of an E. coli knock out mutant. Segre found that the wild-type strain’s 

growth rate closely matched that predicted by traditional FBA analysis 

(correlation 0.78 to .097). In the knockout strain, the correlation between 

traditional FBA prediction and experimental data was lower (-0.064 to 0.86). 

MOMA was based on the assumption that a cell would minimize its adaptation 

cost after a knockout or change in conditions and that it would do this by 

minimizing flux changes that would require new protein synthesis. To this end the 

objective function in MOMA is set to minimize the Euclidean distance between 

each expected wild-type flux and its corresponding knockout flux. That is √(Σ 

(ΔV)2 ) is minimized (Figure 13). Using this objective function produced a 

suboptimal growth solution that more closely matched that of the knockout 

experimental data (correlation 0.56-0.94) (Segre et al., 2002). 

http:0.56-0.94
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! 

Figure!13:!Representation!of!MOMA!Optimization!,!In!MOMA!the!model!attempts!to!minimize!the!change! 
in!fluxes!from!a!wild,type!case!(Segre!et!al.,!2002).! 

MOMA works on the theory that cells metabolisms will avoid all change at 

the expense of growth and that it will oppose one large change more than several 

smaller changes. However, other studies have shown that these types of major 

re-routings do occur to allow for increased flux through an alternative pathway 

away from the knocked out enzyme (Emmerling et al., 2002). ROOM was 

developed as an alternative to MOMA in 2005 by Shlomi et al. and was based on 

the same assumption that cells would minimize their adaptation costs. ROOM 

differs from MOMA by assuming that the cells major regulatory changes can be 
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described by Boolean on/off dynamics (changes below a set threshold magnitude 

are not considered) and that each regulatory change has a fixed cost regardless 

of its magnitude (Shlomi et al., 2005). This assumption favors a few large 

magnitude changes over several smaller magnitude changes. 

ROOM growth rate estimations have been shown to be similar to FBA 

estimations both in terms of lethality prediction and growth rate predication. 

Growth rate measurements for FBA and ROOM tend to be less well correlated 

with experimental knockout growth data before an adaptation period as 

compared to MOMA (correlations: 0.772, 0.777, 0.834 respectively), but more 

well correlated after adaption (correlations: 0.724, 0.727, 0.658 respectively). The 

lethality prediction data below shows the improved lethality prediction over 

MOMA (Shlomi et al., 2005). 

Table!3:!Comparison!of!Lethality!Predictions!Using!Traditional!FBA,!MOMA,!and!ROOM!Methods!,! 
(Shlomi!et!al.,!2005).!! 

! 

! FBA! MOMA! ROOM! 

True,positive! 

False,positive! 

True,negative! 

False,negative! 

Positively!predicted!genes! 

Negatively!predicted!genes! 

Overall!Prediction! 

449! 

64! 

23! 

19! 

96%! 

26%! 

85.0%! 

399! 

60! 

27! 

69! 

85%! 

31%! 

76.7%! 

449! 

62! 

25! 

19! 

96%! 

29%! 

85.4%! 
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In quickly evoloving field of FBA, new formulations of objective functions 

are regularly published. Growth or product optimization, MOMA, and ROOM 

constitute the most widly accepted objective functions, but none can yet 

accurately model all aspects of cell metabolism. As recently as 2013 a new 

objective formulation termed PSEUDO (Perturbed Solution Expected Under 

Degenerate Optimality) was released. It is based on the hypothesis that the cell 

might reorganize its metabolism such that a minimum percentage (90%) of the 

wild-type growth rate is maintained and has demonstrated more accurate flux 

redistributions in recombinant E. coli (Pearson correlation coefficients of 0.86, 

0.84 and 0.91 respectively for FBA, MOMA, and PSEUDO). Additionally, average 

prediction errors in the PPP and TCA pathways were significantly better using 

PSEUDO (-17% average erro) versus traditional FBA and MOMA (-41% and -

42% respectively) (Wintermute et al., 2013). 

1.6.3 Regulatory Incorporation; rFBA and SR-FBA 

While incremental increases in prediction accuracy through modified 

objective functions continue, the trend has now tended towards incorporating 

regulatory mechanisms within the model as additional constraints to improve 

model predictions. Traditional FBA and dFBA (including those using alternative 

objective functions) assumed that all gene products were available at any time 

and that given the correct reactants, any reaction could happen at any time. This 

leads to incorrect predictions when the organism’s internal regulatory 

mechanisms are a dominant influencer of behavior. Reactions catalyzed by 
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enzymes produced only in the presence of certain metabolites or under certain 

stresses will not be possible without the appropriate stimuli. Several methods for 

incorporating native intracellular regulation have been proposed 

In 2001 Covert, Schilling, and Palsson developed a framework for 

transcriptional regulation in E. coli based on the RegulonDB, a database of 

transcriptional regulation and operational regulation in E. coli (Covert and 

Palsson, 2003; Covert et al., 2001). RegulonDB contains curated information on 

gene organization and regulatory mechanisms for each gene including the sigma 

factors, promoters, terminators, and regulons required for transcription. This 

framework, later termed rFBA, used Boolean (on/off) logic operators (ex. IF, 

AND, OR, NOT) to determine a set of “active” reactions (and a set of “inactive” 

reactions) based on the metabolic profile of the previous time step of the dFBA. If 

a protein required for a reaction was not “active,” the flux through that reaction 

was limited to zero this constituted a second level of adjustable constraints to 

compliment the static, physicochemical inherent in the FBA. 

Ruppin and colleagues proposed a similar method, Steady-state 

Regulatory FBA (SR-FBA). This method also used Boolean logic operators to 

derive a second level set of adjustable constraints, but Ruppin translated the 

Boolean operators that mapped the presence of proteins to the availability of 

reactions into a system of linear equations to solve for a steady state regulatory 

profile (Shlomi et al., 2007). This allowed the regulatory network to be solved 

within the MILP problem framework of the FBA. 
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SR-FBA and rFBA share two main weaknesses. First is that they are 

based solely on Boolean logic which limits proteins to a binary response pattern 

(they are either fully on or fully off). Cells generally have much finer protein 

regulation than this. Second, because these methods select a steady state 

regulation profile they cannot accurately represent feedback responses and 

signaling feedback loops happening on different time scales than the FBA 

(Gonçalves et al., 2013). 

1.6.4 Signaling Incorporation; idFBA and iFBA 

Two advanced techniques have been proposed that incorporate both 

protein regulation and cell signaling into FBA. Papin et al. proposed Integrated 

Dynamic FBA (idFBA) in 2008. This method again relied on Boolean (on/off) 

operators in the derivation of its quasi-steady-state regulatory network, but 

provides a stoichiometric rate component to differentiate “fast” reactions (which 

are included in the quasi-steady-state regulatory profile) from “slow” reactions 

(which can take minutes to hours to reach equilibrium and are incorporated in a 

time dependent manner). This setup allows the system to exhibit signaling and 

feedback phenomena seen in vivo (Min Lee et al., 2008), but does require 

significant additional knowledge about system in terms of protein synthesis rates. 
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A different approach is taken in iFBA to better model cell signaling along 

with regulation. iFBA is based on rFBA using Boolean operators to sort reactions 

into an “active” and an “inactive” group in each time step based on the 

environmental factors. In addition, iFBA uses a system of ODEs to depict fine 

regulation of enzymes and pathways with well-characterized kinetic parameters 

(Covert et al., 2008). These constraints are combined with the regulatory and 

invariant, physiochemical constraints that must be satisfied in the FBA. 

Figure!14:!Overview!of!Formalisms!for!Modeling!Signaling,!Gene!Regulatory,!and!Metabolic!Networks!,! 
Multiple!formalisms!and!simulation!methods!can!be!used!to!model!and!analyze!each!biological!system.! 
Due!to!specific!biological!features,!some!mathematical!formalisms!are!more!suitable!for!specific! 
systems.!Some!methods!can!model!different!types!of!systems!using!different!(e.g.!SR,FBA)!or!the!same! 
mathematical!formalism.!Specific!references!are!only!used!for!the!cases!where!a!general!term!is!not! 
available!(Gonçalves!et!al.,!2013).! 
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1.7 This Work 

This work will focus on identifying and modeling the xylulose utilization 

bottlenecks with specific focus on the transport of xylulose into the cell (in part 

through the HXT family of transporters) and the conversion of xylulose to xylulo-

5-P via the enzyme xylulokinase (XK). A series of batch experiments will be used 

to determine the kinetic parameters associated with xylulose utilization. These 

kinetic parameters will be used in a genome scale dFBA to better understand the 

utilization dynamics in the cell. Regulation will be included for the expression of 

the HXT family of transporters based on the model of xylose transport previously 

developed (Bertilsson et al., 2007). The genome scale kinetic modeling will 

provide insight into metabolic bottlenecks in the xylulose utilization pathway 

paving the way for directed cell engineering in the future. 
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Chapter 2 - Batch Fermentation Experiments: 

2.1 Introduction: 

Ethanol produced from lignocellulosic biomass has the potential to 

displace the bulk of global, non-renewable transport fuels. However, using 

current technology, feedstock costs can make up over 40% of total production 

costs. To justify the high cost of raw materials and to make ethanol economically 

competitive with fossil fuels it is imperative that the process converts as much of 

the feedstock sugars to ethanol as possible. While six carbon sugars are readily 

fermentable by wild-type Saccharomyces cerevisiae, five carbon sugars are not. 

Xylose accounts for roughly 60% of the sugar monomers in hemicellulose and 

developing a strategy to utilize it efficiently could boost ethanol yields by 40%. 

One method to improve xylose utilization is to enzymatically convert it to 

xylulose. Xylulose can be utilized by wild-type S. cerevisiae through the pentose 

phosphate pathway (PPP). In this process xylulose is transported into the cell, 

converted to xylulo-5-phosphate (by xylulokinase), and funneled into glycolysis 

and fermentation through the PPP. To our knowledge no work has attempted to 

elucidate the full kinetics of this pathway; an understanding of which would 

improve future strain development aimed at increasing pathway flux. 

2.2 Overview of Major Aims: 

As a whole the batch fermentation experiments described in this section 

had three major objectives: 
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1) To determine the method and rate function of xylulose transport into the 

cell as a function of xylulose concentration 

It was hypothesized that xylulose was most likely transported by the HXT 

family of proteins, but it was unknown how efficiently these transporters would 

work for xylulose. It was also unclear if other proteins or simple diffusion 

participated in this transport process. We examined this aim by looking at the 

saturation kinetics of xylulose transport as compared to what would be expected 

in a simple diffusion system. We also utilized HXT knockout strains to consider 

the possibility of other methods of xylulose transport. 

2) To determine the flux capacity of xylulokinase in wild-type strains of S. 

cerevisiae and in strains designed to over express xylulokinase 

We hypothesized that the bottleneck for xylulose utilization would most 

likely be either xylulose uptake or the conversion of xylulose to xylulo-5-

phosphate. To test this hypothesis we used strains with different XK expression 

levels and determined the correlation between increased XK expression and an 

increase in xylulose utilization rate. 

3) To produce a sufficient data set to fit and validate a model of xylulose 

utilization in S. cerevisiae. 

Additional findings and the rational for performing different experiments 

pare described later in sections 2.4.1 to 2.4.8. 
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2.3 Materials and Methods 

A series of batch fermentation experiments were carried out in order to 

complete the stated aims. This research focused on the utilization of xylulose 

through the pentose phosphate and glycolysis pathways to produce ethanol. Our 

initial hypothesis was that this pathway had a bottleneck at xylulose transport 

(which we hypothesized was carried out in large part by the HXT family of 

transporters) or at the reaction converting xylulose to xylulo-5-phosphate (carried 

out by xylulokinase) steps in the pathway. To facilitate this research strains with 

combinations of increased xylulokinase (XK) activity and knocked out HXT 

transporters were developed as described below. 

2.3.1 Strain Definitions: 

A total of six strains were used through the course of this research. All of 

the strains were developed in Dr. Ronald Hector’s USDA lab in Peoria, Illinois 

from the parent strain CEN.PK2-1C. The CEN.PK family of S. Cerevisiae strains 

is one of the major families of reference strains used for S. Cerevisiae research. 

Its high incidence of use is due in part to the large number of mutants available 

and the strain’s ability to readily express many heterologous protein products 

(Van Dijken et al., 2000). 

YRH524 (later referred to as “wild type”) is a control strain consisting of 

CEN.PK2-1C carrying an empty plasmid with the selection marker allowing 

growth on media lacking tryptophan. This selection marker was used in all strains 

to promote plasmid retention. YRH857 (referred to as “low copy”) and YRH858 
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(referred to as “high copy”) contain different plasmids that express either low or 

high copy xylulokinase under the control of a ubiquitous promoter. Since wild-

type S. Cerevisiae already contains the gene for XK the plasmids in these strains 

provide supplemental support to that enzyme. The potential for conversion of 

xylulose to xylulo-5-phosphate is therefore greatest in YRH858 (high copy), 

followed by YRH857 (low copy), and least in YRH524 (wild type). 

