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PREFACE

In his 1976 paper "Sur La methode de continuite

de Poincare" A. Granas provided a new approach to the

continuity method for establishing fixed points of

certain mappings. This new theory, now called

Topological Transversality, was utilized in the papers

of Granas, Guenther and Lee [15], [16], [17] and [18]

to study existence questions for nonlinear boundary

value problems. In this thesis we extend further these

ideas and show how powerful and natural Topological

Transversallty is for solving a variety of problems.

We begin in Chapter II by using Topological

Transversality to examine the dependence of the interval

of existence for an initial value problem upon its

initial data and the nonlinearity in the differential

equations. Stronger and more applicable existence

theorems than the local existence theorems that are

available in the literature are proven. These results

enable us to read off directly from the differential

equation an interval of existence of a solution and in

many cases it will be maximal as our theory shows.

In Chapter III the nonlinear differential equation

y" = f(x,y,y'), 0 x < x with appropriate boundary

conditions is studied. Our treatment involves extending

results of Granas, Guenther and Lee [15], [16] and

[18] on finite interval boundary value problems with f

satisfying Bernstein type growth conditions. We also

examine an important application which occurs in the

theory of semiconductor devices.

The initial suggestion for examining ordinary

differential equations in the complex domain was

Professor John Lee's and we pursue this in Chapter IV.

Although initial value problems in the complex domain

have been studied widely, very little is known on

intervals of existence of a solution. The results of

this chapter enable us to read off immediately from the



differential equation an interval of existence of a

solution, although this interval may not be maximal.

Furthermore, we introduce boundary value problems in the

complex domain and obtain existence theorems for such

problems.

While working on this thesis I had many invaluable

discussions with Professor Ronald Guenther and it was he

who suggested looking for "weak solutions" via

Topological Transversality to boundary value problems of

the form y" = f(t,y,y'), t E [0,1], with

satisfying suitable boundary conditions, where
f:[0,1] X R2 R is discontinuous. In Chapter V we

examine such problems with f satisfying Caratheodory

Conditions and obtain solutions to the above problem in

Sobolev spaces. Our analysis is based on a priori

bounds and known results on Nemysky operators and

Sobolev spaces. Furthermore, we also obtain weak

solutions to initial value problems.

In Chapter VI third order boundary value problems

are studied. The chapter is divided into two parts, the

first of which extends the Bernstein theory and results

of Granas, Guenther and Lee [15], [16] on second order

boundary value problems. Many of the results we obtain

are rather specialized. In part two, by examining

different types of monotonicity and growth conditions,

we obtain existence theorems for a wide class of new

problems.

Over the last ten years ordinary differential

equations in abstract spaces have become very popular
and in Chapter VII we suggest a new method, via

Topological Transversality, for examining nonlinear

differential equations in Hilbert spaces. Furthermore,

we show how the analysis in this chapter can be used to

obtain existence of solutions to certain

integro-differential equations. The suggestion for

examining such problems was again provided by Professor

John Lee.



Initial And Boundary Value Problems Via

Topological Methods

I. Preliminaries

1.1 Notation

In this chapter we formulate the basic ideas which

will be used throughout this thesis. The following

standard notation is used: R = (-00,00) will denote the

R'real line and R the n-dimensional Euclidean space.

CK = C(S), K ?, 0By K an integer, and C° = C(S) we

denote the functions which are K times continuously

differentiable on S. If x = x(t) is a real valued

function defined on S, we set

lxi = suplx(t),
tES

and for functions x(t) E CK, we set

xl = max<Ix10,Ix'10 , lx 10).

Finally let CK(S) denote the Banach Space of functions

for which IxI < oo. See [4], [30] for details.

Also if u = (u ,vn) are
1 '

,un), v = (v

vectors in Rn, we set

<u,v> = E u, v. and Jul = (<u,u>)2
11=1



problem

2

Further, if u:S Rn, where S C R, is a vector

valued function of t, we set

Huli0 = max sup lu.(t)I, j = I, ,n
j tES 3

and if u is in CK

HuHK = max 11u(1)110, = 0,1,....,K.

If B is a set of boundary or initial conditions then
CK denotes the subset of functions in which

satisfy these boundary or initial conditions.

1.2 Theorems from Ordinary Differential Equations

We begin by collecting together a few standard

facts about ordinary differential equations which will

be used in various parts of the thesis.

Suppose that f:[0,1] X Rn R is a continuous
nthfunction. Consider the n order initial value

problem

y(n)(t)=f(t,y(t),y1(t),....,y(n-1) (t)),tE[0,1]
1.1) (n-1) n-1

y(t0)=y0,y'(t0)=y0,..--,Y (t0)=y ;t 0E [0,1]

By a solution to (1.1) we mean a real valued function

y which is n times continuously differentiable on

[0,1] which satisfies the differential equation and

initial conditions.

Theorem 1.1. Let a0(t), , an(t) # 0 be defined

and continuous on [0,1]. Then the initial value



LyEan(t)y(n)(t)+an_1(t)y(n-1)(t)+....+ao(t)y(t)=0

1
n-1y(t0)=5.0,....,y(n-1)(t0)my 0 ;t0E[0,1]

has a unique solution y E C'[0,1).

As a consequence of Theorem 1.1 it is possible to

construct n linearly independent solutions to Ly = 0

and thus we obtain the following result.

Theorem 1.2. Let yi(t) , , y(t) be n linearly

independent solutions to Ly = 0. Then every solution

y(t) of Ly = 0 is of the form

1.2) y(t) = CI y1(t) +....+ Cn y(t)
for some choice of constants C C. For this
reason we say that (1.2) is the general solution to
Ly = 0.

1.3 Topological Transversality and A Priori Bounds

We begin with a description of the topological

ideas and results which we shall use. For complete

proofs and further details see Dugundji and Granas

[11].

Let E be a normed linear space and K C E a

convex set. Also let U C K be open in K and 5 and

au denote respectively the closure and boundary of U

in K.

Definition 1.1 Suppose X is a metric space and

F:X K is a continuous map.

F is compact if F(X) is contained in a

compact subset of K.

F is completely continuous if it maps bounded

subsets in X into compact subsets of K.

3
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We formulate the Schauder fixed point theorem

without proof. See [11] for details.

Theorem 1.3. Suppose E is a normed linear space,

K C E a convex set and F:K .4 K a compact map. Then

F has a fixed point in K i.e. there exists xo E K

such that F(x) = X
o o

Next we formulate a fixed point theory similar to

the continuity method of Leray and Schauder which uses

topological degree. Instead we use the notion of an

essential map.

Definition 1.2 Let K be a convex subset of a normed

linear space E and U C K be open in K.

( i ) A compact map F:U -4 K is called

admissible if it is fixed point free on

U. The set of all such maps will be

denoted by Kau(U,K).

-
A map F E Kau(U,K) is essential if

every compact map which agrees with
on aU has a fixed point in U.

Otherwise F is inessential.

A homotopy (Ht:X K), 0 t 1, is

said to be compact provided the map

H:X X [0,1] K given by H(x,t) = Ht(x)

for (x,t) E X X [0,1] is compact.

Two maps F,G E Kau(U,K) are homotopic

if there is a compact homotopy Ht:171 K

for which F = Ho, G = HI and Ht is

admissible for each t in [0,1].

Remark. Every essential map has a fixed point in U.



5

The following theorem yields some simple examples
of essential maps.

Theorem 1.4. Let p E U and F E K u (E,r K) be thea
constant map F(x) = p for x E U. Then F is

essential.

Proof Let G1-7 K be a compact map with G F on

au. Define

Now H:K -4. K is compact and so by Theorem 1.3 there
exists xo E K such that H(x) =

xo. However, by
definition of H and the fact that F = G on au
implies xo E U and xo = H(x0) = G(xo). Thus G has

a fixed point and F is essential.

Theorem 1.4 is a key element in the implementation

of the Topological Transversality Theorem in obtaining
existence theorems for initial and boundary value

problems. We now state the Topological Transversality

Theorem due to A. Granas without proof. Details of the
proof can be obtained in Granas [14), Dugundji and
Granas [11) and Granas, Guenther and Lee [17).

Theorem 1.5. Suppose

F and G are compact maps on U. K.
G is essential in Kau(U,K).

H(x,t), 0 t 1, is a compact homotopy
joining F and G i.e. H(x,0) G(x),

H(x,1) = F(x).

H(x,t) is for each t, 0 t 1, fixed

point free on U.

G(x), xE
P, x E KILL.

Then there exists at least one fixed point u E u



such that u = F(u).

Remark. Suppose we now let K = E. To apply Theorem

1.5 we let U be some ball centered at the origin of
radius say R. Let uo U be a fixed point of G. In

order to guarantee the existence of a fixed point

u1 E U of F we need to know that all fixed points

ut of u = H(u,t) lie in U i.e. we need an A Priori
Bound M < R such that

HutH M for 0 t 1,

where is the norm in E. Therefore the role of
the a priori bound is to guarantee that au is fixed

point free for the operators H(.,t) and these bounds

must be independent of t.

We will also use frequently the following theorems

which we state without proof. See Rudin [29] and

Royden [281 for details.

Theorem 1.6. (Bounded Inverse Theorem)

Suppose X and Y are Banach Spaces and L is a

bounded linear transformation from X onto Y which is
-also one to one. Then L1 is a bounded linear

transformation of Y onto X.

Theorem 1.7. (Arzela Ascoli Theorem)

Let F be an equicontinuous family of real or

complex valued functions on a seperable space X. Then

each sequence (fn> in F which is bounded at each
point (of a dense subset) has a subsequence

(fnic>
which converges pointwise to a continuous function, the

converence being uniform on each compact subset of X.

From Theorem 1.7 one can deduce:

Corollary 1.8. Let S be a compact metric space and M

a subset of CK(S), K .?, 0 an integer. Then M is
_

relatively compact in CS ) (i.e. M is a compact

6



subset of CK(S)) if and only if M is bounded and

equicontinuous.

1.4 Existence Theorems

In this section we indicate how the topological

results of section 1.3 can be used to prove existence

theorems for nonlinear boundary value problems. Similar

results hold for nonlinear initial value problems.

Let B denote a set of n linear, homogeneous

boundary conditions

n-1
V1(y) = I [aijy(j)(0)+bijy(j)(1)]=0,i=1,2,...,n

j=0

and (Ly)(t) = y(n) (t) for t E [0,1]. Consider the

boundary value problem

1.3)
f

Ly 0, f(t,y,

Y E B

iMy
= g(t,y,...., y

y E B

(n-/)
), t E [0,1]

where f(t,P ..... , Pn) is continuous on [0,1] X Rn,

and the associated family of problems

(n-1), x.,) 0 X 1

7

where(14y)(t)=Ea4(t)y(t).liereg,a.,j
1=0 J0,1,...,n are continuous and an(t) * 0 for t E [0,1]

and also g(t,v1,....,vn,0) E 0.

Theorem 1.9. Let L,M,f and g be as above. Assume

(i) The problems and (1.3) are



equivalent when X = 1 i.e.and
(1.3)X

(1.3) have the same set of solutions.

The differentiable operator (M,B) is

invertible as a continuous map from
Cn -0 C.

There is a constant K independent of X

such that lul < K for each solution u

to (1.3) 0 X $, 1.
X'

Then the boundary value problem (1.3) has at

least one solution in C[0,1].

-
Proof Let U = E Cn [0,1]: lul K) and define

n-1
T k. C, 0 15 X :5 1, by (TXv)(t) =

g(t,v(t),...,v(n-1) Clearly Tk is a continuous
map. Now j:q C by ju = u is the

natural embedding. The map j is completely continuous
1-by Corollary 1.8. Then HX = M

TX j defines a
- nhomotopy Hk:U ... C. It is clear that the fixed points

of HX are precisely the solutions to (1.3)X By

(iii) HX is fixed point free on U. Moreover, the
complete continuity of j together with (ii) and the

continuity of TX imply that the homotopy
HX

is

compact. Hence Ho is homotopic to HI. Now Ho is

essential by Theorem 1.4 since Ho is the zero map.
Therefore, Theorem 1.5 implies that

HI is essential.
In particular

HI has a fixed point, (1.3)1 has a

solution and so by (i), (1.3) has a solution.

Remark. If (L,B) is invertible Theorem 1.9 will be
applied with M = L and g = Xf. For example, if B

denotes the set of n homogeneous initial condition
then (L,B) is invertible by Theorem 1.1. The

applications of Theorem 1.9 that occur in the thesis

where (L,B) is not invertible fall into one of the

following categories:

(i) Take My=Ly-y and

8



g(t,P1, Pn,X) = X[f(t,P1,..-.,Pn)-P0
or

(ii) Take My=Ly-y' and

g(t,P1, Pn'X) = Xff("131"'"Lan)-P21

The preceding discussion extends to include

nonlinear problems in which inhomogeneous boundary

conditions occur.

Thus consider the problem

1.4)

(n-1)

1

Ly = f(t,y,
, y ), t E [0,1]

Vi(y)1 = 1, ,n

where L,f and V. are as above. We also consider the
1

associated family of problems

I
My = g(t,y,...., y(n-1) , X) , 0 .15. X :5.. 1

V . (y) = r, i = 1, ... , n
1 1

where M and g are as above. Let B denote the set

of functions Y satisfying V11.(y) = r., i = 1,..., n

and Bo the set of functions satisfying the

corresponding homogeneous boundary conditions

Vi(y) = 0, i = 1,...., n.

Theorem 1.10. Assume

The problems14 and (1.4) are()X
equivalent when X = 1.

The differential operator (M,B0) is

invertible as a continuous map from

Ca C.

Th:re is a constant K independent of X

such that luln < K for each solution u

9



to (1.4)x, 0 :5, X s.5, 1.

Then the boundary value problem (1.4) has at least one
solution in C[0,1].

1 n
1

Proof Define N:CB ... C by Ny = My. We will show that
1

-1N :C -, Cn exists and is given by N = M-If + 2B

where 2 is the solution to My = 0, y E B. Since

(M,B0) is one to one then N is one to one and it is
-I 2clear also that M f + is the inverse of N

provided 2 exists. We will now show that i exists.

Let un be n linearly independent solutions
of My = 0, so that y = C ....+ Cn n1

u
1

+ u is the
general solution to My = 0. Now since My = 0, y E Bo

has only the trivial solution, by (ii), then we must
have det[Vi(uj)] # 0. Now to solve My = 0, y E B

constants C1,...., Cn must be found so that Vi(y) =

CI V1(u1) + C2 V1(u2) +...+ Cn Vi(un) = r i = 1 ..... n.

Since det(V(uj)] # 0 there is a unique solution say
kn and = k, u, +...+k un. Thus N-1 :C Cn

B
exists. We now define U = (y E lyln K + Inn)
and H:U X [0,11 CB is defined by H(u,X) =
N-1 j(u) + (1-X)2 E Hx where j:CB is the

completely continuous embedding and Tx:Cn-1 C,

0 X :5 1, is the continuous map defined by (Txv)(t) =

g(t,v(t),...., v(n-1) (t),X). This homotopy is clearly
compact. Now Ho = / and since l/in < K + f/In then

2 is an interior point of U in C. Now Theorem 1.4
implies that Ho is essential. Moreover, H(u,X) = u

10

means N-1 Tj(u) + (1-X)2 = u which implies
M-1 T j(u) + 2 +(1-X)2 = u. Now since M/ = 0 we have
TXju = Mu. So each fixed point of H satisfies
luin < K, by (iii), and H(u) = H(u,k) is in

Kau(U,CB). Hence Ho is homotopic to H1 and Theorem

1.5 implies that H is essential. Thus H has a
1 1

fixed point, so (1.4)1, has a solution and so by (i),

(1.4) has a solution.
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First Order Initial Value Problems

2.1 Introduction

The basic existence theorem for the initial value
problem

y' = f(t,y)
2.1) y(0) = r

where f:Z Rn is continuous and Z is the cylinder
(0,T] X R , guarantees that a solution exists for

t > 0 and near O. Familiar examples show that the
interval of existence can be arbitrarily short,

depending on the initial value r and the nonlinear

behavior of f. In this chapter we see how our analysis

which is based on a priori bounds and the topological

transversality theorem leads naturally to the study of
the dependence of the interval of existence of a

solution to (2.1) upon r and f. Additionally the

analysis automatically produces best possible results.

