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COMPUTER -AIDED MAJORITY LOGIC DESIGN 

I. INTRODUCTION 

The present -day logic designer is no longer bound to the clas- 

sical "and -or" or "nand -nor" logic as the only possibilities for a 

logical design. New methods of function realization, such as major- 

ity and threshold logic, have given him some much needed liberty in 

selecting the proper type of logic for a particular design. 

It is important that the designer have at his disposal fast, 

efficient methods of logical design, utilizing several types of logic, 

so that he can produce several alternate designs in a reasonable 

amount of time. Then he would not be forced to use only one type 

of logic; instead, he could select the best logic for each function in 

a given machine. The result would be a design requiring less circuit 

elements with improved speed. 

One possibility for a fast method of logic design would be a 

digital computer program to perform the logical design. This thesis 

will concern itself with the development of such a program for three- - 

input majority logic design. The program would serve as a tool for 

the logical designer to improve his capabilities. 
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II. MAJORITY LOGIC 

A three -input majority gate realizes the Boolean function: 

M(A, B, C) = AB +BC +AC 

Table I shows the truth table for this function, where the output is 

simply the majority of the inputs. 

Table I. Truth table for the majority gate 

INPUTS OUTPUT 

A B C M(A, B, C) 

o 

1 

o 

o 

o 

o 

o 

o 

o 1 o o 

1 1 0 1 

o 0 1 0 

1 0 1 1 

o 1 1 1 

1 1 1 1 

The fact that the output must be the same as the majority of 

the inputs restricts the majority gate to an odd number of inputs. A 

number of practical circuits to realize majority functions have been 

presented in the literature (5, 6, 7, 11). The greater number of 
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these circuits use three -input majority logic, although some can 

easily be extended to use more inputs (5, 11). 

The primary reason for the use of the three -input majority 

gate is that, in some cases, it gives a significant simplification in 

the logic circuit required to realize a function. However, a simpli- 

fication is not guaranteed in every case. For instance, a logical 

function to compare binary numbers has the truth table shown in 

Table II, 

To realize this circuit using three -input majority gates, three 

gates with nine inputs and a l's and a 0's source are required. The 

logic diagram is represented in Figure 1, where "U" is the l's 

source and "U" is the 0's source. 

This same circuit can be realized using the classical "and - 

or" logic with three gates and six inputs. The logic diagram using 

"and -or" logic is illustrated in Figure 2. Since, in general, "and" 

or "or" gates are less complex than majority gates, it is more 

practical to use the "and -or" logic in this particular case. The use 

of majority logic provides no simplification and in fact requires a 

more complex logic circuit. 

However, in many cases majority logic does reduce the num- 

ber of gates and inputs required to realize a function. Consider the 

truth table for a full adder represented in Table III. The "and -or" 

logic realization of the full adder is illustrated by the block diagram 
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U 
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U 

Table II. Truth table to determine 
binary number correspondence 

INPUTS OUTPUT 

A B F 

1 o 1 

o 1 1 

o o o 

1 1 o 

M F 

Figure 1. Majority gate realization of the function of Table Il. 
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of Figure 3. This logic circuit requires four "and" gates, four "or" 

gates, and an inverter with a total of 16 inputs. 

Table III. Truth table for a full adder 

INPUTS OUTPUTS 

A B C Sum Carry 

o o o o o 

o o 1 1 o 

0 1 0 1 0 

0 1 1 0 1 

1 o o 1 o 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Figure 4 shows the circuit realization of the full adder using 

three -input majority gates. For this logic circuit, four three -input 

majority gates with a total of 12 inputs are needed. Therefore it is 

evident that, in the case of the full adder, the use of the three - input 

majority gate gives a significant simplification. 

The circuitry required for a majority gate is generally more 

complex than that required for "and -or" or "nand -nor" logic. How- 

ever, the growing use of thin film and integrated circuits makes 

these more complex circuits practical both in size and in cost. 

Since the majority gate is becoming practical, its application 
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in logic designs is being exploited. A good method of logical design 

utilizing majority gates is essential to the full development of this 

type of logic. This method should be relatively fast and applicable 

to logic functions of considerable size. 

A number of methods of logical design using majority gates 

appear in the literature (1, 2, 3, 4, 8, 9, 10). The gate most com- 

monly used in these methods is the three -input majority gate since 

it gives a good reduction in the logic circuit with ease of design. 

The complexity of these methods increases rapidly as the size of 

the function, or its corresponding truth table, being synthesized 

becomes large, and thus a practical and useful method of logic 

design using majority gates is not presently available for larger 

functions. 



8 

III, LOGICAL DESIGN PROGRAM 

The repetitive nature of unitizing methods, and specifically 

the method presented by Akers and Robbins (1, 2, 3, 4), suggests a 

digital computer program approach to three - input majority gate 

logical design. This type of program would entail manipulation of 

the truth table of a given function to obtain a good logical design. 