YRH859 contains the same low copy XK vector as YRH857, but has been 

adapted for growth on xylose. This strain had a vector containing the genes for 

xylose reductase and xylose dehydrogenase added and was grown on xylose. 

This plasmid was later removed producing a strain similar to YRH857, but that 

may have a metabolism better adapted for xylose (and thus xylulose) utilization. 

The strains YRH1153 and YRH1154 are knockout strains that do not 

express the glucose transporters HXT 1-7. YRH1153 has an empty vector with 

the same tryptophan selection marker used in YRH524. YRH1154 has the same 

high copy XK plasmid as YRH858. All strain and plasmid definitions are outlined 

in s 2.4 and 2.5 below. Plasmid maps for unmodified pRS414 and pRS424 from 

which all plasmids in our study were created are included in the appendix. 

! 
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!Table!4:!Strain!Definitions!,!!These!definitions!are!based!on!the!parent!strain!and!the!incorporated! 
plasmid!or!knocked!out!genes! 

Strain!Definitions! 
Strain! Genotype! 
CEN.PK2, MATa!ura3352#trp13289#leu233_112#his3D1#MAL238c#SUC2! 
1C! 
YRH524! CEN.PK251C!+!pRS414!(empty!TRP15marked!vector)! 
YRH857! CEN.PK251C!+!pRH195!(low5copy!vector!+!XKS1)! 
YRH858! CEN.PK251C!+!pRH196!(high5copy!vector!+!XKS1)! 
YRH859*! CEN.PK251C!+!pRH195!(low5copy!vector!+!XKS1)! 
YRH1153!! CEN.PK251C!hxt1D,#hxt2D,#hxt3D,#hxt4D,#hxt5D,#hxt6D,#hxt7D!+! 

pRS424!! 
YRH1154!! CEN.PK251C!hxt1D,#hxt2D,#hxt3D,#hxt4D,#hxt5D,#hxt6D,#hxt7D!+! 

pRH196!!!!! 
! 
! 
Table!5:!Plasmid!Definitions!–!These!definitions!are!based!on!the!parent!plasmid!and!the!incorporated! 
vector! 

Plasmid!Definitions!
 
Plasmid! 
pRH195! 

Description! 
pRS414!!PHXT7:XKS1:THXT7! 

pRH196! 
pRS414! 

pRS424!!PHXT7:XKS1:THXT7! 
pBluescript!II!SK+,!TRP1,#CEN6,#ARSH4!(low5copy!vector)! 

pRS424! 
! 

pBluescript!II!SK+,!TRP1,#2µ!origin!(high5copy!vector)! 

2.3.2 Culture Conditions: 

2.3.2.1 General Growth/Passage Culture Conditions: 

Passage cultures were carried out in temperature controlled incubators set 

to 25°C (cooling was not available in one of the incubators and temperatures 

reached as high as 30°C depending on ambient conditions). Approximately 75% 

of culture media was changed every 2 to 4 days by letting the cells settle and 

decanting a portion of the spent media. If the duration between passages (media 

exchanges) exceeded two days glucose feed media was used to boost available 

sugar to 60g/l if the culture. The cultures were not mechanically stirred during 
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growth, but were agitated during passaging, cell counts, and feedings 

(approximately once per day). The headspace of the culture was continuously 

flushed with pressurized air passed through a 0.2-micron filter to provide a 

slightly aerobic environment and promote cell growth. 

2.3.2.1 General Experimental Culture Conditions: 

Immediately prior to experiment inoculation, yeast cells were harvested 

from passage cultures via centrifugation at 1000 rpm for 10 minutes. The 

resulting supernatant was decanted and the cells were re-suspended in 

approximately 5ml experimental media. The required inoculation volume was 

determined through spectrophotometric analysis of a serial diluted sample of the 

cell suspension. Flasks (125ml non-baffled Erlenmeyer) containing 50mL of 

experimental media were inoculated with the required volume of cell suspension 

(targeting either 10 or 20 g/L depending on experiment) and the first sample was 

taken immediately thereafter via the vent needle in the flask’s stopper. 

Experimental cultures were maintained at 25°C in a temperature controlled water 

bath. The cultures were agitated using a built in shaker tray at speed sufficient to 

keep cells from settling (variable depending upon size of flask and fill level). Flask 

stoppers were vented to allow escape of CO2, but the headspace was not flushed 

(as to maintain an anaerobic environment). A reference table for comparison of 

specific conditions in each experiment is included below (Table 6). 
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Table&6:&Consolidated&Table&of&Experimental&Conditions&6&All&averages&are&of&all&strains&and&all&replicates.&Individual&starting&conditions&available&in&the& 
appendices.& 

& Experiment& 

E1# E2# E200# E202# E203# E300# E2.1# E222# 

Initial&Glucose& 

Concentration&(g/l)& 

Initial&Xylulose& 

Concentration&(g/l)& 

Initial&Xylose& 

Concentration&(g/l)& 

Initial&Biomass& 

Concentration& 

Target&(g/l)& 

Strains&Utilized& 

22.77±1.89# 0.00±0.00# 0.82±0.16# 0.00±0.00# 0.00±0.00# 0.08±0.32# 

11.11±0.54# 20.20±0.52# 37.24±6.15# 60.68±1.18# 71.11±0.97# 101.29±8.97# 

24.78±1.35# 37.51±0.98# 102.85±7.35# 43.47±1.17# 33.45±0.54# 77.27±3.41# 

11.20±0.31# 17.92±0.54# 19.58±1.60# 9.89±1.35# 17.17±0.49# 11.26±1.31# 

YRH524,#

YRH857,#

YRH858,#

YRH859# 

YRH524,#

YRH857,#

YRH858,#

YRH859# 

YRH524,#YRH857,#

YRH858,#YRH859# 

YRH524,#

YRH857,#

YRH858,#

YRH859# 

YRH524,#YRH857,#

YRH858,#YRH859# 

YRH524,#YRH857,#

YRH858,#YRH859,#

YRH1153,#YRH1154# 

3.41±0.37# 

8.24±0.43# 

21.86±1.21# 

9.41±0.58# 

YRH1153,#

YRH1154# 

32.59±1.49#

(33.09±2.20)*# 

53.67±3.47#

(15.77±10.75)*# 

34.84±1.27#

(29.40±0.59)*# 

9.88±0.35#

(10.86±0.42)*# 

YRH524,#

YRH857,#

YRH858,#

YRH859,#

YRH1153,#

YRH1154# 

Replicates&Per&Strain& 

Sampling&Schedule& 

(hrs)& 

Other&Notes& 

3# 3# 3# 4# 3# 3# 

0,#1,#2,#4,#6,#9,#12,#

24,#48,#72,#96# 

0,#1,#

24, 

2,#4,#6,#9,#12,# 

#48,#72,#96,#

120# 

0,#2,#4,#6,#9,#12,#24,#

34,#48,#72,#96,#120# 

0,#6,#12,#24,#48,#

72,#96,#120,#144,#

168# 

0,#6,#12,#24,#48,#72,#

96,#120,#144,#168,#

192,#216,#240# 

0,#12,#24,#48,#72,#96,#

117,#141,#171# 

*#Values#after#a#glucose#spike#at#48#hr#to#achieve#a#target#glucose#concentration#of#>30g/L#in#the#media.#(E222)# 

4# 

0,#2,#4,#6,#8,#

10,#12,#24# 

3# 

0,#4,#8,#12,#24,#

48##

(48.1,#52,#56,#

60,#72,#96,#120,#

144)# 
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# 
Experiments E1, E2.1, and E222 were run using media containing 

glucose. These experiments were designed to show that xylulose consumption is 

linked to glucose consumption by the glucose-mediated induction of the HXT 

transporters. All other experiments used glucose free media (the small amounts 

of glucose in the starting samples of E300 and E200 was carried over from 

passage during inoculation). These experiments were designed to find the 

maximum xylulose utilization rate in glucose free medium. By comparing the 

maximum rates in strains with differing levels of xylulokinase we hoped to 

demonstrate that XK was the limiting reaction in xylulose utilization. 

Experiment E222 was designed as a fed batch experiment with glucose 

feeding during the 48-hour sample. The values in parentheses in Table 6 denote 

the concentrations immediately following feeding to raise the glucose level in the 

cultures by 30g/l. Spiking this culture with glucose allowed us to look into the 

kinetics of glucose transporter induction and its effect on xylulose utilization. 

2.3.3 Measurement Methods 

Yeast cell cultures are turbid. The culture medium generally allows 

most light to pass through while the cells obstruct a portion of the light incident 

upon a sample. Spectrophotometry takes advantage of this property by 

measuring the absorbance of a culture sample versus a blank (pure culture 

medium) and comparing it to a standard curve of known cell densities and 

corresponding concentrations. In this work cell density was measured via 

spectrophotometer at 600nm. 
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In this set of experiment all HPLC runs were performed on a 

BioRad HPX-87H carbohydrate analysis column and the recommended 0.005M 

H2SO4 mobile phase. The column temperature was maintained at 65°C. The flow 

rate during all runs was set to 0.6 mL per minute. This column and set of 

conditions provided reasonable resolution for glucose, xylose, xylulose, ethanol, 

acetic acid, lactic acid, succinic acid, and glycerol. This yielded good peak 

separation with approximate residence times listed below. 

Table&7:&Approximate&HPLC&Peak&Retention&Times&9&As&run&on&an&87H&HPLC&column&with&0.6mL/minute& 
flow&rate.& 

Compound& Approximate&Residence&Time&(minutes)& 
Glucose& 
Xylose& 
Xylulose& 
Succinic&Acid& 
Lactic&Acid& 
Glycerol& 
Acetic&Acid& 
Ethanol& 

8.9# 
9.5# 
10.1# 
11.4# 
12.5# 
13.2# 
14.9# 
21.8# 

# 
Several metabolic processes in S. cerevisiae, notably ethanol production 

through fermentation, cause the production and release of CO2. The 

measurement of this production is not captured in HPLC because the CO2 is lost 

to the atmosphere. One way of quantifying this loss in batch experiments is 

through the measurement of weight loss. As CO2 leaves the culture, the weight of 

the flask decreases. Initially we made this measurement (data not shown), but it 

was abandoned as the signal to noise ratio of the measurement proved 

insufficient given the low rate of fermentation. CO2 production was therefore 
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estimated for mass balance purposes using the stoichiometric relationships 

between production of measured metabolites and production of CO2. 

This data was analyzed for scientifically and statistically significant 

comparisons. P-values were calculated using either one or two tailed student-T 

tests based on the nature of the null hypothesis to be tested. P-values below 0.05 

were considered to be statistically significant. 

2.4 Results and Discussion 

2.4.1 – Identification of Xylulokinase (XK) as Xylulose Utilization 
Bottleneck in Wild Type Cells 

A major objective of these batch experiments was to identify the 

bottleneck in xylulose utilization. We had hypothesized that this bottleneck would 

either be in the transport of xylulose into the cell or in the conversion of xylulose 

to xylulo-5-phosphate. 

To test this hypothesis we compared the experimental results from our 

wild type, low copy XK, and high copy XK strains. These strains are genetically 

identical except in the level of XK expression. If, for a given experiment, strains 

with higher XK capacity showed an increased rate of xylulose utilization we would 

conclude that XK was the limiting reaction in the utilization of xylulose. 

Conversely, if the rates of xylulose utilization (for a single experiment) were the 

same amongst these strains independent of XK capacity, we would conclude that 

transport was the limiting reaction. 
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# 

Figure&15:&Expected&Result&if&XK&Capacity&was&Limiting&Xylose&Utilization&Rates& 

# 

Figure&16:&Expected&Result&if&Xylulose&Uptake&Rate&was&Limiting&Xylulose&Utilization& 

# 

In comparing wild-type (YRH524) S. cerevisiae to strains with excess of 

XK (from either the high copy and low copy XK plasmid), the wild-type strain 

showed a decreased average xylulose utilization rate over the first 12 hours of 
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fermentation in four of seven independent experiments. Under experimental 

treatments E1, E2, E202, and E203 there was a statistically relevant difference 

(p-value< 0.05) between the wild-type strain (YRH524) and each of the XK 

enhanced strains. Experimental conditions E200 and E222 showed average 

consumption rates slightly higher in all XK enhanced strains, but the differences 

were not large enough to be statistically valid (p-values ranged from 0.096 to 

0.226). Data from experimental treatment E300 did not fall in line with this trend. 