2.2 Maximal Intervals of Existence for Classes of

Initial Value Problems

The use of a priori bounds to establish existence
theorems for boundary value problems is well known.

These techniques also apply to initial value problems;

however this fact seems to have been largely overlooked.

Specializing Theorem 1.9 for initial value problems, we
have

Theorem 2.1. Let f:[0,T] X Rn Rn be continuous and

0 X :5, 1. Suppose there is a constant K independent

of X such that ly(t)I, ly1(t)1 K for t E [0,T1



for each solution y(t) to

iye
= Xf(t,y), 0.. t ..5, T

Y(0) = 0.

Then the initial value problem

2.2) y' = f(t,y), 0 t T

y(0) = 0

has a solution y in C1[0,T).

Remark. Theorem 1.9 is formulated for a scaler

equation; however the proof extends immediately to the

case of systems as in the present formulation.

In view of Theorem 2.1 we obtain immediately

Theorem 2.2. Let : [ 0 , ) (0,00) be continuous, and
assume

2.3) if(tor), sti(ly1)

for all (t,y). Then the initial value problem (2.2)

has a solution in CI[),T] for each

.00

T < T r duj 777
0

Moreover, this result is best possible in the sense that

the initial value problem

1

y' = f(t,y), 0 ...5 t .. T

y(0) = 0

12

2.4)

2.5)



with f(t,y) = (0(1571), 0, ,0) and for which (2.3)

holds can have a solution only if T < Too.

Proof To prove existence of a solution in C1[0,T] we

apply Theorem 2.1. To establish the a priori bounds for

(2.2)x, let y(t) be a solution to (2.2)X. Then

ly'l = IXf(t,y)I 0(1y1).

Now if ly(t)I # 0 we have by the Cauchy Schwartz

Inequality

Y-Y'
I y I =

ly1
ly'l

and the inequality above yields

1)71' :5. 41(1y1)

at any point t where y(t) # 0. Suppose y(t) # 0

for some point t E [0,T]. Since y(0) = 0 there is an

interval [a,t] in [0,T] such that Iy(s)I > 0 on

a < s t and y(a) = 0. Then the previous inequality

implies

I OW,7!;) ds t - a.

ly(t)I 00

du duf 7777 t a T < Too = f 777.7
0 0

This inequality implies there is a constant Mo such

So,

that

13
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0(1y11), y1(0) = 0. Clearly yi (t) > 0 so y/(t) > 0

and integration yields

r yi(s)

ocy,(s ds = T.»
0

Thus,

proof of Theorem 2.2.

Remark. If Too = 00 Theorem 2.2 is called Wintner's

Theorem [19], [36].

Theorem 2.1 also holds for the inhomogeneous

initial condition y(0) = r; see Theorem 1.10. So

trivial adjustments in the proof above yield

Theorem 2.3. Let f(t,y) and 4/(Y) satisfy the

hypothesis in Theorem 2.2. Then the initial value

problem

1

y' = f(t,y), 0 ...5 t

y(0) = r

y1(T) 00

T = 41111.7 < 71*7
0 0

which completes the

2.6)

Now

ly(t)I M.

(2.2)x gives

0,1(t)1 max if(t,y)1 a MI.
[0,11)<[-M0,M0]

So

of

ly(t)I, ly'(t)1 K = max(M0,M1) and

a solution to (2.2) is established.

the existence

Finally, y(t) = (y1(t), ,yn(t)) solves (2.5)

if and only if y2(t) - = y(t) = 0 and yi =



has a solution y(t) in C1(0,1) for each

and

T < T =
00

Moreover, this result is best possible as described in
Theorem 2.2.

2.3 Examples

A few examples illustrate the previous sections

results.

Example 1.1 (Linear and Sublinear Growth)

Suppose If(t,y)1 A(t) Iy1P + B(t), 0 p 1

for bounded functions A(t), B(t) 0. If Ao and Bo
are upper bounds for A(t) and B(t) respectively
then

If(t,y)1 Aoly11 + Bo 0(Iy1)

00

T =
i

du = 00
00

A uP+Bml o o

Consequently the initial value problem (2.6) has a

solution on [0,T) for all T > 0.

Example 1.2 (Polynomial growth)

Suppose If(t,y)1 A(t) 11m + B(t) for m =

1,2,.... and for bounded functions A(t), B(t) 0. If

Ao and Bo are upper bounds for A(t) and B(t),

then

15



If(t,y)1 4 Ao 1y111/ + Bo E 4,(Iy1), T f du

Irl
Aum+B
o o

and the initial value problem (2.6) has a solution on

[0,T] for any T < T00. In the case of zero initial
data, r = 0, we have

du K CSC (x/m)T

Aum+Bo m Alim B(m-1)/m
0 o o o

Example 1.3 (Estimate of the time before shocks)

The first order quasilinear partial differential

equation

a(x,y,u) ux + b(x,y,u) uy = c(x,y,u)

with suitable assumptions on the coefficients a,b and

can be solved by the method of characteristics. If

the solution surface u = u(x,y) is to contain the
smooth initial curve

yo(s), uo = uo(s)xo = xo(s), yo

where 0 4 s 4 1 is a parameter, then the

characteristic initial value problem is

16

1

Aa . a AM = k du
dt ' dt -' dt = c

x(0,$) = xo(s), y(0,$) = yo(s), u(0,$) = u0(s)

where x = x(t,$), y = y(t,$), u = u(t,$) and s is

regarded as a parameter in the initial value problem.

The solution to the initial value problem yields the

solution surface by expressing u(t,$) in terms of



and y after solving x = x(t,$), y = y(t,$) for

t = t(x,y) and s = s(x,y). In the region about the

initial curve where this can be done, a smooth solution

surface results. Suppose we have an estimate on the
growth rate of the coefficients in the partial

differential equation; say,

If(x,y,z)1 = I(a(x,y,z), b(x,y,z), c(x,y,z))1

0(1(x,y,z)I).

Then by Theorem 2.3 no shocks can develop up to the
oo

dutime T < T = where77717

= max 1(x0(s), yo(s), u0(s))1 assuming of course

that t and s are expressible as functions of x and

y as required above.

17



Boundary Value Problems on Infinite Intervals

3.1 Introduction

In this chapter we study the existence of solutions

to a second order differential equation of the form

3.1) y" = f(x,y,y'), 0 x <

where f(x,u,p) is defined and continuous on

(0,40) X R X R. We establish that the differential

equation (3.1) has bounded solutions under growth

conditions of Bernstein type on the nonlinearity f. In

addition, existence theorems are established for (3.1)

together with the boundary conditions

3.2) -ay(0) + 8y'(0) =

where a > 0, 4 0, r is a given constant and

3.3) lim y(x) = 0.

The analysis in this chapter is based on extending

theorems of Granas, Guenther and Lee [15], [16], [18]

for boundary value problems on finite intervals. As

usual C'[0,00) is the space of functions v(x) on

k[0,00)[0,00 with v(k) continuous, BC is the space

of functions v(x) with v(x) bounded and

continuous on [0,04) for j = 0,1,....,k. Let

2
Co[0,40)=(vEC2(0,40:lim v(x)=1im vt(x)=1im v"(x)=0)

X-00 x-400

with norm 11v112 = max(fivfio,fiv'fio, liv"110) where

Hvflo = sup Iv(x)i.

18



3.4)

3.5)

lyn(j)(t), k, j =

There are functions A(x,u), B(x,u) > 0

which are bounded when u varies in
a bounded set and1p2 + B(x,u).If(x,u,p)I .,c. A(x,u)

19

Let n be a positive integer and consider the boundary

problem

y" = f(x,y,y'), 0 x n

3.6) -ay(0) + £y'(0) = r, a > 0 and A 0

y(n) = O.

Then (3.6) has at least one solution yflEC2[0,n] with

0,1,2 and tE[0,n], where k is a

constant independent of n. In fact let A,B be

constants which bound A(x,u) and B(x,u) on

[0,0*) X [-M0,M01 respectively, where Mo = max(M, 1*1),
then K = max(M0,M1,AM12 + B) where

rl+aMo [(Irl+aMoi2e4Am
1
= max oA

while if A = 0

if A * 0

B+ ( 4AM
e o - di1/21

3.2 Global Solutions to Second Order Nonlinear

Differential Equations

The Arzela-Ascoli theorem and the following known

result about boundary value problems on finite intervals

will imply our basic existence theorem for problems

defined on 0 1.5 x <

Theorem 3.1. Assume f(x,u,p) is continuous and

satisfies

1

There is a constant M ?.. 0 such that

uf(x,u,0) 0 for lul > M.



M1 max[ly., 1411.112 4AM0 B( 4AM0 ]]1/2]
aje e -1

The proof follows from a slight modification of

arguments in [15], [16] and [17]. These results

imply the global soluability of the differential

equation (3.1).

Theorem 3.2. Assume f(x,u,p) satisfies (3.4), (3.5).

Then the ordinary differential equation

y" = f(x,y,y'), 0 x <

has at least one solution y in BC2[0,00).

Proof Let n be a positive integer and consider

y" = f(x,y,y'), 0 x n

3.7) y(0) = 0

y(n) = 0.

By Theorem 3.1 there exists a solution unEC2[0,n] to

(3.7) with lun(j)(t)I k, j . 0,1,2 and tE[001],
f".

where K is a constant independent of n. Now define

functionsY on [0,00) by y(x) = u(x) on [0,n]
li

and y(x)
= 0

on [n,00). Clearly each yn is

continuous on [0,00 and twice continuously

differentiable except possibly at x = n. Let
co

S = (yn)n./. By Theorem 1.7 there is a subsequence
r,
NI of the positive integers N and a continuously

differentiable function ZI on [0,1] such that for

j = 0,1 y(j)(x) Zj()(x) uniformly on [0,1] as
n Ir J ,,,

n co through NI. Let NI = N11(1). Then by Theorem

1.7 there is a subsequence N2 of NI and a

continuously differentiable function Z2 on [0,2]
(j)such that for j = 0,1 Y n

(x) -0 Z(j) (x) uniformly
2

on [0,2] as n co through N2. Note Z2 = Zl on

[0,1] since N2 C N/. Let N2 = N21(2) and proceed

inductively to obtain for K = 1,2,.... a subsequence

NK of positive integers with NK C NK-1 and a

20



continuously differentiable function ZK on [0,K]

such that for j = 0,1 (x) Z(j) (x) uniformly
n

on [0,K] as n -0 co in
N1('

Since NK C NK-1' ZK(x) =

ZK-1(x) on [0,K-1]. Now we define a function y as

follows: Fix x in [0,00) and let K be a positive

integer with x K. Then define y(x) = ZK(x). From

the construction above, y is well defined. It is

clear also that y E c1[0,00). Now fix x and choose

and fix K x. We have

y(x) - y111(0) = f f(t,yn(t), 30(t))dt
0

for n E NK. Since y(t) converges uniformly to
z(t) on [0,K] for j = 0,1 let n co through

NK to find

Z(x) - Z'(0) = ff(t ZK (t) Z'K(t))dt.
' '

0

That is, Ys(x) - y'(0) = f(t,y(t),y'(t))dt.
0

Consequently yEC2[0,00) and (3.1) is satisfied. It

is clear also that y(0) = 0 and Hy112 Kt the

constant from Theorem 3.1 and consequently y is in

BC2[0,o0).

Corollary 3.3. Assume f(x,u,p) satisfies (3.4),

(3.5). Then the ordinary differential equation (3.1)

with the initial condition (3.2) has at least one
solution in BC2[0,00.

21

Proof This follows directly from the proof of Theorem

3.2 except we consider the boundary value problem



3.11)

3.12)

1

y" = f(x,y,y'), 0 E x E n

-ay(0) + £y'(0) = r, a > 0 and A ?... 0

y(n) = 0

instead of (3.7).

Remark. Suppose the Sturm-Liouville initial condition

(3.2) is replaced by the homogeneous Neumann initial

condition

3.8) y'(0) = 0.

Then it follows easily from results in [15], [16) and

the reasoning used above that Corollary 3.3 holds with

(3.8) replacing (3.2).

However stronger assumptions on f are needed for

existence of a solution to the inhomogeneous Neumann

problem on a finite interval; see [18). Using these

results, with (3.2) replaced by

3.9) y'(0) = r * 0

one can prove

Theorem 3.4. Assume f(x,u,p) is continuous and

satisfies:

3.10)1fu(x,u,p) K for (x,u,p) in [0,00) X R X (r).
There is a constant K > 0 such that

1

{For

0 E x < 00 and uE[-Ir1,1r1), f(x,u,r)
is bounded.

f satisfies the Bernstein growth
condition (3.5).

22

Then the ordinary differential equation (3.1) with the

initial condition (3.9) has at least one solution in



BC2 [0,00).

3.3 Solutions to Second Order Boundary Value Problems

on [0,00)

Suppose f satisfies (3.4), (3.5). Then the

reasoning in section 3.2 yields a BC2(0,00) solution

to (3.1) and (3.2). Suppose in addition each

solution u E BC2[0,00) of (3.1), (3.2) satisfies the

following condition:

23

Then a priori each solution to (3.1), (3.2) tends

to zero at infinity and we have

Theorem 3.5. Assume f(x,u,p) is continuous and

(3.4), (3.5) and (3.13) are satisfied. Then the

boundary value problem (3.1), (3.2), (3.3) has at

least one solutions in C2(0,00.

Bounds of type (3.13) are usually hard to

establish. We show how to do this in section 3.4,

which establishes that a nonlinear semiconductor problem

has a solution. The next results show that (3.13) and

the Berstein type growth condition imply similar bounds

which guarantee that Y' and y" tend to zero at

infinity.

Corollary 3.6. Suppose (3.4), (3.5) and (3.13) are

satisfied. Then each solution y E c2[0,00) to (3.1),

(3.2), (3.3) satisfies lim y'(x) = O.
x-000

Proof Our strategy is to obtain a bound similar to

3.13)

There
that

for

is a

0(x)
0 x

continuous
-0 0 as x

< 00.

function
00 and

0 such

lu(x)I 0(x)

(3.13) for We can assume without loss of



A '2Ay +B

and integrating from t to s yields

Ln
[A
A Y'2(t)+B] E 2 A[0(t) + 0(s)] E 4 A 0(t)

,2( ,
y s)+B

because 0 is decreasing. Hence

iy,(t), E (E2 e4A0(t) .[e40(t)
)]1/2

The same bound is obtained if we assume y' E 0 on

[t,s] and this inequality holds trivially if lyl(t)I:E.

Letting E 0+ yields

3.14) iy,(t),
1}j1/2

)11/2
- E S112")

for all 0 t < 00. Clearly 02(t) is continuous on

[0,00) and 02(x) 0 as x 00.

The main result in this section is concerned with

obtaining C2[0,00) solutions to the boundary value

problem (3.1), (3.2) and (3.3).