The program to be described is based on the method presented 

by Akers and Robbins (Appendix I). For clarity this method is 

divided into several parts and each part is treated separately. The 

over -all method is represented in Figure 5. The input to the pro- 

gram is the truth table for the function with any "don't care" terms 

omitted. The method utilizes these "don't care" terms by the fact 

that they are omitted. 

Dividing and Complementing the Truth Table 

The logic flow diagram to divide and complement the truth 

table is illustrated in Figure 6 on page 10. To facilitate later steps, 

the truth table is first divided into two subsets. All rows with a "1" 

output are placed in the first subset (the upper part of the truth 

table) and the rows with an output of "0" are placed in the second 

subset. 

Next each variable, or column, in the truth table is 
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complemented and these complements are added to the truth table. 

This process doubles the size of the truth table. It is not always 

necessary to complement all variables, but any columns that are 

not required will be subsequently removed. 

Adding l's and 0's and Unitizing the Table 

Once all the variables have been complemented, it is neces- 

sary to add a source of l's and a source of 0's to guarantee that the 

function can be synthesized using three -input majority gates. These 

added variables are frequently not required, but for simplicity they 

are added here and will be removed later if not needed. 

The next step is to unitize the truth table. This is simply a 

process of complementing any row that has a "0" for an output. 

The result is a unitized table which may be synthesized using three - 

input majority gates. The logic flow diagram to add a "1" and a 

"0" source and to unitize the truth table is shown in Figure 7. 

Reducing the Truth Table 

Once the unitized truth table is obtained, it can often be reduced 

by the removal of rows or columns. The logic flow diagram to 

remove rows and columns is illustrated in Figure 8 on page 13. 

To remove rows, it is necessary to examine all possible pairs 

of rows. If one row has l's in every column that another row has 
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l's, the first row is redundant and may be removed. The entire 

table is searched and all redundant rows are removed. Then all 

possible pairs of columns are examined. If one variable has l's in 

every position (row) that another variable has l's, the second varia- 

ble is redundant and can be removed from the truth table. Once 

again the entire table is searched and all redundant columns 

removed. 

At the end of the process of column removal, if any variable 

was removed, it is necessary to go back to the step which removes 

the rows, since the removal of a column can cause new redundancies 

in the rows. Once no variables are removed in a pass through the 

process, the program proceeds to find essential pairs. 

For any two rows in the truth table, there is at least one 

column that has l's in each of the two rows. If only one column has 

l's in the two rows, these l's constitute an essential pair. Since 

any variable, or column, which does not contain an essential pair 

may be removed, it is necessary to search the table and locate these 

pairs. In the program they are marked by placing a negative sign 

before the "1" to obtain a " -1 ". 

The program then searches the table to see if any variables 

contain no essential pairs and can thus be eliminated. Since, for 

most applications, the l's and the 0's sources are not already 

available, it is usually desirable to remove either of these columns 
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first if a choice is to be made. The l's and 0's sources are placed 

at the end of the table when they are added, so the program starts 

with the last column and searches toward the first in seeking varia- 

bles with no essential pairs. Only one variable may be removed on 

a pass since the removal of two variables could leave a pair of rows 

with no essential pairs. Figure 9 illustrates the logic flow diagram 

to locate essential pairs and remove a variable with rio essential 

pairs. 

If a variable can be removed, it is deleted from the table and 

the essential pair marking is removed. The program then returns 

to remove any unnecessary rows and the process is repeated. 

Once all variables contain at least one essential pair, the next step 

is to select the best majority gate to reduce the table. 

Selecting the Best Majority Gate 

Once the fullyreduced unitized table with essential pairs 

marked is obtained, the problem is to determine the majority gate 

which will give a maximum amount of reduction in the size of the 

truth table. The program searches the table to find a three - input 

majority gate that will eliminate as many variables as possible. 

The majority gate will eliminate a variable that does not have a 

" 1" (part of an essential pair) in any row where the majority gate 

output is a "0 
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The program searches for a majority gate to eliminate three 

variables. If a majority gate to eliminate three variables does not 

exist, a gate to eliminate two, and then one, variable is sought. In 

each case the variables are removed, the majority gate is added to 

the table, and the program deletes essential pair markings and 

returns to remove unnecessary rows and further reduce the table. 

After the variables are removed and the majority gate is added, 

if the table has only one column (the last majority gate added) the 

function has been realized and the process is complete. The output 

from the program is the majority gate found each pass of the pro- 

gram. 

If a majority gate to eliminate even one variable does not exist, 

it is necessary to form a gate that does not eliminate any variables. 

This is done until a gate that will eliminate some variables exists. 

