Daniel J. O'Regan for the degree of Doctor of Philosophy in Mathematics_ presented on Apri1 25, 1985

Title: Initial And Boundary Value Problems Via
Topological Methods
Redacted for Privacy
Abstract approved:
John Walter Lee -

In this thesis a relatively new topological technique, due to A. Granas, called Topological Transversality is used to obtain existence theorems for initial and boundary value problems in a variety of settings. This fixed point result is based on the notions of an essential map and on a priori bounds on solutions.

Initial And Boundary Value Problems Via Topological Methods
by

```
Daniel J. O'Regan
```

A THESIS
submitted to
Oregon State University
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

[^0]APPROVED:

Redacted for Privacy

Professor of Mathematics in charge of major

Redacted for Privacy

Chairman of Department of Mathematics

Redacted for Privacy

Dean of Grad/afte school

Date thesis is presented April 25, 1985

Typed by Naomi Normand for Daniel J. O'Regan

ACKNOWLEDGEMENTS

To begin with I would like to thank two people without whom my mathematical career would not have been possible. Firstiy, many thanks to Mr. Liam Byrnes of Colaiste Chriost Ri, Cork, Ireland for taking the time and interest to help me in my early mathematical training. He was my first mathematics teacher and I have yet to meet anyone his equal in the teaching of mathematics. Secondly, and most importantly to my mother for believing in me and giving me the confidence to reach out and fulfill my dreams.

During my four year stay here at oregon state University I've had much help from the faculty of the Mathematics Department. In particular, I would like to thank Professor's Ronald Guenther and Don Solmon for their kindness and invaluable assistance. Finally, and most importantly many many thanks to my major professor John Lee without whose support and encouragement this thesis would never have been completed. I greatly appreciate the time and effort he put in during the research and writing of the thesis. If I have become a better mathematician it is due totally to John Lee. He will always have a special place in my memory of Corvallis.

Many thanks to my friends in Ireland and Corvalif, who helped and encouraged me while I was working on this degree; in particular Brian Kelly, Scott Lewis, Naomi
 Smith. A special thank you to Naomi who did a wonderful job in typing the thesis. Above all these very little would have been accomplished without the love and support of my family in lreland. Words cannot express my love and gratitude; however, I am very proud to dedicate this thesis to my father Cornelius, to my mother Eileen, to my sisters Mary Rose and Marguerita and to my brothers Francis and Gerard.
Chapter Page
I. Preliminaries 1
1.1 Notation 1
1.2 Theorems from ordinary Differential Equations 2
1.3 Topological Transuersality and A Priori Bounds 3
1.4 Existence Theorems 7
II. First Order Initial Value Problems 11
2.1 Introduction 11
2.2 Maximal Intervals of Existence for Classes of Initial Value Problems 11
2.3 Examples 15
III. Boundary Value Problems on Infinite Intervals 18
3.1 Introduction 18
3.2 Global Solutions to Second Order Nonlinear Differential Equations. 19
3.3 Solutions to Second Order Boundary Value Problems on $[0, \infty)$ 23
3.4 Applications to Semiconductor Devices 26
IV. Ordinary Differential Equations In The Complex Domain 32
4.1 Introduction 32
4.2 Solutions to First Order Initial Value Problems in the Complex Domain 34
4.3 Solutions to Higher Order Initial Value Problems in the Complex Domain 39
4.4 Remarks for Boundary Value Problems in the Complex Domain. 44
V. Weak Solutions to Initial and Boundary Value Problems 46
5.1 Introduction 46
5.2 Preliminary Notation and Results 47
5.3 Weak Solutions to First Order Initial Value Problems 49
5.4 Weak Solutions to Boundary Value Problems 54
5.5 Weak Solutions to Systems of First Order Initial Value Problems 63
VI. Third Order Boundary Value Problems 68
6.1 Introduction 68
6.2 The Bernstein Theory of the Equation $y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right)$ 68
6.3 Another Approach to Third Order Boundary value Problems 77
VII. Nonlinear Differential Equations in Hilbert Spaces 91
7.1 Introduction. 91
7.2 Preliminary Results 92
7.3 Initial Value Problems in Hilbert Spaces 93
BIBLIOGRAPHY 98

1. Compactness diagram for First Order Initial Value Problems................................ 50
2. Compactness diagram for Boundary Value Problems................................... 55
3. Compactness diagram for systems of First Order Initial Value Problems................ 64

PREFACE

In his 1976 paper "Sur La méthode de continuité de Poincaré" A. Granas provided a new approach to the continuity method for estabiishing fixed points of certain mappings. This new theory, now called Topological Transversality, was utilized in the papers of Granas, Guenther and Lee [i5], [16], [17] ana [18] to study existence questions for nonifiear boundary value proilems. In this thesis we extend further these ideas and show how powerful and natural Topological Transuersaifiy is for solving a variety of problems.

We begin in Chapter II by using Topoiogicai Transversality to examine the dependence of the intervai of existence for an initial value problem upon its initial data and the nonifnearity in the differential equations. Stronger and more applicable existence theorems than the local existence theorems that are available in the literature are proven. These results enabie us to read off directly from the differential equation an interval of existence of a solution and in many cases it will be maximal as our theory shows.

In Chapter III the nonlinear differential equation $y^{\prime \prime}=f\left(x, y, y^{\prime}\right), 0 \leqslant x \leqslant \infty \quad$ with appropriate boundary conditions is studied. Our treatment involves extending results of Granas, Guenther and Lee [15], [16] and [18] on finite interval boundary value problems with f satisfying Bernstein type growth conditions. We also examine an important appiication which occurs in the theory of semiconductor devices.

The initial suggestion for examining ordinary differential equations in the complex domain was Professor John Lee's and we pursue this in chapter IV. Although initial value proilems in the complex domain have been studied wideiy, very little is known on intervals of existence of a solution. The results of this chapter enabie us to read off immediately from the
differential equation an interval of existencef a solution, although this interval may not be maximal. Furthermore, we introduce boundary value problems in the complex domain and obtain existence tineorems for such problems.

While working on this thesis I had many invaluable discussions with Professor Ronald Guentiner and it was ne who suggested looking for "weak solutions" via Topological Transversality to boundary vaiue problems of the form $y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad t \in[0, i]$, with y satisfying suitable boundary conditions, where $f:[0,1] \times R^{2} \rightarrow R \quad i s$ discontinuous. In Chapter V we examine such problems with fatisfying Caratheodory Conditions and outain solutions to the above problem in Soboiev spaces. Our analysis is based on a priori bounds and known results on Nemysky operators and Sobolev spaces. Furthermore, we also obtain weak solutions to initial value problems.

In Chapter VI third order boundary value problems are studied. The chapter is divided into two parts, the first of which extends the Bernstein theory and results of Granas, Guenther and Lee [i5], [16] on secondorder boundary value problems. Many of the results we obtain are rather specialized. In part two, by examining different types of monotonicity and growth conditions, we obtain existence theorems for a wide class of new problems.

Over the last ten years ordinary differential equations in abstract spaces have become very popular and in Chapter VII we suggest a new metinod, via Topological Transversality, for examining nonlinear differential equations in Hilbert spaces. Furthermore, we show how the analysis in this chapter can be used to obtain existence of solutions certain integro-differential equations. The suggestion for examining such problems was again provided by professor John Lee.

Initial And Boundary Value Problems Via Topological Methods
I. Preliminaries

1.1 Notation

In this chapter we formulate the basic ideas which will be used throughout this thesis. The following standard notation is used: $\quad R=(-\infty, \infty)$ will denote the real line and R^{n} the $n-d i m e n s i o n a l$ Euclidean space. By $\quad C^{K}=C^{K}(5), K \geqslant 0$ an integer, and $C^{0}=C(S)$ we denote the functions which are K times continuously differentiable on \quad. If $x=x(t)$ is a real valued function defined on S, we set

$$
|x|_{0}=\sup _{t \in S}|x(t)|
$$

and for functions $x(t) \in C^{K}$, we set

$$
|x|_{K}=\max \left\{|x|_{0},|x|_{0}, \ldots,\left|x^{(K)}\right|_{0}\right\}
$$

Finally let $C^{K}(S)$ denote the Banach Space of functions for which $|x|_{K}<\infty$. See [4], \{30] for details.

Also if $u=\left(u_{1}, \ldots . ., u_{n}\right), v=\left(v_{1}, \ldots . . v_{n}\right)$ are vectors in R^{n}, we set

$$
\langle u, v\rangle=\sum_{i=i}^{n} u_{i} v_{i} \text { and }|u|=(\langle u, u\rangle)^{i / 2}
$$

 valued function of t, we set

$$
\|u\|_{o}=\max _{j} \sup _{t \in S}\left|u_{j}(t)\right|, j=1, \ldots, n
$$

and if u is in C^{k}

$$
\|u\|_{K}=\max _{\ell}\|u(\ell)\|_{0}, \ell=0,1, \ldots, K
$$

If B is a set of boundary or initial conditions then C^{K} denotes the subset of functions in C^{k} which satisfy these boundary or initial conditions.
i. 2 Theorems from Ordinary Differential Equations

We begin by collecting together a few standard facts about ordinary differential equations which will be used in various parts of the thesis.

Suppose that $f:[0,1] \times R^{n} \Rightarrow R \quad$ is a continuous function. Consider the $\quad n^{\text {th }}$ order initial value problem
1.1) $\left\{\begin{array}{l}y^{(n)}(t)=f\left(t, y(t), y^{\prime}(t), \ldots \ldots, y^{(n-i)}(t)\right), t \in[0,1] \\ y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}, \ldots . y^{i}(n-1)\left(t_{0}\right)=y_{0}^{n-i} ; t_{0} \in[0,1]\end{array}\right.$

By a solution to (i.i) we mean a real valued function y whicin \quad is \quad imes continuously differentiable on $[0, i]$ which satisfies the differential equation and initiai conditions.

Theorem $\dot{1.1}$ Let $a_{o}(t), \ldots . a_{n}(t) \neq 0 \quad$ be defined and continuous on $[0,1]$. Then the initial value problem

$$
\left\{\begin{array}{l}
L y \equiv a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\ldots+a_{0}(t) y(t)=0 \\
y\left(t_{0}\right)=y_{0}, \ldots \ldots, y^{(n-1)}\left(t_{0}\right)=y_{0}^{n-1} ; t_{0} \in[0,1]
\end{array}\right.
$$

has a unique solution $y \in C^{n}[0,1]$.

As a consequence of Theorem l.l it is possible to construct n linearly independent solutions to ly $=0$ and thus we obtain the following result.

Theorem 1.2. Let $y_{1}(t), \ldots \ldots, y_{n}(t)$ be n linearly independent solutions to $L y=0$. Then every solution $y(t)$ of $L y=0$ is of the form
1.2) $y(t)=C_{1} y_{1}(t)+\ldots+C_{n} y_{n}(t)$
for some choice of constants $C_{1} \ldots \ldots, C_{n}$..... For this reason we say that (1.2) is the general solution to $\mathrm{Ly}=0$.
i. 3 Topological Transversality and A Priori Bounds

We begin with a description of the topological ideas and results which we shall use. For complete proofs and further details see Dugundji and Granas [11].

Let E be a normed linear space and $K \subset E \quad a$ convex set. Also let $U \subset K$ be open in K and \bar{U} and DU denote respectively the closure and boundary of u in K.

Definition l.l Suppose x is a metric space and $F: X \rightarrow K$ is a continuous map.
(i) F is compact if $F(X)$ is contained in a compact subset of K.
(ii) F is completely continuous if it maps bounded subsets in X into compact subsets of K.

We formulate the schauder fixed point theorem without proof. See ill] for details.

Theorem 1.3. Suppose E is a normed linear space, $K \subset E \quad a \quad c o n v e x$ set and $F: K \rightarrow K$ compact map. Then F has a fixed point in K i.e. there exists $x_{0} \in K$ such that $F\left(x_{0}\right)=x_{0}$.

Next we formulate a fixed point theory similar to the continuity method of Leray and Schauder which uses topological degree. Instead we use the notion of an essential map.

Definition 1.2 Let K be convex subset of a normed linear space E and $u \subset K$ be open in K.

$$
\begin{align*}
& \text { A compact map } F: \bar{U} \rightarrow K \text { is called } \tag{i}\\
& \text { admissible if it is fixed point free on } \\
& \text { du. The set of all such maps will be } \\
& \text { denoted by } K_{\partial U}(\bar{U}, K) .
\end{align*}
$$

A map $F \in K_{\partial U}(\bar{U}, K)$ is essential if every compact map which agrees with F on ∂U has a fixed point in U. otherwise F is inessential.

$$
\begin{aligned}
& \text { A homotopy \{ } \left.H_{t}: X \rightarrow K\right\}, 0 \leqslant t \leqslant 1 \text {, is } \\
& \text { said to be compact provided the map } \\
& H: X \times\{0,1] \rightarrow K \text { given by } H(x, t)=H_{t}(x) \\
& \text { for }(x, t) \in X \times\{0,1\} \text { is compact. }
\end{aligned}
$$

(iv) Two maps $F, G \in K_{\partial U}(\bar{U}, K)$ are homotopic if there is a compact homotopy $H_{t}: \bar{U} \rightarrow K$ for which $F=H_{o}, G=H_{i}$ and H_{t} is admissible for each t in $[0,1]$.

Remark. Every essential map has a fixed point in u.

The following theorem yields some simple examples of essential maps.

Theorem L.4. Let $p \in U$ and $F \in K_{\partial U}(\bar{U}, K)$ be the constant map $F(x)=P$ for $x \in \bar{U}$. Then F is essential.

Proof Let $G: \bar{U} \Rightarrow K$ be a compact map with $G=F$ on Du. Define

$$
H(x)=\left\{\begin{array}{l}
G(x), x \in \bar{U} \\
p, x \in K \mid \bar{U}
\end{array}\right.
$$

Now $H: K \rightarrow K$ is compact and so by Theorem 1.3 there exists $x_{0} \in K$ such that $H\left(x_{0}\right)=x_{0}$. However, by definition of H and the fact that $F=G$ on ∂u implies $x_{0} \in U$ and $x_{0}=H\left(x_{0}\right)=G\left(x_{0}\right)$. Thus G has a fixed point and F is essential.

Theorem 1.4 is a key element in the implementation of the Topological Transuersality Theorem in obtaining existence theorems for initial and boundary value problems. We now state the Topological Transuersality Theorem due to A. Granas without proof. Details of the proof can be obtained in Granas [14], Dugundji and Granas [11] and Granas, Guenther and Lee [17].

Theorem 1.5. Suppose
(a) F and G are compact maps on $\bar{U} \rightarrow K$.
(b) G is essential in $K_{\partial U}(\bar{U}, K)$.
(c) $H(x, t), 0 \leqslant t \leqslant 1$, is a compact homotopy joining F and G i.e. $H(x, 0)=G(x)$, $H(x, 1)=F(x)$.
(d) $H(x, t)$ is for each $t, 0 \leqslant t \leqslant 1$, fixed point free on ∂U.

Then there exists at least one fixed point $u \in U$
such that $u=F(u)$.

Remark. Suppose we now let $K=$ E. To apply Theorem 1.5 we let u be some ball centered at the origin of radius say R Let $u_{o} \in U$ be a fixed point of G. In order to guarantee the existence of a fixed point $u_{1} \in U$ of F we need to know that all fixed points u_{t} of $u=H(u, t)$ lie in u i.e. we need an A Priori Bound $M<R$ such that

$$
\left\|u_{t}\right\| \leqslant M \quad \text { for } \quad 0 \leqslant t \leqslant 1
$$

where $\|$ il is the norm in \quad. Therefore the role of the a priori bound is to guarantee that ∂U is fixed point free for the operators $H($, $t)$ and these bounds must be independent of t.

We will also use frequently the following theorems which we state without proof. See Rudin [29] and Royden [28] for details.

Theorem 1.6. (Bounded Inverse Theorem)
Suppose X and Y are Banach Spaces and L is a bounded linear transformation from X onto Y which is also one to one. Then L^{-1} is a bounded linear transformation of Y onto X.

Theorem 1.7. (Arzela Ascoli Theorem)
Let F be an equicontinuous family of real or complex valued functions on a seperable space X. Then each sequence $\left\{f_{n}\right\}$ in \quad which is bounded at each point (of a dense subset) has a subsequence $\left\{f_{n}\right\}$ which converges pointwise to a continuous function, the converence being uniform on each compact subset of X.

From Theorem 1.7 one can deduce:

Corollary 1.8. Let S be a compact metric space and M
 relatively compact in $C^{K}(S)$ (i.e. \bar{M} is a compact
subset of $C^{K}(S)$) if and only if M is bounded and equicontinuous.
1.4 Existence Theorems

In this section we indicate how the topological results of section 1.3 can be used to prove existence theorems for nonlinear boundary value problems. Similar results hold for nonlinear initial value problems.

Let B denote a set of n linear, homogeneous boundary conditions

$$
V_{i}(y)=\sum_{j=0}^{n-1}\left[a_{i j} y^{(j)}(0)+b_{i j} y(j)(1)\right]=0, i=1,2, \ldots, n
$$

and $(L y)(t)=y^{(n)}(t)$ for $t \in[0,1]$. Consider $t h e$ boundary value problem

$$
\left\{\begin{array}{l}
L y=f\left(t, y, \ldots \ldots, y^{(n-1)}\right), t \in[0,1] \tag{1.3}\\
y \in B
\end{array}\right.
$$

where $f\left(t, P_{1}, \ldots . P_{n}\right)$ is continuous on $[0,1] \times R^{n}$, and the associated family of problems
$(1.3)_{\lambda} \quad\left\{\begin{array}{l}M_{y}=g\left(t, y, \ldots, y^{(n-1)}, \lambda\right), 0 \leqslant \lambda \leqslant 1 \\ y \in B\end{array}\right.$
where $(M y)(t)=\sum_{j=0}^{n} a_{j}(t) y^{(j)}(t)$. Here $g, a_{j}, j=$ $0,1, \ldots, n$ are continuous and $a_{n}(t) \neq 0$ for $t \in[0,1]$ and also $g\left(t, v_{1}, \ldots, v_{n}, 0\right) \equiv 0$.