24

generality that 0 is a decreasing function with

ly(x)1 0(x), 0 x < 00 and st/(x) 0 as x

(Otherwise let 01(x) = sup 0(x) and apply the
t?,.x

following argument with 01 replacing 0). Since

lim y(x) = 0 one can show easily that for each E > 0
XP 00
and for each t > 0 there exists s > t such that

ly'(s)1 E. Fix E > 0. Let t be a point in [0,00)
for which lyi(t)1 > E. Then there is an interval

[t,s] such that y' maintains a fixed sign on [t,s]

and lyt(s)1 E. Assume y' 0 on [t,s]. Since

Dyne. HOH0 by (3.13), there are constants A,B > 0

which bound A(x,u) and B(x,u) on

[0,00) X [-flOno, 11010]. Consequently, the differential

equation and (3.5) yield

-2 A y' ZALLY:



Theorem 3.7. Assume (3.4), (3.5), (3.13) are

satisfied. Suppose in addition f(x,u,p) satisfies:

25

Then the boundary value problem (3.1), (3.2), (3.3)
2has at least one solution in Co[0,.5°).

Proof In view of Theorem 3.5 and Corollary 3.6 there

exists a solution y E BC2(0,00) to (3.1), (3.2) which

satisfies lim y(x) = lim y'(x) = 0. The differential
X.400 x-00.0

equation yields

Y"(x) =_f(x,YsYs) - f(x,0,0) + f(x,0,0)

=f y+f, y' + f(x,0,0)

where f ,- f , are intermediate values obtained by the
Y Y

Mean Value Theorem. Now (3.13), (3.4) and (3.16)

imply

ly"(x)I S 40(x) + R 02(x) + f(x,0,0) 03(x)

where S = suplfu(x,u,p)1. R = suplf (x,u,p)I for
P

(x,u,p) E (0,00 X [-K,K] X [-K,K], where K ?: IlyH/ is
a constant. Clearly 03(x) is continuous on (0,00

and 03(x) 0 as x -0 ot, by (3.15).

3.15)

3.16) For 0

interval

lim f(x,0,0)
x-100

x < 00 and u,p

fu(x,u,p) and

= 0

each in a bounded
f (x,u,p) are bounded.



3.4 Applications to Semiconductor Devices

In studying the theory of semiconductor devices one

is led to boundary value problems for the Poisson

equation in unbounded domains which can consist of

several layers. In one spacial dimension the problem

reduces to finding solutions u = u(x) and v = v(x)

to

VI' = 0, -1 < x < 0

v(-1) = §

U" = f(x,u), 0 < x <

v(0) = u(0)

a v'(0) = u'(0)

lim u(x) = 0

where a > 0 and 0 are given constants. In

semiconductor applications, the function f is usually

written in the form

f(x,u) = - 24p-n +ND -
NA + NQJ

where n and p refer to the electron and hole mobile

charge densities, ND and NA the donor and acceptor

impurity densities and NQ is the density of the fixed

charged particles. The constant q is the magnitude of

the electronic charge, and is the dielectric

permitivity. See [5], [6], [32] for an in-depth

physical discussion. Some common examples which are

used for the function f are:

f(x,u) = Ku

f(x,u) = A Sinh (Ku)

f(x,u) = -A -B e (A+B)ecu + S e-17"-Km)2

Here A,B,S,c,K,o. are all positive constants and

xm > 0 is a fixed value.

26



Since v is a linear function on -1 x 0 it

can be eliminated and thus the following boundary value

problem for u is obtained

u" = f(x,u)

u'(0) - a u(0) = -0

lim u(x) = 0.
X400

Motivated by the examples cited above, we shall make the

following assumptions on the function f(x,u):

f(x,u) is continuous on [0,00) X R.

3.20) Moreover for 0 x < w and u in a bounded
interval f(x,u), fu(x,u) are bounded.

There is a constant m > 0 such that
3.21) af (x,u) m2 on [0,00) X R.

-3171

3.22) lim f(x,0) = 0.
x-poo

Uniqueness for the boundary value problem (3.17),

(3.18), (3.19) follows from an elementary maximum

principle and (3.21).

Lemma 3.8. Assume f(x,u) satisfies (3.21). Then the

boundary value problem (3.17), (3.18), (3.19) has at

most one solution.

27

Proof Suppose
u1 (x) and are solutions to



(3.17), (3.18), (3.19). The function

28

(u1-u2)2
2

vanishes at infinity; so if it is not identically zero,

it must have a positive maximum at a point x, 0.,x<00.
Now if x > 0, we would have

22 (u )1-u2

2

(u1-u2) " 2

dx 2
I

x=0 = a(ul - u2) > 0

(u 1-u2)2
which contradicts the fact that

2
has its

nonzero maximum at x = O. These contradictions show

2(111-u2)
that ----f---

The existence of a solution to (3.17), (3.18),

(3.19) will follow from the results of section 3.2

and 3.3. Our analysis also uses the fact that a

special linear problem of type (3.17), (3.18), (3.19)

can be solved explicitly.

Proposition 3.9. Let in > 0, A real and h(x) be a

continuous function on (0,00) with limit zero at

infinity. Then the boundary value problem

3.23)

iw"

- m2w = h(x) , 0..5. x < oo

w' (0) - aw(0) = A
lim w(x) = 0
x-14=

d I
"J

2

I,
f(x,u1)-f(x,u2)

{

--
[u _uT ---M---- x=x 1dx

i.e. 2 " " 2
0 in (u1 - u2)

where
...., I, es)u= u(x) and u

I,
= u(x). Since

I, I, 2
(u-u) > 01 12 2 12-

this is a contradiction. If on the other hand, x = 0

then the boundary condition at zero gives



has a unique solution. Moreover, if h(x) 0 and

E 0 then w(x) is a nonnegative function on [0,00).

Consequently if h(x) 0 and 8 0 then w(x) is a

nonpositive function on [0,00).

Proof The existence and uniqueness of the solution to

(3.23) can be confirmed by quadrature. In fact we can

obtain via variation of parameters that the solution is

-mt

w(x) = -
e

0

h(t)dt1 -mx

(1 +

.0

_ f e-m(x-r) f e-m"-" h(t)dt]dr.

Evidently w(x) 0 when B E 0 and h(x) 0.

Theorem 3.10. Assume f(x,u) satisfies (3.20),

(3.21), (3.22). Then the boundary value problem

(3.17), (3.18), (3.19) has at least one solution in
2

Co[0,00).

Proof We begin by showing f(x,u) satisfies (3.4),

(3.5). We have

uf(x,u) = u[f(x,u) - f(x,0)) + uf(x,0)
m2 u2 + uf(x,0)

by the mean value theorem and (3.21). Hence

max If(x,0)1
,uf(x,u) > 0 for ful > M3 where M3

0x<00
m2

29

So (3.4) is satisfied. Now (3.20) clearly implies



(3.5). Thus Corollary 3.3 implies there exists

u E BC2[0,w) which satisfies (3.17), (3.18). Since

u E BC2[0,w) there exists a constant K such that

x-,00
Let w1(x) be the unique nonnegative solution to

2
< K. Next we show lim u(x) = 0.'

iw"

- m2w = f(x,0) - If(x,0)1, 0 ...5. x < 00

w'(0) - a w(0) = -0 - 101

lim w(x) = 0
X

guaranteed by Proposition 3.9. Now consider the

function r(x) = u(x) - w1(x). We shall show it is

never positive. First, we show r(x) cannot have a

local positive maximum on [0,w). Indeed, suppose a

local positive maximum were to occur at x. If x > 0

we would have

d2
0 (u(x) - wi(x))1x.; = u"(x) - wl"(x)

dx

= f(x,u(x)) - m2w1 - f(x,0) + If(x,0)1

P^.0

= fu(u(x) - w1(x)) + (fu - m2) w1(x) + If(x,0)1

>0

where fu is an intermediate value obtained from the

mean value theorem, and this is a contradiction. On the

other hand, if x = 0 we would have

O (u(x) - wl(x))1x=0 = u'(0) - w11(0)

= a u(0) - 0 - a w1(0) + 0 + 101

= a (u(0) - w1(0)) + 101

>0

30

which is also impossible. Consequently, as asserted,



r(x) cannot have a positive local maximum on [0,00).

It now follows easily that r(x) 4 0 on [0,00): If

not, then there is a c 0 such that r(c) > 0, and

since r(x) cannot have a positive local maximum on
10,00 it follows that r(x2) > r(x1) for all

x2 > x1 '
> c- otherwise r(x) would have a local

positive maximum on [0,x2]. Thus r(x) = u(x) - w1(x)

is strictly increasing for x c. Since both u(x)

and w1(x) are bounded on [0,00) and w1(x) -4 0 as

x 00, it follows that there exists

lim u(x) = lim (u(x) - wi(x)) = 2 > 0.
x-oo

Then the relation

u" = f(x,u(x)) - f(x,0) + f(x,0)

= fu u(x) + f(x,0) m2 u(x) + f(x,0)

and the fact that f(x,0) -+ 0 as X 00 implies that

there exists c/ c such that

u"(x) m2x for all x cl.

This contradicts the boundedness of u(x) on [0,00),

and completes the proof that u(x) - w1(x) 0. Similar

reasoning establishes that u(x) - w2(x) 0 for all

0 4 x < where w2(x) is the unique nonpositive
solution to

2

iw"

-m w = If(x,0)1 + f(x,0), 0 4 x < 00

w1(0) aw(0) = 0 + 101
lim w(x) = 0.
x.400

Consequently lu(x)1 4 0(x) = max(wi(x), - w2(x)) for

0 4 x < 00 Thus, the hypothesis of Theorem 3.7 are

satisfied and the solution u(x) to (3.17), (3.18),

(3.19) belongs to C423[0,0:0.
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IV. Ordinary Differential Equations In

The Complex Domain

4.1 Introduction

Ordinary differential equations in the complex

domain have been studied in great depth this century;

however, very little is known on intervals of existence

of a solution. We are interested in this chapter in

applying the ideas of Chapter I to study the existence

of solutions to the initial value problem in the complex

domain:

4 1) y(n) = f(t.y,y'.----,Y(n-1) ), t E UT
. (n-I)y(0) = ao, y1(0) = al,---, Y (0) = an-1

_
where

ai
E C, j = 0,1 , ,n-1 and f:UT X CT -o C is

analytic in t,y, , ,y(1-1) for t E UT and

continuous in t,y,...y for t E UT. Here of

course C is the complex plane and UT = <z:lz, < T),

T E R.

By a solution to (4.1) we mean a function

which is analytic on UT with yor' ,,,,, y(n)
-

continuous on UT which satisfies the differential

equation and initial conditions. The basic existence
theorems in Ince [20] and Smart [31] guarantees that

a solution exists for Itl < E for some E > 0

suitably small; however, from these theorems it is

extremely difficult and many times impossible to produce

a specific interval of existence of a solution. The

results of this chapter enables us to read off

immediately from the differential equation an interval

of existence of a solution, although it may not be

maximal. We in fact establish with a restriction on T

(which depends only on the initial data and the growth

constants associated with the nonlinear behavior of f)
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that the initial value problem (4.1) has bounded

solutions y(t) for t E UT under growth conditions of

Bernstein type on the nonlinearity f. Furthermore, in

section 4.4 we obtain existence theorems for "Boundary

Value Problems" in the complex domain.

-Let Ak (UT' ) k 0 an integer, denote the Banach
space of functions g,g:UT C is analytic on UT with

g,g',....,g(k) continuous on UT with norm

= max<flgflo,....,flg(k)flo)

where flgflo = sup Ig(t)I.

tEUT

If B denotes the initial conditions in (4.1) then
k - -let AB(UT) denote the subset of functions in Ak (UT)

which satisfy the given initial conditions. For
-notational purposes we also let A° (UT) = A(UT).

R Hk(U )qmark. Let denote the space of functions

g,g:UT C is analytic on UT and g(j), j = 0,...,k

is bounded on UT with norm

HgHk = max<HgH0 , ,Hg(k)Ho)

where flgfl = sup Ig(t)1.
° tEUT

It is more natural to seek solutions y E H2(UT) to

(4.1). However, the a priori bounds derived in the

forthcoming sections together with the Mean Value

Theorem for complex functions (Proposition 1.17 in

Conway [7]). Theorem 9.1 of McShane and Botts [4]

and the assumptions on f imply, a priori, that
k -

y E A (UT).
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4.2 Solutions to First Order Initial Value Problems in

the Complex Domain

We begin by extending Theorem [1.9] for the new

class of problems.

_
Theorem 4.1. Let f:UT X C C be analytic in

(n-1)t,y,....,y for t E UT and continuous in
_

,y,....(n-1)y for t E UT. Suppose there is a

constant K such that ly(t)I, lyi(t)1 :5 K for
-

E UT for each solution y(t) to

4.2)X.

Then the initial value problem

iy'

= f(t,y), t E UT
y(0) = 0

I -has a solution y in A (UT).

I -Proof Let V = (11 E A(UT K + 1),
Fx:A(ZT) A(U), 0 X 1, be the continuous map

defined by (Fxu)(t) = Xf(t,v(t)), and

j:Al(TJT) A(UT) be the natural embedding which is

completely continuous by Theorem 1.7. We define
1 -

-

L:AB(UT) A(UT) by Ly = y'. It follows from Theorem

1.6 that L-I is a bounded linear operator. Then

HX = L-1 1 -Fx j defines a homotopy H ABx:V (UT). It is

clear that the fixed points of HX
are precisely the

solutions to (4.2)X and hence
HX

is fixed point free

on V. Moreover, the complete continuity of
-1together with the continuity of L and FX

imply

that the homotopy Hx is compact. Ho is essential by

Theorem 1.4 and Theorem 1.5 implies that HI is

essential. Thus (4.2) has a solution.

4.2)

ly'

= X f(t,y), 0 X :5 1

y(0) = O.
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We establish various existence theorems by placing

growth conditions on the nonlinearity f. Suppose at

first f satisfies linear or sublinear growth

conditions, then Theorem 4.1 and the maximum modulus

principle yield

Theorem 4.2. (Linear growth)

Suppose

4.3) if(t,u)I A(t) lul + B(t)

where A(t), B(t) ?.. 0 are functions bounded on bounded

t-sets. Let A and B denote the upper bounds for
A(t), B(t) respectively for t E ET. Then (4.2) has

-at least one solution in A1 (UT) provided

0 < T < 1/A.

1Proof Fix T with 0 < T < 7.. The existence of a
-solution in A1 (UT) will follow immediately from

Theorem 4.1 once we establish a priori bounds for

Let y E A1(ET) be a solution to

Then

ly'l = lkf(t,y)1 Alyl + B.

Suppose the maximum of ly(t), for t E ET occurs at

r. If r E UT then by the maximum modulus principle

y E constant. The initial condition yields y E O. On

the other hand if r E auT then

Iy'l Aly(r)I + B

and integration along the straight line from 0 to r

yields

Hence

iy(r)1 ATly(t)I + BT.



BT
"")/ 1-AT E Mo' because AT < 1.

This inequality implies

iy(t)I Mo for t E UT.
Now (4.3) gives

fy'(t)I AM0 + B E MI.

Thus fy(t)I, ly'(t)I K = max(M0,M1) and the

existence of a solution to (4.2) is established.

The main result of this section is concerned with

obtaining solutions to the initial value problem (4.2)

with Bernstein growth conditions on the nonlinearity f.