However, this normally results in a rather impractical design using 

three -input majority gates. For this reason, the process is termi- 

nated if a majority gate cannot be found to eliminate at least one 

variable. If the operator still desires a three -input majority gate 

realization of this function, he can add some gates to the truth table 

manually. It is necessary to add gates that have more Is than some 

of the variables. After some gates are added manually, the truth 

table is again read into the computer and the function is realized. 

However, as stated above, this type of circuit normally requires a 
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large number of circuit elements. 

The logic flow diagram to select the proper majority gat ç is 

shown in Figure 10. It is not necessary to remove the variables 

that can be removed by the majority gate, since these would be 

eliminated in reducing the table. However, they are removed here 

to increase the speed with which the program will run. A shorter 

modification of the program would not do this and, although some 

memory space would be conserved, time would be sacrificed. 

Stage Reduction 

For a good logical design, a relatively fast operating time is 

important. A gate has a certain propagation time, and this time 

multiplied by the number of stages gives a rough approximation of 

the delay through the logic circuit. A cower number of stages would 

give a lower propagation time and thus a better logical design. 

If there were two possible majority gates which eliminated the 

same number of variables, it would be advantageous to use one that 

would possibly give a reduction in the number of stages. Thus to 

try to avoid using a majority gate that included, as an input, the 

majority gate that was added on the previous pass, would eliminate 

unnecessary building up cf the stages. 

In order to utilize this idea in the program, the table is first 

searched for a majority gate with the last column suppressed. Since 
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the majority gates are added onto the end of the table, this would 

avoid the use of the majority gate added on the last pass. If a gate 

is not found, the table is again searched including the last column. 

In this way, maximum reduction is still obtained, and where pos- 

sible, some reduction in the number of stages may be obtained. 

To see how this can help, consider the function whose truth 

table is shown in Table IV. This function was synthesized using 

three -input majority gates. First the problem was run without the 

stage reducing modification in the program, and the result was the 

three -stage logic circuit illustrated in Figure 11. Then the function 

was synthesized with the stage reducing modification in the program. 

The result was the two stage logic circuit shown in Figure 12. In 

this case, either circuit is correct and will realize the desired 

function, but the stage reduction gives an increase in speed of 

approximately one -third. 
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Table IV. Truth table 

INPUT OUTPUT 

A B C D E F 

o 

0 

1 

1 

o 

1 

o 

1 

o 

1 

o 

1 

1 1 1 0 0 1 

1 1 0 1 0 1 

1 1 1 1 0 0 

Figure 11. Logic circuit without stage reduction. 

F 

Figure 12. Logic circuit with stage reduction. 

21 
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IV. COMMENT ON THE PROGRAM 

The logical design program was written for an IBM 1620 

computer with 40K decimal digits of core storage. The source deck 

language used was FORTRAN -II. This language was used to facii.-i. 

tate the understanding and modification of the program if desired. 

The SPS language was considered to conserve memory space, but 

the advantages of the FORTRAN -II language seemed to outweight 

the advantages of SPS. 

Using the PDQ FORTRAN Processor C2, the program requires 

approximately 38, 920 decimal digits of storage in its present form, 

A truth table with 6 variables and 40 rows is the maximum allowable 

with the 40K storage. The program requires 2k + 3 columns for 

a truth table with k input variables, since it complements all 

variables, uses a "1" and a "0" input, and requires a storage 

column. It also requires n + 1 rows for a truth table with n 

rows since a storage row is used. 

A larger memory would permit the synthesis of functions with 

much larger truth tables. The only change required in the program 

would be a modification of the DIMENSION statement to reserve 

space for the larger truth table, and an extension of the input READ 

statement. The only limiting factor on the size of truth table that 

can be synthesized is the running time of the program. Because 
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combinations are searched in the program, the running time is not 

a linear function of the size of the truth table. Running time is also 

dependent on the particular function being synthesized, so an accurate 

estimate of the running time can not be made. However, on the 

IBM 1620 problems were run in a relatively short time. 
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APPENDIX I. MAJORITY LOGIC DESIGN 

The following is the method for logical design using three - 

input majority gates used in the program for this thesis (1, 2, 3, 

4). 

The starting point of the process is a logically passive func- 

tion, or a function that can be synthesized without inverters. A 

function F(X1, X2, ...Xn) is said to be logically passive with 

respect to (X1, X2, ...Xn) if and only if for any two input combina- 

tions, a. and a., if a. < a. then F(a.) < F(a.). For binary 
1 

J 
1_ 

numbers, a. < a, if and only if a. has units everywhere a. 1- J J 1 

does. 

This definition lead to the following theorem: 

Theorem I. 

A function F(X1, X2, ... Xn) is logically passive with 

respect to (X1, X2, ... Xn) if and only if F can be 

synthesized using only "and -or" gates. 

A corollary follows: 

1_ 
J 
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Corollary I. 