This treatment had the highest starting sugar concentration (>200g/l total sugars) 

and may have been hampered by sugar inhibition. 

# 

Figure&17:&A&Comparison&of&the&Average&Xylulose&Consumption&Rates&During&the&Initial&12&Hours&of& 
Fermentation&Under&Each&Experimental&Treatment&9&Error&bars&denote&±&one&standard&deviation.& 
Asterisks&above&the&column&bars&denote&statistical&difference&(p<&0.05)&between&strains&within&an& 
experiment&with&*,&**,&***&denoting&statistical&difference&to&YRH524,&YRH857,&and&YRH858&respectively.& 

Additionally, in E300, measurements were taken at less regular intervals 

(0, 12, 24 hours) making it difficult to judge how the strains initially reacted to the 
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high sugar concentration. With four of six experimental treatments showing a 

significantly decreased utilization rate inYRH524 and two additional experiments 

showing small but statistically insignificant support for this trend, this data as a 

whole supports the hypothesis that XK was limiting in strain YRH524. 

2.4.2 – Diminishing Returns of Expanding XK Capacity and
‘Optimizing’ Cell Metabolism for Xylose 

While expanding XK beyond wild-type expression levels improved xylulose 

utilization, the difference in xylulose consumption rate between strains with 

increased levels of XK expression was not significant. Only in two of seven 

experimental treatments (E300 and E222) was there a statistically significant 

difference between the low-copy XK enhanced strain (YRH857) and the high 

copy XK enhanced strain (YRH858). If the XK was the limiting enzyme in the 

pathway among the strains (YRH524, YRH857, and YRH858) as indicated by 

scenario I in Figure 15, an expected result of these experiments is higher 

xylulose consumption rate in high copy strain (YRH858) compared to low copy 

strain (YRH857) or wild type (YRH524). However, in the two cases that showed 

statistically significant differences, this property was reversed with the low copy 

strain (YRH857) consuming xylulose at a higher rate than high copy strain 

(YRH858) (Figure 17 E222 and E300). The remaining experimental data did not 

show any significant difference between strains suggesting that transport quickly 

becomes the limiting reaction in xylulose utilization once the XK capacity is 

expanded. 
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Similarly, there seemed to be limited benefit to adapting strain YRH859 for 

growth on xylose. When comparing the low copy (YRH857) and the low copy 

xylose adapted strain (YRH859) the xylulose utilization rates were different in 

only one of the seven experiments (E222). In this instance the adapted strain 

(YRH859) actually consumed more slowly than the un-adapted strain indicating 

that adaptation of strain (YRH857!YRH859) did not improve xylulose utilization. 

While the data in this set of experiments is not in full agreement, the 

preponderance of the data points towards there being no difference in xylulose 

uptake rate between the low and high copy enhanced strains nor between the 

low copy and low copy adapted strains. 

2.4.3 – Rate of Xylulose Transport Not Well Correlated With
Concentration 

Another major goal of this study was to suggest a mechanism for xylulose 

transport by identifying the correlations between time, xylulose consumption rate 

and concentrations of xylulose and glucose. A strong, linear correlation between 

xylulose concentration and consumption rate in the absence of correlation to 

glucose or time would suggest a simple diffusion as the dominant transport 

mechanism. A correlation of xylulose consumption rate with the instantaneous 

glucose levels might suggest transport dominated by glucose transporters that in 

turn are strongly correlated with glucose availability. Finally, a strong correlation 

between fermentation time and sugar concentration in the absence of strong 

correlation between xylulose consumption rate and sugar concentration is likely a 
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result of transport mediated by a set of transport proteins that are expressed with 

a time delay between a stimulus and expression. 

The experimental results indicate a correlation between maximum xylulose 

concentration and maximum xylulose consumption rate. This result was expected 

since in a simple diffusion system or a facilitated transport system scenarios high 

concentration gradients would be expected to facilitate higher transport rate. 

However, although these correlations existed within experimental treatments, the 

correlations were not constant between experiments and no correlation was 

obvious when data from multiple experimental treatments was viewed in 

aggregate. This suggests that xylulose concentration at the levels tested does 

not significantly influence transport rate and that there is a separate mechanism 

influencing the uptake rate. 
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Figure&18:&Different&Correlations&Between&Xylulose&Concentration&and&Xylulose&Uptake&Rate&in&Different& 
Experimental&Treatments&9&Note&that&while&each&treatment&reaches&a&xylulose&consumption&rate&of&0.29 
0.25g/gDCW/hr,&they&do&so&at&different&xylulose&concentrations.& 

Our initial hypothesis about transport was that it was carried out in large 

part by the HXT family of transporters (specifically HXT 1-7). According to 

Bertilsson’s model, the expression level of these transporters in the absence of 

glucose is constant (Bertilsson et al., 2007). When the expression level was 

constant, Bertilsson’s model showed that xylose consumption was correlated 

with xylose concentration. Our results presented above indicate that that this 

correlation was not present in our data. This suggested two new hypotheses. 

First, there could be a delay in the expression of the HXT transporter family that 

Bertilsson’s model did not capture. Since our strains were grown in a glucose 

medium prior to experiments, it seemed possible that the HXT family of 

http:Experimental&Treatments&9&Note&that&while&each&treatment&reaches&a&xylulose&consumption&rate&of&0.29
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transporters could be expressed at non-zero glucose levels and that they 

remained expressed for some time after the cells were passaged to glucose free 

medium. Second, there may be a different set of transporters that are expressed 

under different stimuli causing the unexplained pattern of xylulose utilization. 

2.4.4 – Rate of Xylulose Transport Correlated With Time 

To test the hypothesis that the observed xylulose utilization pattern is 

caused by a time-delayed degradation of glucose transporters previously 

expressed under glucose rich conditions, the correlation between xylulose uptake 

rate and sample timing was analyzed. High correlation between early samples 

and high consumption rates would support this hypothesis. The correlation 

between sample time and consumption rate was clearer than the concentrations 

correlations we had initially examined, but because different experimental 

conditions produced slightly different consumption rates the correlation was 

somewhat unclear. 
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Figure&19:&Time&Correlation&with&Xylulose&Utilization&Rate&9&The&same&consumption&rate&data&as&in&Figure& 
18,&however&here&it&is&correlated&with&the&timing&of&the&sample&instead&of&xylulose&concentration.&This& 
correlation&is&better&standardized&amongst&experimental&treatments& 

Since this correlation was non-linear (and the strength of the correlation 

was therefore difficult to quantify) the consumption rate data within an experiment 

was ranked (where the highest xylulose utilization rate was given the rank 1, the 

second highest 2, and so on). Comparing this rank to sample time produced a 

more linear correlation with an R2 value between 0.113 and 0.526 depending on 

the strain. While not a strong correlation, this correlation was significantly 

stronger than those produced in correlations with glucose or xylulose 

concentration thus supporting the timing hypothesis. 
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Figure&20:&Aggregated&YRH859&Data&Demonstrating&Time/Xylulose&Utilization&Correlation&9&This&figure& 
shows&the&correlation&between&xylulose&consumption&rate&and&time&using&aggregated&data&from&strain& 
YRH859.& 
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Figure&21:&Ranked&Aggregated&YRH859&Data&Further&Demonstrating&Time/Xylulose&Utilization& 
Correlation&9&To&better&show&the&strength&of&the&correlation&in&Figure&20,&the&consumption&rate&data&was& 
ranked&in&each&experiment&(with&1&being&the&highest&recorded&rate&and&larger&numbers&denoting&slower& 
rates).&This&allowed&the&data&to&be&displayed&as&the&linear&correlation&shown&above.& 

2.4.5 – Xylulose Transport By Transporters Other Than HXT 1-7 

To test our secondary hypothesis that additional transporters were active 

in the transport of xylulose we utilized the knockout strains YRH1153 and 

YRH1154. Strain YRH1153 is similar to the wild-type strain YRH524 (Figure 22) 
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with HXT 1-7 knocked out and strain YRH1154 is similar to the high copy XK 

strain YRH858 (Figure 23). If HXT transporters 1-7 were active in transporting 

xylulose we would expect to see decreased xylulose uptake rates in these 

strains. If there were no additional transporters active in xylulose transport we 

would expect that YRH1153 and YRH1154 would not consume xylulose. 

We found that when comparing the 12-hour average consumption rate of 

an HXT knockout strain to its corresponding HXT positive strain with the same 

level of XK expressions, the knockout strain showed either no statically valid 

difference (as in the E222 YRH1153/ YRH524 comparisons) or the knockout 

strain showed a lower consumption rate for xylulose (Figure 22). This pattern was 

statistically significant (p<0.05) in the E300 YRH1153/ YRH524 comparison and 

two of three YRH1154/ YRH858 comparisons. In the third YRH1154/ YRH858 

comparison the p-value was 0.067; nearly significant given a p<0.05 cutoffs 

(Figure 23). 

The statistically significant differences in these experiments suggest that 

HXT 1-7 play a significant role in xylulose transport. However, because the 

knockout strains display non-zero xylulose utilization rates, other transporters 

must be active on xylulose. These transporters seem to be activated to differing 

degrees under different experimental treatments. Suggesting that the treatments 

(E300 contained high xylulose, but no glucose while E222 contained low levels of 

both xylulose and glucose in the initial media as well as a glucose a spike at 48 

hours) induce the expression of these transporters differently. Because the HXT 
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knock out strains were grown on a medium that contained glucose it is also 

possible that the cells have adjusted their transporter expression to maximize 

glucose and possibly xylulose uptake through lesser-used transporters. During 

modeling, this finding might be better studied through MOMA or ROOM FBA 

techniques. 

Figure&22:&Xylulose&Consumption&Rate&Differences&Between&YRH1153&(Wild&Type&XK,&HXT9)&and&YRH858& 
(Wild&Type&XK)&9&Each&pair&is&genetically&identical&except&that&YRH1153&(blue&bars)&has&HXT&197&knocked& 
out.&*denotes&a&statistically&significant&P9value&<0.05.& 

http:out.&*denotes&a&statistically&significant&P9value&<0.05
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# 

&Figure&23:&Xylulose&Consumption&Rate&Differences&Between&YRH1154&(High&Copy&XK,&HXT9)&and&YRH858& 
(High&Copy&XK)&9&Each&pair&is&genetically&identical&except&that&YRH1154&(blue&bars)&has&HXT&197&knocked& 
out.&*denotes&a&statistically&significant&P9value&<0.05& 

2.5 Batch Experiments Conclusions 

The batch fermentation section of this work yielded several major 

conclusions that will be utilized in and further supported through the modeling 

section of this work. First, XK was identified as the bottleneck for xylulose 

utilization in the wild-type strain YRH524. A different bottleneck, likely caused by 

xylulose transport, was identified as a common bottleneck for both high and low 

copy XK enhanced strains (YRH857 and YRH858). This bottleneck was also 

found to be the same in the xylose-adapted, low copy XK enhanced strain 

YRH859. The xylulose utilization rate was found to be better correlated with 

sample timing than either xylulose concentration or glucose concentration 

suggesting that xylulose transporters are expressed in a time delayed response 

to a stimulus. These experiments support the conclusion that it is most likely that 

http:out.&*denotes&a&statistically&significant&P9value&<0.05
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this stimulus is the glucose present in the media used for preparing the inoculum. 

This conclusion was further reinforced by experiments in which HXT knockout 

strains had lower xylulose consumption rates. Finally, HXT knockout strains were 

used to show that transporters other than HXT 1-7 are used to transport xylulose 

and that those transporters may be overexpressed in adapted strains with HXT 

1-7 knocked out. 

2.6 Batch Experiments Appendix 

2.6.1 Media Formulas 

2.6.1.1 Growth (Passage Media): 

# 

Table&8:&Glucose&Passage&Media&Composition&9&&Ŧ&Glucose&was&the&only&sugar&used&for&passage&culture&of& 
strains&with&HXT&transporters&(YRH534,&YRH857,&YRH858,&YRH859),&however&in&HXT9&strains& 
(YRH1153,&YRH1154)&a&mixture&of&30g&Maltose&and&35g&Glucose&was&used.*Tween&was&not&initially& 
included&in&this&media&and&was&added&in&all&passage&and&experimental&media&following&the&second& 
experiment&(E2).&The&inclusion&was&an&attempt&to&produce&higher&cell&density&in&passage&cultures& 
allowing&for&higher&density&experiment&inoculation.& 

Glucose&Passage&Media&Components& 
Component&& Amount& 
DI-H2O# <1.0L# 

(split)# 
Glucose#Ŧ# 65.0g# 
Yeast#Nitrogen#Base#without#Amino# 
Acids#(YNB)# 

6.7g# 

Amino#Acid#Dropout#Mix#minus# 
tryptophan#(AADM)# 

2.0g# 

Tween*# 1.0mL# 
Output& Amount& 
Glucose#Passage#Media# 1.0L# 
#
 

Passage media was produced in two parts. In a 500mL volumetric flask, 

glucose was combined with 300mL DI-H2O (deionized milli-Q water) and was 
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stirred to dissolve. Additional DI- H2O was added to bring the final volume to 

500mL. In a second 500mL volumetric flask, YNB, AADM, and Tween were 

combined with 300mL DI-H2O and stirred to dissolve. Additional DI- H2O was 

added to bring the final volume to 500mL. The contents of the flasks were 

transferred to cleaned 1L Erlenmeyer flasks. These flasks were capped loosely 

with foil and autoclaved for a 20 minute wet cycle at 150°C. After cooling to room 

temperature, the two flasks were combined to produce 1L passage media. 

