
AN ABSTRACT OF THE THESIS OF

ROY LOUIS SCHIELE for the M.S. in Electrical Engineering
(Name) (Degree) (Major)

Date thesis is presented August 2, 1966

Title COMPUTER -AIDED 10RITY LOGIC DESIGN

Abstract approved Redacted for Privacy I (Major professo)

The emergence of the three -input majority gate as a practical

element for logical design has demanded a useful method of design

using these elements. In order to facilitate the use of this gate, a

digital computer program is presented to implement the design

procedure.

Utilizing the truth table of a logical function, with "don't care"

terms omitted, as the input, the program employs a unitizing

method of function realization using three -input majority gates.

The program complements and unitizes the table, and, using some

fundamental theorems, reduces the table and selects the majority

gate which gives maximum reduction. The reduction and gate

selection processes continue until a final gate is obtained and the

function is realized.

The result is an efficient and relatively fast method of logical

design employing three -input majority gates.

The program was written in the FORTRAN II language for an

IBM 1620 computer with 40K decimal digits of storage. In the form

presented, it uses over 39K digits of storage.

COMPUTER AIDED MAJORITY LOGIC DESIGN

by

ROY LOUIS SCHIELE

A THESIS

submitted to

OREGON STATE UNIVERSITY

in partial fulfillment of
the requirements for the

degree of

MASTER OF SCIENCE

June 1967

APPROVED:

Redacted for Privacy

Pis sor of Electrical and Electronic Engineering
In Charge of Major

Redacted for Privacy

ad of Department' of Electrical and Electronic
Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented August 2, 1966

Typed by Gwendolyn Hansen

ACKNOWLEDGEMENT

The author wishes to express his appreciation to Mr. L. N.

Stone for his suggestions and guidance in the preparation of this

thesis.

He would also like to thank Mr. J F. Engle for programming

suggestions and his wife Sue Ann for encouragement while writing

this thesis.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1

II. MAJORITY LOGIC 2

III. LOGICAL DESIGN PROGRAM 8

Dividing and Complementing the Truth Table 8
Adding l's and 0's and Unitizing the Table 11
Reducing the Truth Table 11
Selecting the Best Majority Gate 15
Stage Reduction 18

IV. COMMENT ON THE PROGRAM 22

BIBLIOGRAPHY 24

APPENDIX I. MAJORITY LOGIC DESIGN 25

APPENDIX II. THE PROGRAM 31

LIST OF FIGURES

Figure Page

1. Majority gate realization of the function of Table 2. 4

2. "And -or" realization of the function of Table 2. 4

3. "And -or" realization of the full adder. 6

4. Majority gate logic circuit for the full adder. 6

5. Process for logic design program. 9

6. Dividing and complementing the truth table. 10

7. Adding columns of l's and 0's and unitizing the table. 12

8. Removing rows and columns. 13

9. Marking essential pairs and removing a variable
with none. 16

10. Selecting the best majority gate. 19

11. Logic circuit without stage reduction. 21

12. Logic circuit with stage reduction. 21

LIST OF TABLES

Table Page

I. Truth table for the majority gate 2

II. Truth table to determine binary number correspondence, 4

III. Truth table for a full adder

IV. Truth table 21

o

COMPUTER -AIDED MAJORITY LOGIC DESIGN

I. INTRODUCTION

The present -day logic designer is no longer bound to the clas-

sical "and -or" or "nand -nor" logic as the only possibilities for a

logical design. New methods of function realization, such as major-

ity and threshold logic, have given him some much needed liberty in

selecting the proper type of logic for a particular design.

It is important that the designer have at his disposal fast,

efficient methods of logical design, utilizing several types of logic,

so that he can produce several alternate designs in a reasonable

amount of time. Then he would not be forced to use only one type

of logic; instead, he could select the best logic for each function in

a given machine. The result would be a design requiring less circuit

elements with improved speed.

One possibility for a fast method of logic design would be a

digital computer program to perform the logical design. This thesis

will concern itself with the development of such a program for three- -

input majority logic design. The program would serve as a tool for

the logical designer to improve his capabilities.

2

II. MAJORITY LOGIC

A three -input majority gate realizes the Boolean function:

M(A, B, C) = AB +BC +AC

Table I shows the truth table for this function, where the output is

simply the majority of the inputs.

Table I. Truth table for the majority gate

INPUTS OUTPUT

A B C M(A, B, C)

o

1

o

o

o

o

o

o

o 1 o o

1 1 0 1

o 0 1 0

1 0 1 1

o 1 1 1

1 1 1 1

The fact that the output must be the same as the majority of

the inputs restricts the majority gate to an odd number of inputs. A

number of practical circuits to realize majority functions have been

presented in the literature (5, 6, 7, 11). The greater number of

3

these circuits use three -input majority logic, although some can

easily be extended to use more inputs (5, 11).

The primary reason for the use of the three -input majority

gate is that, in some cases, it gives a significant simplification in

the logic circuit required to realize a function. However, a simpli-

fication is not guaranteed in every case. For instance, a logical

function to compare binary numbers has the truth table shown in

Table II,

To realize this circuit using three -input majority gates, three

gates with nine inputs and a l's and a 0's source are required. The

logic diagram is represented in Figure 1, where "U" is the l's

source and "U" is the 0's source.

This same circuit can be realized using the classical "and -

or" logic with three gates and six inputs. The logic diagram using

"and -or" logic is illustrated in Figure 2. Since, in general, "and"

or "or" gates are less complex than majority gates, it is more

practical to use the "and -or" logic in this particular case. The use

of majority logic provides no simplification and in fact requires a

more complex logic circuit.