Here the continuity of the maximum modulus function

together with Theorem 4.1 yields

Theorem 4.3. (Bernstein growth)

Suppose

4.4) If(t,u)1 A(t) 1uI2 + B(t)

where A(t), B(t) 0 are functions bounded on bounded

t-sets. Let A and B denote the upper bounds for
A(t), B(t) respectively for t E UT. Then (4.2) has

1 -at least one solution in A (UT) provided
10 < T <

2(AB)

1Proof Fix T with 0 < T <

-----17T
The existence of

2(AB)"'

a solution will follow immediately from Theorem 4.1 once

we establish a priori bounds for (4.2)x Let

y E Al(UT) be a solution to (4.2)x. Then

ly'l = IXf(t,y)1 Aly12 + B.
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Suppose the maximum of fy(t)I for t E UT occurs at

r. If E UT then y E 0. Otherwise E aUT and



SO

ly(r)I ATly(i.)12 + BT.

Hence this quadratic inequality implies that either

2 1/21-(1-4ABT )

ly(r)I 2AT

2 1/21-(1-4ABr )
ly(t)I 2Ar or

2 1/21+(I-4ABT )or Iy(r)I 2AT

Apply the same reasoning for any r with 0 < r T to

obtain either

1+(1-4ABr )2 1/2for t E Ur. Since y(0)=0 and lim 2Ar
r-*0

there exists an r, 0 < r T such that

ly(t)1 1-(1-4ABr2)1/2
2Ar

IY(t)1
1+(1-4ABr2)1/2

2Ar

for t E 5r.

1-(1-4ABr2 )112In particular, since h(r) = 2Ar
increasing function on [0, 1/2j' we have1

2(AB)

M(r) = max ly(t)I 1-(14ABr )

< (-,711/22Ar
tEUr

Suppose Ur is the largest closed disc where

M(r) 1-(1-4ABr2 ) 1/2
2Ar

1-(1-4A8T2)1/2
ly(t)I 2AT
hand r < n < T then

If T then we have

for t E UT. If on the other

11+(1-4AB2n )/2 1
r

7 2A2A,?2An
11/2M(0

because of 0 < T < 1 Since M(p) is a--2-77777.

continuous function of p for 0 p T then there
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1/2
r < < such that M(g) = [71

2 1/2 1/21+(1-4ABu )M(U) 2A >g

we have a contradiction. Hence

2 1/2I-(1-4ABT )
ly(t)I 2AT Mo for t E ET.

Now (4.4) gives

Iy1(t)1 tc AM! + B = Ml.

Thus ly(t)1, K = max(M01M1) and the

existence of a solution to (4.2) is established.

Theorem 4.1 also holds for the inhomogeneous

initial condition y(0) = a, a E C. via Theorem 1.10.

So trivial adjustments in the proofs above yield the

following two theorems.

Theorem 4.4. Suppose

If(t,u)I A(t)Jul + B(t)

where A(t), B(t) 0 are functions bounded on bounded

t-sets. Let A and B denote the upper bounds for
A(t), B(t) respectively for t E ET. Then

lys

= f(t,y), t E UT

y(0) = a

-has at least one solution in A1 (UT) provided

0 < T < 1/A.

Theorem 4.5. Suppose

If(t,u)1 A(t)1ul2 + B(t)

4.5)
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exists a

Since



where A(t), B(t) 0 are functions bounded on bounded

t-sets. Let A and B denote the upper bounds for

A(t), B(t) respectively for t ET' Then (4.5) has
1 -at least one solution in A (UT) provided

-ial+(lat2+B/A) 1/2
0 < T < 28

Remark. We can extend the proof of Theorem's 4.1, 4.2,

4.3, 4.4, 4.5 to the case of first order systems as in

their present formulation. Thus we obtain for example:

Theorem 4.6. Suppose for f:LIT X Cn Cn we have

If(t,u)1 A(t) 1u12 + B(t)

where A(t), B(t) 0 are functions bounded on bounded

t-sets. Let A and B denote the upper bounds for

A(t), B(t) respectively for t E UT. Then

fyi
= f(t,y), t E UT

y(0) a, a E Cn

-has at least one solution in A1 (UT) provided

1/2-ial+(lai2+B/A)0 < T < 28

4.3 Solutions to Higher Order Initial Value Problems in

the Complex Domain

Theorem 4.6 produces an interval of existence for

solutions to higher order initial value problems;

however, the results of this section yields better

intervals of existence for such problems. Also some

analysis is needed to produce an interval of existence

from Theorem 4.6 whereas the conclusions of this

section enables us to write down immediately an interval

of existence simply by looking at the ordinary

39



differential equation. Furthermore, the ideas of this

section indicate a very natural way of looking at

"Boundary Value Problems" in the complex domain.

Trivial adjustments in the proof of Theorem 1.10 and

Theorem 4.1 yield

Theorem 4.7. Let f:51. X Cn C be analytic in
(n-1)

t,y, , ,y for t E UT and continuous in
(n-1) -

t,y, .. y for t ET Suppose there is a

()constant K such that iy(t)1,....,lyn (t)1 E K for

t E UT for each solution y(t) to

(n-1)
:5.y(n) = Xf(t,y,y1, ,y ). 0 1

(n-1)46)X y(0) = ao, y'(0) = al, ,Y (0) = an-1

where a. E C for i = 0,1,....,n-1. Then the initial

value problem

(n-1,
= ), t E UT

4.6) (n-1)y(0) = a0, (0) - an_,

has a solution in An(TIT).

We will formulate the theorems in this section for

the homogeneous case n = 2. So for the remainder of

this section we assume ao = aI = 0 and n = 2. Now

Theorem 4.7 together with the maximum modulus

principle will yield

Theorem 4.8. (Linear growth)

Suppose

4.7) If(t,u,p)1 A(t)1111 + B(t)Ipl + C(t)
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where A(t), B(t), C(t) 0 are functions bounded on



bounded t-sets. Let A,B and C denote the upper

bounds for A(t), B(t), C(t) respectively for t E UT.
-Then (4.6) has at least one solution in A2 (UT) for

0 < T <
1-B+(B2+4A) /2

2A

1/2-B+(B2+4A)Proof Fix T with 0 < T < We obtain2A
-first a priori bounds for (4.6)x. Let y E A2 (UT) be

a solution to (4.6)x. Then

ly"( A ly1 + Bly'l + C.

-
Suppose the maximum of 15,1(t)1 for t E UT occurs at

r. If r E UT then the maximum modulus principle and

initial conditions yield y E O. On the other hand if

r E auT then

4.8) ly(t)I t5. Tly'(r)i for any t E

Thus

Iy"(t)1 ATIy'(r)I + Bly'(r)1 + C

and integrating along the straight line from 0 to r

yields

CT
ly1(r)1 = Mo

1-[eliT2+ST]

because 0 < T < -B+(B2+4A)1/2. Hence lyi(t)1 Mo2A
for t E ET and so (4.8) implies ly(t)I TM° E MI

for t E UT. Now (4.7) gives

ly"(t)I AM, + BM + C = M2 .0 -

Thus Iy(t)1, lyt(t)1, ly"(t)I K = max(M0,MI,M2) and

the existence of a solution to (4.6) follows from

Theorem 4.7.
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Finally, suppose in place of (4.7) f satisfies

Bernstein type growth conditions then Theorem 4.7 and

the continuity of the maximum modulus function M(p),

0 p T, will yield our main result.

Theorem 4.9. (Bernstein growth)

Suppose

4.9) If(t,u,p)1 A(t) 11112 + B(t) 1p12 + C(t)

where A(t), B(t), C(t) 0 are functions bounded on

bounded t-sets. Let A,B and C denote the upper

bounds for A(t), B(t), C(t) respectively for t E uT
-Then (4.6) has at least one solution in A2 (UT)

(-BC+(B2C2+AC)1/2)1/2provided 0 < T < 2AC

Proof Fix T with 0 < T < (-BC+(B2C2+AC)1/2)1/2. Let2AC
-y E A2 (UT) be a solution to (4.6)x and suppose the

maximum of fy'(t)I for t E 177T occurs at r. If

r E UT then y s 0. Otherwise r E a UT and so

lys(r)I AT3Iyi (r)12 + HT ly1(r)12 + CT.

Hence this quadratic inequality implies that either

1-(1-4(AT3+BT)CT)1/2
2(AT3+BT)

1+(1-4(AT3+BT)CT) 1/2
or ly1(r)1

2(AT3+BT)

Apply the same reasoning for any r with 0 < r T to

obtain either

1-(1-4(Ar3+Br)Cr) 1/2
lyt(t)I

2(Ar3+Br)

42



or

Since y(0) = 0 and l

1/21+(1-4(Ar3+Br)Cr)im

there exists an r, 0 < r T such that

Also the function

/
increasing function on [0, (-BC+(B2C2+AC)12)1/2]

2AC
in particular

M(r) = max

tElir

and so

1)0(t)1
1+(1-4(Ar3+Br)Cr)112

2(Ar3+Br)

2(Ar3+Br)
r.4.0

1-(1-4(Ar3+Br)Cr) 1/2
1)0(t)I

2(Ar3+Br)

for

for

t E Ur.

h(r) 1-(1-4(Ar3+Br)Cr)112
2(Ar3+Br)

ly'(t)1 1-(1-4(Ar3+gr)cr)1/2
2(Ar3+Br)

(-28C2+2C(B2C2+AC)1/2)1/2
A

Suppose Ur is the largest closed disc where

1-(1-4(Ar3+Br)Cr) 1/2
M(r)

2(Ar3+Br)

If r < T, then for r < y T

M(n) 1+(1-4(AR3+BOC11)1/2 1

2(AR3+BR) 2(AR3+877)

(-2BC2+2C(B2C2+AC)1/2)1/2
A

and this contradicts the fact that M(p)

continuous function of p for 0 p T. Thus

t E lir.

Ely'(t)i 1-(1-4(AT3+BT)CT)1/2 M for t U
2(AT3+BT)
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ly(t)1 TM° = M1 for t E UT.

Hence (4.9) implies

lyn(t)1 Ar.q. + BM(23 + C = M2

and so Iy(t)i, lyt(t)1, ly"(t)I 15, K = max(M0,M1,M2)

and the existence of a solution is established by

Theorem 4.7.

Remark. We can obtain corresponding theorems for the

-inhomogeneous case n = 2. Furthermore we can use the

same ideas of section 4.3 to discuss higher order

problems. An example of this is the following theorem:

Theorem 4.10. Suppose

If(t,u1,....,un_1)10(t)+A1(t)lu1l+....+An_1(t)lun_11

where A(t), ,An-1(t) 0 are functions bounded on

bounded t sets Let A0 .....1A_1 be upper bounds

for Ao(t) , ,A_1(t) respectively for tE UT. Then

the homogeneous initial value problem (4.6) has at
-least one solution in An (UT) provided 0 < T < To

where To is the smallest positive root of

AITn-1 + A2 Tn-2 +....+ An-1T -1 = 0.

4.4 Remarks for Boundary Value Problems in the Complex

Domain

It is also possible to consider "Boundary Value

Problems" in the complex domain. A typical example of

such a problem is:
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fy" = f(t,y,y'), tE UT
4.10) y'(0) = 0 and y(c) = 0; c E

Trivial adjustments in the previous sections proofs

yield

Theorem 4.11. Suppose

If(t,u,p)I A(t)IuI2 + B(t)Ip12 + C(t)

where A(t), B(t), C(t) 0 are functions bounded on

bounded t-sets. Let A,B and C denote the upper

bounds for A(t), B(t), C(t) respectively for t E
-Then (4.10) has at least one solution in A2 (UT)

provided 0 < T < ( -BC+(B 2 iCi2ArAC)1/2 11/2

Remark. As usual we can consider inhomogeneous boundary

conditions and higher order "Boundary Value Problems".

It should also be noted that if the condition y'(0) = 0

in (4.10) is replaced by y'(d) = 0, d E C then

Theorem 4.11 holds as stated with UT = (z:lz-d1 < T).
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V. Weak Solutions to Initial and Boundary

Value Problems

5.1 Introduction

Many physical situations give rise to initial and

boundary value problems of the form

5.1) (n)= f(t.ysY',----,Y ) t E [0,T]
y E B

where in fact f:[0,T] X Rn R is discontinuous. Here

of course B denotes suitable initial or boundary

conditions. In this chapter we study the case where

satisfies the Caratheodory Conditions i.e.

For fixedRn,(Po'Pl""Pn-1)
Pn1) is lebesgue measurable on

[0,T].

For almost all t E [0,T), f(t,.,....,.) is

continuous on Rn.

For notational purposes let LP(0,T), p ?; 1 a real

number, denote the space of lebesgue measurable

T

functions g on (0,T) with fig(t)1Pdt < w. LP(0,T)

T

with norm Ogn =[fig(t)1PdtriP is a Banach Space.
LP 0

By a weak solution to (5.1) we mean a function y E B
n-1which together with its derivatives y', ,y(

) are

absolutely continuous on [0,T] with y(n) E L1(O,T)
(n) (n-1)and Y = f(t,y Y ) almost everywhere on

[0,T1.
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We shall establish, under reasonable physical

assumptions on f, that (5.1) has bounded weak
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solutions. As before we restrict ourselves to the cases

n = 1 and 2. Our analysis is based on the Topological

Transversality Theorem and known results concerning

Sobolev spaces and Nemysky operators.

5.2 Preliminary Notation and Results

Here we introduce some standard notation and

collect together some known facts on Sobolev spaces and

Nemysky operators which we will use throughout the

remainder of this chapter.

First let nLP = LP X LP X... XLP, n factors.

Also let Hk(0,T), k > 0 an integer, denote the space

of all functions u on the interval [0,T] which are

absolutely continuous on [0,T] together with their

derivatives up to the order k - 1 and whose derivative

u(k) (which exists almost everywhere) is an element of

1(0,T). HkL (0,T) with norm

huhk = E Hu(i)H1
j=0 L

is a Banach Space. As usual we let

/18k(0,T) = (u E Hk(0,T), u E B).

For proofs and further information on the following

facts see Royden [28], Funk [12], Funk and Kufner
[13] and Vainberg (35).

Theorem 5.1. Let g be a monotone increasing

absolutely continuous function on [a,b] with

g(a) = c, g(b) = d. If f is a nonnegative measurable

function on [c,(1) then



ff(y)dy = ff(g(x)) g'(x)dx.
a

Theorem 5.2. (Sobolev Imbedding Theorem)Hk(a,b)Ck-1[a,b)is compactly imbedded into

i.e. the imbedding operator j:Hk(a,b) Ck-1[a,b] is

continuous and completely continuous.

Let be a bounded and measurable set in R and

let u(t) = (ul(t), u2(t) , sun(t)), t E O.

Theorem 5.3. Suppose the real valued function

f(t,u/(t),....,un(t)) satisfies the Carat heodory

conditions and for P1"12"'"Pn I there exists a

constant B > 0 and a function g E L1(0) such that

for any u E Rn and almost all t E 0 we have

Pkg(t) + B E lukl
k=1

Then the Nemysky operator F defined by F[111(t) =

f(t,u1(t),...,un(t)) is a continuous operator from

LP1 x....x LPn into L.

Finally let and u be as above and now let the

real valued function fi(t,u1(t),...,un(t)), i=1,...,n

satisfy the Caratheodory Conditions. Now each function

fi generates an operator Fi defined by

Fifuj(t) = f1(t,u1(t),...,un(t)), t 0. Let
F = (F1,....,Fn).

Corollary 5.4. Suppose for Pl'"'"Pn : 1 there

exists a constant B > 0 and a function gi E L1(0)

such that for any u E Rn and almost all t E a we

have
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5.3)

Pkif.(tu_o_idit5.g.(t) + B E lukl
k=1

Then the mapping F is a continuous operator from

LP1 x L1'2 x... x LPn into L1.

5.3 Weak Solutions to First Order Initial Value

Problems

The Sobolev Imbedding Theorem and the continuity of

the Nemysky operator are used to extend Theorem 1.9

for the new class of problems (5.1).