Theorem 1.9. Let L, M, f and g be as above. Assume
(i) The problems (1.3) and (1.3) are
equivalent when $\lambda=1$ i.e. (1.3) λ_{λ} and (1.3) have the same set of solutions.

The differentiable operator (M,B) is invertible as a continuous map from $C_{B}^{n} \rightarrow C$.
There is a constant K independent of λ such that fuln $<k$ for each solution u to $(1.3)_{\lambda}, \quad 0 \leqslant \lambda \leqslant 1$.

Then the boundary value problem (1.3) has at least one solution in $C^{n}[0,1]$.
$\frac{\text { Proof }}{T_{\lambda}: C^{n-1}} \quad \operatorname{Let} \quad \bar{U}=\left\langle u \in C_{B}^{n}\{0,1\}: \mid u i_{n} \leqslant K\right\rangle \quad$ and define $T_{\lambda}: C^{n-1} \rightarrow C, \quad 0 \leqslant 1, \quad b \quad b y \quad\left(T_{\lambda} v\right)(t) \quad=$ $g\left(t, v(t), \ldots, v^{(n-1)}(t), \lambda\right)$. Clearly T_{λ} is a continuous map. Now $j: C_{B}^{n} \rightarrow C^{n-1}$ defined by ju $=u$ is the natural embedding. The map j is completely continuous by Corollary 1.8 . Then ${ }^{H}{ }_{\lambda}=M^{-1} T_{\lambda} j$ defines a homotopy $H_{\lambda}: \bar{U} \rightarrow C_{B}^{n}$. It is clear that the fixed points of H_{λ} are precisely the solutions to (1.3) $\lambda_{\lambda} \quad B y$ (iii) H_{λ} is fixed point free on ∂U. Moreover, the complete continuity of j together with (ii) and the continuity of T_{λ} imply that the homotopy $H_{\lambda} \quad$ is compact. Hence H_{o} is homotopic to H_{1}. Now H_{0} is essential by Theorem 1.4 since H_{o} is the zero map. Therefore, Theorem l.5 implies that H_{1} is essential. In particular H_{1} has a fixed point, (1.3) ${ }_{1}$ has a solution and so by (i), (1.3) has a solution.

Remark. If (L, B) is invertible Theorem 1.9 will be applied with $M=L$ and $g=\lambda f$. For example, if B denotes the set of homogeneous initial condition then (L, B) is invertible by Theorem 1.1. The applications of Theorem 1.9 that occur in the thesis where (L, B) is not invertible fall into one of the following categories:
(i) Take My=Ly-y and

$$
g\left(t, P_{1}, \ldots . P_{n}, \lambda\right)=\lambda\left[f\left(t, P_{1}, \ldots, P_{n}\right)-P_{1}\right]
$$

or
(ii) Take $M y=L y-y^{\prime}$ and

$$
g\left(t, P_{1}, \ldots, P_{n}, \lambda\right)=\lambda\left[f\left(t, P_{1}, \ldots, P_{n}\right)-P_{2}\right]
$$

The preceding discussion extends to include nonlinear problems in which inhomogeneous boundary conditions occur.

Thus consider the problem
$1.4) \quad\left\{\begin{array}{l}L_{y}=f\left(t, y, \ldots, y^{(n-1)}\right), t \in(0,1) \\ V_{i}(y)=r_{i}, i=1, \ldots, n\end{array}\right.$
where L, f and V_{i} are as above. We also consider the associated family of problems
1.4) $\quad\left\{\begin{array}{l}M y=g\left(t, y, \ldots, y^{(n-1)}, \lambda\right), 0 \leqslant \lambda \leqslant 1 \\ V_{i}(y)=r_{i}, i=1, \ldots, n\end{array}\right.$
where M and g are as above. Let B denote the set of functions y satisfying $V_{i}(y)=r_{i}, i=1, \ldots, n$ and \quad o the set of functions satisfying the corresponding homogeneous boundary conditions $v_{i}(y)=0, i=1, \ldots, n$.

Theorem 1.10. Assume
(i) The problems (1.4) λ and (1.4) are equivalent when $\lambda=1$.
(ii) The differential operator (M, B_{O}) is invertible as a continuous map from $C_{B}^{n} \rightarrow C$.
(iii) There is a constant K independent of λ such that $l^{\prime} i_{n}<K$ for each solution u

$$
\text { to } \quad(1.4)_{\lambda}, \quad 0 \leqslant \lambda \leqslant 1
$$

Then the boundary value problem (1.4) has at least one solution in $C^{n}[0,1]$.

Proof Define $N: C_{B}^{n} \rightarrow C$ by $N y=M y$. We will show that $N^{-1}: C \rightarrow C_{B}^{n}$ exists and is given by $N^{-1} f=M^{-1} f+\ell$ where ℓ is the solution to $M y=0, y \in B$. Since (M, B_{0}) is one to one then N is one to one and it is clear also that $M^{-1} f+\ell$ is the inverse of N provided ℓ exists. We will now show that ℓ exists. Let u_{1}, \ldots, u_{n} be n linearly independent solutions of $M y=0$, so that $y=C_{1} u_{1}+\ldots+C_{n} u_{n}$ is the general solution to $M y=0$. Now since $M y=0, y \in B_{o}$ has only the trivial solution, by (ii), then we must have jet $\left[V_{i}\left(u_{j}\right)\right] \neq 0$. Now to solve $M y=0, y \in B$ constants C_{1}, \ldots, C_{n} must be found so that $V_{i}(y)=$ $C_{1} v_{i}\left(u_{1}\right)+C_{2} v_{i}\left(u_{2}\right)+\ldots+c_{n} v_{i}\left(u_{n}\right)=r_{i}, i=1, \ldots, n$. Since aet $\left[V_{i}\left(u_{j}\right)\right] \neq 0$ there is a unique solution say k_{1}, \ldots, k_{n} and $\ell=k_{1} u_{1}+\ldots+k_{n} u_{n}$. \quad Thus $N^{-1}: C \rightarrow C_{B}^{n}$ exists. We now define $\bar{U}=\left\{y \in C_{B}^{n}:\left|y I_{n} \leqslant K+\right| \ell I_{n}\right\rangle$ and $H: \bar{U} \times[0,1] \rightarrow C_{B}^{n}$ is defined by $H(u, \lambda)=$
$N^{-1} T_{\lambda} j(u)+(1-\lambda) \ell \equiv H_{\lambda} \quad$ where $j: C_{B}^{n} \rightarrow C^{n-1}$ is the completely continuous embedding and $T_{\lambda}: C^{n-1} \rightarrow C$, $0 \leqslant \lambda \leqslant 1, \quad$ is the continuous map defined by ($\left.T_{\lambda} v\right)(t)=$ $g\left(t, v(t), \ldots . v^{(n-1)}(t), \lambda\right)$. This homotopy is clearly compact. Now $H_{0}=\ell$ and since $I \ell I_{n}<K+\| \ell I_{n} t h e n$ ℓ is an interior point of \bar{U} in C_{B}^{n}. Now Theorem 1.4 implies that H_{0} is essential. Moreover, $H(u, \lambda)=u$ means $N^{-1} T_{\lambda} j(u)+(1-\lambda) \ell=u \quad$ which implies $M^{-1} T_{\lambda} j(u)+\ell+(1-\lambda) \ell=u$. Now since $M \ell=0$ we have $T_{\lambda} j^{u}=M u$. So each fixed point of H satisfies $\| u I_{n}<k$, by (iii), and $H_{\lambda}(u)=H(u, \lambda)$ is in $K_{\partial U}\left(\bar{U}, C_{B}^{n}\right)$. Hence H_{o} is homotopic to H_{1} and Theorem 1.j implies that H_{1} is essential. Thus H_{1} has a fixed point, so (1.4) , has a solution and so by (i), (1.4) has a solution.
II. First Order Initial Value Probiems

2.1 Introduction

The basic existence theorem for the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y(0)=r
\end{array}\right.
$$

where $f: Z \rightarrow R^{n}$ is continuous and Z is the cyinder $[0, T] \times R^{n}$, guarantees that a solution exists for $t>0$ and near 0. Familiar exampies show that the interval of existence can be arbitrarily short, depending on the initiai value r and the noninear behavior of f. In this chapter we see how our analysis which is based on a priori bounds and the topological transversality theorem leads naturally to the study of the dependence of the interval of existence of a solution to (2.1) upon r and f. Additionally the analysis automatically produces best possibie results.

2.2 Maximal Intervals of Existence for Classes of Initial Value Problems

The use of a priori bounds to estabiish existence theorems for boundary value problems is well known. These techniques also apply to initial value problems; however this fact seems to have been largely overlooked. Specializing Theorem l. 9 for initial value problems, we have

Theorem 2.1. Let $f:[0, T] \times R^{n} \rightarrow R^{n}$ be continuous and $0 \leqslant \lambda \leqslant 1 . \operatorname{suppose} t h e r e i s$ a constant k independent of λ such that $|y(t)|,\left|y^{\prime}(t)\right| \leqslant K$ for $t \in\{0, T\}$
for each solution $y(t)$ to
2.2) λ

$$
\left\{\begin{array}{l}
y^{\prime}=\lambda f(t, y), 0 \leqslant t \leqslant T \\
y(0)=0
\end{array}\right.
$$

Then the initial value problem
2.2)

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), 0 \leqslant t \leqslant T \\
y(0)=0
\end{array}\right.
$$

has a solution y in $C^{1}[0, T]$.

Remark. Theorem le is formulated for a scaler equation; however the proof extends immediately to the case of systems as in tine present formulation.

In view of Theorem 2. 1 we obtain immediately

Theorem 2.2. Let $\psi:(0, \infty) \rightarrow(0, \infty)$ be continuous, and assume
2.3)

$$
|f(t, y)| \leqslant \psi(|y|)
$$

for all (toy). Then the initial value problem (2.2) has a solution in $C^{i}[0, T]$ for each
2.4)

$$
T<T_{\infty}=\int_{0}^{\infty} \frac{d u}{\psi(u)} .
$$

Moreover, this result is best possible in the sense that the initial value problem
2.5)

$$
\left\{\begin{array}{l}
y^{\prime}=\hat{f}(t, y), 0 \leqslant t \leqslant \widehat{T} \\
y(0)=0
\end{array}\right.
$$

with $\hat{f}(t, y)=(\psi(|y|), 0, \ldots, 0)$ and for which (2.3) holds can have a solution only if $\hat{T}<T_{\infty}$.

Proof To prove existence of a solution in $C^{1}\{0, T\}$ we apply Theorem 2.i. To establish the a prior bounds for (2.2) λ_{λ}, let $y(t)$ be a solution to (2.2) λ_{λ}. Then

$$
\left|y^{\prime}\right|=|\lambda f(t, y)| \leqslant \psi(|y|) .
$$

Now if $|y(t)| \neq 0$ we have by the Cauchy Schwartz Inequality

$$
|y|^{\prime}=\frac{y-y^{\prime}}{|y|} \leqslant\left|y^{\prime}\right|
$$

and the inequality above yields

$$
|y|^{\prime} \leqslant \psi(|y|)
$$

at any point t where $y(t) \neq 0$. Suppose $y(t) \neq 0$ for some point $t \in[0, T]$. Since $y(0)=0$ there is an interval $[a, t]$ in $[0, T]$ such that $|y(s)|>0$ on $a<s \leqslant t$ and $y(a)=0$. Then the previous inequality implies

$$
\int_{a}^{t} \frac{\mid y(s) \|^{\prime}}{\psi(|y(s)|)} d s \leqslant t-a .
$$

So, $\quad \int_{0}^{|y(t)|} \frac{d u}{\psi(u)} \leqslant t-a \leqslant T<T_{\infty}=\int_{0}^{\infty} \frac{d u}{\psi(u)}$.

This inequality implies there is a constant M_{o} such that

$$
|y(t)| \leqslant M_{0}
$$

Now (2.2) gives

$$
\left|y^{\prime}(t)\right| \leqslant \underset{[0, T] \times\left[-M_{0}, M_{0}\right]}{\max }|f(t, y)| \equiv M_{1}
$$

So $|y(t)|,\left|y^{\prime}(t)\right| \leqslant K=\max \left\{M_{0}, M_{1}\right\}$ and the existence of a solution to (2.2) is established.

Finally, $y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$ solves (2.5) if and only if $y_{2}(t)=\ldots \ldots=y_{n}(t)=0$ and $y_{i}^{\prime}=$ $\psi\left(1 y_{1} \mid\right), y_{1}(0)=0$. Clearly $y_{i}^{\prime}(t)>0$ so $y_{1}(t)>0$ and integration yields

$$
\int_{0}^{\hat{T}} \frac{y_{i}^{\prime}(s)}{\psi\left(y_{1}(s)\right)} d s=\hat{T} .
$$

Thus, $\hat{T}=\int_{0}^{(\hat{T})} \frac{d u}{\psi(u)}<\int_{0}^{\infty} \frac{d u}{\psi(u)}=T_{\infty} \quad$ which completes the proof of Theorem 2.2.

Remark. If $\quad T_{\infty}=\infty \quad$ Theorem 2.2 is called Winter's Theorem [19], [36].

Theorem 2.1 also holds for the inhomogeneous initial condition $y(0)=r$ see Theorem 1.10. So trivial adjustments in the proof above yield

Theorem 2.3. Let $f(t, y)$ and $\psi(y)$ satisfy the hypothesis in Theorem 2.2. Then the initial value problem
2.6)

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), 0 \leqslant t \leqslant T \\
y(0)=r
\end{array}\right.
$$

has a solution $y(t)$ in $C^{1}[0, T]$ for each

$$
T<T_{\infty}=\int_{|r|}^{\infty} \frac{d u}{\psi(u)}
$$

Moreover, this result is best possible as described in Theorem 2.2.

2.3 Examples

A few examples illustrate the previous sections results.

Example 1.1 (Linear and Sublinear Growth)
Suppose $|f(t, y)| \leqslant A(t)|y|^{P}+B(t), 0 \leqslant p \leqslant i$ for bounded functions $A(t), B(t) \geqslant 0$. If A_{0} and B_{0} are upper bounds for $A(t)$ and $B(t)$ respectively then

$$
|f(t, y)| \leqslant A_{0}|y|^{p}+B_{0} \equiv \psi(|y|)
$$

and

$$
T_{\infty}=\int_{\mid r_{1}}^{\infty} \frac{d u}{A_{0} u^{P^{2}+B}}=\infty .
$$

Consequently the initial value problem (2.6) has a solution on $[0, T]$ for all $T>0$.

Example 1.2 (Polynomial growth)
Suppose $|f(t, y)| \leqslant A(t)|y|^{m}+B(t)$ for $m=$ 1,2,.... and for bounded functions $A(t), B(t) \geqslant 0$. If Ap and B_{0} are upper bounds for $A(t)$ and $B(t)$, then

$$
|f(t, y)| \leqslant A_{0}|y|^{m}+B_{0} \equiv \psi(|y|), T_{\infty}=\int_{|r|}^{\infty} \frac{d u}{A_{0} u^{m}+B_{0}}
$$

and the initial value problem (2.6) has a solution on [0, T] for any $T<T_{\infty}$. In the case of zero initial data, $r=0$, we have

$$
T_{\infty}=\int_{0}^{\infty} \frac{d u}{A_{0} u^{m}+B_{0}}=\frac{\pi \csc (\pi / m)}{m A_{0}^{1 / m} B_{0}(m-1) / m} .
$$

Example 1.3 (Estimate of the time before shocks) The first order quasilinear partial differential equation

$$
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u)
$$

with suitable assumptions on the coefficients a, b and c can be solved by the method of characteristics. If the solution surface $u=u(x, y)$ is to contain the smooth initial curve

$$
x_{0}=x_{0}(s), y_{0}=y_{0}(s), u_{0}=u_{0}(s)
$$

where $0 \leqslant 1 \leqslant$ is a parameter, then the characteristic initial value problem is

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a, \frac{d y}{d t}=b, \frac{d u}{d t}=c \\
x(0, s)=x_{0}(s), y(0, s)=y_{0}(s), u(0, s)=u_{0}(s)
\end{array}\right.
$$

where $x=x(t, s), y=y(t, s), u=u(t, s)$ and s is regarded as a parameter in the initial value problem. The solution to the initial value problem yields the solution surface by expressing $u(t, s)$ in terms of x
and y after solving $x=x(t, s), y=y(t, s)$ for $t=t(x, y)$ and $s=s(x, y)$. In the region about the initial curve where this can be done, a smooth solution surface results. Suppose we have an estimate on the growth rate of the coefficients in the partial differential equation; say,
$|f(x, y, z)|=|(a(x, y, z), b(x, y, z), c(x, y, z))|$ $\leqslant \psi(|(x, y, z)|)$.

Then by Theorem 2.3 no shocks can develop up to the time $T<T_{\infty}=\int_{|r|}^{\infty} \frac{d u}{\psi(u)} \quad$ where $r=\max _{0 \leqslant s \leqslant 1}\left|\left(x_{0}(s), y_{o}(s), u_{o}(s)\right)\right|$ assuming of course that t and s are expressible as functions of x and y as required above.
III. Boundary Value Problems on Infinite Intervals

3.1 Introduction

In this chapter we study the existence of solutions to a second order differential equation of the form
3.1)

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), 0 \leqslant x<\infty
$$

where $f(x, u, p)$ is defined and continuous on $[0, \infty) \times R \times R$. We establish that the differential equation (3.1) has bounded solutions under growth conditions of Bernstein type on the nonlinearity f. In addition, existence theorems are established for (3.1) together with the boundary conditions
3.2)

$$
-\alpha y(0)+B y^{\prime}(0)=r
$$

where $\alpha>0, B \geqslant 0, r$ is a given constant and
3.3)

$$
\lim _{x \rightarrow \infty} y(x)=0
$$

The analysis in this chapter is based on extending theorems of Granas, Guenther and Lee [15], [16], [18] for boundary value problems on finite intervals. As usual $c^{k}[0, \infty)$ is the space of functions $v(x)$ on $[0, \infty)$ with $v^{(k)}$ continuous, $B C^{k}[0, \infty)$ is the space of functions $\quad v(x)$ with $v^{(j)}(x)$ bounded and continuous on $[0, \infty)$ for $j=0,1, \ldots, k$ Let

$$
C_{0}^{2}[0, \infty)=\left\{v \in c^{2}[0, \infty): \lim _{x \rightarrow \infty} v(x)=\lim _{x \rightarrow \infty} v^{\prime}(x)=\underset{x \rightarrow \infty}{\lim } v^{\prime \prime}(x)=0\right\}
$$

with norm $\|v\|_{2}=\max \left\langle\|v\|_{0},\|v\|_{0},\|v "\|_{0}\right\rangle$ where
$\|v\|_{0}=\sup _{0 \leqslant x<\infty}|v(x)|$.
3. 2

Global Solutions to Second Order Nonlinear Differential Equations

The Arzela-Ascoli theorem and the following known result about boundary value problems on finite intervals will imply our basic existence theorem for problems defined on $0 \leqslant x<\infty$.