However, in many cases majority logic does reduce the num-

ber of gates and inputs required to realize a function. Consider the

truth table for a full adder represented in Table III. The "and -or"

logic realization of the full adder is illustrated by the block diagram

A

U

A
B

U

Table II. Truth table to determine
binary number correspondence

INPUTS OUTPUT

A B F

1 o 1

o 1 1

o o o

1 1 o

M F

Figure 1. Majority gate realization of the function of Table Il.

A

B

A

73

Figure 2. "And -or" realization of the function of Table II,

4

M

AND

AND

OR

5

of Figure 3. This logic circuit requires four "and" gates, four "or"

gates, and an inverter with a total of 16 inputs.

Table III. Truth table for a full adder

INPUTS OUTPUTS

A B C Sum Carry

o o o o o

o o 1 1 o

0 1 0 1 0

0 1 1 0 1

1 o o 1 o

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure 4 shows the circuit realization of the full adder using

three -input majority gates. For this logic circuit, four three -input

majority gates with a total of 12 inputs are needed. Therefore it is

evident that, in the case of the full adder, the use of the three - input

majority gate gives a significant simplification.

The circuitry required for a majority gate is generally more

complex than that required for "and -or" or "nand -nor" logic. How-

ever, the growing use of thin film and integrated circuits makes

these more complex circuits practical both in size and in cost.

Since the majority gate is becoming practical, its application

B

A

B

A
B
C

A
B

C

A
B
C

AND

OR

OR

OR AND

6

AND --+--- CARRY

OR

AND

INVERTER

Figure 3. "And -or" realization of the full adder.

1

SUM

Figure 4. Majority gate logic circuit for the full adder.

SU M

CARRY.

7

in logic designs is being exploited. A good method of logical design

utilizing majority gates is essential to the full development of this

type of logic. This method should be relatively fast and applicable

to logic functions of considerable size.

A number of methods of logical design using majority gates

appear in the literature (1, 2, 3, 4, 8, 9, 10). The gate most com-

monly used in these methods is the three -input majority gate since

it gives a good reduction in the logic circuit with ease of design.

The complexity of these methods increases rapidly as the size of

the function, or its corresponding truth table, being synthesized

becomes large, and thus a practical and useful method of logic

design using majority gates is not presently available for larger

functions.

8

III, LOGICAL DESIGN PROGRAM

The repetitive nature of unitizing methods, and specifically

the method presented by Akers and Robbins (1, 2, 3, 4), suggests a

digital computer program approach to three - input majority gate

logical design. This type of program would entail manipulation of

the truth table of a given function to obtain a good logical design.

The program to be described is based on the method presented

by Akers and Robbins (Appendix I). For clarity this method is

divided into several parts and each part is treated separately. The

over -all method is represented in Figure 5. The input to the pro-

gram is the truth table for the function with any "don't care" terms

omitted. The method utilizes these "don't care" terms by the fact

that they are omitted.

Dividing and Complementing the Truth Table

The logic flow diagram to divide and complement the truth

table is illustrated in Figure 6 on page 10. To facilitate later steps,

the truth table is first divided into two subsets. All rows with a "1"

output are placed in the first subset (the upper part of the truth

table) and the rows with an output of "0" are placed in the second

subset.

Next each variable, or column, in the truth table is

9

put
W

Divide the table
and complement
all variables

Add' 1" and "O-
columns and
unitize the table

Remove
unnecessary rows

and columns

Mark Essential
pairs and remove
a variable with
none

Was

a variable
removed

No

Select the best
majority gate

Yes

A

End

Yes

Figure 5. Process for logic design program.

\ /

W

W

W

10

Go to
the next
row

No

Go to
the next
number

No

Input
truth
table

Select the
first row

Select the
first number
in the first
column

Yes
The
complement
is one

Go to the
first number
of the next
row Yes

Go to the
next step

Change places
with next row

} with a one
output

The
complement
is zero

Figure 6. Dividing and complementing the truth table.

Is

the output
= zero

Yes

Is

this the
last row

2

Yes

s

this
number a

zero

Is
this the

last number

Yes

this the
last row

11

complemented and these complements are added to the truth table.

This process doubles the size of the truth table. It is not always

necessary to complement all variables, but any columns that are

not required will be subsequently removed.

Adding l's and 0's and Unitizing the Table

Once all the variables have been complemented, it is neces-

sary to add a source of l's and a source of 0's to guarantee that the

function can be synthesized using three -input majority gates. These

added variables are frequently not required, but for simplicity they

are added here and will be removed later if not needed.

The next step is to unitize the truth table. This is simply a

process of complementing any row that has a "0" for an output.

The result is a unitized table which may be synthesized using three -

input majority gates. The logic flow diagram to add a "1" and a

"0" source and to unitize the truth table is shown in Figure 7.

Reducing the Truth Table

Once the unitized truth table is obtained, it can often be reduced

by the removal of rows or columns. The logic flow diagram to

remove rows and columns is illustrated in Figure 8 on page 13.

To remove rows, it is necessary to examine all possible pairs

of rows. If one row has l's in every column that another row has

12

Input
truth table

with
complemented

variables J

Add a

column of
l's and a

column of

O's

Go to the
next row

No

Select the
first row

Yes

Is

this; the
last row

7

Yes

Go to the
next step

Complement
the row

Figure 7. Adding columns of l's and 0's and unitizing
the table.