2.6.1.2 Experimental Media: 

Table&9:&Experimental&Media&Composition&9&*Tween&was&not&initially&included&in&this&media&and&was& 
added&in&all&passage&and&experimental&media&following&the&second&experiment&(E2).&The&inclusion&was& 
an&attempt&to&produce&higher&cell&density&in&passage&cultures&allowing&for&higher&density&experiment& 
inoculation.& 

Experimental&Media&Components#
 
Constant&Components&& 
DI-H2O#
 
Yeast
Acids#(YNB)#

#Nitrogen#Base#without#Amino#
 

Amino#Acid#Dropout#Mix#minus#
 
tryptophan#(AADM)#
 
Tween*#
 
Variable&Components& 
Glucose# 
Xylose# 
Xylulose# 
Output& 
Experimental#Media# 

Amount& 
<1.0L#(split)# 
6.7g#

2.0g# 

1.0mL# 
Amount& 
0.0-33.0g#
22.0-103.0g# 
11.0-101.0g# 
Amount& 
1.0L# 

#
 
Experimental media was produced in a similar manner to passage media. 

Experimental media was produced in two parts. In a 500mL volumetric flask, 

required amounts of powdered glucose and prepared isomerized xylose/xylulose 

solution were combined with 300mL DI-H2O and stirred to dissolve. Additional 

http:0.0-33.0g#22.0-103.0g
http:6.7g#2.0g


#     

               

         

               

           

             

            

      

 

             

          

             

          

 

        

         

        

Page 65 

DI- H2O was added to bring the final volume to 500mL. In a second 500mL 

volumetric flask, YNB, AADM, and Tween were combined with 300mL DI-H2O 

and stirred to dissolve. Additional DI- H2O was added to bring the final volume to 

500mL. The contents of the flasks were transferred to cleaned 1L Erlenmeyer 

flasks. These flasks were capped loosely with foil and autoclaved for a 20 minute 

wet cycle at 150°C. After cooling to room temperature, the two flasks were 

combined to produce 1L experimental media. 

2.6.1.3 Glucose Feed: 

Table&10:&Glucose&Feed&Media&Composition& 

Glucose&Feed&Components& 
Component# Amount& 
Glucose# 
DI-H2O# 

500.0g# 
<1.0L# 

Output& Amount& 
Glucose#Feed# 1.0L# 
# 

Feed Media was produced in 1L batches and was used to boost available 

sugar between passage media exchanges. In a 1L volumetric flask 500 grams of 

Glucose was combined with 400mL DI-H2O. The mixture was topped to 1L with 

DI-H2O. The mixture was autoclaved for a 20 minute wet cycle at 150°C. 

2.6.1.4 Xylulose Syrup Production: 

Our method for the isomerization of xylose and purification xylulose 

evolved as experiments required higher concentrations of high purity xylulose, 

removal of sodium tetra-borate, and minimization of precipitated enzyme. The 
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initial production method is detailed below along with modifications and the 

rationale behind them. 

Table&11:&Initial&(E1&and&E2)&isomerization&composition& 

Initial&Isomerization&components& 
Constant&Components&& Amount& 
DI-H2O# 
Sodium#Tetra-borate# 
MgSO4# 
Tetracycline# 

<1.0L## 
2.0g# 
36.0ppm# 
0.01g# 

Variable&Components& Amount& 
Xylose& 
Glucose#Isomerase#Enzyme#(Gensweet ™)# 

0-700.0g# 
.06g/g#
Xylose# 

Output& Amount# 
Xylose/Xylulose#Solution# 1.0L& 
# 

Xylose was dissolved in 500mL DI-H2O by stirring. To this, sodium tetra-

borate, MgSO4 solution, and tetracycline solution were added. Additional DI-H2O 

was added to the mixture to bring the volume to approximately 950mL. The pH of 

the solution was adjusted to 7.5 using H2SO4 and NaOH. The volume of the 

mixture was brought to 1L by the addition of more DI-H2O. The mixture was 

transferred to a 2L Erlenmeyer flask and glucose isomerase was added. This 

flask was placed in a 60°C water bath set to shake at approximately 40 rpm for a 

minimum of 7 hours. After 7 hours the solution was autoclaved for 20 minutes on 

a wet cycle at 150°C and a sample was taken for HPLC analysis. After the xylose 

and xylulose concentration were identified the syrup could be used in 

experimental media. 

This method produced a xylulose syrup with a low purity (<30% xylulose) 

and a large amount of precipitated enzyme. It was also noted that sodium tetra-
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borate could have growth limiting effects on S. cerevisiae. To fix these issues 

sodium tetra-borate was removed from the isomerization solution, enzyme 

loading was dropped to approximately 2mL total (not linked to xylose loading), 

and a xylulose isolation step was added to remove unconverted xylose and 

enzyme precipitate. 

Table&12:&Modified&Isomerization&Composition&9&(E200,&E202,&E203,&E300,&E222,&E2.1)& 

Modified&Isomerization&Components& 
Constant&Components&& Amount& 
DI-H2O# 
MgSO4# 
Tetracycline# 

<1.0L## 
36.0ppm# 
0.01g# 

Variable&Components& Amount# 
Xylose# 
Glucose#Isomerase#Enzyme#(Gensweet ™)# 

0-700.0g& 
2.1mL# 
(split)# 

Output& Amount# 
Xylose/Xylulose#Solution# 1.0L# 
# 

Under the new procedure, xylose (700g) was dissolved in 500mL DI-H2O 

by stirring. To this, the MgSO4 and tetracycline solutions were added. Additional 

DI-H2O was added to the mixture to bring the volume to approximately 950mL. 

The pH of the solution was adjusted to 7.5 using H2SO4 and NaOH. The volume 

of the mixture was brought to 1L by the addition of more DI-H2O. The mixture 

was transferred to a 2L Erlenmeyer flask and 2mL of glucose isomerase was 

added. This flask was placed in a 60°C water bath set to shake at approximately 

40 rpm for a minimum of 3 hours. After 3 hours the pH was check and readjusted 

to 7.5. An additional 0.1mL of glucose isomerase was added and the flask was 

returned to the water bath. After a minimum of 7 total hours (4 additional hours) 
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the solution was transferred to a 1L round bottom flask. The flask was attached to 

a Buchi (Switzerland) RotaVapor R-110 (rotary vacuum evaporator) and heated 

to 60°C until the mixture in the flask reduced to roughly one-third its original 

volume. The concentrated xylulose mixture was added slowly to a constantly 

stirred beaker containing approximately 4 volumes of cold (-20°C) absolute 

ethanol. The beaker was stirred in an ice bath to keep the temperature at 4°C 

while a white precipitate (mainly xylose and precipitated enzyme) formed. The 

beaker was then transferred to a -20°C freezer and the precipitate was allowed to 

settle for 90 minutes. The supernatant was vacuum filtered and the precipitate 

washed with an additional 150mL absolute ethanol. The ethanol was collected 

and returned to the RotoVapor where the volume was reduced by two thirds. DI-

H2O was added to the round-bottom flask and the process was repeated until 

residual ethanol was no longer detectable via HPLC analysis. At this point the 

solution was autoclaved for 20 minutes on a wet cycle at 150°C. A sample of the 

autoclave solution was analyzed via HPLC to verify its high (up to 68%) xylulose 

concentration. If sufficient purity was not achieved the ethanol extraction process 

was repeated. 
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2.6.2 Strain Plasmid Maps 

# 

Figure&24:&Vector&Map&for&the&Parent&Vector&Used&in&Plasmid&pRH195&9&This&plasmid&is&used&in&YRH857& 
and&YRH859.&The&empty&parent&vector&was&used&in&YRH524.& 
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# 

Figure&25:&Vector&Map&for&the&Parent&Vector&Used&in&Plasmid&pRH196&9&This&plasmid&was&used&in&the&high& 
copy&XK&strain&(YRH858).& 

2.6.3 – Additional Guiding Experiments 

Two small, guiding experiments (2.6.3.1 and 2.6.3.2) were used in this 

work. They were meant to guide the experimental design by demonstrating that 

our media composition was not inherently inhibiting to yeast growth. The results 

are included here to guide future inter lab work; however these experiments were 

not carried out with enough replicates to support validity statistics. 



#     

 

           

          

               

       

          

          

            

           

           

             

  

           

             

               

  

Page 71 

2.6.3.1 Substrate Inhibition Levels in These Strains 

As our sugar levels increased in an attempt to find a saturation point for 

xylulose uptake we became concerned that sugar inhibition would eventually limit 

the ability of the yeast to grow and consume xylulose. Here we attempted to find 

the substrate (glucose) level at which strain YRH857 was inhibited. 

Glucose feed media (75g/l) was made following the standard feed media 

procedure. A stock of 900g/l glucose media was made following the feed media 

procedure. Five 50ml combinations of feed and media were produced as shown 

in Table 13 below. T. Flasks were inoculated with 5mL of suspended YRH857 

cells from a carry culture in exponential growth. Flasks were weighed after 

inoculation and at approximately 12 hours. Weight loss was the only measure of 

sugar consumption considered. 

Table&13:&Substrate&(Sugar)&Inhibition&Level&–&The&sugar&inhibition&level&was&identified&via&weight&loss&at& 
different&glucose&concentrations.& 

Treatment& Media& Water& Feed& Glucose& Initial& Final& Weight& 
Volume& Volume& Volume& Concentration& Weight& Weight& Loss& 
(ml)& (ml)& (ml)& (g/l)& (g)& (g)& (g)& 

1& 40.0# 10.0# 0.0# 60.0# 195.07# 194.96# 0.11# 
2& 47.0# 0.0# 3.0# 124.5# 191.73# 191.63# 0.10# 
3& 42.0# 0.0# 8.0# 207.0# 168.07# 167.98# 0.09# 
4& 36.0# 0.0# 14.0# 306.0# 180.55# 180.50# 0.05# 
5& 31.0# 0.0# 19.0# 388.5# 198.96# 198.96# 0.00# 

# 
Sugar consumption appears to drop off substantially in treatments 4 and 5 

(from approximately 0.1g/12 hours to 0.05g in treatment 4 and 0.0g in treatment 

5. Based on this data we did not attempt to push cells past approximately 200g/l 

total sugar. 
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2.6.3.2 – Sodium Tetra-borate Inhibition in These Strains 

During the course of our batch experiments we needed increasing 

concentrations of xylulose without violating the substrate inhibition levels we 

found above. One way we considered reaching these concentrations was 

increasing the level of sodium tetra borate in our isomerizations. Sodium tetra 

borate complexes with xylulose to decrease product inhibition and allows further 

reaction of xylose to xylulose. This complexing happens in a stoichiometric 

manner (with one molecule of sodium tetra borate complexing with four xylulose 

molecules) so it would be theoretically possible to convert 100% of xylose to 

xylulose if enough sodium tetra borate was present. However, sodium tetra 

borate has been shown to inhibit the growth of some yeast strains and before 

increasing our sodium tetra borate concentration it was important to identify the 

level at which sodium tetra borate inhibition became an issue in our strains. 

Determining the inhibition point for sodium tetra borate was carried out in 

two experiments. The first utilized strains YRH524 and YRH858. Glucose media 

(60 g/l) was prepared with 15, 10, 7, 5, and 3 g/l sodium tetra borate. Flasks were 

prepared with 100 ml of media and inoculated with 5 ml of cell suspension from a 

carry culture in exponential growth phase. Cell weights were taken at inoculation 

and at 24 hours. This experiment and result is laid out in Table 14 below. 
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Table&14:&Sodium&Tetra&Borate&Inhibition&Level&9&Current&and&increased&levels&of&sodium&tetra&borate& 
were&shown&to&be&inhibitory&via&weight&loss&at&varying&sodium&tetra&borate&concentrations& 

Strain& STB& 
concentration& 
(g/l)& 

Initial&Weight& 
(g)& 

Final&Weight& 
(g)& 

Weight&Loss& 
(g)& 

524& 15.0# 181.2# 181.2# 0.0# 
524& 10.0# 202.0# 202.0# 0.0# 
524& 7.0# 221.7# 221.6# 0.1# 
524& 5.0# 200.6# 200.5# 0.1# 
524& 3.0# 181.5# 181.3# 0.2# 
857& 15.0# 202.2# 202.2# 0.0# 
857& 10.0# 201.6# 201.6# 0.0# 
857& 7.0# 170.7# 170.7# 0.0# 
857& 5.0# 213.7# 213.6# 0.1# 
857& 3.0# 192.2# 192.1# 0.1# 
& 

This experiment suggested that there is increasing inhibition at greater 

than 3 g/l and that sugar consumption is almost completely stopped above 5 g/l. 