Theorem 5.5. Let f:(0111 X R R satisfy the

Caratheodory Conditions and 0 X 1. Suppose also

for p 1,

5.2) If(t,y)1 A(t) lyIP + B(t)

for bounded functions A(t), B(t) ?. O. Let Ao and

Bo be upper bounds for A(t), B(t) respectively.

Finally we assume that there is a constant K such that

Hyn 1 K for each solution y(t) to
H

ly'

= Xf(t,y), t E [0,Tj
y(0) = O.

Then the initial value problem

fyi

= f(t,y), tE [0,T]
y(0) = 0

has a solution y in H1(0,T).
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Proof As before B denotes the set of functions which

satisfy the initial condition y(0) = O. Let



= (u E H(0,T); Hull K+1) and define

F LP(0,T) -0 L1 (0,T), 0 X 1, byA.

FX(v)(t) = Xf(t,v(t)). Nowis a continuous
/ X

operator from LP(0,T) into LI(0,T) by Theorem 5.3.

We also have the imbedding j:H113(1,T) C[O,T] defined

by ju = u completely continuous by Theorem 5.2. Now

let T:C[0,T] LP(0,T) be the continuous operator

defined by Tu = u. Finally we define
1 1N:1111(0,T) L (0,T) by Ny = y'. Clearly N is linear

and continuous. N is also one-to-one since if Ny = 0

the absolute continuity of y together with the initial

condition yields y E O. To show N is onto let

f(t) E L1 (0,T) and take y(t) = ff(u)du. Clearly

is absolutely continuous, y(0) = 0, y' = f(t) almost

everywhere and y' E L1 (0,T). It follows from Theorem
-11.6 that N is a bounded linear operator. These

operators and their relationships are conveniently

displayed:

FX

H1(0' T) < L(0,T)
B

N-1

Figure 1

1Thus HX = N-1F Tj:V -0 HB(0'T) defines a homotopy. It

is clear that the fixed points of HA are precisely the

solutions to (5.3)X. Now
HX

is fixed point free on

V. Moreover, the complete continuity of j together
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00

T < I du

Ao uP+Bo

we have for each t E [0,T]

Ivt(1-)1 du t T.
Acily(u)fP+B0

Now ly(u)1 = if y'(s)ds1 lyt(s)Ids
0 0

So Ao ly(u)IP + B0 < Ao(I ly1(s)Ids) + Bo
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with the continuity of N-I,
FX

and T imply that the

homotopy Hx. is compact. Now Ho is essential so

Theorem 1.5 implies that HI is essential. Thus

(5.3) has a solution.

We are now in a position to prove our basic

existence theorem for first order initial value

problems.

Theorem 5.6. Suppose f:[0,T] X R R satisfies the

Caratheodory Conditions and (5.2). Then the initial
value problem (5.3) has a solution in H1(0,T) for

since Ao xP + Bo is an increasing function for x 0.

Proof

0

To prove existence of a solution in H1(0,T) we

apply Theorem 5.5. So to establish the a priori bounds

for (5.3)x, let y(t) be a solution to (5.3)x. Then

since

[Xf(t,y)f Ao lyl + Bo



Thus the previous inequality implies

t 00

IV1(u)1 du T < du

A uP+Bo
0 Ao[f Iy'(s)Ids] +Bo 0 °

Theorem 5.1 with g(u) = f ly'(s)Ids yields
0

g(t)
dx du

J Ao xP+Bo
T <

0 Ao uP+Bo
0

So there exists a constant M < 00 such that g(t) M.

Moreover,

ly(t)I g(t) M so f Iy(t)Idt 1, MT.

0

Also (5.2) and the differential equation yield

flyt(t)Idt
Ao[f ly(t)IPdt] + Bo T a M/

0 0

for some constant
M1 < 00. So Hyfl K = MT + MI,

and the existence of a solution to (5.3) is

established.

Theorem 5.5 also holds for the inhomogeneous

initial condition y(0) = r, via ideas of Theorem

1.10. So trivial adjustments in the proof of Theorem

5.6 yields:
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Theorem 5.7. Suppose f:[0,T] X R R satisfies the



Caratheodory Conditions and (5.2). Then the initial

value problem

[y'

= f(t,y), t E[O,T]
y(0) = r

00

has a solution in H (0,T) for each T <
du

Example 5.1. (Electrical Circuits)

Lets consider an electrical circuit which contains

a resistance R, a condenser of capacitance C, a

switch S and a generator E. Suppose the switch is

closed at t = O. Then Kirchoff's, Ohm's and Coulomb's

Laws imply that the RC circuit satisfies

R + 1

dt 7 q(t) = E(t,q)

where q(t) denotes the charge on the capacitor at time

and E(t,q) the value of the voltage impressed on

the circuit by E.

We also have g") = go where go is the charge

on the capacitor at t = O. Thus we are interested in

the initial value problem

I

al
=

1 E(t,q)
dt RC g + R

g") = go

Suppose fE(t,q)1 E A(t)I0 + B(t) for bounded

functions A(t), B(t) 0 and that E(t,q) satisfies

the Caratheodory conditions. Consequently since

5.4)

J
As__ .

Aoq+Bo
Igoi

Theorem

co,

5.7 implies that

for any constants

Ao up+Bo
frf
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Ao R 0,

(5.4) has a solution in



H1(0,T) for any T > O. On the other hand suppose

IE(t,q)I E A(t) Iqlm + B(t), m = 1,2,... .

for bounded functions A(t), B(t) 0 and that E(t,q)

satisfies the Caratheodory conditions. Then Theorem

5.7 implies that (5.4) has a solution in H1(0,T)

for any T < T00 where T is as described in Example
1.2.

5.4 Weak Solutions to Boundary Value Problems

In this section we examine problems of the form

5.5) fy" = f(t,y,y'), t E[0,1]
y E B

where f is defined on [0,1] X R X R. Here B

denotes either the boundary conditions

y(0) = 0, y(1) = 0

or

- ay(0) + 8y'(0) = 0;a,,8 > 0

ay(1) + by'(1) = 0;a,b > O.

We again use the results of Section 5.2 and the

Topological Transversality Theorem to extend Theorem

1.9 for the class of problems described above.

Theorem 5.8. Let f:[0,1]XRXR-.R satisfy the

Caratheodory Conditions and 0 E X E 1. Suppose also

for m 1

If(t,y,p)1 E A(t)flyim + + B(t)

where A(t), B(t) 0 are bounded functions. Let A

and B be upper bounds for A(t), B(t) respectively.

Finally we assume that there is a constant K such that
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Hyll 2 K for each solution y(t) to

5.5)x

1C [0,T]

ty"

= Xf(t,y,y'), tE [0,1]

y E B.

Figure 2

tm(o,i) X L2(0,1)

X

LH2(0 1) 1(0,1)
B '
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Then the boundary value problem (5.5) has a solution

y in H2(0,1).

Proof Let V = (u E H/23(0,1):llull 2 K + 1) and define

Fm(0,1) X2(0,1) L1(0,1), 0 X $, 1, by

Fx(v,v')(t) = Xf(t,v(t),v'(t)). Now
-1 X

is a

continuous operator from Lm(0,1) X L4(0,1) into
1L (0,1) by Theorem 5.3. Again the imbedding

j
2:HB(0,1) C1 [0,1] defined by ju = u is completely

continuous by Theorem 5.2. We also let

T:C1 [0,1] Lm(0,1) X L2(0,1) be the continuous

operator defined by Tu (u,u') Finally we define
2N:HB(0,1)1(0,1) by Ny = y". It is easy to check

that N is linear, onto and continuous. To show N is
one-to-one we observe that the boundary conditions (i)

or (ii) imply that y' vanishes at least once in

[0,1]. So if Ny = 0 the absolute continuity of

and y' with the above observation implies y E 0.

Thus N-1 is a bounded linear operator by Theorem 1.6.

These operators and their relationships are conveniently

displayed:
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Thus H, = N-1F,Tj defines a homotopy
A A

2Hx:V H(0,1). It is clear that the fixed points of
H, are precisely the solutions to (5.5)x. Now Hx is

A

fixed point free on V. Moreover, the complete

continuity of j together with the continuity of N-1

and T imply that the homotopy Hx is compact.
X

Now Ho is essential so Theorem 1.5 implies that H1
is essential. Thus (5.5) has a solution.

Next sufficient conditions on f are given which

imply a priori bounds for solutions to (5.5). Let

y(t) E 1111(0,1) be a solution to (5.5). Suppose

[y(t)]2 has a maximum at t0E(0,1). Then from

elementary calculus yi(to) = O.

Theorem 5.9. Suppose f satisfies the following:

f1

There is a constant M ., .. 0 such that
yf(t,y,0) > 0 for 1y1 > M.

yf(t,y,p) is lower semicontinuous on
[0,1] X R X R.

Then any solution y to (5.5) satisfies

1y(t)1 M, t E[0,1].

Proof We first show that lyi cannot have a nonzero

maximum at 0 or 1. This is true automatically if y

satisfies (i). On the other hand suppose y satisfies

(ii) and that ly1 has a nonzero maximum at O. Then

y(0) y'(0) O. However, y(0) y'(0) = [y(0)]2 > 0,

a contradiction. A similar argument works for the case

t = 1. We conclude that ly1 can only have a nonzero

maximum at to E(0,1). Now assume the maximum of lyl

is at to E (0,1), so y'(to) = O. Suppose

1y(t )1 > M. Then from (5.7),

5.7)

5.8)



y(to) f(to, y(to), 0) > O. The continuity of y and

Y' together with (5.8) implies there exists a

neighborhood Nt of (to,y(to),0) such that

5.9) y(t)f(t,y(t),y'(t)) >0 for (t,y(t),y'(t)) ENt.

On the other hand y'(t) = f y"(s)ds and so Fubini's

to

Theorem implies

y(t) = y(to) + f(t - u) y"(u)du.

to

Thus

y2(t)=y2(t0)+2 (t-u){y(u)f(u,y(u),y' (u))+[y. (u)]2]du.

Since lyl has a maximum at to then for t near to

I(t-u)[y(u)f(u,y(u),y'(u))+[y'(u)]21du 1.5 0

to

which contradicts (5.9). Thus ly(t0)1 M.

We now prove our basic existence theorem for second

order boundary value problems.

Theorem 5.10. Suppose f:(0,1)XRXR-olt satisfies

the Caratheodory Conditions, (5.6), (5.7) and (5.8).

Then the boundary value problem (5.5) has at least one

solution in H2(0,1).

Proof To prove existence of a solution in H2(0,1) we

apply Theorem 5.8. To establish a priori bounds for

let y(t) be a solution to (5.5)x. If X = 0
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we have the unique solution y E O. Otherwise for

0 < X4 1, yf(t,y,0) > 0 for fyI > M implies

Xyf(t,y,0) > 0 for ly1 > M. Thus Theorem 5.9

implies IyI M for any solution y to (5.5)X
and

1

for each X E[0,1]. Hence f ly(s)Ids M. Finally we
0

obtain a priori bounds on derivatives of Y- We have

already observed that boundary conditions (i) or (ii)

imply that y' vanishes at least once on [0,1], so

each point t E[0,1] for which y'(t) # 0 belongs to

an interval [,v] such that Y' maintains a fixed

sign on Eg9vi and 37'40 and/or y'(v) is zero.

Assume that y'(g) = 0 and y' 0 on [goll. Thus,

with Bo = AMm + B, Ao = A where A and B denote

the upper bounds for A(t), B(t) respectively and

since

Otf(t,y0,1)1 Ao(y')2 Bo,

we have

f v'(u)IY"(u)I du 2M.
j A [y'(g)]24430

For put

5.10) [Y'(g)]2 l[y'(g)]21 = 211y1(s)y"(s)ds1

A

2 f '(s)ly"(s)Ids,

A

so Ao[ '(u)]2 + Bo 2A0 I y'(s)ly"(s)Ids + Bo.

A

Thus the previous inequality implies



2 Ao y'(u)ly"(u)1 du 4A0M.

g 2Aoly'(s)ly"(s)Ids+B0

0

Theorem 5.1 with g(u) = 2A0 5/1(s)ly"(s)Ids yields

g(t)
du

u+B tc. 4A M
o '

and so
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1

fIy'(s)Ids
MI for each solution y to (5.5)X and

0

for each X E[0,1]. Also (5.6) and the differential

equation yields

1 1

I ly"(Oldt A0f1y'(t)I2dt + B A M2 + B = M2'o o 1 o
0 0

So Hyll 2 K = Mo + M/ + M2 and the existence of a

solution to (5.5) is established.

g(t) B0(e4A014 1).

t

[y'(t)]2 .5, 2f Y'(s)

Moreover (5.10) yields

Bo,e4A M 1)
IY"(s)Ids --k

Ao

and so

iy,(01 e "11/2 = M1.(e4A0M
Ao 1

The other cases are treated similarly and the same bound

is obtained. Thus ly'l MI and in particular



Our arguments in Theorem 5.9 only uses (5.7),

(5.8) to conclude that y(t)f(t,y(t),y'(t))+(y'(t)]2>0

in a neighborhood of to where ly(t0)1, to E(0,1), is

the maximum of lyl; so in fact we have also shown the

following theorem:

Theorem 5.11. Suppose f:[0,1]XRXR-PR satisfies

the Caratheodory Conditions and (5.6). Suppose in

addition that there is a constant M 0 such that

yf(t,y,p) + p2 > 0 for lyi > M.

then the boundary value problem (5.5) has at least one

solution in H2(0,1).
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Extending the ideas of Theorem's 1.10, 5.8 and

5.10 we obtain:

Theorem 5.12. Suppose f satisfies the Caratheodory

Conditions and (5.6), (5.7), (5.8). Then the boundary

value problem (5.11) has at least one solution in

H2(0,1).

Example 5.2 (Heat Conduction)

Suppose V is an isotropic heat conducting medium

We also have analogue

problem

5.11)

results for the inhomogeneous

t E[0,1]

y E

where B denotes either the boundary conditions

(iii) y(0) = r, y(1) = s

or

(IV) - ay(0) + £y'(0) = r; a,h > 0

ay(1) + by'(1) = s; a,b > O.



Now if V is a rod of unit length and insulated

laternal surfaces then the steady state problem is
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with S denoting the surface and n the outer normal.

We define u = u(x,t) to be the temperture at location

x E V and time t > 0. Also c = c(x,u) denotes the

specific heat, p = p(x,u) the density and k = k(x,u)

the thermal conductivity. Now the Divergence Theorem

and Fourier's Law together with conservation of energy

yields the heat equation

a (cp.) = div(ku) + h; x E v, t > 0

where h = h(x,u) represents the rate of heat

generation by internal sources.

We now set up boundary conditions which describe

the heat transfer across S. Suppose the surroundings

of V are kept at a time independent temperature and

that heat radiates into the surroundings (according to

Newton's Law of Cooling) at a rate proportional to the

temperature difference between S and its surrounding

environment. The energy balance of heat flow across S

together with Fourier's Law yields

z(x,u)u(x,t) + a(x,u) au(x,t) = g(x); x E S, t > 0an

where z 0, a ?: 0 and a + z > 0.
We wish to find a steady state solution (temperature

distribution) y = y(x). It will satisfy

iAy

. - ilt.pk. y + h], x E v

z(x,y)y(x) + a(x,Y) 511k)1° = g(x), x E S.



1

Y " 22 - 177)477 [kx(x,y)y' + ky(x,y)(y')2+h(xsY)]

z(0,y(0))y(0) - a(0,y(0))y'(°) = g(0)

z(1,y(1))y(1) + a(1,y(1)))7'(1) = g(1).