Is

the output
zero

No

V

13

a unitized
truth
table

Select the
first two
rows

Is

a row
redundant

Select the
next two
rows

Select the
next two
variables

No

7

N

Yes

Yes

Select the
first two
columns

Are
these the

last
variables

7

Nc
V

Go to the
next step

Remove
it

Figure 8. Removing rows and columns.

Remove
it

14

l's, the first row is redundant and may be removed. The entire

table is searched and all redundant rows are removed. Then all

possible pairs of columns are examined. If one variable has l's in

every position (row) that another variable has l's, the second varia-

ble is redundant and can be removed from the truth table. Once

again the entire table is searched and all redundant columns

removed.

At the end of the process of column removal, if any variable

was removed, it is necessary to go back to the step which removes

the rows, since the removal of a column can cause new redundancies

in the rows. Once no variables are removed in a pass through the

process, the program proceeds to find essential pairs.

For any two rows in the truth table, there is at least one

column that has l's in each of the two rows. If only one column has

l's in the two rows, these l's constitute an essential pair. Since

any variable, or column, which does not contain an essential pair

may be removed, it is necessary to search the table and locate these

pairs. In the program they are marked by placing a negative sign

before the "1" to obtain a " -1 ".

The program then searches the table to see if any variables

contain no essential pairs and can thus be eliminated. Since, for

most applications, the l's and the 0's sources are not already

available, it is usually desirable to remove either of these columns

15

first if a choice is to be made. The l's and 0's sources are placed

at the end of the table when they are added, so the program starts

with the last column and searches toward the first in seeking varia-

bles with no essential pairs. Only one variable may be removed on

a pass since the removal of two variables could leave a pair of rows

with no essential pairs. Figure 9 illustrates the logic flow diagram

to locate essential pairs and remove a variable with rio essential

pairs.

If a variable can be removed, it is deleted from the table and

the essential pair marking is removed. The program then returns

to remove any unnecessary rows and the process is repeated.

Once all variables contain at least one essential pair, the next step

is to select the best majority gate to reduce the table.

Selecting the Best Majority Gate

Once the fullyreduced unitized table with essential pairs

marked is obtained, the problem is to determine the majority gate

which will give a maximum amount of reduction in the size of the

truth table. The program searches the table to find a three - input

majority gate that will eliminate as many variables as possible.

The majority gate will eliminate a variable that does not have a

" 1" (part of an essential pair) in any row where the majority gate

output is a "0

16

Partially
reduced

truth
table

Select the
first two
rows

o

they
contain an

essential
air ?

Yes
Change the
1's to -1's
in the column
that contain
t

Select the
next two
rows

Ar
these the
last two
rows

7

Yes

Select the
last column

41

Does
this column

have any
-1's '

Remove
it

Yes
Is

this the
first column

Select
the next
column ?

Yes

Find the
best majority
gate

Remove
essential pair
markings
from the
table

Return to
remove
unnecessary
TOWS

Figure 9. Marking essential pairs and removing
a variable with none.

1

17

The program searches for a majority gate to eliminate three

variables. If a majority gate to eliminate three variables does not

exist, a gate to eliminate two, and then one, variable is sought. In

each case the variables are removed, the majority gate is added to

the table, and the program deletes essential pair markings and

returns to remove unnecessary rows and further reduce the table.

After the variables are removed and the majority gate is added,

if the table has only one column (the last majority gate added) the

function has been realized and the process is complete. The output

from the program is the majority gate found each pass of the pro-

gram.

If a majority gate to eliminate even one variable does not exist,

it is necessary to form a gate that does not eliminate any variables.

This is done until a gate that will eliminate some variables exists.

However, this normally results in a rather impractical design using

three -input majority gates. For this reason, the process is termi-

nated if a majority gate cannot be found to eliminate at least one

variable. If the operator still desires a three -input majority gate

realization of this function, he can add some gates to the truth table

manually. It is necessary to add gates that have more Is than some

of the variables. After some gates are added manually, the truth

table is again read into the computer and the function is realized.

However, as stated above, this type of circuit normally requires a

18

large number of circuit elements.

The logic flow diagram to select the proper majority gat ç is

shown in Figure 10. It is not necessary to remove the variables

that can be removed by the majority gate, since these would be

eliminated in reducing the table. However, they are removed here

to increase the speed with which the program will run. A shorter

modification of the program would not do this and, although some

memory space would be conserved, time would be sacrificed.

Stage Reduction

For a good logical design, a relatively fast operating time is

important. A gate has a certain propagation time, and this time

multiplied by the number of stages gives a rough approximation of

the delay through the logic circuit. A cower number of stages would

give a lower propagation time and thus a better logical design.

If there were two possible majority gates which eliminated the

same number of variables, it would be advantageous to use one that

would possibly give a reduction in the number of stages. Thus to

try to avoid using a majority gate that included, as an input, the

majority gate that was added on the previous pass, would eliminate

unnecessary building up cf the stages.

In order to utilize this idea in the program, the table is first

searched for a majority gate with the last column suppressed. Since

The fully
reduced
unitized

truth
table

it

a majority
gate eliminate

three
variables

7

Yes

19

it

a majority
gate eliminate

two
variables

7

Remove the
variables
and add the
majority
gate

Majority
logic not
practical

'11

a majority
gate eliminate

one
variable

2

Output
the

majority
gate

No

V
Remove
essential
pair
markings

Is

this the
final gate

Yes

Return to
reduce the
truth table

Figure 10. Selecting the best majority gate.