Previously we had used 2 g/l in our isomerizations and this result suggested that 

any increase beyond this would have a deleterious effect on sugar consumption, 

but we also wanted to know if there had been any effect at the 2 g/l level so a 

second experiment was run measuring sugar consumption in strain YRH859 at 

levels of STB between 0 and 5 g/l. The media for the experiment was 60g/l 

glucose passage media. Samples were taken at inoculation, at 5 hours, and at 

approximately 24 and 72 hours. The experiment and results are detailed in Table 

15 below. 
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Table&15:&Low&Level&Sodium&Tetra&Borate&Inhibition&–&A&second&experiment&considering&whether&low& 
level&sodium&tetra&borate&was&also&potentially&inhibitory&to&YRH859& 

Sample& STB& 
concentration& 
(g/l)& 

Initial& 
Weight& 
(g)& 

Weight& 
at&5& 
hours& 
(g)& 

Weight& 
at&24& 
hours& 
(g)& 

Weight& 
at&72& 
hours& 
(g)& 

1& 0.0# 178.13# 178.08# 177.30# 176.89# 
2& 1.0# 219.4# 219.4# 218.6# 218.2# 
3& 1.0# 177.22# 177.20# 176.38# 175.91# 
4& 6.0# 222.3# 222.2# 221.6# 221.0# 
5& 2.0# 224.3# 224.3# 223.7# 223.1# 
6& 2.6# 189.76# 189.75# 189.17# 188.57# 
7& 4.0# 188.90# 188.88# 188.49# 187.76# 
8& 5.0# 189.71# 189.69# 189.39# 188.52# 
#
 
#
 

# 

Figure&26:&Time&Course&Experiment&Showing&Sodium&Tetra&Borate&Inhibition.&This&figure&shows&a&time& 
course&experiment&showing&decreased&weight&loss&under&conditions&of&increased&sodium&tetra&borate.& 

There was little difference in weight loss at the first or last time point of this 

experiment. This is indicative of a lag phase after inoculation and an eventual 

complete fermentation of glucose in all strains. However, at 24 hours, there is a 

large (although not statistically verified) difference in weight loss between the 
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different conditions. Flasks with more than 2.6g/l STB consumed less sugar by 

hour 24 than the base case (2g/l which we had been using in isomerizations). 

Conversely, samples from flasks containing less than 1.6 g/l STB consumed 

slightly more sugar than the base case. Based on this experiment we developed 

the new method for xylulose purification and eliminated STB in all experimental 

conditions after E1 and E2. 
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Chapter 3 - dFBA and Kinetic Modeling of Batch Experiments: 

3.1 Introduction 

The production of fuel ethanol from lignocellulosic biomass has the 

potential to replace a significant portion of non-renewable transport fuels. Woody 

feedstocks are composed of cellulose, hemicellulose, and lignin. While the 

glucose, the monomer of cellulose, is readily utilized by wild-type S. cerevisiae, 

xylose, which comprises 60% of the sugar monomers in hemicellulose, is not. To 

make the process economically competitive with conventional fossil fuels, both 

five and six carbon sugars must be utilized efficiently. 

One approach to improving xylose utilization is to convert it to the more 

readily usable xylulose using an extracellular enzyme. Xylulose is taken up by 

wild-type S. cerevisiae and incorporated into the pentose phosphate pathway. 

The key to improving five-carbon sugar utilization by this xylulose pathway is to 

better understand the bottlenecks in sugar uptake and processing. Dynamic flux 

balance analysis allows for the identification and quantification of these 

bottlenecks. In this chapter we have produced a dynamic flux balance model 

based on the previously developed compartmentalized genome scale model 

iMM904. This model was adapted with modifications to allow for restricted uptake 

of five-carbon sugars, expansion of five carbon sugar utilization pathways, and 

cell death. Model parameters have been fit based on some of the batch 

fermentation data produced in Chapter 2. The model was validated with 

separate, independent data sets. 
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3.2 Overall Aims 

The modeling section of this work had three major aims: 

1) Develop a model for xylulose uptake and utilization based on the 

known expression pattern of HXT transporters and the kinetics of 

xylose uptake to predict xylulose utilization in S. cerevisiae. 

2) Examine the xylulose utilization bottlenecks discovered in 

Chapter two and show that they support the model fit. 

3) Assess the role of alternative transport mechanisms for xylulose 

The potential bottlenecks identified in Chapter 2 of this work act as 

working theories to test during modeling. Xylulose transport appears to be the 

limiting factor in xylulose utilization for strains YRH857, YRH858, and YRH859. 

XK throughput is the apparent bottleneck for strain YRH524. This modeling will 

test these findings and question whether the expression pattern of the HXT family 

of proteins is sufficient to predict the observed xylulose uptake. 

3.3 Model Development and Methods 

3.3.1 Base Genome Scale Model and FBA 

The model used in this work was based on a fully compartmentalized 

genome scale model of S. cerevisiae (iMM904) developed by the Palsson group 

(Mo et al., 2009). This model (iMM904) is itself updated of a previous model 

(iND750). IMM904 contains 904 genes encompassing 1,412 reactions and has 

been extensively validated through in silica knockout viability studies (Mo et al., 

2009). 
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IMM904 was read into MATLAB® using Cobra Toolbox scripts where it can 

be solved as a linear programing problem. As described in the literature review of 

flux balance analysis (Chapter 1.5-1.5.8), the model is represented as a series of 

matrices. The matrix ‘S’ is an m x n matrix that represents the stoichiometry of all 

of the reactions in the cell. Each row in ‘S’ is an individual reaction and each 

column is an individual metabolite thus the number in element (m,n) is the 

stoichiometric amount of metabolite ‘n’ associated with reaction ‘m’. The matrix 

‘V’ is a column vector with ‘m’ rows. It represents the molar flux through each 

reaction. The steady state assumption requires that metabolite concentrations 

within the cell do not change and thus the viable solution space is restricted to 

only solutions where S"V is equal to zero. An objective function is used to select 

a ‘best’ or biologically valid solution from this set of allowable solutions. Objective 

functions are defined here as a weighted sum of key fluxes (often growth, ATP 

production, or ethanol production). The weights are described in a second 

column matrix ‘C’ such that C"V gives the value of the objective function. By 

identifying the allowable solution ‘V’ that maximizes the objective function, the 

model predicts the fluxes for a given set of conditions. 

3.3.2 Modifications to S. cerevisiae model (iMM904) to incorporate 
xylulose transport 

Xylulose is already an internal metabolite in iMM904. Xylulose is a 

naturally occurring sugar metabolite and an intermediate in the pentose 

phosphate pathway, but the iMM904 does not account for xylulose uptake. In 
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order to facilitate xylulose uptake two reactions must be added. One reaction acts 

as a transporter for the sugar and the other functions as a sink and is used to 

track extracellular xylulose. These transporters are non-reversible and the 

maximum rates for these reactions are calculated based on extracellular 

conditions. These calculations are explained in section 3.3.4. 
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Table&16:&Model&Constraints&Restricted&or&Relaxed&to&Simulate&Anaerobic&Growth&on&Mixed&Sugar&Media& 
–&Sugars&include&glucose,&xylose,&and&xylulose.& 

& Additional&Model&Constraints& 

Metabolite& Reaction& Type& 
Initial& 
Constraint& 
(mM/hr)& 

Upper,& 
Lower,& 
or&Both& 
Bounds& 

Dynamic& 
or& 
Constant& 

Source/& 
Assumption& 

Ergosterol& 
& 

Zymosterol& 
& 

Hexadecenoate& 
(n9C16:1)& 
& 
Octadecanoate& 
(n9C18:0)& 
& 
Octadecenoate& 
(n9C18:1)& 
& 
Octadecadienoate& 
(n9C18:2)& 
& 

Oxygen& 

ATP& 

Glucose& 

Xylose& 

Xylulose& 

Xylulose&9>& 
Xylulo959P& 

Xylose&9>& 
Xylitol& 

EX_ergst# Fatty#Acid#
Exchange# -1000# Lower# 

Ex_zymst# Fatty#Acid#
Exchange# -1000# Lower# 

Ex_hdcea# 
# 
# 

Fatty#Acid#
Exchange# -1000# Lower# 

Ex_ocdca# Fatty#Acid# 
Exchange# -1000# Lower# 

Ex_ocdcea# Fatty#Acid#
Exchange# -1000# Lower# 

Ex_ocdcya# Fatty#Acid#
Exchange# -1000# Lower# 

Ex_o2# Fatty#Acid#
Exchange# 0# Lower# 

ATPM# ATP# 
Maintenance# 0.9888# Both# 

Ex_glc# Sugar# 
Exchange# -21.0# Lower# 

Ex_xyl-(D)# Sugar# 
Exchange# 0# Lower# 

Ex_xylu# Sugar# 
Exchange# 0# Lower# 

XYLK# 
Internal# 
Xylulose# 
Metabolism# 

0.4376#(strain# 
YRH524#and# 
YRH1153)# 
1000#(other# 
strains)# 

Upper# 

XYLTD_D# 
Internal# 
Xylose# 
Metabolism# 

0# Both# 

Constant# 

Constant# 

Constant# 

Constant# 

Constant# 

Constant# 

Constant# 

Constant# 

Dynamic# 

Dynamic# 

Dynamic# 

Constant# 

Constant# 

http://gcrg.ucsd.
edu/InSilicoOrga
nisms/Yeast/Yea
stFAQs# 

Model#Fitting# 

(Sonnleitnert,# 
1986)# 

Assume#that#in# 
the#first#time#step# 
after#inoculation# 
from#glucose# 
growth#medium,# 
only#glucose#will# 
be#consumed# 

Model#Fitting# 

Protein#not# 
present# 

3.3.3 Additional Constraints 

Further constraint of the model is based on limiting the allowable range for 

certain reactions (Table 16). For example, to simulate anaerobic conditions, the 
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allowable oxygen uptake will be set to zero. Some of these constraints are 

constant and based on the literature, others are constant and used to fit the 

model (example ATP maintenance requirements), finally some were dynamic and 

were updated with each model iteration (example sugar uptake rates are linked 

to current and previous sugar concentrations and are update each round). The 

table above outlines the additional constraints added, their source, and whether 

they are dynamic or constant. 

3.3.4 Calculation of Dynamic Constraints (Sugar Uptake Rates) 

Sugars are transported into the cell primarily through facilitated transport 

mechanisms. The expression of each sugar transporter is dictated by stimuli in 

the extracellular environment. Further, the rate at which sugar is transported 

through an expressed transporter is constrained by the transport kinetics of the 

transporter and the concentration of sugar in the media. 
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Our working hypothesis was that xylulose was transported mainly through 

the HXT family of transporters and our batch experiments support that view. The 

HXT family of transporters have a well defined expression profile in relation to 

glucose concentration in the media (Diderich, 1999; Liang and Gaber, 1996; 

Ozcan and Johnston, 1995). Bertilsson used this expression profile to help model 

xylose utilization during mixed glucose xylose fermentation in recombinant S. 

cerevisiae (Bertilsson et al., 2007). Expression levels of the individual HXT 

transporters were set using the expression profiles. Kinetic parameters for xylose 

transport through the HXT transporters were taken from work published values 

(Saloheimo et al., 2006). In the Bertilsson model the expression of each 

transporter was calculated based on glucose level and relative to a basal 

expression level (Figure 27 top). The sugar uptake through each transporter (at 

the previously mentioned basal level) was described for both xylose and glucose 

with Michaelis-Menten kinetics (Figure 27 equations 1 and 2). The total transport 

was equal to the sum of transport through each transporter (Figure 27 equations 

3 and 4). Bertilsson then imposed an additional constraint limiting the total flux of 

sugar through the HXT transport family to 4 g/g-DCW/hr (a value previously 

reported for maximum glucose uptake rate). This produced a scalar (α) used later 

to calculate uptake (Figure 27 equation 5). If the calculated sugar fluxes 
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exceeded this rate there were scaled proportionately to be in compliance. 