Theorem 3.1. Assume $f(x, u, p)$ is continuous and satisfies
3.4) $\left\{\begin{array}{l}\text { There is a constant } M \geqslant 0 \text { such that } \\ \text { ufa, } u, 0) \geqslant 0 \text { for }|u|>M .\end{array}\right.$
3.5) $\quad\left\{\begin{array}{l}\text { There are functions } A(x, u), B(x, u)>0 \\ \text { which are bounded when } u \text { varies in } \\ \text { a bounded set and } \\ |f(x, u, p)| \leqslant A(x, u) p^{2}+B(x, u) .\end{array}\right.$

Let n be a positive integer and consider the boundary problem
3.6) $\quad\left\{\begin{array}{l}y^{\prime \prime}=f\left(x, y, y^{\prime}\right), 0 \leqslant x \leqslant n \\ -a y(0)+b y^{\prime}(0)=r, \alpha>0 \text { and } B \geqslant 0 \\ y(n)=0 .\end{array}\right.$

Then (3.6) has at least one solution $y_{n} \in C^{2}[0, n]$ with $\left|y_{n}(j)(t)\right| \leqslant \widetilde{K}, j=0, i, 2$ and $t \in[0, n]$, where \widetilde{K} is a constant independent of n. In fact let A, B be constants which bound $A(x, u)$ and $B(x, u)$ on $[0, \infty) \times\left\lceil-M_{0}, M_{0}\right] \quad$ respectively, where $\quad M_{0}=\max \left\{M, \frac{|r|}{\alpha}\right\}$, then $\tilde{K}=\max \left\{M_{0}, M_{1}, A M_{1}^{2}+B\right\} \quad$ where if $B \neq 0$
$M_{1}=\max \left[\frac{|r|+\alpha M_{0}}{B},\left[\left(\frac{|r|+a M_{0}}{B}\right]^{2} e^{4 A M_{0}}+\frac{B}{A}\left[e^{4 A M_{0}-1}\right]\right]^{1 / 2}\right]$
while if $B=0$

$$
M_{1}=\max \left[\frac{|r|}{\alpha},\left[\left[\frac{|r|}{\alpha}\right]^{2} e^{4 A M_{0}}+\frac{B}{A}\left[e^{4 A M_{0}}-1\right]\right]^{1 / 2}\right]
$$

The proof follows from a slight modification of arguments in [15], [16] and [17]. These results imply the global solubility of the differential equation (3.1).

Theorem 3.2. Assume $f(x, u, p)$ satisfies (3.4), (3.5). Then the ordinary differential equation

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), 0 \leqslant x<\infty
$$

has at least one solution y in $\operatorname{BC}^{\mathbf{2}}[0, \infty)$.

Proof Let n be a positive integer and consider

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), 0 \leqslant x \leqslant n \tag{3.7}\\
y(0)=0 \\
y(n)=0
\end{array}\right.
$$

By Theorem 3.1 there exists a solution $u_{n} \in C^{2}[0, n]$ to (3.7) with $\left|u_{n}(j)(t)\right| \leqslant \widetilde{k}, j=0,1,2$ and $t \in[0, n]$, where \tilde{k} is a constant independent of n. Now define functions y_{n} on $[0, \infty)$ by $y_{n}(x)=u_{n}(x)$ on $[0, n]$ and $y_{n}(x)=0$ on $[n, \infty)$. Clearly each y_{n} is continuous on and twice continuously differentiable except possibly at $x=n$. Let $s=\left\{y_{n}\right\}_{n=1}^{\infty}$. By Theorem 1.7 there is a subsequence \tilde{N}_{1} of the positive integers N and a continuously differentiable function Z_{1} on $[0,1]$ such that for $j=0,1 \quad y^{(j)}(x) \rightarrow Z^{(j)}(x)$ uniformly on $[0,1]$ as $n \rightarrow \infty$ through $\stackrel{\sim}{N}_{1}$. Let $N_{i}=\hat{N}_{1} \backslash\{1\}$. Then by Theorem 1.7 there is a subsequence \tilde{N}_{2} of N_{1} and a continuously differentiable function $\quad Z_{2}$ on 0,2$]$ such that for $j=0,1 \quad y(\underset{n}{(j)}(x) \rightarrow z(\underset{2}{j})(x)$ uniformly on $[0,2]$ as $n \rightarrow \infty \quad$ through $\tilde{N}_{2}{ }_{\sim} \quad$ Note $Z_{2}=z_{1}$ on [0,1] since $\tilde{N}_{2} \subset N_{1}$. Let $N_{2}=\tilde{N}_{2} \mid\{2\}$ and proceed inductively to obtain for $K=1,2, \ldots$ a subsequence $N_{K} \quad$ of positive integers with $N_{K} \subset N_{K-1}$ and a
continuously differentiable function ${ }^{2}{ }^{Z}{ }_{K}$ on [0, K$]$ such that for $j=0,1 \quad y{ }_{n}^{(j)}(x) \rightarrow Z_{K}^{(j)}(x)$ uniformly on $[0, K]$ as $n \rightarrow \infty$ in N_{K}. Since $N_{K} \subset N_{K-1}, Z_{K}(x)=$ $z_{K-1}(x)$ on $[0, K-1]$. Now we define a function y as follows: fix x in $[0, \infty)$ and let k be a positive integer with $x \leqslant K$. Then define $y(x)=z_{K}(x)$. From the construction above, y is well defined. It is clear also that $y \in C^{1}(0, \infty)$. Now fix x and choose and fix $K \geqslant x$. We have

$$
y_{n}^{\prime}(x)-y_{n}^{\prime}(0)=\int_{0}^{x} f\left(t, y_{n}(t), y_{n}^{\prime}(t)\right) d t
$$

for $n \in N_{K}$. Since $y_{n}^{(j)}(t)$ converges uniformly to $z_{K}^{(j)}(t)$ on $[0, K]$ for $j_{j}=0,1$ let $n \rightarrow \infty$ through N_{K} to find

$$
z_{K}^{\prime}(x)-z_{k}^{\prime}(0)=\int_{0}^{x} f\left(t, z_{K}(t), z_{K}^{\prime}(t)\right) d t .
$$

That is, $y^{\prime}(x)-y^{\prime}(0)=\int_{0}^{x} f\left(t, y(t), y^{\prime}(t)\right) d t$. Consequently $y \in C^{2}(0, \infty)$ and (3.1) is satisfied. It is clear also that $y(0)=0$ and $\|y\|_{2} \leqslant \tilde{K}$, the constant from Theorem 3.1 and consequently y is in BC ${ }^{2}(0, \infty)$.

Corollary 3.3. Assume f(x,u,p) satisfies (3.4), (3.5). Then the ordinary differential equation (3.1) with the initial condition (3.2) has at least one solution in $\operatorname{BC}^{2}[0, \infty)$.

Proof This follows directly from the proof of Theorem 3.2 except we consider the boundary value problem

$$
\left\{\begin{array}{l}
y \prime=f\left(x, y, y^{\prime}\right), 0 \leqslant x \leqslant n \\
-a y(0)+B y^{\prime}(0)=r, a>0 \text { and } \beta \geqslant 0 \\
y(n)=0
\end{array}\right.
$$

instead of (3.7).

Remark. Suppose the sturm-Liouville initial condition (3.2) is replaced by the homogeneous Neumann initial condition
3.8)

$$
y^{\prime}(0)=0
$$

Then it follows easily from results in [15], [16] and the reasoning used above that Corollary 3.3 holds with (3.8) replacing (3.2).

However stronger assumptions on f are needed for existence of a solution to the inhomogeneous Neumann problem on a finite interval; see il8]. Using these results, with (3.2) replaced by
3.9)

$$
y^{\prime}(0)=r \neq 0
$$

one can prove

Theorem 3.4. Assume $f(x, u, p)$ is continuous and satisfies:
3.10) $\left\{\begin{array}{l}\text { There is a constant } K>0 \text { such that } \\ f_{u}(x, u, p) \geqslant K \text { for }(x, u, p) \text { in }\{0, \infty) \times R \times\{r\} .\end{array}\right.$
3.11) $\left\{\begin{array}{l}\text { For } 0 \leqslant x<\infty \text { and } u \in|-|r|,|r|\}, f(x, u, r) \\ i s \text { bounded. }\end{array}\right.$
3.12) $\left\{\begin{array}{l}\text { f satisfies the Bernstein growth } \\ \text { condition (3.5). }\end{array}\right.$

Then the ordinary differential equation (3.1) with the initial condition (3.9) has at least one solution in
$B C^{2}(0, \infty)$.
3.3 Solutions to Second Order Boundary Value Problems on $(0, \infty)$

Suppose f satisfies (3.4) , (3.5). Then the reasoning in section 3.2 yields a $\operatorname{BC}^{2}[0, \infty)$ solution to (3.1) and (3.2). Suppose in addition each solution $u \in B C^{2}[0, \infty)$ of (3.1), (3.2) satisfies the following condition:
3.13) $\left\{\begin{array}{l}\text { There is a continuous function } \psi \text { such } \\ \text { that } \psi(x) \rightarrow 0 \text { as } x \rightarrow \infty \text { and } I u(x) I \leqslant \psi(x) \\ \text { for } 0 \leqslant x<\infty .\end{array}\right.$

Then a priori each solution to (3.1), (3.2) tends to zero at infinity and we have

Theorem 3.5. Assume $f(x, u, p) \quad$ is continuous and (3.4) , (3.5) and (3.13) are satisfied. Then the boundary value problem (3.1), (3.2), (3.3) has at least one solutions in $C^{2}(0, \infty)$.

Bounds of type (3.13) are usually hard to
establish. We show how to do this in section 3.4, which establishes that a nonlinear semiconductor problem has a solution. The next results show that (3.13) and the Berstein type growth condition imply similar bounds which guarantee that y^{\prime} and $y^{\prime \prime}$ tend to zero at infinity.

Corollary 3.6. Suppose (3.4) (3.5) and (3.13) are satisfied. Then each solution $y \in C^{2}(0, \infty)$ to (3.1), (3.2), (3.3) satisfies $\underset{x \rightarrow \infty}{\lim } y^{\prime}(x)=0$.

Proof our strategy is to obtain a bound similar to (3.13) for ' $^{\prime}$. We can assume without loss of
generality that ψ is a decreasing function with $|y(x)| \leqslant \psi(x), 0 \leqslant x<\infty \quad$ and $\psi(x) \rightarrow 0$ as $x \rightarrow \infty$ (Otherwise let $\psi_{1}(x)=\sup \quad \psi(x)$ and apply the following argument with $\psi_{1}{ }^{t \geqslant x}$ replacing ψ). Since lim $y(x)=0$ one can show easily that for each $\in>0$ $\underset{a n d}{x \rightarrow \infty}$ for each $t>0$ there exists $\gg t$ such that
 for which $\quad y^{\prime}(t) \mid>E$ Then there is an interval [t, s] such that y^{\prime} maintains a fixed sign on [t, s] and $\left|y^{\prime}(s)\right| \leqslant E$ Assume $y^{\prime} \geqslant 0$ on $[t, s]$. Since $\|y\|_{0} \leqslant\|\psi\|_{0} b y(3.13)$, there are constants $A, B>0$ which bound $A(x, u)$ and $B(x, u)$ on
$[0, \infty) \times\left[-\|\psi\|_{0},\|\psi\|_{0}\right]$. Consequently, the differential equation and (3.5) yield

$$
-2 A y^{\prime} \leqslant \frac{2 A y^{\prime} y^{\prime \prime}}{A y^{\prime 2}+B}
$$

and integrating from to solds

$$
\operatorname{Ln}\left[\frac{A y^{\prime 2}(t)+B}{A y^{\prime 2}(s)+B}\right] \leqslant 2 A[\psi(t)+\psi(s)] \leqslant 4 A \psi(t)
$$

because ψ is decreasing. Hence

$$
\left|y^{\prime}(t)\right| \leqslant\left[\epsilon^{2} e^{4 A \psi(t)}+\frac{B}{A}\left[e^{4 A \psi(t)}-1\right]\right]^{1 / 2}
$$

The same bound is obtained if we assume $y^{\prime} \leqslant 0$ on [t,s] and this inequality holds trivially if ly' (t) ISE. Letting $\epsilon \rightarrow 0^{+}$yields
$3.14) \quad\left|y^{\prime}(t)\right| \leqslant\left[\frac{B}{A}\left[e^{4 A \psi(t)}-1\right]\right]^{1 / 2} \equiv \psi_{2}(t)$
for all $0 \leqslant t<\infty$. Clearly $\psi_{2}(t)$ is continuous on $[0, \infty)$ and $\psi_{2}(x) \rightarrow 0$ as $x \rightarrow \infty$.

The main result in this section is concerned with obtaining $\quad C_{0}^{2}[0, \infty)$ solutions to the boundary value problem (3.1), (3.2) and (3.3).

Theorem 3.7. Assume (3.4), (3.5), (3.13) are satisfied. Suppose in addition f(x,u,p) satisfies:
3.15)

$$
\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x}, 0,0)=0
$$

3.16) $\left\{\begin{array}{l}\text { For } 0 \leqslant x<\infty \text { and } \quad u, p \text { each in a bounded } \\ \text { interval } f_{u}(x, u, p) \text { and } f_{p}(x, u, p) \text { are bounded. }\end{array}\right.$

Then the boundary value problem (3.1), (3.2), (3.3) has at least one solution in $c_{0}^{2}(0, \infty)$.

Proof In view of Theorem 3.5 and Corollary 3.6 there exists a solution $y \in B C^{2}(0, \infty)$ to (3.1), (3.2) which satisfies $\quad \underset{x \rightarrow \infty}{\lim } y(x)=\underset{x \rightarrow \infty}{\lim } y^{\prime}(x)=0$. The differential equation yields

$$
\begin{aligned}
y^{\prime \prime}(x) & =\mathbf{f}\left(x, y, y^{\prime}\right)-\mathbf{f}(x, 0,0)+\mathbf{f}(x, 0,0) \\
& =\overline{\mathbf{f}}_{y} y+\overline{\mathbf{f}}_{y^{\prime}} y^{\prime}+\mathbf{f}(x, 0,0)
\end{aligned}
$$

where \bar{f}_{y}, \bar{f}_{y}, are intermediate values obtained by the Mean Value Theorem. Now (3.13), (3.4) and (3.16) imply

$$
\left|y^{\prime \prime}(x)\right| \leqslant S \psi(x)+R \psi_{2}(x)+f(x, 0,0) \equiv \psi_{3}(x)
$$

 $(x, u, p) \in[0, \infty) \times[-K, K] \times[-K, K]$, where $K \geqslant\|y\|_{1}$ is a constant. Clearly $\psi_{3}(x)$ is continuous on $[0, \infty)$ and $\psi_{3}(x) \rightarrow 0$ as $x \rightarrow \infty$ by (3.15).

3.4 Applications to Semiconductor Devices

In studying the theory of semiconductor devices one is led to boundary value problems for the poisson equation in unbounded domains which can consist of several layers. In one spacial dimension the problem reduces to finding solutions $u=u(x)$ and $v=v(x)$ to

$$
\begin{aligned}
& v^{\prime \prime}=0,-1<x<0 \\
& v(-1)=\frac{\phi}{\mathfrak{a}} \\
& u^{\prime \prime}=f(x, u), 0<x<\infty \\
& v(0)=u(0) \\
& a v^{\prime}(0)=u^{\prime}(0) \\
& \lim _{x \rightarrow \infty} u(x)=0
\end{aligned}
$$

where $\alpha>0$ and $\quad \varnothing$ are given constants. In semiconductor applications, the function fousully written in the form

$$
f(x, u)=-\frac{q}{E}\left[p-n+N_{D}-N_{A}+N_{Q}\right]
$$

where n and p fefer the electron and hole mobile charge densities, $\quad N_{D}$ and N_{A} the donor and acceptor impurity densities and N_{Q} is the density of the fixed charged particles. The constant q is the magnitude of the electronic charge, and \in is the dielectric permitivity See [5], [6], [32] for an in-depth physical discussion. Some common examples which are used for the function f are:

$$
\begin{aligned}
& f(x, u)=K u \\
& f(x, u)=A \operatorname{Sinh}(K u) \\
& f(x, u)=-A-B e^{-c u}+(A+B) e^{c u}+S e^{-\sigma\left(x-x_{m}\right)^{2}}
\end{aligned}
$$

Here A, B, S, C, K, σ are all positive constants and $x_{m}>0$ is a fixed value.

Since v is a linear function on $-1 \leqslant x \leqslant 0$ it can be eliminated and thus the following boundary value problem for u is obtained
3.17)
$u^{\prime \prime}=f(x, u)$
3.18)

$$
u^{\prime}(0)-\alpha u(0)=-\varnothing
$$

3.19)

$$
\lim _{x \rightarrow \infty} u(x)=0
$$

Motivated by the examples cited above, we shall make the following assumptions on the function $f(x, u)$:
3.20) $\quad\left\{\begin{array}{l}f(x, u) \text { is continuous on } \quad[0, \infty) \times R . \\ \text { Moreover for } 0 \leqslant x<\infty \quad \text { and } u \text { in a bounded } \\ \text { interval } f(x, u), f_{u}(x, u) \text { are bounded. }\end{array}\right.$

$$
3.21)
$$

$$
\left\{\begin{array}{l}
\text { There is a constant } m>0 \text { such that } \\
\frac{\partial f}{\partial u}(x, u) \geqslant m^{2} \text { on }[0, \infty) \times R .
\end{array}\right.
$$

3.22)

$$
\lim _{x \rightarrow \infty} f(x, 0)=0
$$

Uniqueness for the boundary value problem (3.17), (3.18) (3.19) follows from an elementary maximum principle and (3.21).