V

End

20

the majority gates are added onto the end of the table, this would

avoid the use of the majority gate added on the last pass. If a gate

is not found, the table is again searched including the last column.

In this way, maximum reduction is still obtained, and where pos-

sible, some reduction in the number of stages may be obtained.

To see how this can help, consider the function whose truth

table is shown in Table IV. This function was synthesized using

three -input majority gates. First the problem was run without the

stage reducing modification in the program, and the result was the

three -stage logic circuit illustrated in Figure 11. Then the function

was synthesized with the stage reducing modification in the program.

The result was the two stage logic circuit shown in Figure 12. In

this case, either circuit is correct and will realize the desired

function, but the stage reduction gives an increase in speed of

approximately one -third.

A
B
E

D

E

A
7Ò-

D

E

A
B
E

Table IV. Truth table

INPUT OUTPUT

A B C D E F

o

0

1

1

o

1

o

1

o

1

o

1

1 1 1 0 0 1

1 1 0 1 0 1

1 1 1 1 0 0

Figure 11. Logic circuit without stage reduction.

F

Figure 12. Logic circuit with stage reduction.

21

22

IV. COMMENT ON THE PROGRAM

The logical design program was written for an IBM 1620

computer with 40K decimal digits of core storage. The source deck

language used was FORTRAN -II. This language was used to facii.-i.

tate the understanding and modification of the program if desired.

The SPS language was considered to conserve memory space, but

the advantages of the FORTRAN -II language seemed to outweight

the advantages of SPS.

Using the PDQ FORTRAN Processor C2, the program requires

approximately 38, 920 decimal digits of storage in its present form,

A truth table with 6 variables and 40 rows is the maximum allowable

with the 40K storage. The program requires 2k + 3 columns for

a truth table with k input variables, since it complements all

variables, uses a "1" and a "0" input, and requires a storage

column. It also requires n + 1 rows for a truth table with n

rows since a storage row is used.

A larger memory would permit the synthesis of functions with

much larger truth tables. The only change required in the program

would be a modification of the DIMENSION statement to reserve

space for the larger truth table, and an extension of the input READ

statement. The only limiting factor on the size of truth table that

can be synthesized is the running time of the program. Because

23

combinations are searched in the program, the running time is not

a linear function of the size of the truth table. Running time is also

dependent on the particular function being synthesized, so an accurate

estimate of the running time can not be made. However, on the

IBM 1620 problems were run in a relatively short time.

24

BIBLIOGRAPHY

1. Akers, Sheldon B. and Theodore C. Robbins. Logical design
with three -input majority gates. Pt. 1. Computer Design
2 :12 -19. March 1963.

2. . Logical design with three -input majority
gates. Pt. 2. Computer Design 2:20 -23. April 1963.

3. . Logical design with three -input majority
gates. Pt. 3. Computer Design 2:16 -23. May 1963.

4. . Logical design with three -input majority
gates. Pt. 4. Computer Design 2:20 -27. June 1963.

5. Anand, S. K. Majority logic circuits. Master's thesis.
Corvallis, Oregon State University, 1966. 109 numb. leaves.

6. Carr, W. N. and A. G. Milnes. Bias controlled tunnel -pair
logic circuits. IRE Transactions on Electronic Computers
11:773 -779. 1962.

7. Chow, W. F. Tunnel diode digital circuitry. IRE Transactions
on Electronic Computers 9:295 -301. 1960.

8. Lindman, R. A theorem for deriving majority logic networks
within an augumented boolean algebra. IRE Transactions on
Electronic Computers 9:338 -342. 1960.

9. Muller, H. S. and R O. Winder. Majority logic synthesis by
geometric methods. IRE Transactions on Electronic Computers
11 :89 -90. 1962.

10. Miyata, Fusachika. Realization of arbitrary logical functions
using majority elements. IEEE Transactions on Electronic
Computers 12:183 -191. 1963.

11. Sauer, W. A. Majority and threshold logic. Electronics
36:23 -24. Nov. 29, 1963.

APPENDIX

25

APPENDIX I. MAJORITY LOGIC DESIGN

The following is the method for logical design using three -

input majority gates used in the program for this thesis (1, 2, 3,

4).

The starting point of the process is a logically passive func-

tion, or a function that can be synthesized without inverters. A

function F(X1, X2, ...Xn) is said to be logically passive with

respect to (X1, X2, ...Xn) if and only if for any two input combina-

tions, a. and a., if a. < a. then F(a.) < F(a.). For binary
1

J
1_

numbers, a. < a, if and only if a. has units everywhere a. 1- J J 1

does.

This definition lead to the following theorem:

Theorem I.

A function F(X1, X2, ... Xn) is logically passive with

respect to (X1, X2, ... Xn) if and only if F can be

synthesized using only "and -or" gates.

A corollary follows:

1_
J

26

Corollary I.

A function F(X1, X2, ... Xn, 0, 1) is logically passive with

respect to (X1, X2, ... Xn, 0, 1) if and only if F can be

synthesized using three -input majority gates.

Since M(A, B, C) = A B + A C + B C,

then M(A,B,1) vAB +A1 +B1 = A + B

and M(A, B, 0) =AB+A0 +B0 =AB

Thus majority gates with the constants "0" and "1" reduce to "and -

or" gates.

A logically passive function is obtained by complementing

columns in the truth table so that the definition for a logically passive

function is satisfied. Then the table can often be simplified by

Theorem II.