Figure&27:&Bertilsson’s&Glucose/Xylose&Uptake&Model&Assumptions&9&Assumptions&include&relative&HXT& 
expression&level&(top&figure),&kinetic&parameters&for&glucose&and&xylose&uptake&rates&(equations&1&and& 
2),&the&additive&transport&rate&from&all&HXT&transporters&(equations&3&and&4),&and&the&derivation&of&the& 
scalar&α&(equation&5)&(Bertilsson&et&al.,&2007).& 

Our method is identical to Bertilsson’s with two exceptions. First, in 

addition to the six HXT transporters modeled, an additional aggregate transporter 

was added to account for unexplained transport of glucose and xylose observed 

in strains lacking the HXT 1-7. The second way our method differed from that of 

Bertilsson was in the final scaling constraint. Bertilsson et al. (2007) did not 

distinguish between fluxes of glucose and xylose when calculating the total sugar 
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flux into the cell. Maximum possible value for sugar flux was set to 4g/g-DCW/hr 

based on experimentally observed value of total flux of sugar through the HXT 

transport family. This implies that the glucose or xylose flux can have a maximum 

possible value of 4g/g-DCW/hr. However, in all experiments containing glucose 

(E1, E2.1, and E222) we observed that the highest sugar flux for xylose and 

xylulose was considerably lower than glucose flux. This observation pointed to 

differences in the maximum possible flux values through the HXT transporters for 

glucose, xylose and xylulose, which were not modeled by Bertilsson et al. (2007). 

It was hypothesized that if the maximum observed transport of glucose was 4 

g/g-DCW/hr (in the absence of other sugars) and the maximum level of transport 

xylose through the same set of transporters was (for example) 2 g/g-DCW/hr (in 

the absence of other sugars), then the transport capacity of the transporter set 

should be defined in terms of both glucose and xylose. A brief illustration of the 

rationale can be explained as follows: Using the a maximal flux rate of 4 g/g-

DCW/hr for glucose and 2 g/g-DCW/hr for xylose, and assuming a uniform 

transportation rate, the time to transport 1 g/g-DCW glucose or xylose would be 

15 or 30 min respectively. Therefore the capacity is four units of glucose per 

hour, or two units of xylose, or some combination of glucose and xylose the sum 

of which does not violate the transport capacity. For example one xylose and two 

glucose would be acceptable as the total transport capacity is not violated, but 

three glucose and one xylose would be unacceptable as the total transport 

capacity is violated even while individual transport capacities are within allowable 
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ranges (Figure 28). The maximum level of xylulose transport is not well defined 

for all conditions. As a result the “time scalar” for xylulose was fit as a model 

parameter. 

# 

Figure&28:&Rational&For&a&Sugar&Time&Scalar&9&If&a&transporter&has&an&allowable&throughput&(an&“allowable& 
transporter&time”)&sufficient&to&transport&four&units&of&sugar&‘A’&(ex.&Glucose)&or&two&units&of&sugar&‘B’&(ex.& 
Xylose)&then&three&units&of&sugar&‘B’&and&one&unit&of&sugar&‘A’&would&require&too&much&transporter&time& 
and&should&not&be&an&allowable&throughput.&Our&“time&scalar”&differentiates&between&sugars&and&how& 
quickly&they&can&be&transported&while&this&is&ignored&in&the&Bertilsson&model.& 

3.3.5 Death Reaction Explains Batch Fermentation End Dynamics 

Modeling the end dynamics of batch culture was a challenge in this work. 

In the batch experiments there were several runs in which fermentation stalled 

prematurely. This rarely happens in glucose fermentation in complex media and 
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when ethanol is low (below 100g/l), but because of the low efficiency with which 

xylulose is taken up we hypothesized that cells may have difficulty reaching the 

minimum ATP production required for maintenance and that this may have led to 

cell death. Modeling provided an opportunity to test this hypothesis in-silica. 

To this end a cell death equation was added to the model. When this 

reaction was active it decreased viable biomass and returned a percentage the 

metabolites required for cell growth to the surviving cells. This recycling of 

nutrients allowed a portion of the cells to produce the minimum ATP required for 

maintenance, survive, and continue to slowly consume xylulose (Figure 29). After 

several iterations of cell death, this surviving fraction would be sufficiently small 

to halt fermentation. 
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# 

Figure&29:&Yeast&Cell&Death&Function&Representation&9&The&yeast&cell&death&function&imagines&a& 
population&of&cells&(A).&In&this&example,&there&is&only&enough&available&sugar&in&the&media&to&support&the& 
ATP&maintenance&needs&of&five&of&the&ten&cells.&Without&the&cell&death&function,&the&model&would&return& 
an&error&and&the&run&would&stop,&but&by&including&the&cell&death&function&a&fraction&of&the&under&fed&cells& 
will&die&and&provide&nutrients&available&for&other&cells&to&take&up&(B).&The&result&in&this&example&is&that& 
five&cells&are&fed&immediately&from&the&available&sugars&in&the&media.&Another&three&cells&die&to&provide& 
nutrients&that&support&two&additional&cells.& 

In addition to the death equation itself, several new sink equations were 

added so that the surviving cells could get rid of excess metabolites that they 

could not use. The required level of ATP for maintenance was fit in the model 

and allowed for control over the minimum sugar concentration at which death 

would begin. The percentage of metabolites recovered by death was also fit and 

allowed for further control of the rate at which cell death occurred. 

3.3.6 Changing the Objective Function 

With the death equation in use, the initial objective function maximizing 

growth was no longer adequately representative of the net growth rate. We 
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therefore updated the objective function to maximize the net growth rate (growth 

minus death rates) and used this objective function through the course of the 

analysis. 

3.3.7 Model Algorithm Explanation 

The model algorithm is outlined in the flow charts below. The genome 

scale model (iMM904) is read into cobra and the appropriate reactions are added 

for sugar consumption, death, and death metabolite tracking. The reaction 

bounds are changed to model anaerobic growth and initial conditions are defined. 

The first dFBA loop then begins and the counter is set to one. The dynamic flux 

bounds for glucose, xylose, xylulose, O2, and CO2 are changed based on the 

initial conditions. Next the model is solved to optimize the objective function 

(maximize growth and minimize death). This produces a solution matrix ‘V’ and 

flux values for the tracked metabolites (glucose, xylose, xylulose, ethanol, 

biomass, acetate, succinate, lactate, and glycerol) are extracted from this matrix. 

These values are multiplied by the time step (the time step in our model was set 

to 30 seconds) and added to the current concentrations to derive the new 

metabolite concentrations. These concentrations are then used to calculate new 

dynamic flux bounds for the next iteration of the FBA (Figure 31). The simulation 

loop was run until the target time was reached (Figure 30). 
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Figure&30:&Flow&Chart&of&dFBA&Model&Loop&9&This&flowchart&depicting&the&dFBA&loop&used&in&this&model.& 
The&sub&algorithm&for&calculating&new&flux&bounds&is&described&below&in&Figure&31& 
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# 

Figure&31:&Flowchart&of&Flux&Bounds&Calculation&Model&Sub9loop&9&This&flowchart&depicts&the&sub9 
algorithm&used&to&calculate&new&flux&bounds&for&sugar&uptake&after&each&modeled&time&step.&The& 
algorithm&uses&a&moving&average&of&the&scalar&to&smooth&sugar&consumption&and&avoid&major& 
consumption&swings.& 

3.3.8 Model Fitting Technique 

Model parameters were fit in three steps. First, the bounds for the 

aggregate transporter (accounting for previously unexplained transport of glucose 

and xylulose in HXT negative strains) were set directly from observed transport in 

HXT negative strains. 
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Second, the parameters common to all strains (dv/dt for HXT transport 

change, xylose size scalar, xylulose scalar, ATP maintenance, death reaction 

recovery percent) were set using a Monte Carlo method. The parameters were 

randomly generated to be within specified bounds for each parameter value. 

Using this randomly selected parameter set, two dFBA model runs were initiated 

with initial conditions for the experiments E1 and E222. These experiments using 

strain YRH858 (high copy XK) were chosen to allow for determination of 

maximum flux for the XK mediated reaction. Since the XK reaction flux 

determined for the strain YRH858 (high copy XK) would reflect the maximum 

possible XK reaction flux, this maximum value was used for all other strains in 

the simulations. The individual fitting runs were selected because of their high 

degree of mass closure. At each experimental sample time point the predicted 

media composition was compared via least squares method to the experimental 

data for biomass, glucose, xylose, xylulose, acetic acid, lactic acid, succinic acid, 

and glycerol concentrations. Finally, the sums of least squares for each 

measurement in the two experiments were added to produce a fitness objective 

function. This score and the parameter set that produced it were output and the 

process was repeated with a new set of randomly selected parameter set. After 

400 repetitions, the bounds for randomly selecting each of the parameters were 

adjusted to cover the range of parameter values that produced the top 20 

solutions. This process was repeated three times. During the final run there was 

little (less than 0.1%) improvement in fitness objective function (See Figure 32). 
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Figure&32:&Flowchart&of&Monte&Carlo&Fitting&Model&Loop&9&This&flowchart&depicts&the&Monte&Carlo&fitting& 
technique&initially&used&to&fit&our&model&to&selected&experimental&data.& 

Following fitting with the Monte Carlo method, a second method termed 

particle swarm analysis was utilized to verify the result. In particle swarm analysis 

a set of random solutions is created and their fitness objective functions are 

calculated. Each solution (or particle) is “aware” of its personal best solution and 

of the best solution ever found by any particle. Competing forces (one pulling 

towards the global best solution, one pulling towards a particle’s personal best 

solution, and one pulling in a random direction) pull on the particle and give it a 

“velocity.” Each particle’s unique velocity transports it (and its associated 

parameters) to a new solution (unique set of variables) and the process is 
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repeated. Over several iterations the particles in the swarm should converge to 

the global best solution. 

# # 

Figure&33:&Flow&Chart&of&Particle&Swarm&Fitting&Loop&9&The&flow&chart&above&depicts&the&Particle&Swarm& 
Analysis&method&used&to&refit&the&model&and&verify&the&previously&identified&Monte&Carlo&fitting.&& 

Part of the challenge in implementing this meta-heuristic was in the length 

of time required to run the dFBA. Normally, a swarm would be made up of tens or 

hundreds of members and the heuristic would iterate several hundred or 

thousand times. This analysis was time constrained and thus a swarm size of 12 

was selected and run over 50 iterations. This allowed ample time for the solutions 

to converge and a high probability that a strong solution (as good or slightly 
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better than the one identified in the Monte Carlo method) would be found. Over 

16 runs, this algorithm produced 11 solutions with better (lower) fitness objective 

function values than the Monte Carlo method. The lowest of these solutions 

found a fitness objective function of 136.056 while the Monte Carlo method 

identified a best solution of 136.58. The particle supports the findings of the 

Monte Carlo method, but this minor improvement did not visibly improve model 

predictions substantially. The solution from the Monte Carlo method was used in 

the model below. 

In the third step of fitting, the allowable flux through xylulokinase was 

constrained for strain YRH524 (which batch experiments suggested was the only 

strain limited by xylulokinase capacity). This fitting used a Monte Carlo method 

similar to that used to fit the common model parameters, however, with only a 

single parameter to fit, this required far fewer runs to produce non improving 

fitness objective function. The XK parameter was fit using data from the first 48 

hour of experiment E222 (before the 48 hour glucose spike). 
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Table&17:&Best&Parameter&Fits&9&This&table&lists&parameters,&their&description,&and&the&best9identified&fit& 
using&the&Monte&Carlo&method&described&above.&These&values&were&used&in&modeling&throughout&the&rest& 
of&this&work.& 

Parameter&Fits&Used&In&Modeling& 
Parameter& Description# Value# 
XK&Capacity& 

Theta&max&growth&ratio& 

Theta&max&degradation&ratio& 

Xylulose&Time&Scalar& 

Xylose&Time&Scalar*&
*Since#xylose#consumption#was# 
not#possible#in#the#model#this# 
parameter#had#no#real#meaning# 
Death&Recovery&Percentage& 

ATP&Maintenance& 

Maximum#Capacity#of# 
Xylulokinase#(strain#YRH524# 
and#YRH1154,#all#other#strains)# 

0.4376,#1000#mM/gDCW/hr# 

The#maximum#scalar#by#which# 
the#sugar#consumption#rate# 
could#increase#in#one#time#step# 

1.2932# 

The#minimum#scalar#by#which# 
the#sugar#consumption#rate# 
could#decrease#in#one#time#step# 

0.935# 

The#time#scalar#used#to# 
compare#xylulose#and#glucose# 
for#transport# 

600.0975# 

The#time#scalar#used#to# 
compare#xylose#and#glucose#for# 
transport# 

55.556# 

The#percentage#of#cell# 
metabolites#recovered#by#living# 
cell#population#after#cell#death# 

66.391%# 

The#ATP#cost#to#maintain#a#cell# 0.988819#mM/gDCW/hr# 
# 

3.4 Results and Discussion 

There were two overarching objectives in the modeling section of this 

work. The first was to corroborate our findings from the batch fermentation 

portion of this study. For reference, these findings included that 

1)	 XK capacity was limiting in strain YRH524 (3.4.1 and 

2.4.1) 

2)	 Xylulose was transported in correlation with time (and thus 

its previous exposure to glucose) suggesting possible 

action by the HXT family of proteins (3.4.2 and 2.4.2-

2.4.3) 
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3) Other transporters (outside HXT 1-7) were active in the 

transport of xylulose (3.4.3 and 2.4.5) 

4) The expression of these additional transporters was non-

constant. (3.4.3 and 2.4.5) 

The second overarching goal for the modeling section of this work was to 

develop a predictive model capable of forecasting the metabolomic outcome of 

experiments given a limited set of metabolomic inputs. These goals are 

discussed at length in the subsections below. 