Lemma 3.8. Assume $f(x, u)$ satisfies (3.21). Then the boundary value problem (3.17), (3.18) , (3.19) has at most one solution.

Proof Suppose and $u_{1}(x)(x)$ are solutions to
(3.17), (3.18), (3.19). The function $\frac{\left(u_{1}-u_{2}\right)^{2}}{2}$ vanishes at infinity; so if it is not identically zero, it must have a positive maximum at a point $\tilde{x}, 0 \leqslant \tilde{x}<\infty$. Now if $\tilde{x}>0$, we would have
$0 \geqslant\left.\frac{d^{2}}{d x^{2}} \frac{\left(u_{1}-u_{2}\right)^{2}}{2}\right|_{x=\tilde{x}}=\left[\tilde{u}_{1}-\tilde{u}_{2}\right]\left[f\left(\tilde{x}, \tilde{u}_{1}\right)-f\left(\tilde{x}, \tilde{u}_{2}\right)\right]$
i.e. $\quad 0 \geqslant m^{2}\left(\tilde{u}_{1}-\tilde{u}_{2}\right)^{2}$
where $\tilde{u}_{1}=u_{1}(\tilde{x})$ and $\tilde{u}_{2}=u_{2}(\tilde{x})$. Since $\left(\tilde{u}_{1}-\tilde{u}_{2}\right)^{2}>0$ this is a contradiction. If on the other hand, $\tilde{x}=0$ then the boundary condition at zero gives

$$
\left.\frac{d}{d x} \frac{\left(u_{1}-u_{2}\right)^{2}}{2}\right|_{x=0}=\alpha\left(\tilde{u}_{1}-\tilde{u}_{2}\right)^{2}>0
$$

which contradicts the fact that $\frac{\left(u_{1}-u_{2}\right)^{2}}{2}$ has its nonzero maximum at $\quad \tilde{x}=0$. These contradictions show that $\frac{\left(u_{1}-u_{2}\right)^{2}}{2} \equiv 0$.

The existence of a solution to (3.17), (3.18), (3.19) will follow from the results of section 3.2 and 3.3. Our analysis also uses the fact that a special linear problem of type (3.17), (3.18), (3.19) can be solved explicitly.

Proposition 3.9. Let $m>0, \quad B \quad$ real and $h(x)$ be a continuous function on $\quad[0, \infty)$ with limit zero at infinity. Then the boundary value problem
3.23)

$$
\left\{\begin{array}{l}
w^{\prime \prime}-m^{2} w=h(x), 0 \leqslant x<\infty \\
w^{\prime}(0)-a w(0)=B \\
1 i m w(x)=0 \\
x \rightarrow \infty
\end{array}\right.
$$

has a unique solution. Moreover, if $h(x) \leqslant 0$ and $B \leqslant 0$ then $w(x)$ is a nonnegative function on $[0, \infty)$. Consequently if $h(x) \geqslant 0$ and $B \geqslant 0$ then $w(x)$ is a nonpositive function on $[0, \infty)$.

Proof The existence and uniqueness of the solution to (3.23) can be confirmed by quadrature. In fact we can obtain via variation of parameters that the solution is

$$
\begin{aligned}
& w(x)=-\left[\frac{\beta+\int_{0}^{\infty} e^{-m t} h(t) d t}{\alpha+m}\right] e^{-m x} \\
& -\int_{0}^{x} e^{-m(x-5)}\left[\int_{\zeta}^{\infty} e^{-m(t-5)} h(t) d t\right] d \zeta
\end{aligned}
$$

Evidently $w(x) \geqslant 0$ when $B \leqslant 0$ and $h(x) \leqslant 0$.

Theorem 3.10. Assume $f(x, u)$ satisfies (3.20), (3.21), (3.22). Then the boundary value problem (3.17), (3.18), (3.19) has at least one solution in $c_{o}^{2}(0, \infty)$.

Proof We begin by showing $f(x, u)$ satisfies (3.4), (3.5). We have

$$
\begin{gathered}
u f(x, u)=u[f(x, u)-f(x, 0)]+u f(x, 0) \\
\geqslant m^{2} u^{2}+u f(x, 0)
\end{gathered}
$$

by the mean value theorem and (3.21). Hence $u f(x, u)>0$ for $|u|>M_{3}$ where $M_{3}=\frac{\max _{0 \leqslant x<\infty}|f(x, 0)|}{m^{2}}$. So (3.4) is satisfied. Now (3.20) clearly implies
(3.5). Thus Corollary 3.3 implies there exists $u \in \operatorname{BC}^{2}[0, \infty)$ which satisfies (3.17), (3.18). Since $u \in C^{2}[0, \infty)$ there exists a constant \quad such that $\|u\|_{2} \leqslant k$. Next we show $\lim _{x \rightarrow \infty} u(x)=0$.
Let $\quad w_{1}(x)$ be the unique ${ }^{x \rightarrow \infty}$ onnegative solution to

$$
\left\{\begin{array}{l}
w^{\prime \prime}-m^{2} w=f(x, 0)-|f(x, 0)|, 0 \leqslant x \leqslant \infty \\
w^{\prime}(0)-\alpha w(0)=-\phi-|\varnothing| \\
1 i m w(x)=0 \\
x \rightarrow \infty
\end{array}\right.
$$

guaranteed by Proposition 3.9 Now consider the function $r(x)=u(x)-W_{1}(x)$. We shall show it is never positive. First, we show r(x) canot have a local positive maximum on $[0, \infty)$. Indeed, suppose a local positive maximum were to occur at $\stackrel{\sim}{x}$ If $\stackrel{\sim}{x}>0$ we would have

$$
\begin{aligned}
0 & \geqslant\left.\frac{d^{2}}{d x^{2}}\left(u(x)-w_{1}(x)\right)\right|_{x=x_{x}}=u^{\prime \prime}(\tilde{x})-w_{1}^{n}(\tilde{x}) \\
& =f(\tilde{x}, u(\tilde{x}))-m^{2} w_{1}-f(\tilde{x}, 0)+|f(\tilde{x}, 0)| \\
& =\bar{f}_{u}\left(u(\tilde{x})-w_{1}(\tilde{x})\right)+\left(\bar{f}_{u}-m^{2}\right) \hat{w}_{1}(\tilde{x})+\hat{f}(\tilde{x}, 0) \mid \\
& >0
\end{aligned}
$$

where $\bar{f} u$ is an intermediate value obtained from the mean value theorem, and this is a contradiction. On the other hand, if $\stackrel{\sim}{x}=0$ we would have
$0 \geqslant\left.\frac{d}{d x}\left(u(x)-w_{1}(x)\right)\right|_{x=0}=u \cdot(0)-w_{1}^{\prime}(0)$
$=\alpha u(0)-\phi-\alpha \omega_{1}(0)+\phi+|\phi|$
$=a\left(u(0)-w_{1}(0)\right)+|\phi|$
>0
which is also impossible. Consequently, as asserted,
r(x) cannot have a positive local maximum on $[0, \infty)$. It now follows easily that $\quad r(x) \leqslant 0$ on $[0, \infty)$: If not, then there is a $c \geqslant 0$ such that $r(c)>0$, and since \quad (x) cannot have a positive local maximum on $[0, \infty)$ it follows that $r\left(x_{2}\right)>r\left(x_{1}\right)$ for all
$x_{2}>x_{1} \geqslant c ; \quad$ otherwise $\quad r(x)$ would have a local positive maximum on $\left\{0, x_{2}\right]$. Thus $r(x)=u(x)-w_{1}(x)$ is strictly increasing for $x \geqslant c$. Since both $u(x)$ and $w_{1}(x)$ are bounded on $[0, \infty)$ and $w_{1}(x) \rightarrow 0$ as $x \rightarrow \infty$, it follows that there exists

$$
\lim _{x \rightarrow \infty} u(x)=\lim _{x \rightarrow \infty}\left(u(x)-w_{1}(x)\right)=\ell>0
$$

Then the relation

$$
\begin{aligned}
u^{\prime \prime} & =f(x, u(x))-f(x, 0)+f(x, 0) \\
& =\bar{f}_{u} u(x)+f(x, 0) \geqslant m^{2} u(x)+f(x, 0)
\end{aligned}
$$

and the fact that $f(x, 0) \rightarrow 0$ as $x \rightarrow \infty$ implies that there exists $c_{1} \geqslant c$ such that

$$
u^{\prime \prime}(x) \geqslant \frac{m^{2} \ell}{2} \text { for all } x \geqslant c_{1} .
$$

This contradicts the boundedness of $u(x)$ on $[0, \infty)$, and completes the proof that $u(x)-w_{1}(x) \leqslant 0 . \quad$ Similar reasoning establishes that $u(x)-w_{2}(x) \geqslant 0$ for all $0 \leqslant x$ where $\omega_{2}(x)$ is the unique nonpositive solution to

$$
\left\{\begin{array}{l}
w^{n}-m^{2} w=|f(x, 0)|+f(x, 0), 0 \leqslant x<\infty \\
w^{\prime}(0)-\alpha w(0)=-\varnothing+|\varnothing| \\
l_{x \rightarrow \infty} w(x)=0 .
\end{array}\right.
$$

Consequentiy $\| u(x) \mid \leqslant \psi(x)=\max \left(w_{1}(x),-w_{2}(x)\right)$ for $0 \leqslant x<\infty$. Thus, the hypothesis of Theorem 3.7 are satisfied and the solution $u(x)$ to (3.17), (3.18), (3.19) belongs to $c_{0}^{2}(0, \infty)$.

IV. Ordinary Differential Equations In The Complex Domain

4.1 Introduction

Ordinary differential equations in the complex domain have been studied in great depth this century; however, very little is known on intervals of existence of a solution. We are interested in this chapter in applying the ideas of Chapter I to study the existence of solutions to the initial value problem in the complex domain:
4.1) $\quad\left\{\begin{array}{l}y(n)=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right), t \in y^{t} \in U_{T} \\ y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(0)}=\alpha_{n-1}\end{array}\right.$
where $\mathbb{a}_{j} \in \mathbb{C}, j=0,1, \ldots, n-1$ and $f: \bar{U}_{T} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ is analytic in $t, y, \ldots \ldots, y^{(n-1)}$ for $t \in U_{T}$ and continuous in $t, y, \ldots y^{(n-1)}$ for $t \in \bar{U}_{T}$. Here of course \mathbb{C} is the complex plane and $U_{T}=\{z:|z|\langle T\rangle$, $\mathbf{T} \in \mathbf{R}$.
By a solution to (4.1) we mean a function y which is analytic on U_{T} with $y, y^{\prime}, \ldots, y^{(n)}$ continuous on \bar{U}_{T} which satisfies the differential equation and initial conditions. The basic existence theorems in Ince [20] and Smart [31] guarantees that a solution exists for $|t|<\epsilon$ for some $\in>0$ suitably small; however, from these theorems it is extremely difficult and many times impossible to produce a specific interval of existence of a solution. The results of this chapter enables us to read off immediately from the differential equation an interval of existence of a solution, although it may not be maximal. We in fact establish with a restriction on T (which depends only on the initial data and the growth constants associated with the nonlinear behavior of f)
that the initial value problem (4.1) has bounded solutions $y(t)$ for $t \in \bar{U}_{T}$ under growth conditions of Bernstein type on the nonlinearity f. Furthermore, in section 4.4 we obtain existence theorems for "Boundary Value Problems" in the complex domain.

Let $A^{k}\left(\bar{U}_{T}\right), k \geqslant 0$ an integer, denote the Banach space of functions $g, g: \bar{U}_{T} \rightarrow \mathbb{C}$ is analytic on U_{T} with g, $\mathbf{g}^{\prime}, \ldots, g^{(k)}$ continuous on \bar{U}_{T} with norm

$$
\|g\|_{k}=\max \left\{\|g\|_{0}, \ldots,\|g(k)\|_{0}\right\}
$$

where $\|g\|_{0}=\sup |g(t)|$.

$$
t \in \overline{\mathrm{U}}_{\mathrm{T}}
$$

If B denotes the initial conditions in (4.1) then let $A_{B}^{k}\left(\bar{U}_{T}\right)$ denote the subset of functions in $A^{k}\left(\bar{U}_{T}\right)$ which satisfy the given initial conditions. For notational purposes we also let $A^{\circ}\left(\bar{U}_{T}\right)=A\left(\bar{U}_{T}\right)$.

Remark. Let $H^{k}\left(U_{T}\right)$ denote the space of functions $g, g: U_{T} \rightarrow \mathbb{C}$ is analytic on U_{T} and $g^{(j)}, j=0, \ldots, k$ is bounded on ${ }^{U_{T}}$ with norm

$$
\|g\|_{k}=\max \left\langle\|g\|_{0}, \ldots,\|g(k)\|_{0}\right\}
$$

where $\|g\|_{0}=\sup _{t \in U_{T}} \mid g(t) I$.

It is more natural to seek solutions y $\in H^{2}\left(U_{T}\right)$ to (4.1). However, the a prior bounds derived in the forthcoming sections together with the Mean Value Theorem for complex functions (Proposition 1.17 in Conway [7]), Theorem 9.1 of Mc Shane and Bott [4] and the assumptions on f imply, a prior, that $y \in A^{k}\left(\bar{U}_{T}\right)$.

```
4.2 Solutions to First Order Initial Value Problems in
    the Complex Domain
```

We begin by extending Theorem [1.9] for the new class of problems.
 $t, y, \ldots y^{(n-1)} \quad$ for $\quad \in \bar{U}_{T}$. suppose there is a constant K such that $|y(t)|,\left|y^{\prime}(t)\right| \leqslant K$ for $t \in \bar{U}_{T}$ for each solution $y(t)$ to

$$
4.2)_{\lambda} \quad\left\{\begin{array}{l}
y^{\prime}=\lambda f(t, y), 0 \leqslant \lambda \leqslant 1 \\
y(0)=0 .
\end{array}\right.
$$

Then the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), \quad t \in U_{T} \tag{4.2}\\
y(0)=0
\end{array}\right.
$$

has a solution y in $A^{l}\left(\bar{U}_{T}\right)$.

Proof Let $\overline{\mathrm{V}}=\left\{u \in A_{B}^{1}\left(\bar{U}_{T}\right):\|u\|_{1} \leqslant K+1\right\}$, $F_{\lambda}: A\left(\bar{U}_{T}\right) \rightarrow A\left(\bar{U}_{T}\right), 0 \leqslant \lambda \leqslant 1, \quad b e \quad t h e c o n t i n u o u s$ map defined by $\left(F_{\lambda^{u}}\right)(t)=\lambda f(t, v(t))$, and $j: A_{B}^{1}\left(\bar{U}_{T}\right) \rightarrow A\left(\bar{U}_{T}\right)$ be the natural embedding which is completely continuous by Theorem li. We define $L: A{ }_{B}^{1}\left(\bar{U}_{T}\right) \rightarrow A\left(\bar{U}_{T}\right) \quad b y \quad L y=y^{\prime}$. It follows from Theorem 1.6 that L^{-1} is a bounded linear operator. Then $H_{\lambda}=L^{-1} F_{\lambda} j$ defines a homotopy $H_{\lambda}: \bar{V} \rightarrow A_{B}^{1}\left(\bar{U}_{T}\right)$. It is clear that the fixed points of H_{λ} are precisely the solutions to (4.2) and hence H_{λ} is fixed point free on ∂v. Moreover, the complete continuity of j together with the continuity of L^{-1} and F_{λ} imply that the homotopy H_{λ} is compact. H_{o} is essential by Theorem 1.4 and Theorem 1.5 implies that H_{l} is essential. Thus (4.2) has a solution.

Abstract

We establish various existence theorems by placing growth conditions on the nonlinearity f. Suppose at first f satisfies linear or sublinear growth conditions, then Theorem 4.l and the maximum modulus principle yield

Theorem 4.2. (Linear growth)
Suppose
4.3)

$$
|f(t, u)| \leqslant A(t)|u|+B(t)
$$

where $A(t), B(t) \geqslant 0$ are functions bounded on bounded t-sets. Let A and B denote the upper bounds for $A(t)$, $B(t)$ respectively for $t \in \bar{U}_{T}$. Then (4.2) has at least one solution in $A^{1}\left(\bar{U}_{T}\right)$ provided $0<T<1 / A$.

Proof Fix T with $0<T<\frac{1}{A}$ The existence of a solution in $A^{1}\left(\bar{U}_{T}\right)$ will follow immediately from Theorem 4.l once we establish a priori bounds for (4.2) λ_{λ} Let $y \in A^{1}\left(\bar{U}_{T}\right)$ be a solution to (4.2) λ_{λ}. Then

$$
\left|y^{\prime}\right|=|\lambda f(t, y)| \leqslant A|y|+B
$$

Suppose the maximum of $\mid y(t) I$ for $t \in \bar{U}_{T}$ occurs at 5. If $\quad 5 \in U_{T}$ then by the maximum modulus principle $y \equiv$ constant. The initial condition yields y \equiv. On the other hand if $\zeta \in \partial U_{T}$ then

$$
\left|y^{\prime}\right| \leqslant A|y(5)|+B
$$

and integration along the straight line from 0 to 5 yields

```
|y(\zeta)|\leqslantAT|y(\zeta)| + BT.
```

Hence

$$
|y(\zeta)| \leqslant \frac{B T}{I-A T} \equiv M_{0}, \quad \text { because } A T<1
$$

This inequality implies

$$
|y(t)| \leqslant M_{0} \text { for } t \in \bar{U}_{T}
$$

Now (4.3) gives

$$
\left|y^{\prime}(t)\right| \leqslant A M_{0}+B \equiv M_{1}
$$

Thus $|y(t)|,\left|y^{\prime}(t)\right| \leqslant K=\max \left\{M_{0}, M_{1}\right\} \quad$ and the existence of a solution to (4.2) is established.