Theorem II

Given the truth table for a logically passive function F,

and any two rows a. and a., where a. < a., if
i J 1- j

F(ai) = F(a.) = 1, the a. row may be removed and if

F(a.) = F(a.) = 0, the a. row may be removed.
i J i

The proof of this theorem follows from the definition of a logically

passive function. To determine if the constants 0 or 1 or both are

J

27

required, we prove the following lemma:

Lemma I

If F is synthesized with only majority gates, then for any

input ai, F(ai) = F(a).

This is easily seen for a single majority gate and the general proof

follows directly by induction on the number of gates. Functions

having this property are called self -duals. Thus any function

F(X1, X2, ... , Xn) which has to be synthesized using only majority

gates must be a self -dual function.

Theorem III

A logically passive function F(X1X2, ... , Xn) can be syn-

thesized using only majority gates if and only if for any two

inputs a. and a. with F(a.) = a , and F(a.) = a there
1 J 1 1 J J

exists an Xk which has the valve a in ai and a . in

a.. Such a function will be called a logically passive self -dual

(L. P. S.D.).

Since F is a logically passive function we consider only the cases

where F(ai) = F(a.) = 0 and F(ai) = F(a.) = 1. Assuming the con-

ditions not met and applying Lemma I we see that F is not a logically

passive function. This shows that Theorem III is necessary.

J

28

Before showing that Theorem III is sufficient, we note that the

table can be made an L. P. S. D. , if it is not already, by addition of

the constant "0" or "1 ", or both. The truth table of an L. P.S. D.

can then be simplified by the following theorem.

Theorem IV.

The table of an L. P. S. D. is unchanged if each a. far which

F(ai) = 0 is replaced by a. and the "0" in the F column

replaced by a "1 ".

The proof of this theorem follows from the fact that it is a self -dual.

This transformation produces a unitized table and Theorem III

states that every pair of rows must have a unit in common. Applying

Theorem II, further reduction can often be obtained.

Theorem V

Given the unitized table for an L.P.S. D. , F(X1, X2' .. ri
X),

if X. < X., then X. may be eliminated. i- J i

This follows from the fact that the only requirement on the unitized

table was that each pair of rows have l's in common in at least one

column.

Given a fully reduced unitized table for a function, we construct

a three -input majority gate whose output is equal to the majority of

the inputs. The column of values for this gate is added to the table

as an additional variable, and the table is again reduced and the

process repeated. The problem is to pick the best majority gate

at each step. As a corollary to Theorem V, we find:

Corollary II

If in a unitized table there exists three variables X.,
1

such that no row has Xi = 1, X. = 0, Xk = 0 then adding
J

the majority gate M(X., X., Xk) to the table will allow
J

to be eliminated.

Theorem VI

A necessary condition for gate M(X., X., Xk)
J

to appear in

the realization of a L.P. S. D. , is that for each of the three

variables, there exists a row in the unitized table where

is "0" and the other two are "1 ".

If this was not the case, M(X., X., X) < X. and the gate could
1 J k -

eliminated.

A necessary property of the unitized table is that every pair

rows have a unit in common. A method of synthesis can be based

on those particular row pairs that have only one pair of l's in

common. Such a pair of l's will be called an essential pair.

(r

29

c,f

X., X,

X.
1 1

it

. 0

Once all essential pairs are located, if there were a variable

in the table with no essential pair in its column, that column could

be deleted from the table, since no pair of rows would depend on

that variable for l's.

Now for a variable to be eliminated by a majority gate it is

only required that the gate have l's in the rows where essential

pairs are located in the variable. This follows from Theorem 'J

or the preceeding paragraph.

A geometric method for synthesis is described, but this port on

was not used in the program described in the thesis.

31

APPENDIX II. THE PROGRAM

C LOGIC DESIGN USING THREE -INPUT MAJORITY GATES
C FIRST INPUT CARD FORMAT 212, NUMBER OF COLUMNS
C AND NUMBER OF ROWS
C INPUT FORMAT IS 12, ONE ROW PER CARD
C OUTPUT (F) IN COLUMN 2, INPUTS IN COLUMNS 4,

C 6, 8, ETC.
C FOR INPUTS A, B, C ETC., A = 1, NOTA = 2,

C B = 3, NOTB = 4, ETC.
C DIVIDING THE TABLE INTO SUBSETS

DIMENSION LA(41,15), LO(41), INPUT(15)
24 READ 17, K, N

K = K * 2

KK = K - 1

DO 18 I = 1, N, 1

OREAD 19, LO(I), LA(I,1), LA(I,3), LA(I,5),
ILA(I,7), LA(I,9), LA(I,ii), LA(I,13), LA(I,15)
ILA(I,9), LA(I,11), LA(I,13), LA(I,15)

18 CONTINUE
I = 1

NT = N + 1

5 IF (LO(I) - 1) 1, 2, 2

2 IF (I - N) 3, 4, 4

3 I = I + 1

GO TO 5

1 DO 6 J = 1, KK, 2

6 LA(NT,J) = LA(I,J)
LO(NT) = LO(I)
12 = I + 1

10 IF (LO(12) - 1) 7, 8, 2

7 IF (12 - N) 9, 4, 4

9 12 = 12 + 1

GO TO 10
8 DO 11 J = 1, KK, 2

LA(I,J) = LA(12,J)
11 LA(12,J) = LA(NT,J)