A function F(X1, X2, ... Xn, 0, 1) is logically passive with 

respect to (X1, X2, ... Xn, 0, 1) if and only if F can be 

synthesized using three -input majority gates. 

Since M(A, B, C) = A B + A C + B C, 

then M(A,B,1) vAB +A1 +B1 = A + B 

and M(A, B, 0) =AB+A0 +B0 =AB 

Thus majority gates with the constants "0" and "1" reduce to "and - 

or" gates. 

A logically passive function is obtained by complementing 

columns in the truth table so that the definition for a logically passive 

function is satisfied. Then the table can often be simplified by 

Theorem II. 

Theorem II 

Given the truth table for a logically passive function F, 

and any two rows a. and a., where a. < a., if 
i J 1- j 

F(ai) = F(a.) = 1, the a. row may be removed and if 

F(a.) = F(a.) = 0, the a. row may be removed. 
i J i 

The proof of this theorem follows from the definition of a logically 

passive function. To determine if the constants 0 or 1 or both are 

J 
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required, we prove the following lemma: 

Lemma I 

If F is synthesized with only majority gates, then for any 

input ai, F(ai) = F(a). 

This is easily seen for a single majority gate and the general proof 

follows directly by induction on the number of gates. Functions 

having this property are called self -duals. Thus any function 

F(X1, X2, ... , Xn) which has to be synthesized using only majority 

gates must be a self -dual function. 

Theorem III 

A logically passive function F(X1X2, ... , Xn) can be syn- 

thesized using only majority gates if and only if for any two 

inputs a. and a. with F(a.) = a , and F(a.) = a there 
1 J 1 1 J J 

exists an Xk which has the valve a in ai and a . in 

a.. Such a function will be called a logically passive self -dual 

(L. P. S.D.). 

Since F is a logically passive function we consider only the cases 

where F(ai) = F(a.) = 0 and F(ai) = F(a.) = 1. Assuming the con- 

ditions not met and applying Lemma I we see that F is not a logically 

passive function. This shows that Theorem III is necessary. 

J 



28 

Before showing that Theorem III is sufficient, we note that the 

table can be made an L. P. S. D. , if it is not already, by addition of 

the constant "0" or "1 ", or both. The truth table of an L. P.S. D. 

can then be simplified by the following theorem. 

Theorem IV. 

The table of an L. P. S. D. is unchanged if each a. far which 

F(ai) = 0 is replaced by a. and the "0" in the F column 

replaced by a "1 ". 

The proof of this theorem follows from the fact that it is a self -dual. 

This transformation produces a unitized table and Theorem III 

states that every pair of rows must have a unit in common. Applying 

Theorem II, further reduction can often be obtained. 

Theorem V 

Given the unitized table for an L.P.S. D. , F(X1, X2' .. ri 
X ), 

if X. < X., then X. may be eliminated. i- J i 

This follows from the fact that the only requirement on the unitized 

table was that each pair of rows have l's in common in at least one 

column. 

Given a fully reduced unitized table for a function, we construct 

a three -input majority gate whose output is equal to the majority of 



the inputs. The column of values for this gate is added to the table 

as an additional variable, and the table is again reduced and the 

process repeated. The problem is to pick the best majority gate 

at each step. As a corollary to Theorem V, we find: 

Corollary II 

If in a unitized table there exists three variables X., 
1 

such that no row has Xi = 1, X. = 0, Xk = 0 then adding 
J 

the majority gate M(X., X., Xk) to the table will allow 
J 

to be eliminated. 

Theorem VI 

A necessary condition for gate M(X., X., Xk) 
J 

to appear in 

the realization of a L.P. S. D. , is that for each of the three 

variables, there exists a row in the unitized table where 

is "0" and the other two are "1 ". 

If this was not the case, M(X., X., X ) < X. and the gate could 
1 J k - 

eliminated. 

A necessary property of the unitized table is that every pair 

rows have a unit in common. A method of synthesis can be based 

on those particular row pairs that have only one pair of l's in 

common. Such a pair of l's will be called an essential pair. 
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Once all essential pairs are located, if there were a variable 

in the table with no essential pair in its column, that column could 

be deleted from the table, since no pair of rows would depend on 

that variable for l's. 

Now for a variable to be eliminated by a majority gate it is 

only required that the gate have l's in the rows where essential 

pairs are located in the variable. This follows from Theorem 'J 

or the preceeding paragraph. 