We will assume the case where z,a are independent of

temperature and set a = z(0) > 0, 4 = a(0) > 0,

a = z(1) > 0, b = a(1) > 0, r = g(0) and s = g(1).

So our problem reduces to

y" = - 177.7k7.5.4kx y'+ky(y1)2+h(x,y)]Ef(x,y,y')

5.12) fay(0) - y'(0) = r; a13 > 0

ay(1) + by'(1) = s; a,b > 0.

Now we make the following assumptions on h and k:

kx(x,y), k (x,y) are continuous and

bounded for (x,y) E [0,1] X R. Also suppose

5.13) for (x,y) E [0,1] X R, k(x,y)

is continuous and k(x,y) in > 0

where m is a constant.

5.14)

5.15) yh(x,y) < 0 for large lyl.

5.16) IM(:)y) h(x,y) is lower semicontinuous.

The assumption (5.15) that yh(x,y) < 0 for

large lyl means that the internal heat generation

h(x,y) opposes large temperature extremes i.e. if

y > 0 and lyl large, then h(x,y) < 0 so heat is

removed from the rod by internal sources and the

ISuppose

there are constants A,B > 0 such

that Ih(x,y)1,..5 Alyia + B, xE[0,1],

for some constant a?.. 1. Suppose also h

satisfies the Caratheodory Conditions.
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temperature tends to drop.

Now assumptions (5.13), (5.14), (5.15), (5.16)

together with Theorem 5.12 implies that (5.12) has

at least one solution in 112(0,1).

5.5 Weak Solutions to Systems of First Order Initial

Value Problems

We now establish existence theorems for the class

of problems described by

5.17) ly' = f(t;y), t E[O,T]

y(0) = 0

where f:[0,T) X Rn Rn is defined and satisfies the

Caratheodory Conditions i.e.

For fixed = (Y11---,Yn)ER1, f(;y) is

measurable on [0,T].

For almost all t E[O,T), f(t;) is continuous

on Rn.

Theorem 5.13. Let f;[0,T] X Rn Rn satisfy the

Caratheodory Conditions and 0 X 1. Suppose also

for p 1

5.18) If(t;y)1 A(t) ly1/71 + B(t)

for bounded functions A(t), B(t) O. Let Ao and

Bo be upper bounds for A(t),B(t) respectively.

Finally we assume that there is a constant K such that

IlyIl/ K for each solution y(t) to

5./7)
ty'

= Xf(t;y), t E[O,T]

y(0) = 0.
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Then the initial value problem (5.17) has a solution

in H1(0,T).

Proof As before B denotes the set of functions which

satisfy the initial condition y(0) = 0. Let

-17 = (LIEH(0,T):Hull K+1) and define

F:nLP(0,T) nL1(0,T), 0 -.5 1, by

Fx[v](t) = kf(t;v(t)). Now Fx is .a continuous

operator from nLP(01T) into nL1(0,T) by Corollary

5.4. Let T:C[0,11 nL(0T) be defined by

Tu = , un) where u = (u1, ,un).T is

continuous since

IlTull = IN1IILp +...+ DUll niluflo T''.

nLP n LP

We also have the imbedding j:H11(0,T) C[O,T] defined

by ju = u completely continuous by Theorem 5.2.

Finally we define N:H/11(0,T) nL1(01T) by Ny = y'.
-It follows from Theorem 1.6 that N1 is a bounded

linear operator.

FX

1 LI(0,T)HB(0,T)
N-1

Figure 3

1Thus HX = N-IFXTj:V HB(0,T) defines a homotopy. It

is clear that the fixed points of HX
are precisely the

solutions to (5.17)x. Thus HX
is fixed point free on
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V. Finally since Hx is compact and Ho is essential

we have from Theorem 1.5 that1 is essential.

Thus (5.17) has a solution.

We have the exact analogue of Theorem 5.6 for

systems of first order initial value problems.

Theorem 5.14. Let f:(0,T) X Rn Rn satisfy the

Caratheodory Conditions and (5.18). Then (5.17) has

a solution in H1(0,T) for T <du
0
Au +B
o o

Proof To prove existence of a solution in H1(0,T) we

apply Theorem 5.13. To establish the a priori bounds

for (5.17)x, let y(t) be a solution to (5.17)x.

Now since y(0) = 0, each point t for which y(t) # 0

belongs to an interval [a,t) in [°,11 such that

ly(s)I > 0 on a < s t and y(a) = 0. Thus for any

point t where y(t) # 0

fily(s)l'Ids = "(s)",(s)Ids f ly1(s)Ids
ly(s)1

a a a

and since IXf(t;y)1 AolyIP + Bo we have

oo

5ilY(s)111 ds I du

a Ao Iy(s)IP+Bo 0 AouP+8o

Now Iy(s)I = Ifly(u)I'dul illy(u)1'I,
a a

SO Aoly(s)IP + Bo Aoffily(u)l'IduIP + Bo.



Consequently the previous inequality implies

Ilv(s)I'l ids T < f du

A uP+B
a LAofilly(u)l'Idu) +Bo

0 o

a

Theorem 5.1 with g(s) = fily(u)i'ldu yields
a

g(t) oc,

dx du
I

AoxP+8o .'"<fAuP+8o0 0 o

So there exists a constant M < 00 such that g(t) 5, M.

Moreover,

ly(t)I = Ifly(u)I'dul 4 g(t) M and in particular
a

fly(t)Idt
:5, MT. Also (5.18) and the differential

0

equation yields

jly'(Oldt
Ao[fly(t)IPdt) + Bo T E MI

0

for some constant M/ < 00. So Hyll K = MT + MI and

the existence of a solution to (5.17) is established.

Analogue results hold for the inhomogeneous initial

condition y(0) = r. Extending the ideas of Theorem's

1.10, 5.13 and 5.14 we obtain:
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Theorem 5.15. Suppose f satisfies the Caratheodory

Conditions and (5.18). Then



ty'
= f(t;y), t [0,T]

y(0) = r
has a solution in H1 (0,T) provided

00T< fdu
(ri AouP+Bo
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VI. Third Order Boundary Value Problems

6.1 Introduction

We are interested in this chapter in studying the

existence of solutions to third order boundary value

problems of the form

6.1) fym = f(t,y1y1y"), t E[0,1)
y E B

where f:(0,1] X R3 R is continuous. Here

denotes suitable boundary conditions.

In section 6.2 results of Granas, Guenther and Lee

[15], [16] on second order boundary value problems are

extended so that existence theorems can be obtained for

a certain class of third order boundary value problems.

The existence theorems obtained in section 6.2 however

are rather specialized. In section 6.3 by placing

different types of monotonicty and growth conditions on

the nonlinearity f, we obtain new and interesting

existence theorems for a wide class of problems.

6.2 The Bernstein Theory of the Equation

YM = f(tlYtYe9Y")

In this section we extend the Bernstein Theory and

results of Granas, Guenther and Lee [15] to discuss

problems of the form (6.1). Fix a point c in [0,1).

Let B denote either the boundary conditions

y(c) = 0, y1(0) = 0, y1(1) = 0

y(c) = 0, y"(0) = 0, y"(1) = 0

Or
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(iii) sy(c) + dy'(c) = 0, s # 0

- ay'(0) + £y"(0) = 0, a,h > 0

ay'(1) by"(1) = 0, a,b > 0.

Theorem 1.9 was proven for two point boundary

value problems; however, no change in the proof is

necessary if we consider multipoint boundary value

problems. Hence specializing Theorem 1.9 for the case

n = 3 we obtain:

Theorem 6.1. Let f:(0,1) X R3 R be continuous and

0 :5, X 1. Suppose there is a constant K such that

11013 K for each solution y(t) to

tYm Y' = X[f(t'Y'Yloy") Y'], t E[0,1)
6.1)X y E B.

Then the boundary value problem (6.1) has at least one

solution in C3[0,1).

Next sufficient conditions on f are given which

imply an a priori bound on any solution y and its

derivative y' to (6.1). Suppose y(t) is a solution

to (6.1) and (y'(t)]2 has a maximum at to E (0,1).
Then

6.2) y"(to) = 0 and y'(to) f(to,y(to), y'(to), 0) :5, 0.

Theorem 6.2. Suppose there is a constant M 0 such

that

pf(t,u,p,O) > 0 for Ipl > M,

and (t,u) in (0,1] X R.

Then any solution y to (6.1) satisfies

ly.(t), M for t E[0,1].

Furthermore, there exists a constant MI < 00 such that

ly(t)I 241 for t E[0,1].
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In fact M1 = H if y satisfies (i) or (ii) and

Mi = M(1 + 141) if y satisfies (iii).

Proof Suppose first ly'l achieves a maximum at

to E (0,1). Assume Iy'(t0)1 > M. Then

y'(t0)f(t0,y(t0),y'(t0),0) > 0, which contradicts

(6.2). Thus lyt(t0)1 M.
We next show that ly'l cannot have a nontrivial

maximum at 0 or 1 if y(t) satisfies (i) or

(iii). This is trivially true if y satisfies (i).

Now suppose y satisfies (iii) and the maximum of

157'1 occurs at 0. Then y'(0) y"(0) 0. However,

from (iii) y'(0) y"(0) = [y'(0)]2 > 0, a

contradiction. A similar argument works for the case

t = 1.

Finally we show that if y is solution to (ii)

and if 1y11 assumes its maximum at to = 0 or to = 1

then lyt(t0)1 .15 M. Suppose y satisfies (ii) and

ly'(0)1 is the maximum value of ly'I. If we assume

1571(0)1 > M, then y'(0) y"(0) > 0. Now if y'(0) > 0

then y"'(0) > 0, so y"(t) = f ym(z)dz is strictly
0

increasing near t = 0. We then have y"(t) > y"(0) = 0

for t > 0 and near zero and so ly'(0)1 = y'(0) is

not the maximum of ly'I on [0,1], a contradiction.

We obtain a similar contradiction if we assume

y'(0) < 0. Thus ly'(0)1 M. Now if y satisfies

(ii) and Iy'(1)1 is the maximum value of ly'l, then

we can show in the same way that 15,1(1)1 M. Hence

157'(t)1 M for t E[0,1]. Also if y satisfies (i)

or (ii), ly(t)1 = If yi(z)dzi M while if

satisfies (iii), ly(t)I If y'(z)dzi + ly(c)I

m(1 ..._ for t E[0,1]. This proves Theorem 6.2.
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7 1

We couple the monotonicity condition in Theorem

6.2 with the analogue of the Bernstein growth condition

to obtain our basic existence theorem.

Theorem 6.3. Let f:[0,1] X R3 -o R be continuous.

Suppose there is a constant M 0 such that

pf(t,u,p,O) > 0 for Ipl > M,

and (t,u) E[0,1] X R.

Suppose that

If(t,u,p,q)1 A(t,u,p) q2 + B(t,u,p)

where A(t,u,p), B(t,u,p) 0 are functions

bounded on bounded (t,u,p) sets.

Then the boundary value problem (6.1) has at least one

solution in C3[0,1].

Proof To prove existence of a solution in C3[0,1] we

apply Theorem 6.1. To establish the a priori bounds

for (6.1)x, let y(t) be a solution to (6.1)x. If

X = 0 we have the unique solution y = O. Otherwise

for 0 < X :5, 1, pf(t,u,p,O) > 0 for Ipt > M implies

Xpf(t,u,p,O) + (1 - X) p2 > 0 for IPI > M. Thus

Theorem 6.2 implies ly'l M for any solution y to

<Furthermore, there exists a constant M
1

independent of X, such that IYI M1 for any

solution y to (6.1)x. Finally we obtain a priori

bounds on y" and 57". However, we first observe that

each of the boundary conditions (i), (ii) or (iii)

implies that y" vanishes at least once on [0,1]. We

also have

If(t,u,p,q)1 A q2 + B

where A and B denote upper bounds of A(t,u,p),

B(t,u,p) respectively for

(t,u,p) E[0,1] X [-Mi,Mi] X [-M,M], and so

IXf(t,u,p,q) + (1 - X) pl A q2 + (B + M).



Now each point t (0,1] for which y"(t) * 0 belongs

to an interval [g,v] such that y" maintains a fixed

sign on [g,v] and y"(g) and/or y"(v) is zero.

Assume that y"(g) = 0 and y" 0 on [g,v]. Let

Ao = A,Bo = B + M. Then

IXf(t9Y,Y',Y") + (1 - X)y'l A0(y")2 + Bo,

and the differential equation

ym = Xf(t,y,y',y") + (1 - X)y' yields

2 Ao y" y"

2
:5 2 A y".

Ao(y") + Bo

Integrating for g to t we obtain

o(y"(t)]2+BoLn
Bo

4 Ao M

and so

rofe4A0M 1J11/2
M2.

o

The other cases are treated similarly and the same bound

is obtained. Thus ly") M2 for each solution y to

With these bounds the differential equation

yields a priori bounds independent of X for lyml
i.e. lyml max(If(t,y,p,q)) + II) E M3 where the

maximum is computed over

[0,1] X [-MI,M1) X [-M,M] X [-M2,M2]. Thus 1y13 K =

max(M,M1,M2,M3) and the existence of a solution to

(6.1) is established.

Corollary 6.4. Let f:(0,1) X R3 R be continuous.

Suppose there is a constant M 0 such that

pf(t,u,p,O) 0 for Ipl > M,

and (t,u) in (0,1) X R.

Suppose that

If(t,u,p,q)I A(t,u,p)q2 + B(t,u,p)

where A(t,u,p), B(t,u,p) 0 are functions
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bounded on bounded (t,u,p) sets.

Then the boundary value problem (6.1) has at least one

solution in C3[0,1].

Proof Consider

6.3) fYrn = fn(t,Y,Y',y"), t Et0,11
y E B

where fn(t,y,y',y") = f(t,y,y',y") + XL for

n = 1,2,... . Clearly pfn(t,u,p,O) > 0 for IPI > M

and

Ifn(t,u,p,01 A(t,u,p)q2 + (B(t,u,p) + p).

Apply Theorem 6.3 to (6.3) to obtain solutions yn

to (6.3) for n = 1,2,... . In view of the previous

monotonicity and bound conditions on fn(t,u,p,q) and

the proof of Theorem 6.3 we also have lynI3 K for

some constant K independent of n. By Theorem 1.7

there is a subset N of the natural numbers and a

function y E c2 so that Iyn - yI2 -0 0 as n co in

N. If G(t,z) is the Green's function for (L,B)

where Ly = yr"' - y' we have

1

yn(t) = I G(t,z)(fn(z,yn(z),y'll(z),yn(z))-y:1(z))dz
0

1

IG(t,z)Ef(z,yn(z),),
(z),),:.:(z)).44y1:1(z)-y(z)]dz.
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Remark. Suppose the boundary conditions (i), (ii) or

(iii) were replaced by

0

Let n 00 though N to obtain

1

Y(t) = f G(t,z)[f(z,y(z),y'(z),y"(z)) - y'(z)]dz.
0

Thus y E C: and y satisfies y"= f(t,y,y',y").
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y'(0) = 0, y"(1) = 0

y'(1) = 0, y"(0) = 0

fixed point of [0,1]. It follows easily

from an analysis similar to the one above that Corollary

6.4 holds with y satisfying either (iv) or (v).

To conclude this section we examine the

inhomogeneous boundary value problems,

6.4) lym f(t,y,y',y"), t E[0,1]
y E B

?NJ

where B denotes either the boundary conditions

y(c) = r, y'(0) = y'(1) = T

or

sy(c) + dy'(c) = r, s * 0

-ay1(0) + 4y"(0) = e, a,h> 0

ay1(1) + by"(1) = T, a,b > 0.