LO(I) = LO(12)
LO(12) = LO(NT)
IF (12 - N) 12, 4, 4

12 I = I + 1

GO TO 5

C COMPLEMENTING ALL VARIABLES
4 DO 20 J = 1, KK, 2

DO 20 I = 1, N, 1

32

J2 = J + 1

IF (LA(I,J)) 22, 22, 21

22 LA(I,J2) = 1

GO TO 20
21 LA(I,J2) = 0

20 CONTINUE
DO 23 J = 1, K, 1

23 INPUT(J) = J

C ADDING A COLUMN OF ONES AND A COLUMN OF ZEROS
KK = K + 1

DO 100 I = 1, N, 1

100 LA(I,KK) = 1

INPUT(KK) = KK
PRINT 28, KK
K = KK
KK = K + 1

DO 110 I = 1, N, 1

110 LA(I,KK) = 0

INPUT(KK) = KK
PRINT 27, KK
K = KK

C UNITIZING THE TRUTH TABLE
104 I = 1

130 IF (LO(I) - 1) 132, 133, 132
133 IF(I - N) 134, 131, 131

134 I = I + 1

GO TO 130
132 DO 135 J = 1, K, 1

IF (LA(I,J) - 1) 136, 137, 137
136 LA(I,J) = 1

GO TO 135
137 LA(I,J) = 0

135 CONTINUE
LO(I) = 1

GO TO 133
C REMOVING ROWS FROM THE TRUTH TABLE

131 MJNO = 50
NCT = 0

116 II = 1

12 = II + 1

41 L = 0

LL = 0

NN = N - 1

IF (II - N) 57, 58, 58
57 J = 1

56 M = LA(II,J) + LA(12,J)
IF (M - 1) 46, 49, 46

46 IF (J - K) 47, 42, 42
47 J = J + 1

GO TO 56

33

42 LT = L + LL
IF (LT - 0) 61, 61, 53

49 IF (LA(II,J)) 51, 51, 52

51 L = LA(I2,J)
GO TO 53

52 LL = LA(II,J)
53 IF (L - LL) 60, 55, 64

55 IF (12 - N) 54, 40, 54

40 II = II + 1

12 = II + 1

GO TO 41

54 I2 = 12 + 1

GO TO 41

60 IF(J - K) 47, 61, 61

61 DO 67 IT = II, NN, 1

IAI = IT + 1

DO 67 J = 1, K, 1

67 LA(IT,J) = LA(IAI,J)
N = N- 1

I2 = II + 1

GO TO 41

64 IF (J - K) 47, 65, 65

65 IF (12 - N) 700, 875, 875
875 N = N - 1

GO TO 40
700 DO 68 IT = 12, NN, 1

IAI = IT + 1

DO 68 J = 1, K, 1

68 LA(IT,J) = LA(IA1,J)
701 N = N - 1

GO TO 41

C REMOVING COLUMNS FROM THE TRUTH TABLE
58 J = 1

J2 = J + 1

LLL = 0

165 L = 0

LL = 0

KK = K - 1

IF (J - K) 150, 151, 151

150 I = 1

155 M = LA(I,J) + LA(I,J2)
IF (M - 1) 152, 153, 152

152 IF (I - N) 154, 156, 156
154 I = I + 1

GO TO 155
156 LT = L + LL

IF (LT - 0) 157, 157, 158

153 IF (LA(I,J)) 159, 159, 160

159 L = 1

GO TO 158

34

160 LL = 1

158 IF (L - LL) 161, 162, 166
162 IF (J2 - K) 163, 164, 163

164 J = J + 1

J2 = J + 1

GO TO 165
163 J2 = J2 + 1

GO TO 165
161 IF (I - N) 154, 157, 157
157 IF (J2 - K) 702, 703, 703

702 DO 171 JT = J2, KK, 1

JA1 = JT + 1

171 INPUT(JT) = INPUT(JA1)
DO 167 JT = J2, KK, 1

JAI = JT + 1

DO 167 I = 1, N, 1

167 LA(I,JT) = LA(I,JA1)
K = K - 1

LLL = i

GO TO 165
703 K = K - 1

LLL = 1

GO TO 164
166 IF (I - N) 154, 168, 168
168 DO 172 JT = J, KK, 1

JA1 = JT + 1

172 INPUT(JT) = INPUT(JA1)
DO 169 JT = J, KK, 1

JA1 = JT + 1

DO 169 I - 1, N, 1

169 LA(I,JT) = LA(I,JA1)
K = K - 1

J2 = J + 1

LLL = 1

GO TO 165
151 IF (LLL - 1) 477, 116, 116

C MARKING ESSENTIAL PAIRS
477 I = 1

181 I2 = I + 1

IF (I - N) 170, 390, 390
170 J = 1

L = 0

175 IF (LA(I,J)) 410, 391, 410