A geometric method for synthesis is described, but this port on 

was not used in the program described in the thesis. 
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APPENDIX II. THE PROGRAM 

C LOGIC DESIGN USING THREE -INPUT MAJORITY GATES 
C FIRST INPUT CARD FORMAT 212, NUMBER OF COLUMNS 
C AND NUMBER OF ROWS 
C INPUT FORMAT IS 12, ONE ROW PER CARD 
C OUTPUT (F) IN COLUMN 2, INPUTS IN COLUMNS 4, 

C 6, 8, ETC. 
C FOR INPUTS A, B, C ETC., A = 1, NOTA = 2, 

C B = 3, NOTB = 4, ETC. 
C DIVIDING THE TABLE INTO SUBSETS 

DIMENSION LA(41,15), LO(41), INPUT(15) 
24 READ 17, K, N 

K = K * 2 

KK = K - 1 

DO 18 I = 1, N, 1 

OREAD 19, LO(I), LA(I,1), LA(I,3), LA(I,5), 
ILA(I,7), LA(I,9), LA(I,ii), LA(I,13), LA(I,15) 
ILA(I,9), LA(I,11), LA(I,13), LA(I,15) 

18 CONTINUE 
I = 1 

NT = N + 1 

5 IF (LO(I) - 1) 1, 2, 2 

2 IF (I - N) 3, 4, 4 

3 I = I + 1 

GO TO 5 

1 DO 6 J = 1, KK, 2 

6 LA(NT,J) = LA(I,J) 
LO(NT) = LO(I) 
12 = I + 1 

10 IF (LO(12) - 1) 7, 8, 2 

7 IF (12 - N) 9, 4, 4 

9 12 = 12 + 1 

GO TO 10 
8 DO 11 J = 1, KK, 2 

LA(I,J) = LA(12,J) 
11 LA(12,J) = LA(NT,J) 

LO(I) = LO(12) 
LO(12) = LO(NT) 
IF (12 - N) 12, 4, 4 

12 I = I + 1 

GO TO 5 

C COMPLEMENTING ALL VARIABLES 
4 DO 20 J = 1, KK, 2 

DO 20 I = 1, N, 1 
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J2 = J + 1 

IF (LA(I,J)) 22, 22, 21 

22 LA(I,J2) = 1 

GO TO 20 
21 LA(I,J2) = 0 

20 CONTINUE 
DO 23 J = 1, K, 1 

23 INPUT(J) = J 

C ADDING A COLUMN OF ONES AND A COLUMN OF ZEROS 
KK = K + 1 

DO 100 I = 1, N, 1 

100 LA(I,KK) = 1 

INPUT(KK) = KK 
PRINT 28, KK 
K = KK 
KK = K + 1 

DO 110 I = 1, N, 1 

110 LA(I,KK) = 0 

INPUT(KK) = KK 
PRINT 27, KK 
K = KK 

C UNITIZING THE TRUTH TABLE 
104 I = 1 

130 IF (LO(I) - 1) 132, 133, 132 
133 IF(I - N) 134, 131, 131 

134 I = I + 1 

GO TO 130 
132 DO 135 J = 1, K, 1 

IF (LA(I,J) - 1) 136, 137, 137 
136 LA(I,J) = 1 

GO TO 135 
137 LA(I,J) = 0 

135 CONTINUE 
LO(I) = 1 

GO TO 133 
C REMOVING ROWS FROM THE TRUTH TABLE 

131 MJNO = 50 
NCT = 0 

116 II = 1 

12 = II + 1 

41 L = 0 

LL = 0 

NN = N - 1 

IF (II - N) 57, 58, 58 
57 J = 1 

56 M = LA(II,J) + LA(12,J) 
IF (M - 1) 46, 49, 46 

46 IF (J - K) 47, 42, 42 
47 J = J + 1 

GO TO 56 
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42 LT = L + LL 
IF (LT - 0) 61, 61, 53 