3.4.1 XK is limiting only in strain YRH524 

In the experiments discussed in Chapter 2, XK capacity was identified as 

the limiting reaction for xylulose utilization in strain YRH524. The experimental 

results supported the assessment that xylulose utilization was not limited due to 

XK in strains YRH857, YRH858, and YRH859 due to over expression of the XK 

compared in these strains. Model parameters were initially fit to strain YRH858 

(high copy xylulokinase XK). In this fitting XK capacity was left unbounded (1000 

mM/gDCW/hr). After the initial fitting, XK was fit using a Monte Carlo method for 

strains YRH524 (the wild-type strain) and YRH857 (low copy XK). If XK was the 

limiting factor for YRH524 or YRH857 strains the fitness objective function for the 

fit between the model predictions and the experimental values would be 

unaffected as XK limit is decreased from unbounded (1000 mM/gDCW/hr) to the 

maximum utilized capacity (0.44 mM/gDCW/hr for strain 524, 1.24 mM/gDCW/hr 

in strain 857). On further lowering the XK reaction bounds, the fitness objective 
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function value would decrease due to better match between the theoretical model 

and the experimental values. Finally, decreasing the X reaction flux below its 

optimum value would lead to an increase in the fitness objective value caused by 

an increasing mismatch between experiments and the theoretical model 

constrained by sub-optimum values of the XK reaction flux. This was the pattern 

identified with strain YRH524 suggesting that XK is limiting as shown in Figure 

34. The best fit produced here was with an XK reaction flux constraint of 0.4376 

mM/gDCW/hr. This fitting was used for strain YRH524 throughout the remainder 

of the modeling work. 

Figure&34:&Xylulokinase&Fitting&for&YRH524&(Wild&Type)&9&The&fitting&of&xylulokinase&(XK)&capacity&for& 
strain&YRH524&(wild&type).&The&inflection&point&here&represents&the&XK&capacity&(x&axis)&that&produces& 
the&lowest&fitness&objective.&Further&constraint&produces&a&worsening&solution.# 
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In strain YRH858 a similar pattern was seen during the initial XK capacity 

constrain with no change in fitness objective value as XK reaction flux was 

progressively decreased from 1000mM/gDCW/hr to the maximum utilized value. 

However, when XK reaction flux was constrained beyond this value the value of 

the fitness objective function increased (indicating a poor fit) as shown in Figure 

35. No fit with constrained XK proved to be better than the fit with unconstrained 

XK. This corroborates the finding from the fermentation experiments that XK is 

not limiting in strains with enhanced XK. As such, no constraint was placed on 

XK for YRH857 (or the strains with higher XK expression: YRH858, YRH859, and 

YRH1154) 

# 

Figure&35:&Xylulokinase&Fitting&for&YRH857&(Low&Copy&XK&Enhanced)&9&The&fitting&of&xylulokinase&(XK)& 
for&strain&YRH857&(low&copy&XK&enhanced).&The&fitness&objective&here&never&decreases&(improves)&with& 
increased&constraint.&This&suggests&that&XK&is&not&a&constraining&factor&in&strain&857.& 
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3.4.2 HXT transport explains uptake of xylulose 

Our initial hypothesis was that either XK capacity or transport rate would 

be the limiting reaction for xylulokinase. To validate this claim, our model would 

need to correctly predict xylulose consumption rate in all strains based on the 

developed constraint of XK in strain YRH524 and the set of constant parameters 

used to fit the model. 

There were difficulties fitting the end dynamics of batch fermentation 

(premature fermentation termination or over consumption of sugars). This issue 

and a strategy used to partially overcome it are discussed later. Since the yeast 

cell death is not the predominant feature in the early fermentations, the focus of 

this section is on the initial hours of fermentation before our yeast cell death 

function plays a major role in determining fermentation rate. All model simulations 

in this section are based on the average starting conditions of the fermentation 

replicates for a given strain. 

Overall, modeled xylulose uptake rates during the initial fermentation 

closely approximated those observed during batch experiments. The internal 

dynamics of xylulose consumption were not strictly constrained (except in strain 

YRH524 where XK capacity was constrained). This suggests that the constraint 

of the xylulose transport pathway was sufficient to approximate xylulose 

utilization. This points to xylulose transport as the bottleneck for strains YRH857, 

YRH858, and YRH859 (all of which do not have excess XK constraint due to 

overexpression of XK enzyme). 
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Figure#36:&Modeled&and&Experimental&Xylulose&Consumption&During&the&First&24&Hours&of&E1&and&E2&9&
 
Low&staring&xylulose&experiments&E1&and&E2&show&strong&agreement&between&model&and&experimental&
 
data&for&xylulose&consumption&in&the&first&24&hours.&
 
&
 

Under conditions with low sugar concentrations (for example E1 and E2 

above), sugars were quickly exhausted and the yeast cell death function was 

implemented earlier in the model. Therefore, there was divergence between 
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model predictions and the experimental results at earlier times (note the shorter 

X-axis in the figures). In contrast, the experiments with higher sugar 

concentrations and longer fermentation periods (as in E200, E202, and E300 

below) have better agreement with the model and the experimental data. 
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Figure&37:&Modeled&and&Experimental&Xylulose&Consumption&During&the&First&729168& 
Hours&of&E200,&E202&and&E203&9&Experiments&with&higher&initial&xylulose& 
concentrations&(E200,&E202,&E203)&show&strong&agreement&between&modeled&and& 
experimental&xylulose&consumption&over&a&longer&time&frame&(note&the&longer&x9axis& 
shown)& 
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In experiments with high total sugar (>40g/L), but low glucose (<20 g/L) 

the fitting for stain YRH524 was particularly poor. In these runs (E300 and E202) 

the model predicts premature termination of strain YRH524, but experimental 

data shows further consumption of xylulose. This may be related to the fitting of 

XK using a run from condition E222 (Figure 38) where high concentrations of 

glucose supported the high concentration of xylulose. S. cerevisiae is known to 

show diauxic growth during co-fermentation of sugars. Our model does not 

artificially ‘rank’ sugars as having a higher or lower consumption preference, but 

by over-constraining XK, the model could push consumption of glucose first (and 

thus maintain total sugar flux below 4 g/g-DCW-hr limit) resulting in a better 

model fit. However, when glucose is not included in the media (as for 

experiments E1, E2, E202, E300) and XK is over-constrained, the model may not 

be able to sustain cell growth through xylulose fermentation alone. This results in 

modeled cell death and premature termination when compared to experimental 

data. 
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# 

Figure38:&Modeled&and&Experimental&Xylulose&Consumption&During&the&First&48&Hours&of&E222&9&E222& 
contained&both&high&xylulose&and&high&glucose.&A&run&from&E222&was&to&fit&XK&for&strain&YRH524.&With& 
glucose&present,&XK&constraint&may&have&pushed&the&model&to&better&mirror&diauxic&growth&known&to& 
occur&in&S.#cerevisiae&under&mixed&sugar&growth.&While&beneficial&here,&this&constrained&XK&will&limit& 
xylulose&consumption&under&glucose&free&conditions&possibly&resulting&in&the&premature&termination&of& 
xylulose&consumption&present&in&several&YRH524&runs.& 

3.4.3 Xylulose transport supported by other transporters not captured
in model 

During batch experiments we considered that transporters other than HXT 

1-7 may be active in transporting xylulose into the cell. To test this theory we 

utilized strains YRH1153 and YRH1154 which were homologous to YRH858 and 

YRH524 respectively, but contained knockouts for HXT transporters 1-7. These 

strains showed consumption of xylulose that was non-zero, but statistically 

slower than YRH858 and YRH524. This suggested that other transporters were 

playing a role in xylulose transport and that it may be important to incorporate a 

basal level of xylulose transport in the model (beyond that present with HXT 1-7). 
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It was also noted that although the uptake of xylulose in HXT- strains was 

well correlated with xylulose concentration in individual experiments, the 

correlations were not the same between experiments (Figure 39 top). This may 

be due to transporter expression patterns stimulated by a different environmental 

condition. This made it difficult to fit a baseline for xylulose uptake from sources 

other than the HXT family of transporters. Ultimately the base level (incorporated 

in all strains in the model) was based on the lower level uptake pattern shown in 

experiments E222 and E300. 
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# 

Figure&39:&Xylulose&Consumption&Rates&of&HXT(9)&Strains&in&E2.1,&E222,&and&E300&Vs.&Xylulose& 
Concentration&9&(note&the&different&correlations&in&the&three&experiments).&Below,&the&compiled&fit&of& 
HXT9&xylulose&consumption&rates&vs.&xylulose&concentration&for&E222&and&E300.&This&relationship&was& 
used&in&the&model&as&a&basal&level&to&supplement&HXT&based&xylulose&transport.# 

It should also be noted that protein expression patterns in knock out 

strains are often observed to adjust over time leading to increased cell growth 

(Ibarra et al.). While proteomic data was not collected for these strains, it is 

possible that the relatively high levels of xylulose uptake in the HXT knockout 
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strains (as in E2.1) is not indicative of a high level transport through non-HXT 

transporters in the wild-type transport strains. 

Based on our base level fitting of non-HXT xylulose transport we 

attempted to model the experimental runs of E2.1, E222, and E300 for the 

knockout strains YRH1153 and YRH1154. The results are in Figure 40 below. 

Figure&40:&Poor&Model&Agreement&Between&Modeled&and&Experimental&HXT(9)&Strains&9&Model&agreement& 
with&experimental&data&for&HXT9&strains&was&poor.&This&suggests&that&inducible&transporters&may&be& 
active.&This&is&exacerbated&by&the&cell&death&function&with&takes&effect&almost&immediately&as&very&little& 
sugar&is&being&taken&up.& 

In these simulations the fitting was very poor. The poor fit in E2.1 was 

expected as the transporters for the HXT- strains were fit to E222 and E300 

(where E2.1 had a much more positive correlation between xylulose 

concentration and uptake rate). The fit was expected to be better in experiments 
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E222 and E300, but the model predicts almost no consumption. This highlights 

the model deficiency in simulating end dynamics of batch fermentation where 

ATP produced at current sugar consumption levels fails to meet ATP 

maintenance. Here, the constrained sugar uptake level is predicted to lead to 

swift cell death even in high xylulose cases (E300) and cases in which glucose 

was present (E222). In future simulations identifying other potential xylulose 

transporters and their expression patterns will be important to more fully 

predicting xylulose utilization. The only conclusion that could be drawn from this 

portion of is that the approximation of secondary xylulose transporters was poor 

and that this issue exacerbates our existing difficulty modeling the end dynamics 

of batch fermentation. 

3.4.4 Yeast Cell Death Approximation Insufficient to Explain Xylulose 
Attenuation 

During analysis of data collected during fermentation experiments it was 

noted that xylulose consumption tended to terminate while xylulose concentration 

was still non-zero. A challenging aspect of these results from a modeling 

perspective was that this termination did not necessarily correspond with a 

similar xylulose level in all experiments. In E1 xylulose level approached zero and 

E2 final xylulose levels fell below 2 g/l, but in E300 consumption stopped at 

between 10 and 56 g/l (depending on the strain). In the original flux balance 

model, if an ATP maintenance requirement was enforced and could not be met 

the model would return no solution. Conversely, if no ATP maintenance 
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requirement was in place the model would always predict complete sugar 

consumption. In an attempt to balance these extremes we implemented a yeast 

cell death function that was activated to decrease the cell concentration when 

ATP maintenance requirement could not be met. This was based on the 

hypothesis that if ATP maintenance requirements were not met cell death would 

occur and that dying cells might release nutrients to the culture allowing other 

cells to fulfill ATP maintenance and survive. This hypothesis is corroborated by 

recent results (Bren et al. 2013) that demonstrated that bacteria maintain 

maximum possible growth rate on limiting nutrients until the growth abruptly 

stops. Strains that had higher xylulose consumption abilities might then be able 

to survive for longer at lower sugar levels producing lower final sugar levels. 