Here c is a fixed point of [0,1]. We now establish

the existence of a solution (6.4) with f satisfying

the same hypotheses as in Theorem 6.3.

Theorem 6.5. Let f:[0,1] X R3 R be continuous.

Suppose there is a constant M 0 such that

pf(t,u,p,O) 0 for Ipl > M, and (t,u) in

[0,1] X R.

Suppose that

If(t,u,p,q)1 A(t,u,p)q2 + B(t,u,p)

where A(t,u,p), B(t,u,p) 0 are functions

bounded on bounded (t,u,p) sets.

Then the boundary value problem (6.4) has at least one
3solution in C [0,1].

(iv) y(c) = 0,

or

(v) y(c) = 0,

where c is a



Proof Consider the family of problems

tym
=_Xf(t,y,y',y"), 0 X 1

y E B.

The existence of a solution in C3[0,1] follows

immediately from Theorem 1.10 once a priori bounds

independent of X are established for solutions y to

To establish a priori bounds for (6.4)x, let

y(t) be a solution to (6.4)x. We assume at first that

pf(t,u,p,O) > 0 for IpI > M and (t,u) in

[0,1] X R. Now if X = 0 we have a unique solution,

and thus ly'(t)I L for some constant L < 00.

Otherwise for 0 < X I, pf(t,u,p,O) > 0 for Ip1 > M

implies Xpf(t,u,p,O) > 0 for IPI > H. If

satisfies (vi) it follows immediately from Theorem

6.2 that

Iy'I Mo = max(M,I/I, ITI).

On the other hand if y satisfies (vii) we have

Iy'iMi = max<M,

To see this suppose assumes its maximum at

t = O. Then Y(0) y"(0) 0 so

0 y'(0) k y"(0) = a[y'(0)]21- 11La '(0)

and consequently ly'(0)1 Ill. Likewise,

ly'(1)1 III if ly'l achieves its maximum at t = 1.
a

Thus, ly'l M2 = max(M0,MI,L) for any solution y to

Furthermore there exists a constant M3'
independent of X, such that 15,1 M3 for any

solution y to(64X) A priori bounds, independent

of X, for y" and y" follow exactly as in the proof

of Theorem 6.3 once we observe that

ly"(01 K,
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K 0 a fixed constant independent of X., for some

point A E [0,1]. Thus existence of a solution to

(6.4) follows from Theorem 1.10.

Now assume pf(t,u,p,O) ?; 0 for Ipl > M and

(t,u) in [0,1] X R. The existence of a solution in

this case follows by an argument similar to Corollary

6.4.

Example 6.1 (Sandwich Beam)

Beams formed by a few lamina of different materials

are known as sandwich beams. In the analysis of such

beams Krajcinvic [22] found that the distribution of

shear deformation 0 is governed by the differential

equation

Om - k2(x,0)4/' + a(x,0) = 0.

Here k2 # 0. For further information on k2 and a

see Krajcinvic [22].

For the case of free ends, the condition of zero

shear bimoment at both ends leads to the boundary

condition 4/'(0) = 0'(1) = 0. Also symmetry

considerations yields 4/(1/2) = 0. Thus we are

interested in solving the boundary value problem

6.5) forn = k2(x,0)4/' - a(x,0). xE[0,1]
0'(0) = 0'(1) = 0(1/2) = 0

Now we make the following assumptions on k and a:

Suppose k2(x,0) and a(x,0) are continuous functions

on [0,1] X R. In addition, suppose there exists a

constant L < 0.0 such that

I a5(x.0) I < L
lk-(x,01

for (x,O) E [0,1] X R.
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Then 1,'f(x,0,0',0) = 4/'(k20' - a) > 0 for WI > L

and (x,0) E[0,1] X R, and so Theorem 6.3 implies

that (6.5) has at least one solution in C3[0,1].



6.6)

If(t,u,p,q)1 [A(t,u)Ipi + B(t,u)][C(t,u)1(41 + D(t,u)]
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6.3 Another Approach to Third Order Boundary Value

Problems

In this section we place essentially different

types of monotonicity and growth conditions on the

nonlinearity f to obtain existence theorems for a wide

class of third order problems. We consider problems of

the form

fy"

= f(t,y.Y',Y"), t E[0,1]
y E Bo

where f:[0,1] X R3 R is continuous. Here Bo
denotes either the boundary conditions

y(0) = 0, y(1) = 0, y'(0) = 0

y(0) = 0, y'(0) = 0, y'(1) = 0

or

-ay(0) + £y'(0) = 0, a,.8 > 0

ay(1) + by1(1) = 0, a,b > 0

y"(0) = 0.

Remark. It should be noted here that many of the

boundary conditions in section 6.2 will also be

considered in this section. The behaviour of the

nonlinearity f will determine which existence theorem

to use.

The following theorem, although not the main result

in this section, is a powerful existence theorem in its

own right.

Theorem 6.6. Let f:[0,1] X R3 -+ R be continuous and

0 X $. 1. Suppose



where A(t,u), B(t,u), C(t,u), D(t,u) 0 are functions

bounded on bounded (t,u) sets. Finally, we assume

that there is a constant M such that

ly(t)I M, t E[0,1)

for each solution y(t) to

lym
= Xf(t,y,y',y"), t E[0,1]

y E Bo.

Then the boundary value problem (6.6) has at least one

solution in C3[0,1].

Proof To prove existence of a solution in C3[0,1] we

apply Theorem 1.9. To establish a priori bounds for

let y(t) be a solution to (6.6)x. All that

remains is to obtain a priori bounds for Y'iY" and

ym. We first observe that boundary conditions (viii),

(ix) or (x) imply that y" vanishes at least once on

[0,1]. We also have

If(t,u,p,q)1 [Alp' + + D]

where A,B,C and D denote upper bounds of A(t,u),

B(t,u), C(t,u), D(t,u) respectively for

(t,u) E[0,1] X [-M,M] and so

1Xf(t,y,y',y")I (Aly'l + B)(Cfy", + D).

Now each point t E[0,1] for which y"(t) # 0

belongs to an interval [g,v] such that y" maintains

a fixed sign on [g,v] and y"(g) and/or y"(v) is

zero. Assume y"(g) = 0 and y" 0 on [,v]. Then

the differential equation yields

<Cy+D toy', + B.

Also since y" 0 on [g,v] we have y' increasing

on so in particular 571(s) y'(g) for

6.7)
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s E[11,v). At this stage of the proof the argument

breaks up into two cases, 5,1(1) ?; 0 and y'(g) < 0.



Assume at first y'(1) 0, and so ys(s) ?. 0 for

S Ekt,v1. It follows from (6.7) that

_L
Cy"x-44)

L_ E ACy' + BC

and so integrating from m to t we obtain

ly"(t)1 E [exp(2ACM + BC) - 1] = H.

On the other hand assume y'(j1) < O. Again the argument

breaks up into two subcases, y'(s) E 0 for s E[U,v]
or there exists r E(0,t) such that y'(r) = 0 and

yi(s) > 0 for s E(r,v]. Suppose at first y'(s) E 0

for s E[11,v], then (6.7) implies

Cy"ID - ACy' + BC

and so integrating from IA to t yields

iy"(t)1 mo,

as before. Finally suppose there exists r E(11,t) such

that y'(r) = 0 and yt(s) > 0 for sE(r,v], then for

REIg,r], (6.7) implies

ECy +D - ACy' + BC,

which yields ly"(r)1 E M. So for s E[r,v], (6.7)

again implies

Cy+D E ACy' + BC,

and thus

[CM+D]exp(2ACM+BC)-Do
ly"(t)I = HI.
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Thus ly"(t)i m/. The other cases are treated

similarly and the same bound MI = max(M0,141) is



obtained. Thus ly"1 :5, M1 for each solution y to

(6.6) Now if y satisfies (viii) thenk.

ly1(t)1 = If y"(z)dzI .5 M1,

0

while if y satisfies (ix)

1

lyt(t)I = if y"(z)dzI MI.

Finally if y satisfies (x)

ly1(01 if y"(z)dzi + ly1(0)1 MI + = M.
0

Thus ly'l M2 for each solution y to (6.6)x. With

these bounds the differential equation yields a priori

bounds independent of X for iymp i.e.

lyml max(If(t,u,p,q)1) s M3 where the maximum is

computed over [0,1] X [-M,M] X [-M21M2] X HM1,1'11*
.Thus 1y13 K = max (M,M1,M2,M3) and the existence of
a solution to (6.6) is established.

For notational purposes, let (66)(viii) denote

the boundary value problem ym = f(t,y,y',y"), tE[0,1],
with Y satisfying (viii). Similarly, define

(66(x) .
) and (6.6) Next sufficent conditions on

i (x)
f are given which imply a priori bounds on any solution

y(t) to(6.6 .6)( )
) (6(viii)' or (6.6)ix (x);

Suppose y(t) is a solution to (6.6) and [y(t))-

has a maximum at to E(0,1). Then y'(to) = 0 and

y(to) y"(to) 0.
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Theorem 6.7. Suppose there is a constant M 0 such

that
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u'( )[f(z,u(z),u'(z),u"(z)) + L(u'(z))n u"(z)]dz >0
0

for lu(t)1 > M, where L and n > -2 are constants,

with u E C2[0,1] and u'(0) = O.

Then any solution y to (6.6) or (ix)(viii)
satisfies

ly(t)I M for t E[0,1].

Proof Suppose Iyi achieves a positive maximum at

to E (0,1), then y'(to) = O. Assume Iy(t0)1 > M,

and so

to

[y'(z)ym(z) + L(y'(z))n+ly.(z)lciz > 0.

Integration by parts together with yi(to) = 0 yields

to

- I (y"(z))2 dz > 0,
0

a contradiction. Thus, ly(t0)1 M.

At this stage we divide the proof into two cases.

Suppose first y is a solution to (6.6) (viii). If

Iy1 assumes its maximum value at either t = 0 or

t = 1 then trivially ly(t)I M for t E[0,1]. So

conclusion of theorem follows for (6.6) Now

suppose y is a solution to (6.6)(ix) If y assumes

its maximum value at t = 0 then trivially ly(t)I M

for t E[0,1]. On the other hand suppose ly1 achieves

its maximum value at t = 1. Suppose Iy(1)1 > M, and

SO

1

(z))n+lyny'(z)yrn(z) + L(y' (z)idz >0
0

which yields
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1

- f [y"(z)]2dz > o,

a contradiction. Thus ly(1)1 M and the conclusion

of the theorem follows for (6.6) (ix)*

Remark. M is independent of L in Theorem 6.7.

An analogous theorem holds for (6.6)(x).

Theorem 6.8. Suppose there is a constant M ,>; 0 such

that

fu'(z)[f(z,u(z),u'(z),u"(z)) + L(u1(z))nu"(z)idz >0
0

for lu(t)I > M, where n is an even integer greater

than or equal to zero and L ..>.; 0 is a constant, with
u E C2[0,1] and u"(0) = 0

Then any solution y to 66() satisfies

ly(t)I M for t E[0,1].

Proof Suppose lyi achieves a positive maximum at

E (0,1) and assume ly(t0)1 > M. Then yt(to) = 0

and

to

kt(z)yrn(z) + L(57'(z))n+130,(z)]dz >0
0

yields

t

- f Eyn(z),2dz _ L (y.(0),n+2
n+2 > 0,

0

a contradiction. Thus fy(to)f E M.

On the other hand ly1 cannot have a nontrivial

maximum at 0 or 1. For suppose the maximum of lyl

occurs at O. Then y(0) y'(0) E O. However, from (x)

y(0) y'(0) = [y(0)]2 > 0, a contradiction. A similara



argument works for the case t = 1. Thus

ly(t)I tc. M for t E[0,1].

We are now in a position to prove our main

existence theorems for this section.

Theorem 6.8. Let f:[0,1] X R3 R be continuous.

Suppose there is a constant M 0 such that

fut(z)[f(z,u(z),u'(z),u"(z)) + L(ut(z))nu"(z)]dz > 0

0

for Iu(t)1 > M, where L and n > -2 are constants,
with u E C2[0,1] and u'(0) = O.

Suppose

If(t,u,p,q)1 [A(t,u)1p1+B(t,u)][C(t,u)lqi+D(t,u)]

where A(t,u), B(t,u), C(t,u), D(t,u) ?- 0 are functions

bounded on bounded (t,u) sets.

Then the boundary value problem (6.6) and(viii)
(6.6)(ix) have at least one solution in C3[0,1].

Proof To prove existence of a solution in C3[0,1] we

apply Theorem 6.6. We need establish a priori bounds
for any solution y(t) to (6.6)x. Now if X = 0 we

have the unique solution y E O. Otherwise for

0 <X :5, 1

fu'(z)[f(z,u(z),us(z),u"(z))+1,(us(z))nun(z))dz>0
0

for lu(t)1 < M implies

fu'(z)(Xf(z,u(z),u'(z),u"(z))+XL(u1(z))nu"(z)]dz>0
0
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for lu(t)I>M and so Theorem 6.7 together with its
remark implies ly1 M for any solution y to

Hence the existence of a solution to

and (6.6)(i) is established.(viii) x

Corollary 6.10. Let f:(0,11 X R3 R be continuous.

Suppose there is a constant M 0 such that

fut(z)[f(z,u(z),u'(z),u"(z))+Lfus(z)jnu"(z)jdz?..0
0

for lu(t)I > M where L and n > -2 are constants,
with u E C2[0,1] and u'(0) = 0.

Suppose

If(t,u,p,q)I [A(t,u)Ipl+B(t,u)][C(t,u)1q1+D(t,u)]

where A(t,u), B(t,u), C(t,u), D(t,u) 0 are functions

bounded on bounded (t,u) sets.

Then the boundary value problem (6.6)(viii)
(6.6)() have at least one solution in C3[0,1].ix

Proof Let us consider

tym

= fri(t,y,Y',Y")
y E (viii) or (ix)

where fn(t,y,yt,y") = f(t,y,y',y") + 1- for

n = 1,2,... . Clearly

fyi(z)(fn(z,y(z),y1(z),y"(z))+L(y'(z))ny"(z)]dz
0

= fy'(z)[f(z,y(z),y1(z)y"(z))+L(yi (z))ny"(z)jdz-14 V
2

0

6.8)

>0

and
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for Iy(t), > M since y(0) = 0.

Thus Theorem 6.7 implies Iyi M for any solution

yn to (6.8) and n = 1,2,.... . Also

Ifn(t9Y,Y',Y")1
tc, [A(t,y)1y11-1-8(t,y)][C(t,y)ly"1+D(t,y))+M.

Now we can apply Theorem 6.9 to (6.8): If yn is a

solution to (6.8) for n = 1,2,... we have lynI3 K

for some constant K independent of n. By Theorem

1.7 there is a subset N of the natural numbers and a

function y E c2[0,1] so that Iyn-yI2 -o 0 as n 40

in N. If G(t,z) is the Green's function for (L,B0)

where Ly = y" and Bo denotes the boundary conditions

(viii) or (ix) then

1

y(t) = IG(t,z)fn(z,yn(z),y1:1(z),y:(z))dz.
0

Let n 4,* through N to obtain

1

y(t) = IG(t,z)f(z,y(z),y'(z),y"(z))dz.
0

Thus y E C83 and y satisfies YM = f(tlY,Yi,Y").

We can obtain a similar result to Theorem 6.9 for

(6.6)00-

Theorem 6.11. Let f:[0,1] X R3 R be continuous.

(a) Suppose there is a constant M 0 such that

fu'(z)(f(z,u(z),u.(z),u"(z))+L(u.(z))nu"(z)]dz > 0

0

for lu(t)I > M, where n is an even integer greater

than or equal to zero and L 0 is a constant, with

u E C2(0,1) and u"(0) = 0.