49 IF (LA(II,J)) 51, 51, 52 

51 L = LA(I2,J) 
GO TO 53 

52 LL = LA(II,J) 
53 IF (L - LL) 60, 55, 64 

55 IF (12 - N) 54, 40, 54 

40 II = II + 1 

12 = II + 1 

GO TO 41 

54 I2 = 12 + 1 

GO TO 41 

60 IF(J - K) 47, 61, 61 

61 DO 67 IT = II, NN, 1 

IAI = IT + 1 

DO 67 J = 1, K, 1 

67 LA(IT,J) = LA(IAI,J) 
N = N- 1 

I2 = II + 1 

GO TO 41 

64 IF (J - K) 47, 65, 65 

65 IF (12 - N) 700, 875, 875 
875 N = N - 1 

GO TO 40 
700 DO 68 IT = 12, NN, 1 

IAI = IT + 1 

DO 68 J = 1, K, 1 

68 LA(IT,J) = LA(IA1,J) 
701 N = N - 1 

GO TO 41 

C REMOVING COLUMNS FROM THE TRUTH TABLE 
58 J = 1 

J2 = J + 1 

LLL = 0 

165 L = 0 

LL = 0 

KK = K - 1 

IF (J - K) 150, 151, 151 

150 I = 1 

155 M = LA(I,J) + LA(I,J2) 
IF (M - 1) 152, 153, 152 

152 IF (I - N) 154, 156, 156 
154 I = I + 1 

GO TO 155 
156 LT = L + LL 

IF (LT - 0) 157, 157, 158 

153 IF (LA(I,J)) 159, 159, 160 

159 L = 1 

GO TO 158 
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160 LL = 1 

158 IF (L - LL) 161, 162, 166 
162 IF (J2 - K) 163, 164, 163 

164 J = J + 1 

J2 = J + 1 

GO TO 165 
163 J2 = J2 + 1 

GO TO 165 
161 IF (I - N) 154, 157, 157 
157 IF (J2 - K) 702, 703, 703 

702 DO 171 JT = J2, KK, 1 

JA1 = JT + 1 

171 INPUT(JT) = INPUT(JA1) 
DO 167 JT = J2, KK, 1 

JAI = JT + 1 

DO 167 I = 1, N, 1 

167 LA(I,JT) = LA(I,JA1) 
K = K - 1 

LLL = i 

GO TO 165 
703 K = K - 1 

LLL = 1 

GO TO 164 
166 IF (I - N) 154, 168, 168 
168 DO 172 JT = J, KK, 1 

JA1 = JT + 1 

172 INPUT(JT) = INPUT(JA1) 
DO 169 JT = J, KK, 1 

JA1 = JT + 1 

DO 169 I - 1, N, 1 

169 LA(I,JT) = LA(I,JA1) 
K = K - 1 

J2 = J + 1 

LLL = 1 

GO TO 165 
151 IF (LLL - 1) 477, 116, 116 

C MARKING ESSENTIAL PAIRS 
477 I = 1 

181 I2 = I + 1 

IF (I - N) 170, 390, 390 
170 J = 1 

L = 0 

175 IF (LA(I,J)) 410, 391, 410 
410 IF (LA(I2,J)) 173, 391, 173 
173 L = L + 1 

391 IF (J - K) 174, 180, 180 
174 J = J + 1 

GO TO 175 
180 IF(L - 1) 176, 176, 177 
177 IF (I2 - N) 178, 179, 179 
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178 12 = I2 + 1 

GO TO 170 
179 I = I + 1 

GO TO 181 
176 J = 1 

184 IF (LA(I,J)) 490, 491, 490 
490 MJ1 = 1 

GO TO 492 
491 MJ1 = 0 

492 IF (LA(I2,J)) 493, 494, 493 
493 MJ2 = 1 

GO TO 495 
494 MJ2 = 0 

495 M = MJ1 + MJ2 
IF (M - 2) 182, 183, 182 

182 J = J + 1 

GO TO 184 
183 LA(I,J) = -1 

LA(I2,J) = -1 

GO TO 177 
C REMOVING A VARIABLE WITH NO ESSENTIAL PAIRS 

390 KK = K - 1 

J = K 

192 I = 1 

194 IF (LA(I,J)) 190, 191, 191 

190 IF (J - 1) 198, 198, 197 
197 J = J - 1 

GO TO 192 
191 IF (I - N) 193, 195, 195 
193 I = I + 1 

GO TO 194 
195 IF (J - K) 499, 200, 200 
499 DO 189 JT = J, KK, 1 

JA1 = JT + 1 

189 INPUT(JT) = INPUT(JA1) 
DO 196 JT = J, KK, 1 

JA1 = JT + 1 

DO 196 I = 1, N, 1 

196 LA(I,JT) = LA(I,JA1) 
200 K = K - 1 

411 DO 185 I = 1, N, 1 

DO 185 J = 1, K, 1 

IF (LA.(I,J)) 115, 185, 185 
115 LA(I,J) = 1 

185 CONTINUE 
GO TO 116 

C SELECTING THE BEST MAJORITY GATE 
C TO REMOVE THREE VARIABLES 

198 IF (K - 3) 881, 902, 903 
903 K = K - 1 
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KTEM = 0 

GO TO 904 
902 KTEM = 1 

904 KK = K - 1 

KKK = K - 2 

J = 1 

210 J2 = J + 1 

211 J3 = J2 + 1 

212 I = 1 

213 IF (LA(I,J)) 419, 420, 419 
419 MJ1 = 1 

GO TO 421 
420 MJ1 = 0 

421 IF (LA(I,J2)) 422, 423, 422 
422 MJ2 = 1 

GO TO 424 
423 MJ2 = 0 

424 IF (LA(I,J3)) 425, 426, 425 
425 MJ3 = 1 

GO TO 427 
426 MJ3 = 0 

427 M = MJ1 + MJ2 + MJ3 
IF (M - 1) 214, 217, 214 

214 IF (I - N) 215, 233, 233 
215 I = I + 1 

GO TO 213 
217 IF (LA(I,J)) 418, 416, 416 
416 IF (LA(I,J2)) 418, 417, 417 
417 IF (LA(I,J3)) 418, 214, 214 
418 IF (J3 - K) 218, 219, 219 
218 J3 = J3 + 1 