The yeast cell death hypothesis was developed during the analysis of the 

batch fermentation data and during the modeling portion of this work. 

Consequently we were not able to retroactively collect the measurements (cell 

viability) needed to properly support this hypothesis or suggest a correlation 

between insufficient sugar and cell death for the model. 

In an attempt to support the death hypothesis the end dynamics of batch 

fermentations were compared to predictions modeled with the death hypothesis. 

The yeast cell death parameter was moderately successful in predicting 

fermentation rates in high sugar concentration experiments (E202, E222, E300). 

In these experiments, the end dynamics of fermentation by strains YRH857, 

YRH858, and YRH859 showed strong agreement between the model and 
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experimental data. However, the model results for strain YRH524 showed much 

poorer agreement with the experiments. Strain YRH524 was predicted to 

prematurely terminate in both E202 and E300 compared to experiments. Early 

termination suggests that in the model insufficient sugar was being consumed to 

generate sufficient ATP to meet the ATP maintenance needs. This could be due 

to over-constraining of XK reaction flux as discussed earlier or an unidentified 

issue with the death hypothesis. The strain showed close agreement to the 

experimental data from E222 which was not surprising as data from this 

experiment was used to fit XK capacity for strain YRH524. In certain situations 

XK capacity has a direct effect on cell death (where XK constraint forces 

insufficient sugar consumption). It is possible that this is contributing to the 

premature termination here. 
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Figure&41:&Modeled&and&Experimental&End&Dynamics&of&E202,&E300,&and&E222&–& 
These&experiments&shows&good&agreement&for&strains&YRH857,&YRH858,&and& 
YRH859,&but&premature&termination&for&YRH524.& 
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# 
Figure&42:&Modeled&and&Experimental&End&Dynamics&of&E1&and&E2&9&Experimental&conditions&with&lower& 
starting&xylulose&(E1&and&E2)&tend&to&terminate&slightly&prematurely&for&all&strains& 

In experiments with lower xylulose concentrations (E1 and E2) the yeast 

cell death function tends to terminate the xylulose consumption in all strains 

prematurely (Figure 42). This might suggest that ATP maintenance is variable 
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over time or with different metabolite concentrations (lower sugar experiments 

would have lower final ethanol). Although our model could simulate varying ATP 

maintenance needs, existing data is insufficient to test this hypothesis and is 

outside the scope of this work. Real time measurements of cell viability over time 

and cell survival rates in different conditions would be needed in elucidating 

these relationships. 

3.4.5 – Model predictions on secondary metabolites poor 

One of the major objectives with this model were to better predict xylulose 

sugar utilization under various mixed glucose-xylose conditions, which was 

achieved. A perfect model would go beyond the primary objective and should 

predict secondary results corroborating the primary objective. In the current 

modeling scheme this implies the ability to accurately predict the formation and 

consumption of metabolites such as glycerol, acetic acid, lactic acid, and succinic 

acid. Here we discuss the accuracy with which our model fit these metabolites 

and some of the possible factors driving the experiments and model to disagree. 

In general, our model did a poor job of predicting secondary metabolite 

production. Only a small portion of the data will be shown here, but it is 

representative of the secondary metabolite data as a whole. The model predicted 

a measurable level (0.5-2.5 g/l) of succinic acid production in every model run. 

This was contrary to the experimental data that never showed succinic acid 

production beyond 0.26 g/l and only 32.1% of experimental runs produced a 

measureable concentration of succinic acid. In contrast to succinic acid, the 
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model predicted that no measureable amounts of glycerol, acetic acid, or lactic 

acid would be produced. However, experimental data showed that these 

compounds (glycerol, acetic acid, and lactic acid) were produced in 

concentrations as high as 5.1, 2.6, and 1.25g/l respectively. Across all strains, 

glycerol was produced in 64.9% of experimental runs; compared to 57.1% with 

acetic acid, and 42.9% with measurable lactic acid production. 

Figure&43:&Experimental&and&Modeled&Correlation&of&Secondary&Metabolites&9&Secondary&metabolites& 
were&not&well&predicted&by&the&model.&Above&is&the&secondary&metabolite&comparison&between&the& 
model&and&experimental&data&for&E1&strain&YRH857.& 

Elucidating the exact reason for the production of these metabolites was 

difficult, but it likely stems from multiple optimal solutions and the lack of 

regulatory elements in FBA modeling. Often secondary metabolite production is 

used as a method for regenerating cofactors vital to glycolysis. For example, 

lactic acid production from pyruvate recycles NADH to produce NAD+. The 
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regenerated NAD+ is required for pyruvate decarboxylation to produce acetyl 

CoA. In other instances secondary metabolites are produced as an alternative to 

cofactor regeneration. An example here would be the production of acetic acid 

which produces 2 ATP but does not regenerate cofactors. FBA modeling is able 

to capture some of this through its insistence on mass balance, but there are 

often multiple pathways capable of regenerating the same cofactors. This results 

in multiple best solutions and the model is forced to select one of the multiple 

optimal solutions (often the first feasible solution found by the solver in the 

solution space). While there are approaches such as flux variability analysis to 

assess this case, performing FVA for current dFBA model would be prohibitively 

expensive in terms of computer time. In this case the model selects succinic acid 

production (producing NADH in the process). 

The lack of regulatory elements may also play a large role in the poor 

prediction of secondary metabolite production. Some aspects of cell regulation 

are not well captured through mass balance alone. For example, studies have 

shown glycerol to be produced and accumulated to regulate osmotic stress. FBA 

models cannot capture this accumulation because of their steady state 

assumption, but in addition, most basic FBA models do not account for 

environmental osmolality (or any signal induction) at all. Inclusion of signaling 

pathways would act to further constrain the model and force it to produce certain 

metabolites in certain conditions. Without these constraints the model finds the 
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solution that maximizes the objective function. In this case that solution did not 

include production of glycerol, acetic acid, or lactic acid. 

3.4.5 Other Limitations of dFBA 

The field of flux balance analysis (including dFBA and all its variants) has 

great potential to explain complex cell behavior, but this work has highlighted 

some of the issues inherent in the base method. Here we these shortcomings will 

be outlined and suggestions for future work will be provided. 

A model is only as powerful as the inputs used to formulate the model. Our 

model was fit and validated using data produced in the batch fermentation 

section of this work. In some of this data, achieving a reliable mass closure was a 

challenge. This issue could be a result of a wide range of reasons ranging from 

ineffective sample and standard storage leading to partial evaporation of ethanol 

(the most volatile metabolite measured) to experimental errors. While data for 

ethanol was collected and is reported in the appendix of this work, it was 

excluded from the model fitting because of questions surrounding its accuracy. 

The remaining data was sufficient to fit the model and validate the fit, but it is 

possible that a different set of parameters would have been developed with 

perfect data. 

A model is only as powerful as its assumptions. In the development of our 

model we made a series of assumptions to simplify the complexity of a living cell 

to a series of equations and constraints. These assumptions may not be 

universally applicable and may not fit all experimental conditions. 



#     

           

            

    

          

  

             

         

             

     

              

            

           

         

           

              

 

          

           

            

             

             

           

Page 117 

•	 The HXT family of proteins may have very different kinetics for 

xylulose than xylose and the ‘time scalar’ we fit for xylulose may be 

different for different transporters. 

•	 ATP maintenance is not constant, but linked to environmental 

stimuli. 

•	 Cell death may introduce new nutrients to the media, but they may 

be introduced in a more nuanced, time-delayed manner. 

•	 Cells do not obey strict steady state assumption and cells may not 

optimize to maximize cell growth. 

These assumptions are in place to create a problem that is solvable and to 

fill in knowledge gaps with plausible mechanisms regulating cell activity. As these 

assumptions improve, the model will have increased ability to capture cell 

dynamics under a variety of environmental conditions. Until these assumptions 

are near perfect the model will not accurately predict all experimental outcomes 

as seen in the results here for yeast cell death and end dynamics of fermentation 

approximation. 

Protein expression patterns are not static and our model does not capture 

knockout adaptation. One of the assumptions with our model was that knockout 

HXT strains could provide insight into the level of xylulose and glucose 

consumption and that this base level would be present in strains containing HXT 

1-7. The results do not support this assumption and it is speculated that 

remaining transporters in the knock out strains were up regulated to compensate 
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for the loss of the HXT transporters, thus biasing our parameters to higher 

consumption. The base model that we utilized did not show specific protein 

transporters and we chose to only incorporate HXT 1-7 as per our hypothesis 

and the past work by Bertilsson et al. To better capture cell adaptation and 

transport dynamics in knock out organisms a full transporter network and 

expression profile would need to be developed. 

3.5 Modeling Conclusions 

The modeling portion of this work produced data supporting several of the 

conclusions we formulated during the batch fermentation section. Model fit was 

found to improve with restriction of XK capacity in strain YRH524, but not in 

strains YRH857, YRH858, or YRH859. This supports the XK bottleneck identified 

for strain YRH524 during the fermentation experiments. The constraint of HXT 

transporters was sufficient to approximate the xylulose utilization rate in strains 

YRH857, YRH858, and YRH859 without further internal xylulose utilization 

constraints. This suggests that xylulose transport was the bottleneck in xylulose 

utilization in these strains. Finally, we showed that basal level xylulose transport 

in strains YRH1153 and YRH1154 was insufficient to explain observed xylulose 

transport in those strains suggesting that these strains adapted to increase 

xylulose utilization capacity. 

The model produced showed strong fit for glucose and xylulose 

consumption, but poor fit of secondary metabolite formation (glycerol, acetic acid, 

lactic acid, and succinic acid). The yeast cell death function helped to stop 
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xylulose fermentation before xylulose concentration reached zero, however the 

assumptions used were not sufficient to accurately model when the fermentation 

would stop. Further experimental data (including cell viability) would be helpful 

fitting this function in the future. 

Chapter 4 - Conclusions And Future Work: 

This work consisted of a wet lab, experimental portion and an in silica 

modeling portion jointly aimed at better understanding the bottlenecks of xylulose 

utilization in wild type and xylulokinase enhanced strains of S. Cerevisiae. This 

dual approach yielded several major findings, identified during the wet lab phase 

and supported during modeling. By comparing xylulose utilization rates of 

YRH524 (wild type) and the XK enhanced strains YRH857 and YRH858 we were 

able to identify XK as the rate limiting reaction in the wild-type strain. During 

model fitting, this finding was supported by the constraint of XK capacity. 

Similarly, batch experiments showed that strains with a high-level increase in XK 

capacity (YRH858) did not perform better than those with a low-level increase in 

XK capacity. This suggested that XK was not limiting in these strains. The flux 

balance model again supported this finding through XK fitting. Accordingly, future 

work on strain development should focus on increasing capacity in enzymes 

other than xylulokinase. 

Xylulose transport was considered as another possible xylulose utilization 

bottleneck. By taking a novel approach to adapting Bertillson’s HXT transport, 

xylose consumption model for use with xylulose a robust agreement was 
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achieved between our experimental data and model suggesting that HXT 1-7 

were a likely candidate for xylulose transporters. This model assumed that the 

kinetic parameters are similar to those for xylose transport. Future work should 

include identifying the xylulose specific kinetic parameters for each of these 

transporters. 

HXT knockout strains were used to determine if other transporters were 

active in transporting xylulose. The knockout strains showed a decreased rate of 

xylulose utilization, but the level was inconsistent, poorly correlated with xylulose 

concentration, and higher than the background level expected. This suggests that 

HXT knockout cells may adapt by up regulating the expression of other 

transporters to facilitate sufficient sugar transport. 

This work focused only on a small group of HXT transporters, but our data 

suggests a larger number of hexose transporters are active in xylulose transport. 

The model could be improved by understanding and incorporating the expression 

patterns of these transporters and their xylulose specific kinetics. Since these 

transporters appear to be expressed differently in knock out cells MOMA or 

ROOM may be a more appropriate method for predicting expression patterns. 

Alternatively the expression of transporters could be described as a Boolean, 

cost based optimization problem associating the expression of the transporter 

with a cost and weighing that cost against the improvement in energy production. 

The model itself is the final deliverable for this thesis. It performs well to 

predict glucose and xylulose uptake under anaerobic conditions with ample 
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sugar. It performs less well in terms of secondary metabolite predictions and 

predicting end dynamics of batch fermentations during conditions of starvation 

and yeast cell death. To our knowledge this was the first attempt to model cell 

death via flux balance analysis. The yeast cell death function used in the model 

was a best guess approximation that attempted to explain the experimental 

observations. Cell death was not quantified in the experiments and collecting this 

data would give better insight into the shortcomings of the yeast cell death 

function. 
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