The main result of this section is concerned with obtaining solutions to the initial value problem (4.2) with Bernstein growth conditions on the nonlinearity f. Here the continuity of the maximum modulus function together with Theorem 4.l yields

Theorem 4.3. (Bernstein growth)
Suppose
4.4) $\quad|f(t, u)| \leqslant A(t) \mid u \|^{2}+B(t)$
where $A(t), B(t) \geqslant 0$ are functions bounded on bounded t-sets. Let A and B denote the upper bounds for $A(t)$, $B(t)$ respectively for $t \in \bar{U}_{T}$. Then (4.2) has at least one solution in $A^{1}\left(\bar{U}_{T}\right)$ provided $0<T<\frac{1}{2(A B)^{1 / 2}}$.

Proof Fix T with $0<T<\frac{1}{2(A B)^{1 / 2}}$. The existence of a solution will follow immediately from Theorem 4 . 1 once we establish a prior bounds for (4.2) λ_{λ} Let $y \in A^{1}\left(\bar{U}_{T}\right)$ be a solution to (4.2) λ_{λ}. Then

$$
\left|y^{\prime}\right|=|\lambda f(t, y)| \leqslant A|y|^{2}+B
$$

Suppose the maximum of $\mid y(t) I$ for $t \in \bar{U}_{T}$ occurs at 5. If $\quad \zeta \in U_{T}$ then $y \equiv 0$. Otherwise $\zeta \in \partial U_{T}$ and
so

$$
|y(5)| \leqslant \operatorname{AT}|y(5)|^{2}+B T .
$$

Hence this quadratic inequality implies that either

$$
|y(5)| \leqslant \frac{1-\left(1-4 A B T^{2}\right)^{1 / 2}}{2 A T} \text { or }|y(5)| \geqslant \frac{1+\left(1-4 A B T^{2}\right)^{1 / 2}}{2 A T} \text {. }
$$

Apply the same reasoning for any r with $0<r \leqslant T$ to obtain either
$|y(t)| \leqslant \frac{1-\left(1-4 A B r^{2}\right)^{1 / 2}}{2 A r}$ or $|y(t)| \geqslant \frac{1+\left(1-4 A B r^{2}\right)^{1 / 2}}{2 A r}$ for $t \in \bar{U}_{r}$. Since $y(0)=0$ and $\quad \lim _{r \rightarrow 0^{+}} \frac{1+\left(1-4 A B r^{2}\right)^{1 / 2}}{2 A r}=\infty$ there exists an $r, 0<r \leqslant T$ such that

$$
|y(t)| \leqslant \frac{1-\left(1-4 A B r^{2}\right)^{1 / 2}}{2 A r} \text { for } t \in \bar{U}_{r}
$$

In particular, since $h(r)=\frac{1-\left(1-4 A B r^{2}\right)^{1 / 2}}{2 A r}$ is an increasing function on $\left[0, \frac{1}{2(A B)^{1 / 2}}\right], \begin{gathered}2 A r \\ \text { we have }\end{gathered}$

$$
M(r)=\max _{t \in \bar{U}_{r}}|y(t)| \leqslant \frac{1-\left(1-4 A B r^{2}\right)^{1 / 2}}{2 A r}<\left[\frac{B}{A}\right]^{1 / 2} .
$$

Suppose \bar{U}_{r} is the largest closed disc where $M(r) \leqslant \frac{1-\left(1-4 A B r^{2}\right)^{1 / 2}}{2 A r}$. If $\quad r=T \quad$ then we have $|y(t)| \leqslant \frac{1-\left(1-4 A B T^{2}\right)^{1 / 2}}{2 A T}$ for $t \in \bar{U}_{T}$. If on the other hand $r<\eta<T$ then

$$
M(\eta) \geqslant \frac{1+\left(1-4 A B \eta^{2}\right)^{1 / 2}}{2 A \eta} \geqslant \frac{1}{2 A \eta}>\left[\frac{B}{A}\right]^{1 / 2}
$$

because of $0<T<\frac{1}{2(A B)^{1 / 2}}$. Since $M(p)$ is a continuous function of p for $0 \leqslant p \leqslant T$ then there
exists a $\mu, \quad r<\mu<\eta$ such that $M(\mu)=\left[\frac{B}{A}\right]^{1 / 2}$. Since

$$
M(\mu) \geqslant \frac{1+\left(1-4 A B \mu^{2}\right)^{1 / 2}}{2 A \mu}>\left[\frac{B}{A}\right]^{1 / 2}
$$

we have a contradiction. Hence

$$
|y(t)| \leqslant \frac{1-\left(1-4 A B T^{2}\right)^{1 / 2}}{2 A T} \equiv M_{o} \text { for } t \in \bar{U}_{T}
$$

Now (4.4) gives

$$
\left|y^{\prime}(t)\right| \leqslant A M_{0}^{2}+B \equiv M_{1}
$$

Thus $|y(t)|,\left|y^{\prime}(t)\right| \leqslant K=\max \left\{M_{0}, M_{1}\right\rangle \quad$ and $t h e$ existence of a solution to (4.2) is established.

Theorem 4.l also holds for the inhomogeneous
 So trivial adjustments in the proofs above yield the following two theorems.

Theorem 4.4. Suppose

$$
|f(t, u)| \leqslant A(t)|u|+B(t)
$$

where $A(t), B(t) \geqslant 0$ are functions bounded on bounded t-sets. Let A and B denote the upper bounds for $A(t), B(t)$ respectively for $t \in \bar{U}_{T}$. Then
4.5)

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), \quad t \in U_{T} \\
y(0)=a
\end{array}\right.
$$

has at least one solution in $A^{1}\left(\bar{U}_{T}\right)$ provided $0<T<1 / A$.

Theorem 4.5. Suppose

$$
|f(t, u)| \leqslant A(t)|u|^{2}+B(t)
$$

where $A(t), B(t) \geqslant 0$ are functions bounded on bounded t-sets. Let A and B denote the upper bounds for $A(t)$, $B(t)$ respectively for $t \in \bar{U}_{T}$. Then (4.5) has at least one solution in $A^{1}\left(\bar{U}_{T}\right)$ provided
$0<T<\frac{-\mid \alpha_{1}+\left(\operatorname{la}^{2}+B / A\right)^{1 / 2}}{2 B}$.

Remark. We can extend the proof of Theorem's 4. 1, 4.2, 4.3, 4.4, 4.5 to the case of first order systems as in their present formulation. Thus we obtain for example:

Theorem 4.6. Suppose for $f: \bar{U}_{T} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ we have

$$
|f(t, u)| \leqslant A(t)|u|^{2}+B(t)
$$

where $A(t), B(t) \geqslant 0$ are functions bounded on bounded t-sets. Let A and B denote the upper bounds for $A(t)$, $B(t)$ respectively for $t \in \bar{U}_{T}$. Then

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), t \in \mathrm{U}_{\mathrm{T}} \\
y(0)=\alpha, a \in \mathbb{C}^{n}
\end{array}\right.
$$

has at least one solution in $A^{1}\left(\bar{U}_{T}\right)$ provided
$0<T<\frac{-|\alpha|+\left(|\alpha|^{2}+B / A\right)^{1 / 2}}{2 B}$.
4.3 Solutions to Higher Order Initial Value Problems in
the Complex Domain

Theorem 4.6 produces an interval of existence for solutions to higher order initial value problems; however, the results of this section yields better intervals of existence for such problems. Also some analysis is needed to produce an interval of existence from Theorem 4.6 whereas the conclusions of this section enables us to write down immediately an interval of existence simply by looking at the ordinary
differential equation. Furthermore, the ideas of this section indicate a very natural way of looking at "Boundary Value Problems" in the complex domain. Trivial adjustments in the proof of Theorem 1.10 and Theorem 4.l yield

Theorem 4.7. Let $f: \bar{U}_{T} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ be analytic in $t, y, \ldots, y^{(n-1)} \quad$ for $\quad U_{T}$ and continuous in $t, y, \ldots, y^{(n-1)}$ for $t \in \bar{U}_{T}$. suppose there is a constant k such that $|y(t)|, \ldots, y^{(n)}(t) \mid \leqslant k$ for $t \in \bar{U}_{T}$ for each solution $y(t)$ to
4.6) $\lambda \quad\left\{\begin{array}{l}y^{(n)}=\lambda f\left(t, y, y^{\prime}, \ldots \ldots, y^{(n-1)}\right), 0 \leqslant \lambda \leqslant 1 \\ y(0)=a_{0}, y^{\prime}(0)=a_{1}, \ldots \ldots, y^{(n-1)}(0)=a_{n-1}\end{array}\right.$
where $\alpha_{i} \in \mathbb{C}$ for $i=0,1, \ldots, \ldots-1$. Then the initial value problem

$$
\left\{\begin{array}{l}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots \ldots, y^{(n-1}\right), t \in y^{(n-1)}(0)=a_{T} \tag{4.6}\\
y(0)=a_{0}, \ldots \ldots, y_{n-1}
\end{array}\right.
$$

has a solution y in $A^{n}\left(\bar{U}_{T}\right)$.

We will formulate the theorems in this section for the homogeneous case $n=2$. So for the remainder of this section we assume $\alpha_{0}=\alpha_{1}=0$ and $n=2$. Now Theorem 4.7 together with the maximum modulus principle will yield

Theorem 4.8. (Linear growth)
Suppose
4.7)
$|f(t, u, p)| \leqslant A(t)|u|+B(t)|p|+C(t)$
where $A(t), B(t), C(t) \geqslant 0$ are functions bounded on
bounded t-sets. Let A, B and C denote the upper bounds for $A(t)$, $B(t), C(t)$ respectively for $t \in \bar{U}_{T}$. Then (4.6) has at least one solution in $A^{2}\left(\bar{U}_{T}\right)$ for $0<T<\frac{-B+\left(B^{2}+4 A\right)^{1 / 2}}{2 A}$.

Proof Fix T with $0<T<\frac{-B+\left(B^{2}+4 A\right)^{1 / 2}}{2 A}$. We obtain first a prior bounds for (4.6) $\boldsymbol{\lambda}_{\lambda}$ Let y $\in A^{2}\left(\bar{U}_{T}\right)$ be a solution to (4.6) λ_{λ}. Then

$$
\left|y^{\prime \prime}\right| \leqslant A|y|+B\left|y^{\prime}\right|+C
$$

Suppose the maximum of $\left|y^{\prime}(t)\right|$ for $t \in \bar{U}_{T}$ occurs at 5. If $5 \in U_{T}$ then the maximum modulus principle and initial conditions yield $y \equiv 0$. On the other hand if $\zeta \in \partial U_{T} \quad t h e n$
4.8) $\quad|y(t)| \leqslant T\left|y^{\prime}(5)\right|$ for any $t \in \bar{u}_{T}$.

Thus

$$
\left|y^{\prime \prime}(t)\right| \leqslant A T\left|y^{\prime}(5)\right|+B\left|y^{\prime}(5)\right|+C
$$

and integrating along the straight line from 0 to 5 yields

$$
\left|y^{\prime}(5)\right| \leqslant \frac{C T}{1-\left[A T^{2}+B T\right]} \equiv M_{0}
$$

because $0<T<\frac{-B+\left(B^{2}+4 A\right)^{1 / 2}}{2 A}$. Hence $\quad y^{\prime}(t) \mid \leqslant M_{0}$ for $t \in \bar{U}_{T}$ and so (4.8) implies $|y(t)| \leqslant T M_{o} \equiv M_{1}$ for $t \in \bar{U}_{T}$. Now (4.7) gives

$$
\left|y^{\prime \prime}(t)\right| \leqslant A M_{1}+B M_{0}+C \equiv M_{2}
$$

Thus $|y(t)|,\left|y^{\prime}(t)\right|,\left|y^{\prime \prime}(t)\right| \leqslant K=\max \left\{M_{0}, M_{1}, M_{2}\right\} \quad$ and the existence of a solution to (4.6) follows from Theorem 4.7.

Finally, suppose in place of (4.7) fortifies Bernstein type growth conditions then Theorem 4.7 and the continuity of the maximum modulus function $M(p)$, $0 \leqslant p \leqslant T$, will yield our main result.

Theorem 4.9. (Bernstein growth)
Suppose
4.9) $|f(t, u, p)| \leqslant A(t)|u|^{2}+B(t)|p|^{2}+C(t)$
where $A(t), B(t), C(t) \geqslant 0$ are functions bounded on bounded t-sets. Let A, B and C denote the upper bounds for $A(t), B(t), C(t)$ respectively for $t \in \bar{U}_{T}$. Then (4.6) has at least one solution in $A^{\mathbf{2}}\left(\bar{U}_{T}\right)$
provided $0<T<\left[\frac{-B C+\left(B^{2} C^{2}+A C\right)^{1 / 2}}{2 A C}\right]^{1 / 2}$.
Proof F ix T with $0<T<\left(\frac{-B C+\left(B^{2} C^{2}+A C\right)^{1 / 2}}{2 A C}\right)^{1 / 2}$. Let $y \in A^{2}\left(\bar{U}_{T}\right)$ be a solution to (4.6) λ and suppose the maximum of $\left|y^{\prime}(t)\right|$ for $t \in \bar{U}_{T}$ occurs at \quad. If $\zeta \in U_{T}$ then $y \equiv 0$. otherwise $5 \in \partial U_{T}$ and so

$$
\left|y^{\prime}(5)\right| \leqslant A T^{3}\left|y^{\prime}(5)\right|^{2}+B T\left|y^{\prime}(5)\right|^{2}+C T
$$

Hence this quadratic inequality implies that either

$$
\left|y^{\prime}(5)\right| \leqslant \frac{1-\left(1-4\left(A T^{3}+B T\right) C T\right)^{1 / 2}}{2\left(A T^{3}+B T\right)}
$$

or $\quad \left\lvert\, y^{\prime}(5) 1 \geqslant \frac{1+\left(1-4\left(A T^{3}+B T\right) C T\right)^{1 / 2}}{2\left(A T^{3}+B T\right)}\right.$.
Apply the same reasoning for any r with $0<r \leqslant T \quad$ to obtain either

$$
\left|y^{\prime}(t)\right| \leqslant \frac{1-\left(1-4\left(A r^{3}+B r\right) C r\right)^{1 / 2}}{2\left(A r^{3}+B r\right)}
$$

or $\left|y^{\prime}(t)\right| \geqslant \frac{1+\left(1-4\left(A r^{3}+B r\right) C r\right)^{1 / 2}}{2\left(A r^{3}+B r\right)}$ for $t \in \bar{u}_{r}$. Since $y(0)=0 \quad$ and $\lim _{r \rightarrow 0^{+}} \frac{1+\left(1-4\left(A r^{3}+B r\right) C r\right)^{1 / 2}}{2\left(A r^{3}+B r\right)}=\infty$ there exists an $r, 0<r \leqslant T$ such that

$$
\left|y^{\prime}(t)\right| \leqslant \frac{1-\left(1-4\left(A r^{3}+B r\right) C r\right)^{1 / 2}}{2\left(A r^{3}+B r\right)} \text { for } t \in \bar{u}_{r}
$$

Also the function $h(r)=\frac{1-\left(1-4\left(A r^{3}+B r\right) C r\right)^{1 / 2}}{2\left(A r^{3}+B r\right)}$ is an increasing function on $\left[0,\left(\frac{-B C+\left(B^{2} C^{2}+A C\right)^{1 / 2}}{2 A C}\right]^{1 / 2}\right]$ so in particular
$M(r)=\max _{t \in \bar{U}_{r}}\left|y^{\prime}(t)\right| \leqslant \frac{1-\left(1-4\left(A r^{3}+B r\right) C r\right)^{1 / 2}}{2\left(A r^{3}+B r\right)}$

$$
<\left[\frac{-2 B C^{2}+2 C\left(B^{2} C^{2}+A C\right)^{1 / 2}}{A}\right]^{1 / 2}
$$

Suppose $\bar{U}_{\mathbf{r}}$ is the largest closed disc where

$$
M(r) \leqslant \frac{1-\left(1-4\left(A r^{3}+B r\right) C r\right)^{1 / 2}}{2\left(A r^{3}+B r\right)}
$$

If $\quad r<T$, then for $r<\eta \leqslant T$
$M(\eta) \geqslant \frac{1+\left(1-4\left(\mathrm{~A} \eta^{3}+\mathrm{B} \eta\right) \mathrm{C} \eta\right)^{1 / 2}}{2\left(\mathrm{~A} \eta^{3}+\mathrm{B} \eta\right)} \geqslant \frac{1}{2\left(\mathrm{~A} \eta^{3}+\mathrm{B} \eta\right)}$

$$
>\left[\frac{-2 B C^{2}+2 C\left(B^{2} C^{2}+A C\right)^{1 / 2}}{A}\right]^{1 / 2}
$$

and this contradicts the fact that mop) is a continuous function of p for $0 \leqslant p \leqslant T$. Thus

$$
\left|y^{\prime}(t)\right| \leqslant \frac{1-\left(1-4\left(A T^{3}+B T\right) C T\right)^{1 / 2}}{2\left(A T^{3}+B T\right)} \equiv M_{0} \quad \text { for } \quad t \in \bar{U}_{T}
$$

and so

$$
|y(t)| \leqslant T M_{0}=M_{1} \text { for } t \in \bar{U}_{T}
$$

Hence (4.9) implies

$$
\left|y^{\prime \prime}(t)\right| \leqslant A M_{1}^{2}+B M_{0}^{2}+C \equiv M_{2}
$$

and so $|y(t)|,\left|y^{\prime}(t)\right|,\left|y^{\prime \prime}(t)\right| \leqslant K=\max \left\{M_{0}, M_{1}, M_{2}\right\}$ and the existence of a solution is established by Theorem 4.7.