GO TO 212 
219 IF (J2 - KK) 220, 221, 221 
220 J2 = J2 + 1 

GO TO 211 
221 IF (J - KKK) 222, 223, 223 
222 J = J + 1 

GO TO 210 
223 IF (KTEM) 900, 900, 901 

900 K = K + 1 

GO TO 902 
C TO REMOVE TWO VARIABLES 

901 IF (K - 3) 881, 905, 906 
906 K = K - 1 

KTEM = 0 

GO TO 907 
905 KTEM = 1 

907 J = 1 

KK = K - 1 

KKK = K - 2 
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I2 = 2 
260 J2 = J + 1 

261 J3 = J2 + 1 

262 I = 1 

L = 

LL = O 

LLL = 0 

263 IF (LA(I,J)) 428, 429, 428 
428 MJ1 = 1 

GO TO 430 
429 MJ1 = O 

430 IF (LA(I,J2)) 431, 432, 431 
431 MJ2 = 1 

GO TO 433 
432 MJ2 = 0 

433 IF (LA(I,J3)) 434, 435, 434 
434 MJ3 = 1 

GO TO 436 
435 MJ3 = 0 

436 M = MJ1 + MJ2 + MJ3 
IF (M - 1) 264, 266, 264 

264 IF ( I - N) 265, 271, 271 
265 I = I + 1 

GO TO 263 
266 IF (LA(I,J)) 450, 451, 451 
451 IF (LA(I,J2)) 450, 452, 452 
452 IF (LA(I,J3)) 450, 264, 264 
450 IF (MJ1) 268, 268, 267 
267 L = 1 

GO TO 271 
268 IF (MJ2) 270, 270, 269 
269 LL = 1 

GO TO 271 
270 LLL = 1 

271 IF (I2 - 1) 331, 331, 800 
800 IF (L - LL) 276, 272, 279 
276 IF (LL - LLL) 281, 281, 277 
277 IF (I - N) 278, 275, 275 
278 I = I + 1 

GO TO 263 
272 IF (L - 0) 277, 277, 281 
279 IF (L - LLL) 281, 281, 277 
281 IF (J3 - K) 282, 283, 283 
282 J3 = J3 + 1 

GO TO 262 
283 IF (J2 - KK) 284, 285, 285 
284 J2 = J2 + 1 

GO TO 261 
285 IF (J - KKK) 286, 287, 287 
286 J = J + 1 

0 
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GO TO 260 
287 IF (KTEM) 908, 908, 909 
908 K = K + 1 

GO TO 905 
C TO REMOVE ONE VARIABLE 

909 IF (K - 3) 881, 910, 911 
911 K = K - 1 

KTEM = 0 

GO TO 912 
910 KTEM = 1 

912 I2 = 1 

KK = K - 1 

KKK = K - 2 

331 IF (I - N) 332, 333, 333 
332 I = I + 1 

GO TO 263 
333 IF (L - LL) 334, 335, 334 
335 IF (LLL - 0) 334, 334, 336 
336 IF (J3 - K) 337, 338, 338 
337 J3 = J3 + 1 

GO TO 262 
338 IF (J2 - KK) 339, 340, 340 
339 J2 = J2 + 1 

GO TO 261 

340 IF (J - KKK) 341, 913, 913 
341 J = J + 1 

GO TO 260 
913 IF (KTEM) 914, 914, 881 
914 K = K + 1 

GO TO 910 
C REMOVES ONE VARIABLE 

334 IF (KTEM) 915, 915, 916 
915 K = K + 1 

KK = KK + 1 

KKK = KKK + 1 

916 KP = K + 1 

NCT = NCT + 1 

IF (NCT - 5) 880, 881, 881 

881 PRINT 882 
GO TO 400 

880 DO 440 I = 1, N, 1 

DO 440 JT = 1, K, 1 

IF (LA(I,JT)) 441, 440, 441 
441 LA(I,JT) = 1 

440 CONTINUE 
DO 345 I = 1, N, 1 

M = LA(I,J) + LA(I,J2) + LA(I,J3) 
IF (M - 2) 343, 344, 344 

343 LA(I,KP) 0 

GO TO 345 
= 
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344 LA(I,KP) = 1 