410 IF (LA(I2,J)) 173, 391, 173
173 L = L + 1

391 IF (J - K) 174, 180, 180
174 J = J + 1

GO TO 175
180 IF(L - 1) 176, 176, 177
177 IF (I2 - N) 178, 179, 179

35

178 12 = I2 + 1

GO TO 170
179 I = I + 1

GO TO 181
176 J = 1

184 IF (LA(I,J)) 490, 491, 490
490 MJ1 = 1

GO TO 492
491 MJ1 = 0

492 IF (LA(I2,J)) 493, 494, 493
493 MJ2 = 1

GO TO 495
494 MJ2 = 0

495 M = MJ1 + MJ2
IF (M - 2) 182, 183, 182

182 J = J + 1

GO TO 184
183 LA(I,J) = -1

LA(I2,J) = -1

GO TO 177
C REMOVING A VARIABLE WITH NO ESSENTIAL PAIRS

390 KK = K - 1

J = K

192 I = 1

194 IF (LA(I,J)) 190, 191, 191

190 IF (J - 1) 198, 198, 197
197 J = J - 1

GO TO 192
191 IF (I - N) 193, 195, 195
193 I = I + 1

GO TO 194
195 IF (J - K) 499, 200, 200
499 DO 189 JT = J, KK, 1

JA1 = JT + 1

189 INPUT(JT) = INPUT(JA1)
DO 196 JT = J, KK, 1

JA1 = JT + 1

DO 196 I = 1, N, 1

196 LA(I,JT) = LA(I,JA1)
200 K = K - 1

411 DO 185 I = 1, N, 1

DO 185 J = 1, K, 1

IF (LA.(I,J)) 115, 185, 185
115 LA(I,J) = 1

185 CONTINUE
GO TO 116

C SELECTING THE BEST MAJORITY GATE
C TO REMOVE THREE VARIABLES

198 IF (K - 3) 881, 902, 903
903 K = K - 1

36

KTEM = 0

GO TO 904
902 KTEM = 1

904 KK = K - 1

KKK = K - 2

J = 1

210 J2 = J + 1

211 J3 = J2 + 1

212 I = 1

213 IF (LA(I,J)) 419, 420, 419
419 MJ1 = 1

GO TO 421
420 MJ1 = 0

421 IF (LA(I,J2)) 422, 423, 422
422 MJ2 = 1

GO TO 424
423 MJ2 = 0

424 IF (LA(I,J3)) 425, 426, 425
425 MJ3 = 1

GO TO 427
426 MJ3 = 0

427 M = MJ1 + MJ2 + MJ3
IF (M - 1) 214, 217, 214

214 IF (I - N) 215, 233, 233
215 I = I + 1

GO TO 213
217 IF (LA(I,J)) 418, 416, 416
416 IF (LA(I,J2)) 418, 417, 417
417 IF (LA(I,J3)) 418, 214, 214
418 IF (J3 - K) 218, 219, 219
218 J3 = J3 + 1

GO TO 212
219 IF (J2 - KK) 220, 221, 221
220 J2 = J2 + 1

GO TO 211
221 IF (J - KKK) 222, 223, 223
222 J = J + 1

GO TO 210
223 IF (KTEM) 900, 900, 901

900 K = K + 1

GO TO 902
C TO REMOVE TWO VARIABLES

901 IF (K - 3) 881, 905, 906
906 K = K - 1

KTEM = 0

GO TO 907
905 KTEM = 1

907 J = 1

KK = K - 1

KKK = K - 2

37

I2 = 2
260 J2 = J + 1

261 J3 = J2 + 1

262 I = 1

L =

LL = O

LLL = 0

263 IF (LA(I,J)) 428, 429, 428
428 MJ1 = 1

GO TO 430
429 MJ1 = O

430 IF (LA(I,J2)) 431, 432, 431
431 MJ2 = 1

GO TO 433
432 MJ2 = 0

433 IF (LA(I,J3)) 434, 435, 434
434 MJ3 = 1

GO TO 436
435 MJ3 = 0

436 M = MJ1 + MJ2 + MJ3
IF (M - 1) 264, 266, 264

264 IF (I - N) 265, 271, 271
265 I = I + 1

GO TO 263
266 IF (LA(I,J)) 450, 451, 451
451 IF (LA(I,J2)) 450, 452, 452
452 IF (LA(I,J3)) 450, 264, 264
450 IF (MJ1) 268, 268, 267
267 L = 1

GO TO 271
268 IF (MJ2) 270, 270, 269
269 LL = 1

GO TO 271
270 LLL = 1

271 IF (I2 - 1) 331, 331, 800
800 IF (L - LL) 276, 272, 279
276 IF (LL - LLL) 281, 281, 277
277 IF (I - N) 278, 275, 275
278 I = I + 1