(b) Suppose
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if(t,u,p,q)1[a(t,u)Ipl+B(t,u)][C(t,u)10+D(t,u)]

where A(t,u), B(t,u), C(t,u), D(t,u) 0 are functions

bounded on bounded (t,u) sets.

Then the boundary value problem (66)00 has at

least one solution in C3[0,1].

Remark. We can obtain similar results to those in

Theorem's 6.9 and 6.11 if the boundary conditions

(viii), (ix) or (x) are replaced by either

y(0) = 0, y(1) = 0, y"(0) = 0

y(0) = 0, y'(1) = 0, y"(0) = 0

y(1) = 1, y'(0) = 0, y'(1) = 0

y(0) = 0, y(1) = 0, y'(1) = 0

y(0) = 0, y(1) = 1, y"(1) = 0

y(1) = 0, y'(0) = 0, y"(1) = 0

or

-ay(0) + £y'(0) = 0, a,h > 0

ay(1) + by'(1) = 0, a,b > 0

y"(1) = 0.

An example of this is the following:

Theorem 6.12. Let f:[0,1] X R3 -0 R be continuous.

(a) Suppose there is a constant M 0 such that

1

fu'(z)[f(z,u(z),u'(z)u"(z))+L(ui(z))nu"(z)]dz > 0

for lu(t)1 > M, where n is an even integer greater

than or equal to zero and L 0 is a constant, with

u E C2[0,1] and u"(1) = 0.

(b) Suppose
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If(t,u,p,q)Itc[A(t,u)Ipl+B(t,u)][C(t,u)lql+D(t,u)]

where A(t,u), B(t,u), C(t,u), D(t,u) 0 are functions

bounded on bounded (t,u) sets.

Then the boundary value problem

lym

= f(t,y,y',y"), tE[0,1]

Y E

has at least one solution in C3[0,1].

The following example illustrates the ideas and results

of this section.

Example 6.2 Consider the boundary value problem

yrn(t)=A0+B0[y(t)]P+C0[y(t)]my'(t)+D0 "(t)
BVP) +E0yi(t)y"(t),tE[0,1]

y(0) = y(1) = y'(0) = 0

where Ao, Bo > 0, Co 0, Do, Eo are constants with

in ?. 0 even and p > 0 odd.

We will now show that (BVP) has a solution in

C3[0,1] via Theorem 6.8. Now if

f(t,y,y',y") = Ao + B yP + Coym y' + Do y" + Eo y' y"

and L = -E0, n = 1, L = -Do, = 0 we have

fy'(z)if(z,y(z),Y'sY")+L(yl(z))nY"(z)+1:.(y1(z))iiy"(z)]dz

= f[A0yt(z)+80[y(z)]13Y'(z)+C0[y(z)]m[Ys(z)]2)dz
0

f[Aoy'(z) + Bo(y(z))Pyt(z)]clz since y'(0) = 0

0

= y(t)(A0 + B°[y(t)01 since y(0) = 0
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> 0 for ly(t)1 >

Finally it is clear that we can find constants

A,B,C,D such that

If(t,y,y',y")I E (Aly'l+B)(Cly"l+D)

for (t,y) in a bounded set.

Hence all conditions in Theorem 6.8 are satisfied

so (BVP) has at least one solution in C3(0,1].

To conclude this chapter we examine the

inhomogeneous boundary value problem

lym

= f(t,y,y',y"), t E[0,1]
y(0) = r, y(1) = s, y'(0) =

6.9)

[I
oil

0I B
I

fy"

= f(t,y,y',y"), t E[0,11
y(0) = r, y(1) = s, y"(0) =

and establish the existence of a solution (6.9), (6.10)

in C3[0,1] under essentially the same hypothesis on f

used in Theorem 6.9.

Theorem 6.13. Let f:[0,1] X R3 R be continuous.

Suppose there is a constant M 0 such that

fu'(z)[f(z,u(z)u'(z),u"(z))+L(u'(z))nu"(z)Idz > 0

0

for Iu(t)I > M, where L and n > -2 are constants

with u E C2[0,1] and u'(0) = 0.

Suppose

If(t,u,p,q)1 E [A(t,u)Ip1+B(t,u)][C(t,u)Iq1+D(t,u)]
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or

6.10)
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where A(t,u), B(t,u), C(t,u), D(t,u) 0 are functions

bounded on bounded (t,u) sets.

Then the boundary value problem (6.9) has at

least one solution in C3[0,1].

Proof Consider the family of problems

tym

= Xf(t,Y,Y1,y"), 0 t5. X 1

y(0) = r, y(1) = s, y'(0) = k.

The existence of a solution in C3[0,1] follows

immediately from Theorem 1.10 once a priori bounds

independent of X are established for solutions y to

(69)x To establish a priori bounds for (6.9)k let

y(t) be a solution to (6.9)x. Now if k = 0 we have

a unique solution and thus ly(t)I Mo, for some

constant M. Otherwise for 0 < X E 1, let

w = y - /t, so w(0) = r, w(1) = s - 1, w'(0) O.

Now

fw'(z)(f(z,w(z),w'(z),w"(2))+L(w.(z))nw"(z)]dz
0

0

for I (t)1 > M implies

fw'(z)(Xf(z,w(z),w'(z),w"(z)+XL(wt(z))nw"(z)Ictz > 0

0

for iw(t)1 > M. It follows from Theorem 6.7 and its

remark that

Im(t)1 max(M,Ir1,1s-RI) = K for t E[0,1].

Thus ly(t)I E M1 E max(K+1,M0) for any solution

to(69X) 0 E k E 1. A priori bounds independent of
'

for YetY",YM will follow from a slight

modifictation of the proof in Theorem 6.6 once we

observe that ly"(g)I E K, K 0 a fixed constant

independent of k, for some g E[0,1]. We accomplish

this by letting v(t) = y(t) - (1 - t2)r - t2s + At2

and noticing that v(0) = 0, v(1) = k, v'(0) = I. Hence

by the Mean Value Theorem there exists g E(0,1) such



that v"(14) = 0 i.e. y"(u) = 2s - 2/ - 2r. The

existence of a solution to (6.9) follows from Theorem

1.10.

We can obtain a corresponding existence theorem for

(6.10):

Theorem 6.14. Let f:(0,1] X R3 -o R be continuous.

Suppose there is a constant M 0 such that

fu'(z)(f(z,u(zu'(z),u"(z))+L(u'(z))nu"(z)]dz > 0

0

for lu(t)I > M, where n is an even integer greater

than or equal to zero and L 0 is a constant, with

u E C2(0,1] and u"(0) = 0.

Suppose

If(t,u,p,q)I (A(t,u)Ipl+B(t,u)1(C(t,u)tql+D(t,u)]

where A(t,u), B(t,u), C(t,u), D(t,u) 0 are functions

bounded on bounded (t,u) sets.

Then the boundary value problem (6.10) has at

least one solution in C3(0,1].
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VII. Nonlinear Differential Equations in Hilbert

Spaces

7.1 introduction

The theory of nonlinear differential equations in

abstract spaces became popular in the 1970's and is

still being studied in great depth. For a detailed

account of the subject see Deimling [10],

Lakshmikantham and Leela [24] and Martin [25]. In

this chapter we present a new approach via the

Topological Transversality Theorem, to studying problems

of the form

ty'

= f(t,y), t E[O,T]
y(0) = yo.

Here y takes values in a real Hilbert space (H, 11.11),

yo E H and f:(0,T) X H H is continuous.

For notational purposes let C1 ([0,T],H) denote

the space of continuously differentiable functions g

on [0,T]. Now C1([0,T],H) with norm

= max( sup Hy(t)H, sup Hy' (t)11)
tE[O,T] tE[O,T]

E max(1100,Hy'Hoj

is a Banach space. Similarly we define C([0,T],H).

Finally, by a solution to (7.1) we mean a function

y E C1([0,T],H) together with y satisfying

y' = f(t,y),tE[O,T], and y(0) = yo.

Unlike the finite dimensional case continuity

assumptions on f alone will not guarantee even local

existence; see Banas and Goebel [2]. In this chapter

by placing compactness conditions on f we obtain, with

a restriction on T which depends on the nonlinearity

f, solutions to (7.1) in C1([0,T],H).



7.2 Preliminary Results

We begin with some standard theorems on the

calculus of functions from an interval into a real

Hilbert space; see Martin [25], Barbu [3] and

Shilov [301 for details. Suppose for the remainder of

this section that H is a real Hilbert space (H,<,.>)

and J is a compact interval in R.

Theorem 7.1. Suppose f is a differentiable function

from J into H and f'(t) = 0 for all t E J. Then

f is constant on J.

Theorem 7.2. Suppose f is a differentiable function

from J into H. Then

Irr <f(t),f(t)> = 2<f'(t),f(t)>.

Theorem 7.3. Suppose J = [a,b] and f(u) is a

continuous function from J into H. Also let

u = u(t) be a continuously differentiable function on

a t R where u(a) = a and u(R) = b. Then

4

ff(u)du = ff(u(t))111(t)dt.
a a

To obtain our existence theorems in the following

section we need a more general version of the Arzela

Ascoli Theorem.

Theorem 7.4. Suppose M is a subset of C(J,H). Then
-

M is relatively compact in C(J,H) (i.e. M is a

compact subset of C(J,H)) if and only if M is

bounded, equicontinuous and the set (f(t):f E M) is

relatively compact for each t E J.
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7.3 Initial Value Problems in Hilbert Spaces

We begin, as usual, by examining the homogeneous

first order initial value problem

fyi

= f(t,y), tE[O,T]
y(0) = 0

where y takes values in a real Hilbert space

(H,<,.>) and f:[0,T] X H H is continuous. Let

11.112 .

Now the Topological Transversality Theorem and the

Arzela Asocoli Theorem are used to extend Theorem 1.9

for initial value problems in Hilbert spaces.

Theorem 7.5. Let f:(0,T] X H -0 H be continuous and

0 X 1 Suppose in addition f satisfies the

following:

73) There is a continuous function sii:(0,00) (0,00)
.

such that Ilf(t,y)H sl/(113,11).

7.4) f is completely continuous on [0,T] X H.

For t,s [0,T] and 0 a bounded subset
1of C ([0,TI,H), there exists a constant

7.5) A 0 (which can depend on 0) such that
Ilf(t,u(t)) - f(s,u(s))1I Alt-si

for all u E 0.

Finally suppose there is a constant K such that

Hypi K for each solution y(t) to

7.2)
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7.2)X

Then the boundary value problem (7.2) has at

least one solution in C1((0,T1,H).

Proof As before let

ty'

= Xf(t,y), tE[0,T]
y(0) = 0.
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1CB([0,TI,H) = (uEC1([0,T],H): u(0) = 0). Also let

= (uC1([0,T1,H): huh1tc, K+1) and define
1Fx:CB([0,T],H) C([0,T],H), 0 :5, X Lc 1, by

F [u](t) = Xf(t,v(t)). Now assumptions (7.3), (7.4)
X

and (7.5) together with Theorem 7.4 imply that Fx

is completely continuous. To see this let 0 be a

bounded subset of C1([0,T],M), then for u E 0
hIFuiI = HXf(t,u)11 0(HuH) E Mo where Mo < 00 is a

constant. Clearly from (7.5) Fx(0) is equicontinuous

and we have also for each t [0,T], F(0(t)) =

(f(t,u(t)); u E 0) which is relatively compact in H

since f is completely continuous.

Finally we define L:Cila([0,T],H) C([0,T],H) by

Ly = y'. It follows from Theorem 1.6 that L-I is a

bounded linear operator. Thus Hx = L-IFx defines a
1homotopy Hx:V C8([0,T],H). It is clear that the

fixed points of HX are precisely the solutions to

Moreover the complete continuity of FX
together with the continuity of L-1 imply that the

homotopy H is compact. Now Ho is essential so

Theorem 1.5 implies that1 is essential. Thus

(7.2) has a solution.

Remark. If we replace the Hilbert space H with a

Banach space B then again Theorem 7.5 holds with B

replacing H.

In view of Theorem 7.5 we obtain immediately:

Theorem 7.5. Suppose f:[0,T] X H H is continuous

and satisfies (7.3), (7.4) and (7.5). Then the

initial value problem (7.2) has a solution in

op

C1 ([0,T],H) for each T < I stift.

Proof To prove existence of a solution in C1([0,TI,H)

we apply Theorem 7.5. To establish a priori bounds for



let y(t) be a solution to (7.2)x. Then
= HXf(t,y)H 0(HyH).

Now if lly(t)fl # 0 we have from Theorem 7.2 and the
Cauchy Schwartz inequality that

<vs.v>Hyr Hy'H

and the inequality above yields
HyH' 0(HyH)

at any point t where Ily(t)11 # 0. Suppose lly(t)ll # 0
for some point t E[O,T]. Then since y(0) = 0 there
is an interval [a,t] in [0,T] such that fly(s)II > 0

on a < s E t and Hy(a)11 = 0. Then the previous
inequality implies

SUv(sT ds E t a.0(Hy(s
a

Hy(t)II
So, 7f1 T <7117 r duj 777 .

0 0

This inequality implies there is a constant MI such
that Hyllo E M. Also (7.2)x and (7.3) implies
Hy'(t)H E max 0(u) E M2 for some constant M2. So

OEuEM1

"Ill K = max(M1'M2) and the existence of a solution
is established.

Theorem 7.5 also holds for the inhomogeneous
initial condition y(0) = yo E H. In fact Theorem 1.10
and trivial adjustments in the above proof yield:

Theorem 7.7. Suppose f:[0,T] X H -o H is continuous
and satisfies (7.3), (7.4) and (7.5). Then the
initial value problem
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fyi

= f(t,y), t E[O,T]
y(0) = yo E H

has a solution in C1([0,T],H) for each

00

T < du
7777

"Yon

Example 7.1 The techniques above may be applied to

integro-differential equations of the form

T

1

aur y(t,$) = f g(t,s,r,y(t,r))dr; t,sE[O,T]
o

y(0)s) = a(s)

where w[O,T] R is continuous.

Let H = L2([0,1],R), with the usual inner product

and define the mapping B from [0,T] X H into H by

[B(t,u))(s) = g(t,s,r,u(r))dr for all

0

(t,s,u) E[O,T] X [0,T] X E where E ( H.

We begin by examining the initial value problem

7.7) fu = B(t,u(t)), t E[0,11
u(0) = g

where B:[0,T] X H -o H.

Various conditions on g insuring the continuity

and complete continuity of B from [0,T] X H into H

may be found in Krasnoselski [23]. We also assume g

satisfies certain growth conditions so that

1113(t,u)I1 2 :5, 0(Hull 2)
L L

where 0:[0,60 ...+ (0,00) is continuous. Now assume

7.6)
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T <du7177 Finally suppose conditions are put on

14111 2

g so that for t,t'E[O,T] and Q a bounded subset of

C1([0,TJ,H), there exists a constant A 0 such that

HB(t,u(t)) - B(C,u(C)11
Ln'

t.5 Alt-t'l

for all u E D.

Then Theorem 7.7 implies that (7.7) has a

solution on [0,1]. Suppose u(t) is a solution to

(7.7) on [0,T], then one sees that if

y(t,$) = [u(t)1(s) for all t E[O,T] and s E(0)Tit

then y(0,a) = m(a) and y is a solution to (7.6).

To see this let [u(t)J(s) E v(s), so

a y(t,$) = B(t,v)(s) = I g(t,s,r,v(r))dr

= f g(t,s,r,y(t,r))dr.
0
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