345 CONTINUE 
MJ1 = INPUT(J) 
MJ2 = INPUT(J2) 
MJ3 = INPUT (J3) 
INPUT(KP) = MJNO + 1 

IF (L - 1) 346, 347, 347 
346 DO 350 JT = J, K, 1 

JA1 = JT + 1 

INPUT(JT) = INPUT(JA1) 
DO 350 I = 1, N, 1 

350 LA(I,JT) = LA(I,JA1) 
GO TO 252 

347 IF (LL - 1) 348, 349, 349 
348 DO 352 JT = J2, KK, 1 

JA1 = JT + 1 

INPUT(JT) = INPUT(JA1) 
DO 352 I = 1, N, 1 

352 LA(I,JT) = LA(I,JA1) 
GO TO 252 

349 DO 354 JT = J3, KKK, 1 

JA1 = JT + 1 

INPUT(JT) = INPUT(JA1) 
DO 354 I = 1, N, 1 

354 LA (I,JT) = LA(I,JA1) 
GO TO 252 

C REMOVES TWO VARIABLES 
275 IF (KTEM) 917, 917, 918 
917 K = K + 1 

KK = KK + 1 

918 KP = K + 1 

DO 442 I = 1, N. 1 

DO 442 JT = 1, K, 1 

IF (LA(I,JT)) 443, 442, 443 
443 LA(I,JT) = 1 

442 CONTINUE 
DO 291 I = 1, N, 1 

M = LA(I,J) + LA(I,J2) + LA(I,J3) 
IF (M - 2) 288, 289, 289 

288 LA(I,KP) = O 

GO TO 291 
289 LA(I,KP) = 1 

291 CONTINUE 
MJ1 = INPUT(J) 
MJ2 = INPUT(J2) 
MJ3 = INPUT(J3) 
INPUT(KP) = MJNO + 1 

IF (L - 1) 292, 295, 295 
292 DO 293 JT = J, K, 1 

JA1 = JT + 1 



40 

INPUT(JT) = INPUT(JA1) 
DO 293 I = 1, N, 1 

293 LA(I,JT) = LA(I,JA1) 
J2 = J2 - 1 

K = K - 1 

295 IF (LL - 1) 296, 300, 300 
296 DO 297 JT = J2, K, 1 

JA1 = JT + 1 

INPUT(JT) = INPUT(JA1) 
DO 297 I = 1, N, 1 

297 LA(I,JT) = LA( I ,JA1 ) 
IF (L - 1) 252, 625, 625 

625 K = K - 1 

300 J3 = J3 - 1 

302 DO 306 JT = J3, KK, 1 

JA1 = JT + 1 

INPUT(JT) = INPUT(JA1) 
DO 306 I = 1, N, 1 

306 LA(I,JT) = LA(I,JA1) 
GO TO 252 

C REMOVES THREE VARIABLES 
233 IF (KTEM) 919, 919, 920 
919 K = K + 1 

KK = KK + 1 

KKK = KKK + 1 

920 KP = K + 1 

DO 444 I = 1, N, 1 

DO 444 JT = 1, K, 1 

IF (LA(I,JT)) 445, 444, 445 
445 LA(I,JT) = 1 

444 CONTINUE 
DO 255 I = 1, N, 1 

M = LA(I,J) + LA(I,J2) + LA(I,J3) 
IF (M - 2) 237, 238, 238 

237 LA(I,KP) = 0 

GO TO 255 
238 LA(I,KP) = 1 

255 CONTINUE 
MJ1 = INPUT(J) 
MJ2 = INPUT(J2) 
MJ3 = INPUT(J3) 
INPUT(KP) = MJNO + 1 

DO 256 JT = J, K, 1 

JA1 = JT + 1 

INPUT(JT) = INPUT(JA1) 
DO 256 I = 1, N, 1 

256 LA(I,JT) = LA(I,JA1) 
J2 = J2 - 1 

DO 257 JT = J2,KK, 1 

JA1 = JT + 1 
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INPUT(JT) = INPUT(JA1) 
DO 257 I = 1, N, 1 

257 LA(I,JT) = LA(I, JA1) 
J3 = J3 - 2 

DO 258 JT = J3, KKK, 1 

JA1 = JT + 1 

INPUT(JT) = INPUT(JAI) 
DO 258 I = 1, N, 1 

258 LA(I,JT) = LA(I,JA1) 
K = K - 2 

252 MJNO = MJNO + 1 

PUNCH 16, MJNO, MJ1, MJ2, MJ3 
IF (K - 1) 400, 400, 411 

400 IF (SENSE SWITCH 9) 15, 24 
17 FORMAT (2I2) 
19 FORMAT (9I2) 

160 FORMAT (13HMAJORITY GATE, 13, 4H = (, I2, 1H 
II2, 1H I2, 1H) /) 

8820 FORMAT (33HMAJORITY LOGIC NOT REASONABLE FOR, 
114H THIS FUNCTION) 

28 FORMAT (5HINPUT, 13, 14H = UNITY INPUT /) 
27 FORMAT (5HINPUT, 13, 13H = ZERO INPUT /) 
15 END 