Remark. We can obtain corresponiing theorems for the inhomogeneous case $n=2$. Furthermore we can use the same ideas of section 4.3 to discuss higher order problems. An example of this is the following theorem:

Theorem 4.10. Suppose

$$
\left|f\left(t, u_{1}, \ldots, u_{n-1}\right)\right| \leqslant A_{0}(t)+A_{1}(t)\left|u_{1}\right|+\ldots+A_{n-1}(t)\left|u_{n-1}\right|
$$

where $A_{0}(t), \ldots . A_{n-1}(t) \geqslant 0$ are functions bounded on bounded t sets. Let A_{0}, \ldots, A_{n-1} be upper bounds for $A_{0}(t), \ldots, A_{n-i}(t) \quad$ respectively for $t \in \bar{U}_{T}$ Then the homogeneous initial value problem (4.6) has at least one solution in $A^{n}\left(\bar{U}_{T}\right)$ provided $0<T<T_{0}$ where T_{0} is the smallest positive root of $A_{1} T^{n-1}+A^{2} T^{n-2}+\ldots+A_{n-1} T-1=0$.
4.4 Remarks for Boundary Value Problems in the Complex Domain

It is also possible to consider "Boundary Value Problems" in the complex domain. A typical example of such a problem is:
4.10)

$$
\begin{cases}y^{\prime \prime}=f\left(t, y, y^{\prime}\right), & t \in \mathbf{U}_{T} \\ y^{\prime}(0)=0 \text { and } y(c)=0 ; c \in \bar{U}_{T} .\end{cases}
$$

Trivial adjustments in the previous sections proofs yield

Theorem 4.11. Suppose

$$
|f(t, u, p)| \leqslant A(t)|u|^{2}+B(t)|p|^{2}+C(t)
$$

where $A(t), B(t), C(t) \geqslant 0$ are functions bounded on bounded t-sets. Let A, B and C denote the upper bounds for $A(t)$, $B(t)$, $C(t)$ respectively for $t \in \bar{U}_{T}$. Then (4.10) has at least one solution in $A^{2}\left(\bar{U}_{T}\right)$ provided $0<T<\left(\frac{-B C+\left(B^{2} C^{2}+2 A C\right)^{1 / 2}}{4 A C}\right)^{1 / 2}$.

Remark. As usual we can consider inhomogeneous boundary conditions and higher order "Boundary Value Problems". It should also be noted that if the condition $y^{\prime}(0)=0$ in (4.10) is replaced by $y^{\prime}(d)=0, d \in \mathbb{C}$ then Theorem 4. 11 holds as stated with $U_{T}=\{z:|z-d|<T\}$.

V. Weak Solutions to Initial and Boundary Value Problems

5.l Introduction

Many physical situations give rise to initial and boundary value problems of the form

$$
\left\{\begin{array}{l}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots ., y^{(n-1)}\right), t \in[0, T] \tag{5.1}\\
y \in B
\end{array}\right.
$$

where in fact $f:[0, T] \times R^{n} \rightarrow R \quad$ is discontinuous. Here of course B denotes suitable initial or boundary conditions. In this chapter we study the case where f satisfies the Caratheodory Conditions i.e.

> (a) For fixed $\quad\left(P_{o}, P_{1}, \ldots, P_{n-1}\right) \in R^{n}$, $f\left(P_{0}, P_{1}, \ldots, P_{n-1}\right)$ is lebesgue measurable on [0, T].
(b) For almost all $t \in[0, T]$ f(t, ,, \quad is continuous on R^{n}.

For notational purposes let $L^{p}(0, T), p \geqslant 1$ a real number, denote the space of lebesgue measurable functions g on $(0, T)$ with $\left.\int_{0}^{T} i g(t)\right|^{p} d t<\infty \quad L^{p}(0, T)$ with norm $\|g\|_{L}=\left[\left.\int_{0}^{T} I g(t)\right|_{d t}\right]^{1 / p} \quad$ is a Banach space. By a weak solution to (5.1) we mean a function $y \in B$ which together with its derivatives $y^{\prime}, \ldots, \ldots y^{(n-1)}$ are absolutely continuous on $[0, T]$ with $y^{(n)} \in L^{1}(0, T)$ and $y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right.$) almost everywhere on [0, T].

We shall establish, under reasonable physical assumptions on for (5.1) has bounded weak
solutions. As before we restrict ourselves to the cases $n=1$ and 2. Our analysis is based on the Topological Transuersality Theorem and known results concerning Sobolev spaces and Nemysky operators.

5.2 Preliminary Notation and Results

Here we introduce some standard notation and collect together some known facts on Sobolev spaces and Nemysky operators which we will use throughout the remainder of this chapter.

First let $n^{L^{p}}=L^{p} \times L^{p} \times \ldots X L^{p}, \quad n$ factors. Also let $H^{k}(0, T), k>0$ an integer, denote the space of all functions u on the interval [0,T] which are absolutely continuous on [0, T] together with their derivatives up to the order k - 1 and whose derivative $u^{(k)}$ (which exists almost everywhere) is an element of $L^{1}(0, T)$. $H^{k}(0, T)$ with norm

$$
\|u\|_{H} k=\sum_{j=0}^{k}\|u(j)\|_{L}
$$

is a Banach Space. As usual we let

$$
H_{B}^{k}(0, T)=\left\{u \in H^{k}(0, T), u \in B\right\}
$$

For proofs and further information on the following facts see Royden [28], Fuc̃ík [12], Fuc̃ík and Kufner [13] and Vainberg [35].

Theorem 5.1. Let \quad be a monotone increasing absolutely continuous function on [a,b] with $g(a)=c, g(b)=d . \quad I f \quad f$ is a nonnegative measurable function on [c,d] then

$$
\int_{c}^{d} f(y) d y=\int_{a}^{b} f(g(x)) g^{\prime}(x) d x
$$

Theorem 5.2. (Sobolev Imbedding Theorem) $H^{k}(a, b)$ is compactly imbedded into $c^{k-1}[a, b]$ i.e. the imbedding operator $j: H^{k}(a, b) \rightarrow c^{k-1}[a, b]$ is continuous and completely continuous.

Let Ω be a bounded and measurable set in R and let $u(t)=\left(u_{1}(t), u_{2}(t), \ldots, u_{n}(t)\right), t \in \Omega$.

Theorem 5.3. Suppose the real valued function $f\left(t, u_{1}(t), \ldots, u_{n}(t)\right) \quad$ satisfies the Caratheodory conditions and for $p_{1}, p_{2}, \ldots, p_{n} \geqslant 1$ there exists a constant $B>0$ and a function $g \in L^{1}(\Omega)$ such that for any $u \in R^{n}$ and almost all $t \in \Omega$ we have

$$
\left|f\left(t, u_{1}, \ldots, u_{n}\right)\right| \leqslant g(t)+B \sum_{k=1}^{n}\left|u_{k}\right|^{p_{k}}
$$

Then the Nemysky operator \quad defined by $F[u](t)=$ $f\left(t, u_{1}(t), \ldots, u_{n}(t)\right)$ is a continuous operator from $L^{p_{1}} \times \ldots L^{p_{n}}$ into L^{1}.

Finally let Ω and u be as above and now let the real valued function $f_{i}\left(t, u_{1}(t), \ldots, u_{n}(t)\right), i=1, \ldots, n$ satisfy the Caratheodory Conditions. Now each function f_{i} generates an operator F_{i} defined by $F_{i}[u](t)=f_{i}\left(t, u_{1}(t), \ldots, u_{n}(t)\right), t \in \Omega$. Let $F=\left(F_{1}, \ldots, F_{n}\right)$.

Corollary 5.4. Suppose for $p_{1}, \ldots ., p_{n} \geqslant 1$ there exists a constant $B>0$ and a function $g_{i} \in L^{1}(\Omega)$ such that for any $u \in R^{n}$ and almost all $t \in \Omega$ we have

$$
\left|f_{i}\left(t, u_{1}, \ldots, u_{n}\right)\right| \leqslant g_{i}(t)+B \sum_{k=1}^{n}\left|u_{k}\right|^{p_{k}}
$$

Then the mapping F is a continuous operator from $L^{P_{1}} \times L^{P_{2}} \times \ldots x L^{P_{n}}$ into $n^{L^{1}}$.
5.3 Weak Solutions to First Order Initial Value Problems

The Sobolev Imbedding Theorem and the continuity of the Nemysky operator are used to extend Theorem 1.9 for the new class of problems (5.1).

Theorem 5.5. Let $f:[0, T] \times R \rightarrow R \quad$ satisfy the Caratheodory conditions and $0 \leqslant \lambda \leqslant 1$. Suppose also for $\quad \mathbf{p} \geqslant 1$,
5.2)

$$
|f(t, y)| \leqslant A(t)|y|^{p}+B(t)
$$

for bounded functions $A(t), B(t) \geqslant 0$. Let A and B_{0} be upper bounds for $A(t)$, $B(t)$ respectively. Finally we assume that there is a constant koch that $\|y\|_{H} 1 \leqslant K$ for each solution $y(t)$ to
5.3) λ

$$
\left\{\begin{array}{l}
y^{\prime}=\lambda f(t, y), t \in[0, T] \\
y(0)=0
\end{array}\right.
$$

Then the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), t \in[0, T] \tag{5.3}\\
y(0)=0
\end{array}\right.
$$

has a solution y in $H^{1}(0, T)$.

Proof As before B denotes the set of functions which satisfy the initial condition $y(0)=0$. Let
$\overline{\mathrm{V}}=\left\{u \in H_{B}^{1}(0, T) ;\|u\|_{H} 1 \leqslant K+1\right\}$ and define
$F_{\lambda}: L^{p}(0, T) \rightarrow L^{1}(0, T), 0 \leqslant \lambda \leqslant 1, \quad b y$ $F_{\lambda}[v](t)=\lambda f(t, v(t))$. Now $\quad F_{\lambda}$ is a continuous operator from $L^{p}(0, T)$ into $L^{1}(0, T)$ by Theorem 5.3. We also have the imbedding $j: H_{B}^{1}(1, T) \rightarrow C[0, T]$ defined by ju = u completely continuous by Theorem 5.2. Now let $T: C[0, T] \rightarrow L^{P}(0, T)$ be the continuous operator defined by \quad tu $=$. Finally we define
$N: H_{B}^{1}(0, T) \rightarrow L^{1}(0, T)$ by $N y=y^{\prime}$. Clearly N is linear and continuous. N is also one-to-one since if $N y=0$ the absolute continuity of y together with the initial condition yields $y \equiv 0$. To show N is onto let $f(t) \in L^{1}(0, T)$ and take $y(t)=\int_{0}^{t} f(u) d u$. Clearly y is absolutely continuous, $y(0)=0, y^{\prime}=f(t)$ almost everywhere and $y^{\prime} \in L^{1}(0, T)$. It follows from Theorem 1.6 that N^{-1} is a bounded linear operator. These operators and their relationships are conveniently displayed:

$$
\mathrm{C}[0, \mathrm{~T}] \longrightarrow \mathrm{L}^{\mathrm{T}}(0, \mathrm{~T})
$$

$$
\mathrm{H}_{\mathrm{B}}^{1}(0, T) \longleftarrow \mathrm{N}^{-1}(0, T)
$$

Figure 1

Thus $H_{\lambda}=N^{-1} F_{\lambda} T j: \bar{V} \rightarrow H_{B}^{1}(0, T)$ defines a homotopy. It is clear that the fixed points of H_{λ} are precisely the solutions to (5.3) λ_{λ} Now H_{λ} is fixed point free on ∂V. Moreover, the complete continuity of jogether
with the continuity of N^{-1}, F_{λ} and T imply that the homotopy H_{λ} is compact. Now H_{0} is essential so Theorem 1.5 implies that H_{1} is essential. Thus (5.3) has a solution.

We are now in a position to prove our basic existence theorem for first order initial value problems.

Theorem 5.6. Suppose f: [0, $T] \times R \rightarrow R \quad$ satisfies the Caratheodory Conditions and (5.2). Then the initial value problem (5.3) has a solution in $H^{1}(0, T)$ for

$$
T<\int_{0}^{\infty} \frac{d u}{A_{0} u^{p}+B_{0}}
$$

Proof To prove existence of a solution in H^{1} ($0, T$) we apply Theorem 5.5. So to establish the a priori bounds for (5.3) λ_{λ}, let $y(t)$ be a solution to (5.3) λ_{λ}. Then since

$$
|\lambda f(t, y)| \leqslant A_{0}|y|^{p}+B_{o}
$$

we have for each $t \in[0, T]$

$$
\int_{0}^{t} \frac{\left|y^{\prime}(u)\right|}{A_{0}|y(u)|^{p}+B_{0}} d u \leqslant t \leqslant T
$$

Now $|y(u)|=\left|\int_{0}^{u} y^{\prime}(s) d s\right| \leqslant \int_{0}^{u}\left|y^{\prime}(s)\right| d s$

So

$$
A_{0}|y(u)|^{p}+B_{0} \leqslant A_{0}\left[\int_{0}^{u}\left|y^{\prime}(s)\right| d s\right]^{p}+B_{0}
$$

since $A_{0} x^{p}+B_{0}$ is an increasing function for $x \geqslant 0$.

Thus the previous inequality implies

$$
\int_{0}^{t} \frac{\left|y^{\prime}(u)\right|}{A_{0}\left[\int_{0}^{u}\left|y^{\prime}(s)\right| d s\right]^{p}+B_{0}} d u \leqslant T<\int_{0}^{\infty} \frac{d u}{A_{0} u^{P}+B_{o}}
$$

Theorem 5.1 with $g(u)=\int_{0}^{u}\left|y^{\prime}(s)\right| d s \quad y i e l d s$

$$
\int_{0}^{g(t)} \frac{d x}{A_{0} x^{P}+B_{0}} \leqslant T<\int_{0}^{\infty} \frac{d u}{A_{0} u^{P}+B_{0}}
$$

So there exists a constant $M<\infty \quad$ such that $g(t) \leqslant M$. Moreover,

$$
|y(t)| \leqslant g(t) \leqslant M \text { so } \int_{0}^{T}|y(t)| d t \leqslant M T
$$

Also (5.2) and the differential equation yield

$$
\int_{0}^{T}\left|y^{\prime}(t)\right| d t \leqslant A_{0}\left[\int_{0}^{T}|y(t)|^{P_{d t}}\right]+B_{0} T \equiv M_{1}
$$

 established.

Theorem 5.5 also holds for the inhomogeneous initial condition $y(0)=r, \quad$ via ideas of Theorem 1.lo. So trivial adjustments in the proof of Theorem 5.6 yields:

Theorem 5.7. Suppose f: $[0, T] \times R \rightarrow R \quad$ satisfies the

Caratheodory Conditions and (5.2). Then the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), t \in[0, T] \\
y(0)=r
\end{array}\right.
$$

has a solution in $H^{1}(0, T)$ for each $T<\int_{|r|}^{\infty} \frac{d u}{A_{0} u^{P}+B_{0}}$.

Example 5.1. (Electrical Circuits)
Lets consider an electrical circuit which contains a resistance R, a condenser of capacitance C, a switch S and a generator E. Suppose the switch is closed at \quad t $=0$. Then Kirchoff's, Ohm's and Coulomb's Laws imply that the RC circuit satisfies

$$
R \frac{d q}{d t}+\frac{1}{C} q(t)=E(t, q)
$$

where $q(t)$ denotes the charge on the capacitor at time t and $E(t, q)$ the value of the voltage impressed on the circuit by E.

We also have $q(0)=q_{0}$ where q_{0} is the charge on the capacitor at $t=0$. Thus we are interested in the initial value problem
5.4)

$$
\left\{\begin{array}{l}
\frac{d q}{d t}=-\frac{1}{R C} q+\frac{E(t, q)}{R} \\
q(0)=q_{0}
\end{array}\right.
$$

Suppose $|E(t, q)| \leqslant A(t)|q|+B(t) \quad$ for bounded functions $A(t), B(t) \geqslant 0$ and that $E(t, q)$ satisfies the Caratheodory conditions. Consequently since
$\int_{q_{0} \mid}^{\infty} \frac{d q}{A_{0} q^{+B_{0}}}=\infty$, for any constants $A_{0}, B_{o}>0$, Theorem 5.7 implies that (5.4) has a solution in
$H^{1}(0, T)$ for any $T>0$. On the other hand suppose

$$
|E(t, q)| \leqslant A(t)|q|^{m}+B(t), m=1,2, \ldots .
$$

for bounded functions $A(t), B(t) \geqslant 0$ and that $E(t, q)$ satisfies the Caratheodory conditions. Then Theorem 5.7 implies that (5.4) has a solution in $H^{1}(0, T)$ for any $T<T_{\infty}$ where T_{∞} is as described in Example 1.2.
5.4 Weak Solutions to Boundary Value Problems

In this section we examine problems of the form
5.5)

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), t \in[0,1] \\
y \in B
\end{array}\right.
$$

where f is defined on $[0,1] \times R \times R$. Here B denotes either the boundary conditions
(i) $y(0)=0, y(1)=0$
or

$$
\begin{aligned}
(i i)-u y(0)+b y^{\prime}(0) & =0 ; a, \beta>0 \\
a y(1)+b y^{\prime}(1) & =0 ; a, b>0 .
\end{aligned}
$$

We again use the results of Section 5.2 and the Topological Transversality Theorem to extend Theorem 1.9 for the class of problems described above.

Theorem 5.8. Let $f:\{0,1] \times R \times R \rightarrow R \quad$ satisfy the Caratheodory Conditions and $0 \leqslant \lambda \leqslant 1$. Suppose also for $m \geqslant 1$

$$
|f(t, y, p)| \leqslant A(t)\left[|y|^{m}+p^{2}\right]+B(t)
$$

where $A(t), B(t) \geqslant 0$ are bounded functions. Let A and B be upper bounds for $A(t)$, $B(t)$ respectively. Finally we assume that there is a constant k such that
$\|y\|_{H} \leqslant k$ for each solution $y(t)$ to
5.5) λ

$$
\left\{\begin{array}{l}
y^{\prime \prime}=\lambda f\left(t, y, y^{\prime}\right), t \in[0,1] \\
y \in B .
\end{array}\right.
$$

Then the boundary value problem (5.5) has a solution y in $H^{2}(0,1)$.