GO TO 263
272 IF (L - 0) 277, 277, 281
279 IF (L - LLL) 281, 281, 277
281 IF (J3 - K) 282, 283, 283
282 J3 = J3 + 1

GO TO 262
283 IF (J2 - KK) 284, 285, 285
284 J2 = J2 + 1

GO TO 261
285 IF (J - KKK) 286, 287, 287
286 J = J + 1

0

38

GO TO 260
287 IF (KTEM) 908, 908, 909
908 K = K + 1

GO TO 905
C TO REMOVE ONE VARIABLE

909 IF (K - 3) 881, 910, 911
911 K = K - 1

KTEM = 0

GO TO 912
910 KTEM = 1

912 I2 = 1

KK = K - 1

KKK = K - 2

331 IF (I - N) 332, 333, 333
332 I = I + 1

GO TO 263
333 IF (L - LL) 334, 335, 334
335 IF (LLL - 0) 334, 334, 336
336 IF (J3 - K) 337, 338, 338
337 J3 = J3 + 1

GO TO 262
338 IF (J2 - KK) 339, 340, 340
339 J2 = J2 + 1

GO TO 261

340 IF (J - KKK) 341, 913, 913
341 J = J + 1

GO TO 260
913 IF (KTEM) 914, 914, 881
914 K = K + 1

GO TO 910
C REMOVES ONE VARIABLE

334 IF (KTEM) 915, 915, 916
915 K = K + 1

KK = KK + 1

KKK = KKK + 1

916 KP = K + 1

NCT = NCT + 1

IF (NCT - 5) 880, 881, 881

881 PRINT 882
GO TO 400

880 DO 440 I = 1, N, 1

DO 440 JT = 1, K, 1

IF (LA(I,JT)) 441, 440, 441
441 LA(I,JT) = 1

440 CONTINUE
DO 345 I = 1, N, 1

M = LA(I,J) + LA(I,J2) + LA(I,J3)
IF (M - 2) 343, 344, 344

343 LA(I,KP) 0

GO TO 345
=

39

344 LA(I,KP) = 1

345 CONTINUE
MJ1 = INPUT(J)
MJ2 = INPUT(J2)
MJ3 = INPUT (J3)
INPUT(KP) = MJNO + 1

IF (L - 1) 346, 347, 347
346 DO 350 JT = J, K, 1

JA1 = JT + 1

INPUT(JT) = INPUT(JA1)
DO 350 I = 1, N, 1

350 LA(I,JT) = LA(I,JA1)
GO TO 252

347 IF (LL - 1) 348, 349, 349
348 DO 352 JT = J2, KK, 1

JA1 = JT + 1

INPUT(JT) = INPUT(JA1)
DO 352 I = 1, N, 1

352 LA(I,JT) = LA(I,JA1)
GO TO 252

349 DO 354 JT = J3, KKK, 1

JA1 = JT + 1

INPUT(JT) = INPUT(JA1)
DO 354 I = 1, N, 1

354 LA (I,JT) = LA(I,JA1)
GO TO 252

C REMOVES TWO VARIABLES
275 IF (KTEM) 917, 917, 918
917 K = K + 1

KK = KK + 1

918 KP = K + 1

DO 442 I = 1, N. 1

DO 442 JT = 1, K, 1

IF (LA(I,JT)) 443, 442, 443
443 LA(I,JT) = 1

442 CONTINUE
DO 291 I = 1, N, 1

M = LA(I,J) + LA(I,J2) + LA(I,J3)
IF (M - 2) 288, 289, 289

288 LA(I,KP) = O

GO TO 291
289 LA(I,KP) = 1

291 CONTINUE
MJ1 = INPUT(J)
MJ2 = INPUT(J2)
MJ3 = INPUT(J3)
INPUT(KP) = MJNO + 1

IF (L - 1) 292, 295, 295
292 DO 293 JT = J, K, 1

JA1 = JT + 1

40

INPUT(JT) = INPUT(JA1)
DO 293 I = 1, N, 1

293 LA(I,JT) = LA(I,JA1)
J2 = J2 - 1

K = K - 1

295 IF (LL - 1) 296, 300, 300
296 DO 297 JT = J2, K, 1

JA1 = JT + 1

INPUT(JT) = INPUT(JA1)
DO 297 I = 1, N, 1

297 LA(I,JT) = LA(I ,JA1)
IF (L - 1) 252, 625, 625

625 K = K - 1

300 J3 = J3 - 1

302 DO 306 JT = J3, KK, 1

JA1 = JT + 1

INPUT(JT) = INPUT(JA1)
DO 306 I = 1, N, 1

306 LA(I,JT) = LA(I,JA1)
GO TO 252

C REMOVES THREE VARIABLES
233 IF (KTEM) 919, 919, 920
919 K = K + 1

KK = KK + 1

KKK = KKK + 1

920 KP = K + 1

DO 444 I = 1, N, 1

DO 444 JT = 1, K, 1

IF (LA(I,JT)) 445, 444, 445
445 LA(I,JT) = 1

444 CONTINUE
DO 255 I = 1, N, 1

M = LA(I,J) + LA(I,J2) + LA(I,J3)
IF (M - 2) 237, 238, 238

237 LA(I,KP) = 0

GO TO 255
238 LA(I,KP) = 1

255 CONTINUE
MJ1 = INPUT(J)
MJ2 = INPUT(J2)
MJ3 = INPUT(J3)
INPUT(KP) = MJNO + 1

DO 256 JT = J, K, 1

JA1 = JT + 1

INPUT(JT) = INPUT(JA1)
DO 256 I = 1, N, 1

256 LA(I,JT) = LA(I,JA1)
J2 = J2 - 1

DO 257 JT = J2,KK, 1

JA1 = JT + 1

41

INPUT(JT) = INPUT(JA1)
DO 257 I = 1, N, 1

257 LA(I,JT) = LA(I, JA1)
J3 = J3 - 2

DO 258 JT = J3, KKK, 1

JA1 = JT + 1

INPUT(JT) = INPUT(JAI)
DO 258 I = 1, N, 1

258 LA(I,JT) = LA(I,JA1)
K = K - 2

252 MJNO = MJNO + 1

PUNCH 16, MJNO, MJ1, MJ2, MJ3
IF (K - 1) 400, 400, 411

400 IF (SENSE SWITCH 9) 15, 24
17 FORMAT (2I2)
19 FORMAT (9I2)

160 FORMAT (13HMAJORITY GATE, 13, 4H = (, I2, 1H
II2, 1H I2, 1H) /)

8820 FORMAT (33HMAJORITY LOGIC NOT REASONABLE FOR,
114H THIS FUNCTION)

28 FORMAT (5HINPUT, 13, 14H = UNITY INPUT /)
27 FORMAT (5HINPUT, 13, 13H = ZERO INPUT /)
15 END