Proof Let $\bar{V}=\left\{u \in H_{B}^{2}(0,1):\|u\|_{H} 2 \leqslant K+1\right\}$ and define $F_{\lambda}: L^{m}(0,1) \times L^{2}(0,1) \quad \rightarrow \quad L^{1}(0,1), \quad 0 \leqslant \quad \leqslant \quad 1, \quad$ by $F_{\lambda}\left(v, v^{\prime}\right)(t)=\lambda f\left(t, v(t), v^{\prime}(t)\right)$. Now $\quad F_{\lambda} \quad$ is a continuous operator from $L^{m}(0,1) \times L^{2}(0,1)$ into $L^{1}(0,1)$ by Theorem 5.3. Again the imbedding $j: H_{B}^{2}(0,1) \rightarrow C^{1}[0,1]$ defined by $j u=u$ is completely continuous by Theorem 5.2. We also let $T: C^{1}[0,1] \rightarrow L^{m}(0,1) \times L^{2}(0,1) \quad b e \quad t h e ~ c o n t i n u o u s$ operator defined by \quad tu (u, u^{\prime}) Finally we define $N: H_{B}^{2}(0,1) \rightarrow L^{1}(0,1) \quad b y \quad N y=y^{\prime \prime}$. It is easy to check that N is linear, onto and continuous. To show N is one-to-one we observe that the boundary conditions (i) or (ii) imply that y^{\prime} vanishes at least once in [0, 1$]$ So if $N y=0$ the absolute continuity of y and y^{\prime} with the above observation implies $\quad \equiv 0$. Thus N^{-1} is a bounded linear operator by Theorem 1.6. These operators and their relationships are conveniently displayed:

Figure 2

Thus $\quad H_{\lambda}=N^{-i} F_{\lambda} T j$ defines a homotopy
$H_{\lambda}: \bar{V} \rightarrow H_{B}^{2}(0,1)$. It is clear that the fixed points of ${ }^{H} \lambda_{\lambda}$ are precisely the solutions to (5.5) λ_{λ} Now ${ }^{H} \lambda_{\lambda}$ is fixed point free on ∂v. Moreover, the complete continuity of j together with the continuity of N^{-1}, F_{λ} and T imply that the homotopy ${ }^{H}{ }_{\lambda}$ is compact. Now H_{o} is essential so Theorem 1.5 implies that H_{1} is essential. Thus (5.5) has a solution.

Next sufficient conditions on f are given which imply a priori bounds for solutions to (5.5). Let $y(t) \in H_{B}^{2}(0,1)$ be a solution to (5.5). Suppose $[y(t)]^{2}$ has a maximum at $t_{0} \in(0,1)$. Then from elementary calculus $y^{\prime}\left(t_{0}\right)=0$.

Theorem 5.9. Suppose fatisfies the following:
5.7) $\left\{\begin{array}{l}\text { There is a constant } M \geqslant 0 \text { such that } \\ y f(t, y, 0)>0 \text { for }|y|>M .\end{array}\right.$
5.8) $\quad\left\{\begin{array}{l}y f(t, y, p) \text { is lower semicontinuous on } \\ {[0, i] \times R \times R .}\end{array}\right.$

Then any solution y to (5.5) satisfies

$$
|y(t)| \leqslant M, t \in[0,1]
$$

Proof We first show that lyl cannot have a nonzero maximum at 0 or 1 . This is true automatically if y satisfies (i). On the other hand suppose y satisfies (ii) and that $|y|$ has a nonzero maximum at 0 . Then $y(0) y^{\prime}(0) \leqslant 0$. However, $y(0) y^{\prime}(0)=\frac{B}{a}[y(0)]^{2}>0$, a contradiction. A similar argument works for the case $t=1$. We conclude that lyl can only have a nonzero maximum at $t_{0} \in(0,1)$. Now assume the maximum of lyl is at $t_{0} \in(0,1)$, so $y^{\prime}\left(t_{0}\right)=0$. Suppose $\left|y\left(t_{0}\right)\right|>M$. Then from (5.7),
$y\left(t_{0}\right) f\left(t_{0}, y\left(t_{0}\right), 0\right)>0$. The continuity of y and y^{\prime} together with (5.8) implies there exists a neighborhood $N_{t_{0}}$ of ($\left.t_{0}, y\left(t_{0}\right), 0\right)$ such that
5.9) $y(t) f\left(t, y(t), y^{\prime}(t)\right)>0$ for $\left(t, y(t), y^{\prime}(t)\right) \in N_{t_{0}}$. On the other hand $y^{\prime}(t)=\int_{t_{0}}^{t} y^{\prime \prime}(s) d s$ and so Fubini's Theorem implies

$$
y(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t}(t-u) y^{\prime \prime}(u) d u
$$

Thus

$$
y^{2}(t)=y^{2}\left(t_{0}\right)+2 \int_{t_{0}}^{t}(t-u)\left[y(u) f\left(u, y(u), y^{\prime}(u)\right)+\left[y^{\prime}(u)\right]^{2}\right] d u
$$

Since ly has a maximumat t_{0} then for t near t_{0}

$$
\int_{t_{0}}^{t}(t-u)\left[y(u) f\left(u, y(u), y^{\prime}(u)\right)+\left[y^{\prime}(u)\right]^{2}\right] d u \leqslant 0
$$

which contradicts (5.9). Thus $\left|y\left(t_{0}\right)\right| \leqslant M$.

We now prove our basic existence theorem for second order boundary value problems.

Theorem 5.10. Suppose $f:(0,1] \times R \times R \rightarrow R \quad$ satisfies the Caratheodory Conditions, (5.6), (5.7) and (5.8). Then the boundary value problem (5.5) has at least one solution in $H^{2}(0,1)$.

Proof To prove existence of a solution in $H^{2}(0,1)$ we apply Theorem 5.8. To establish a priori bounds for $(5.5)_{\lambda}$, let $y(t)$ be a solution to (5.5) ${ }_{\lambda}$. If $\lambda=0$
we have the unique solution $y \equiv 0$. otherwise for
$0<\lambda \leqslant 1, y f(t, y, 0)>0$ for $|y|>M$ implies $\lambda y f(t, y, 0)>0$ for $|y|>M . \quad$ Thus Theorem 5.9 implies $|y| \leqslant M$ for any solution y to (5.5) λ_{λ} and for each $\lambda \in[0,1]$. Hence $\int_{0}^{1} I y(s) \mid d s \leqslant M . \quad$ Finally we obtain a priori bounds on derivatives of y. We have already observed that boundary conditions (i) or (ii) imply that y^{\prime} vanishes at least once on $[0,1]$, so each point $t \in[0,1]$ for which $y^{\prime}(t) \neq 0$ belongs to an interval $[\mu, v]$ such that y^{\prime} maintains a fixed sign on $[\mu, v]$ and $y^{\prime}(\mu)$ andor $y^{\prime}(v)$ is zero. Assume that $y^{\prime}(\mu)=0$ and $y^{\prime} \geqslant 0$ on $[\mu, v]$. Thus, with $B_{0}=A M^{m}+B, \quad A_{0}=A$ where A and B denote the upper bounds for $A(t)$, $B(t)$ respectively and since

$$
\left|\lambda f\left(t, y, y^{\prime}\right)\right| \leqslant A_{0}\left(y^{\prime}\right)^{2}+B_{0},
$$

we have

$$
\int_{\mu}^{t} \frac{y^{\prime}(u)\left|y^{\prime \prime}(u)\right|}{A_{o}\left[y^{\prime}(u)\right]^{2}+B_{o}} d u \leqslant 2 M
$$

For $\mu \leqslant u \leqslant t$

$$
\begin{equation*}
\left[y^{\prime}(u)\right]^{2}=\left|\left[y^{\prime}(u)\right]^{2}\right|=2\left|\int_{\mu}^{u} y^{\prime}(s) y^{\prime \prime}(s) d s\right| \tag{5.10}
\end{equation*}
$$

$$
\leqslant 2 \int_{\mu}^{u} y^{\prime}(s)\left|y^{\prime \prime}(s)\right| d s,
$$

so $\quad A_{0}\left[y^{\prime}(u)\right]^{2}+B_{0} \leqslant 2 A_{0} \int_{\mu}^{u} y^{\prime}(s) I y^{\prime \prime}(s) \mid d s+B_{0}$

Thus the previous inequality implies

$$
\int_{\mu}^{t}\left[\frac{2 A_{o} y^{\prime}(u)\left|y^{\prime \prime}(u)\right|}{2 A_{o} \int_{\mu}^{u} y^{\prime}(s)\left|y^{\prime \prime}(s)\right| d s+B_{o}}\right] d u \leqslant 4 A_{o} M
$$

Theorem 5.1 with $g(u)=2 A \circ \int_{\mu}^{u} y^{\prime}(s)\left|y^{\prime \prime}(s)\right| d s$ yields

$$
\int_{0}^{g(t)} \frac{d u}{u+B_{0}} \leqslant 4 A_{0} M, \quad \text { and so }
$$

$g(t) \leqslant B_{o}\left(e^{4 A_{0}}{ }^{M}-1\right)$. Moreover (5.10) yields

$$
\left[y^{\prime}(t)\right]^{2} \leqslant 2 \int_{\mu}^{t} y^{\prime}(s)\left|y^{\prime \prime}(s)\right| d s \leqslant \frac{B_{o}}{A_{0}}\left(e^{4 A_{o}^{M}}-1\right)
$$

and so

$$
\left|y^{\prime}(t)\right| \leqslant\left[\frac{B_{0}}{A_{0}}\left(e^{4 A_{0} M}-1\right)\right]^{1 / 2} \equiv M_{1}
$$

The other cases are treated similarly and the same bound is obtained. Thus $\left|y^{\prime}\right| \leqslant M_{1}$ and in particular
$\int_{0}^{1} y^{\prime}(s) \mid d s \leqslant M_{1}$ for each solution y to (5.5) λ and for each $\lambda \in[0,1]$. Also (5.6) and the differential equation yields

$$
\int_{0}^{1}\left|y^{\prime \prime}(t)\right| d t \leqslant A_{0} \int_{0}^{1}\left|y^{\prime}(t)\right|^{2} d t+B_{0} \leqslant A_{o} M_{1}^{2}+B_{0} \equiv M_{2}
$$

So $\|y\|_{H} \leqslant K=M_{0}+M_{1}+M_{2}$ and the existence of a solution ${ }^{H^{2}}$ (5.5) is established.

Our arguments in Theorem 5.9 only uses (5.7), (5.8) to conclude that $y(t) f\left(t, y(t), y^{\prime}(t)\right)+\left[y^{\prime}(t)\right]^{2}>0$ in a neighborhood of t_{0} where $\left\|y\left(t_{0}\right)\right\|, t_{0} \in(0,1)$, is the maximum of lyl; so in fact we have also shown the following theorem:

Theorem 5.11. Suppose $f:[0,1] \times R \times R \rightarrow R \quad$ satisfies the Caratheodory Conditions and (5.6). Suppose in addition that there is a constant $M \geqslant 0$ such that

$$
y f(t, y, p)+p^{2}>0 \text { for }|y|>M
$$

then the boundary value problem (5.5) has at least one solution in $H^{2}(0,1)$.

We also have analogue results for the inhomogeneous problem
5.11)

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), t \in[0,1] \\
y \in B
\end{array}\right.
$$

where B denotes either the boundary conditions (iii) $y(0)=r, y(1)=s$
or
(iv) $-\alpha y(0)+B y^{\prime}(0)=r ; a, B>0$
$a y(1)+b y^{\prime}(1)=s ; a, b>0$.

Extending the ideas of Theorem's 1.10 , 5.8 and 5.10 we obtain:

Theorem 5. 52 suppose fatisfies the caratheodory Conditions and (5.6), (5.7), (5.8). Then the boundary value problem (5.11) has at least one solution in $H^{2}(0,1)$.

Example 5.2 (Heat Conduction)
Suppose V is an isotropic heat conducting medium
with s denoting the surface and \vec{n} the outer normal. We define $u=u(x, t)$ to be the temperture at location $x \in V$ and $t i m e t>0$. Also $c=c(x, u)$ denotes the specific heat, $\quad p=p(x, u)$ the density and $k=k(x, u)$ the thermal conductivity. Now the Divergence Theorem and Fourier's Law together with conservation of energy yields the heat equation

$$
\frac{\partial}{\partial t}(c p u)=\operatorname{div}(k \vec{\nabla} u)+h ; x \in v, t>0
$$

where $h=h(x, u)$ represents the rate of heat generation by internal sources.

We now set up boundary conditions which describe the heat transfer across S. Suppose the surroundings of V are $k e p t$ at a time independent temperature and that heat radiates into the surroundings (according to Newton's Law of Cooling) at a rate proportional to the temperature difference between $\quad S \quad$ and its surrounding environment. The energy balance of heat flow across S together with Fourier's Law yields

$$
z(x, u) u(x, t)+\sigma(x, u) \frac{\partial u(x, t)}{\partial n}=g(x) ; x \in s, t>0
$$

where $z \geqslant 0, \sigma \geqslant 0$ and $\sigma+z>0$.
We wish to find a steady state solution (temperature distribution) $y=y(x)$. It will satisfy

$$
\left\{\begin{array}{l}
\Delta y=-\frac{1}{k}[\vec{\nabla} k \cdot \vec{\nabla} y+h], x \in v \\
z(x, y) y(x)+\sigma(x, y) \frac{\partial u(x)}{\partial n}=g(x), x \in S
\end{array}\right.
$$

Now if V is a rod of unit length and insulated laternal surfaces then the steady state problem is
$\left\{\begin{array}{l}y^{\prime \prime}=-\frac{i}{k(x, y)}\left\{k_{x}(x, y) y^{\prime}+k_{y}(x, y)\left(y^{\prime}\right)^{2}+h(x, y)\right] \\ z(0, y(0)) y(0)-\sigma(0, y(0)) y^{\prime}(0)=g(0) \\ z(1, y(1)) y(1)+\sigma(1, y(1)) y^{\prime}(1)=g(1) .\end{array}\right.$

We will assume the case where $2, \sigma$ are independent of temperature and set $\alpha=z(0)>0, B=\sigma(0)>0$, $a=z(1)>0, b=\sigma(1)>0, r=g(0)$ and $s=8(1)$.

So our problem reduces to
5.12) $\left\{\begin{array}{l}y^{\prime \prime}=-\frac{1}{k(x, y)}\left[k x y^{\prime}+k_{y}\left(y^{\prime}\right)^{2}+h(x, y)\right] \equiv f\left(x, y, y^{\prime}\right) \\ d y(0)-B y^{\prime}(0)=r ; a, B>0 \\ a y(1)+b y^{\prime}(1)=s ; a, b>0 .\end{array}\right.$

Now we make the following assumptions on h and k :
$5.13)\left\{\begin{array}{l}k_{x}(x, y), k_{y}(x, y) \text { are continuous and } \\ \text { bounded for }(x, y) \in[0,1] \times R \text {. Also suppose } \\ \text { for }(x, y) \in[0, l] \times R, k(x, y) \\ \text { is continuous and } k(x, y) \geqslant m>0 \\ \text { wherem issa constant. }\end{array}\right.$
5.14

5.15)

$$
y h(x, y)<0 \text { for large }|y|
$$

5.16) $\quad \frac{y(x)}{k(x, y)} h(x, y)$ is lower semicontinuous.

The assumption (5.15) that $y h(x, y)<0$ for
large $|y|$ means that the internal heat generation $h(x, y)$ opposes large temperature extremes i.e. if $y>0$ and $|y|$ large, then $h(x, y)<0$ so heat is removed from the rod by internal sources and the
temperature tends to drop.

Now assumptions (5.13), (5.14), (5.15), (5.16) together with Theorem 5.12 implies that (5.12) has at least one solution in $H^{2}(0,1)$.
5.5 Weak Solutions to Systems of First order Initial Value Problems

We now establish existence theorems for the class of problems described by
5.17)

$$
\left\{\begin{array}{l}
y^{\prime}=f(t ; y), t \in[0, T] \\
y(0)=0
\end{array}\right.
$$

where $f:\{0, T\} \times R^{n} \rightarrow R^{n}$ is defined and satisfies the Caratheodory Conditions ie.
(a) For fixed $y=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}, f(\cdot ; y)$ is measurable on $[0, T]$.
(b) For almost all $t \in[0, T], f(t ; \cdot)$ is continuous on R^{n}.

Theorem 5.13. Let $f:[0, T] \times R^{n} \rightarrow R^{n}$ satisfy the Caratheodory Conditions and $0 \leqslant \lambda \leqslant 1$. Suppose also for $\quad \mathbf{p} \geqslant 1$
5.18)
$|f(t ; y)| \leqslant A(t)|y|^{P}+B(t)$
for bounded functions $A(t), B(t) \geqslant 0$. Let $A A_{0}$ and B_{0} be upper bounds for $A(t), B(t)$ respectively. Finally we assume that there is a constant k such that $\|y\|_{H} 1 \leqslant K$ for each solution $y(t)$ to
5.17) λ

$$
\left\{\begin{array}{l}
y^{\prime}=\lambda f(t ; y), t \in[0, T] \\
y(0)=0 .
\end{array}\right.
$$

Then the initial value problem (5.17) has a solution in $H^{1}(0, T)$.

Proof As before B denotes the set of functions which satisfy the initial condition $y(0)=0$. Let $\bar{V}=\left\langle u \in H_{B}^{1}(0, T):\|u\|_{H}^{1} \leqslant K+1\right\rangle \quad$ and define
$F_{\lambda}:{ }_{n}{ }^{\mathrm{L}}(0, T) \rightarrow{ }_{\mathrm{n}} \mathrm{L}^{1}(0, T), 0 \leqslant \lambda \leqslant 1, \quad \mathrm{by}$ $F_{\lambda}[v](t)=\lambda f(t ; v(t))$. Now F_{λ} is a continuous operator from $\quad n^{L^{p}(0, T)}$ into $n^{L^{i}(0, T)}$ by Corollary 5.4. Let $T: C[0, T] \rightarrow{ }_{L^{2}}(0, T)$ be defined by
$T u=\left(u_{1}, \ldots . u_{n}\right)$ where $u=\left(u_{1}, \ldots, u_{n}\right)$. T is continuous since

$$
\|T u\|_{L^{p}}=\left\|u_{1}\right\|_{L} p+\ldots+\left\|u_{n}\right\|_{L} p \leqslant n\|u\|_{o} T^{1 / p}
$$

We also have the imbedding $j: H_{B}^{1}(0, T) \rightarrow C[0, T]$ defined by jus = u completely continuous by Theorem 5.2. Finally we define $N: H_{B}^{l}(0, T) \rightarrow n^{L^{l}(0, T)}$ by $N y=y^{\prime}$. It follows from Theorem 1.6 that N^{-1} is a bounded linear operator.

Figure 3

Thus $H_{\lambda}=N^{-1} F_{\lambda} T j: \bar{V} \rightarrow H_{B}^{1}(0, T)$ defines a homotopy. It is clear that the fixed points of H_{λ} are precisely the solutions to (5.17) $\boldsymbol{\lambda}_{\lambda}$ Thus H_{λ} is fixed point free on

OV. Finally since H_{λ} is compact and H_{0} is essential we have from Theorem 1.5 that H_{1} is essential. Thus (5.17) has a solution.

We have the exact analogue of Theorem 5.6 for systems of first order initial value problems.

Theorem 5.14. Let \quad : [0, T] $\times R^{n} \rightarrow R^{n}$ satisfy the Caratheodory Conditions and (5.18) . Then (5.17) has a solution in $H^{1}(0, T)$ for $T<\int_{0}^{\infty} \frac{d u}{A_{0} u^{P}+B_{0}}$.

Proof To prove existence of a solution in $H^{1}(0, T)$ we apply Theorem 5.13. To establish the a priori bounds for (5.17) λ_{λ}, let $y(t)$ be a solution to (5.17) . Now since $y(0)=0$, each point t for which $y(t) \neq 0$ belongs to an interval [a,t] in [0,T] such that $|y(s)|>0$ on $a<s \leqslant t$ and $y(a)=0$. Thus for any point t where $y(t) \neq 0$

$$
\left.\left.\int_{a}^{t}| | y(s)\right|^{\prime}\left|d s=\int_{a}^{t} \frac{\perp y(s): y^{\prime}(s) \mid}{|y(s)|} d s \leqslant \int_{a}^{t}\right| y^{\prime}(s) \right\rvert\, d s
$$

and since $|\lambda f(t ; y)| \leqslant A_{0} \mid y \|^{P}+B_{0}$ we have

$$
\int_{a}^{t} \frac{\left|ل y(s) \|^{\prime}\right|}{A_{0}|y(s)|^{P}+B_{0}} d s \leqslant t-a \leqslant T<\int_{0}^{\infty} \frac{d u}{A_{0} u^{P}+B_{0}}
$$

Now $|y(s)|=\left|\int_{a}^{s}\right| y(u)|\cdot d u| \leqslant\left.\int_{a}^{s}| | y(u)\right|^{\prime} \mid d u$,
so

$$
A_{0} I y(s) I^{p}+B_{0} \leqslant A_{0}\left[\int_{a}^{s}|I y(u)| \cdot \mid d u\right\}^{p}+B_{0}
$$

Consequently the previous inequality implies

$$
\int_{a}^{t}\left[\frac{\left.| | y(s)\right|^{\prime} \mid}{A_{0}\left[\left.\int_{a}^{s}| | y(u)\right|^{\prime} \mid d u\right]^{p}+B_{0}}\right] d s \leqslant T<\int_{0}^{\infty} \frac{d u}{A_{0} u^{P}+B_{o}}
$$

Theorem 5.1 with $g(s)=\int_{a}^{s}|y(u)|, \mid d u \quad$ yields

$$
\int_{0}^{g(t)} \frac{d x}{A_{0} x^{P}+B_{0}} \leqslant T<\int_{0}^{\infty} \frac{d u}{A_{0} u^{P}+B_{0}}
$$

So there exists a constant $M<\infty \quad$ such that $g(t) \leqslant M$. Moreover,
$|y(t)|=\left.\left|\int_{a}^{t}\right| y(u)\right|^{\prime} d u \mid \leqslant g(t) \leqslant M \quad$ and in particular $\int_{0}^{T} 1 y(t) \mid d t \leqslant M T \quad$ Also (5.18) and the differential equation yields

$$
\int_{0}^{T}\left|y^{\prime}(t)\right| d t \leqslant A_{0}\left[\int_{0}^{T} i y(t) i^{P_{d}}\right]+B_{0} T \equiv M_{1}
$$

for some constant $M_{1}<\infty$. So $\|y\| \|_{1} \leqslant K=M T+M_{1}$ and
the existence of a solution to $\quad(5.17) \quad$ is established.

Analogue results hold for the inhomogeneous initial condition $y(0)=r$ Extending the ideas of Theorem's $1.10,5.13$ and 5.14 we obtain:

Theorem 5.15. Suppose f satisfies the Caratheodory Conditions and (5.18). Then

$$
\left\{\begin{array}{l}
y^{\prime}=f(t ; y), t \in[0, T] \\
y(0)=r
\end{array}\right.
$$

has a solution in $H^{1}(0, T)$ provided
$T<\int_{I}^{\infty} \frac{d u}{A_{0} u^{P}+B_{0}}$.
VI. Third Order Boundary Value Problems

6.1 Introduction

We are interested in this chapter in studying the existence of solutions to third order boundary value problems of the form

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f\left(t, y, y^{\prime} y^{\prime \prime}\right), t \in[0,1] \tag{6.1}\\
y \in B
\end{array}\right.
$$

where $f:[0,1] \times R^{3} \rightarrow R \quad$ is continuous. Here B denotes suitable boundary conditions.

In section 6.2 results of Granas, Guenther and Lee [15], [16] on second order boundary value problems are extended so that existence theorems can be obtained for a certain class of third order boundary value problems. The existence theorems obtained in section 6.2 however are rather specialized. In section 6.3 by placing different types of monotonicty and growth conditions on the nonlinearity f, we obtain new and interesting existence theorems for a wide class of problems.
6.2 The Bernstein Theory of the Equation

$$
y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right)
$$

In this section we extend the Bernstein Theory and results of Granas, Guenther and Lee [15] to discuss problems of the form (6.1). Fix a point c in [0, 1]. Let B denote either the boundary conditions

$$
\begin{equation*}
y(c)=0, y^{\prime}(0)=0, y^{\prime}(1)=0 \tag{i}
\end{equation*}
$$

(ii) $y(c)=0, y^{\prime \prime}(0)=0, y^{\prime \prime}(1)=0$
(iii)

$$
\begin{aligned}
s y(c)+d y^{\prime}(c) & =0, s \neq 0 \\
-a y^{\prime}(0)+B y^{\prime \prime}(0) & =0, a, B>0 \\
a y^{\prime}(1)+b y^{\prime \prime}(1) & =0, a, b>0 .
\end{aligned}
$$

Theorem 1.9 was proven for two point boundary value problems; however, no change in the proof is necessary if we consider multipoint boundary value problems. Hence specializing Theorem 1.9 for the case $n=3$ we obtain:

Theorem 6.1. Let $f:[0,1] \times R^{3} \rightarrow R$ be continuous and $0 \leqslant \lambda \leqslant 1$. Suppose there is a constant K such that $\|y\|_{3} \leqslant K$ for each solution $y(t)$ to
6.1) $\lambda \quad\left\{\begin{array}{l}y^{\prime \prime \prime}-y^{\prime}=\lambda\left[f\left(t, y, y^{\prime}, y^{\prime \prime}\right)-y^{\prime}\right], t \in[0,1] \\ y \in B .\end{array}\right.$

Then the boundary value problem (6.1) has at least one solution in $C^{3}[0,1]$.

Next sufficient conditions on \quad are given which imply an a priori bound on any solution y and its derivative y^{\prime} to (6.1). Suppose $y(t)$ is a solution to (6.1) and $\left[y^{\prime}(t)\right]^{2}$ has a maximumat $t_{0} \in(0,1)$. Then
6.2) $y^{\prime \prime}\left(t_{0}\right)=0$ and $y^{\prime}\left(t_{0}\right) f\left(t_{0}, y\left(t_{0}\right), y^{\prime}\left(t_{0}\right), 0\right) \leqslant 0$.

Theorem 6.2. Suppose there is a constant $M \geqslant 0$ such that

$$
p f(t, u, p, 0)>0 \text { for }|p|>M
$$

and (t, u) in $[0,1] \times R$.
Then any solution y to (6.1) satisfies

$$
\left|y^{\prime}(t)\right| \leqslant M \text { for } t \in[0,1]
$$

Furthermore, there exists a constant $M_{1}<\infty \quad$ such that

$$
|y(t)| \leqslant M_{1} \text { for } t \in[0,1]
$$

In fact $M_{1}=M$ if y satisfies (i) or (ii) and $M_{1}=M\left(1+\left|\frac{d}{s}\right|\right)$ if y satisfies (iii).

Proof Suppose first ly'l achieves a maximum at $t_{0} \in(0,1)$ Assume $\quad\left|y^{\prime}\left(t_{0}\right)\right|>$ M. Then $y^{\prime}\left(t_{0}\right) f\left(t_{0}, y\left(t_{0}\right), y^{\prime}\left(t_{0}\right), 0\right)>0, \quad$ which contradicts (6.2). Thus $\left|y^{\prime}\left(t_{0}\right)\right| \leqslant M_{0}$.

We next show that ly'l cannot have a nontrivial maximum at 0 or 1 if $y(t)$ satisfies (i) or (iii). This is trivially true if y satisfies (i). Now suppose y satisfies (iii) and the maximum of |y'I occurs at 0 . Then $y^{\prime}(0) y^{\prime \prime}(0) \leqslant 0$. However, from (iii) $y^{\prime}(0) y^{\prime \prime}(0)=\frac{B}{\alpha}\left[y^{\prime}(0)\right]^{2}>0$, a contradiction. A similar argument works for the case $t=1$.

Finally we show that if y is solution to (ii) and if ly'l assumes its maximumat $t_{0}=0$ or $t_{0}=1$ then $\left|y^{\prime}\left(t_{0}\right)\right| \leqslant$ M. Suppose y satisfies (ii) and |y' (0) 1 is the maximum value of ly'।. If we assume $\left|y^{\prime}(0)\right|>M, \quad t h e n \quad y^{\prime}(0) y^{\prime \prime \prime}(0)>0$. Now if $y^{\prime}(0)>0$ then $y^{\prime \prime \prime}(0)>0, ~ s o \quad y^{\prime \prime}(t)=\int_{0}^{t} y^{\prime \prime \prime}(z) d z$ is strictiy increasing near $t=0$. We then have $y^{\prime \prime}(t)>y^{\prime \prime}(0)=0$
 not the maximum of $1 y^{\prime} \mid$ on $[0,1]$, a contradiction. We obtain a similar contradiction if we assume $y^{\prime}(0)<0$. Thus $\left|y^{\prime}(0)\right| \leqslant M . \quad$ Now if y satisfies (ii) and $l^{\prime}(1)$ is the maximum value of ly'f then we can show in the same way that $\left|y^{\prime}(1)\right| \leqslant$ M. Hence $\left|y^{\prime}(t)\right| \leqslant M$ for $t \in[0,1]$. Also if y satisfies (i) or $\quad(i i),|y(t)|=\left|\int_{c}^{t} y^{\prime}(z) d z\right| \leqslant \quad$ m while if y satisfies (iii), $|y(t)| \leqslant\left|\int_{c}^{t} y^{\prime}(z) d z\right|+|y(c)|$ $\leqslant M\left[1+\left|\frac{d}{s}\right|\right]$ for $t \in[0,1]$. This proves Theorem 6.2.

We couple the monotonicity condition in Theorem 6.2 with the analogue of the Bernstein growth condition to obtain our basic existence theorem.

Theorem 6.3. Let $f:[0,1] \times R^{3} \rightarrow R \quad b e c o n t i n u o u s$.
(a) Suppose there is a constant \quad m $\geqslant 0$ such that

$$
p f(t, u, p, 0)>0 \quad f \circ r \quad|p|>M
$$

and $(t, u) \in[0,1] \times R$.
(b) Suppose that

$$
|f(t, u, p, q)| \leqslant A(t, u, p) q^{2}+B(t, u, p)
$$

where $A(t, u, p), B(t, u, p) \geqslant 0$ are functions bounded on bounded (t, u, p) sets.

Then the boundary value problem (6.1) has at least one solution in $C^{3}[0,1]$.

Proof To prove existence of a solution in C^{3} [0, l] we apply Theorem 6.1. To establish the a priori bounds
 $\lambda=0$ we have the unique solution $\quad \boldsymbol{y} \equiv 0$. otherwise for $0<\lambda \leqslant 1, p f(t, u, p, 0)>0$ for $|p|>M$ implies $\lambda p f(t, u, p, 0)+(1-\lambda) p^{2}>0$ for $|p|>$ M. Thus Theorem 6.2 implies $\left|y^{\prime}\right| \leqslant M$ for any solution y to (6.1) λ_{λ} Furthermore, there exists a constant $M_{1}<\infty$
 solution y to (6.1) λ_{λ} Finally we obtain a priori bounds on $y^{\prime \prime}$ and $y^{\prime \prime \prime}$. However, we first observe that each of the boundary conditions (i), (ii) or (ii) implies that $y^{\prime \prime}$ vanishes at least once on [0, 1]. We also have

$$
|f(t, u, p, q)| \leqslant A q^{2}+B
$$

where A and B denote upper bounds of $A(t, u, p)$, B(t, u, p) respectively for

$$
\begin{aligned}
& (t, u, p) \in[0,1] \times\left[-M_{1}, M_{1}\right] \times[-M, M], \quad \text { and } s o \\
& |\lambda f(t, u, p, q)+(1-\lambda) \quad p| \leqslant A q^{2}+(B+M) .
\end{aligned}
$$

Now each point $t \in[0,1]$ for which $y^{\prime \prime}(t) \neq 0$ belongs to an interval $[\mu, v]$ such that $y^{\prime \prime}$ maintains a fixed sign on $[\mu, v]$ and $y^{\prime \prime}(\mu)$ and/or $y^{\prime \prime}(v)$ isero. Assume that $y^{\prime \prime}(\mu)=0$ and $y^{\prime \prime} \geqslant 0$ on $[\mu, v]$. Let $A_{0}=A, B_{0}=B+M$ Then

$$
\left|\lambda f\left(t, y, y^{\prime}, y^{\prime \prime}\right)+(1-\lambda) y^{\prime}\right| \leqslant A_{0}\left(y^{\prime \prime}\right)^{2}+B_{0}
$$

and the differential equation

$$
\begin{gathered}
y^{\prime \prime \prime}=\lambda f\left(t, y, y^{\prime}, y^{\prime \prime}\right)+(1-\lambda) y^{\prime} \text { yields } \\
\frac{2 A_{0} y^{\prime \prime} y^{\prime \prime \prime}}{A_{0}\left(y^{\prime \prime}\right)^{2}+B_{0}} \leqslant 2 A_{o} y^{\prime \prime} .
\end{gathered}
$$

Integrating for μ to t we obtain

$$
\operatorname{Ln}\left[\frac{A_{0}\left[y^{\prime \prime}(t)\right]^{2}+B_{0}}{B_{0}}\right] \leqslant 4 A_{0} M
$$

and so

$$
\left|y^{\prime \prime}(t)\right| \leqslant\left[\frac{B_{o}}{A_{o}}\left[e^{4 A_{o} M}-1\right]\right]^{1 / 2} \equiv M_{2}
$$

The other cases are treated similarly and the same bound is obtained. Thus $\left|y^{\prime \prime}\right| \leqslant M_{2}$ for each solution y to (6.1) λ_{λ} With these bounds the differential equation yields a priori bounds independent of λ for $\left|y^{\prime \prime \prime}\right|$ i.e. $\left|y^{\prime \prime \prime}\right| \leqslant \max \{|f(t, y, p, q)|+|p|\rangle \equiv M_{3}$ where the maximum is computed over $[0,1] \times\left[-M_{1}, M_{1}\right] \times[-M, M] \times\left[-M_{2}, M_{2}\right]$. Thus $|y| 3 \leqslant K=$ max $\left\{M, M_{1}, M_{2}, M_{3}\right\}$ and the existence of a solution to (6.1) is established.

Corollary 6.4. Let $f:[0,1] \times R^{3} \rightarrow R \quad$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that $p f(t, u, p, 0) \geqslant 0$ for $|p|>M$, and (t, u) in $[0,1] \times R$.
(b) Suppose that

$$
|f(t, u, p, q)| \leqslant A(t, u, p) q^{2}+B(t, u, p)
$$

where $A(t, u, p), B(t, u, p) \geqslant 0$ are functions

```
bounded on bounded (t,u,p) sets.
```

Then the boundary value problem (6.1) has at least one solution in $C^{3}[0,1]$.

Proof Consider
6.3)

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f_{n}\left(t, y, y^{\prime}, y^{\prime \prime}\right), t \in[0,1\} \\
y \in B
\end{array}\right.
$$

where $f_{n}\left(t, y^{\prime}, y^{\prime}, y^{\prime \prime}\right)=f\left(t, y^{\prime}, y^{\prime}, y^{\prime \prime}\right)+\frac{y^{\prime}}{n}$ for $n=1,2, \ldots$ Clearly $\quad p_{n}(t, u, p, 0)>0$ for $|p|>M$ and

$$
\left|f_{n}(t, u, p, q)\right| \leqslant A(t, u, p) q^{2}+(B(t, u, p)+p)
$$

Apply Theorem 6.3 to (6.3) to obtain solutions y_{n} to (6.3) for $n=1,2, \ldots$. In view of the previous monotonicity and bound conditions on $f_{n}(t, u, p, q)$ and the proof of Theorem 6.3 we also have ly $\mathrm{y}_{\mathrm{n}} \mathrm{l}_{3} \leqslant \mathrm{~K}$ for some constant K independent of n. By Theorem 1.7 there is a subset N of the natural numbers and a function $y \in C^{2}$ so that $I y_{n}-y l_{2} \rightarrow 0$ as $n \rightarrow \infty$ in N. If $G(t, z)$ is the Green's function for (L, B) where $L y=y^{\prime \prime \prime}-y^{\prime}$ we have

$$
\begin{aligned}
y_{n}(t) & =\int_{0}^{1} G(t, z)\left[f_{n}\left(z, y_{n}(z), y_{n}^{\prime}(z), y_{n}^{\prime \prime}(z)\right)-y_{n}^{\prime}(z)\right] d z \\
& =\int_{0}^{1} G(t, z)\left[f\left(z, y_{n}(z), y_{n}^{\prime}(z), y_{n}^{\prime \prime}(z)\right)+\frac{1}{n} y_{n}^{\prime}(z)-y_{n}^{\prime}(z)\right] d z .
\end{aligned}
$$

Let $n \rightarrow \infty$ though N to obtain

$$
y(t)=\int_{0}^{1} G(t, z)\left[f\left(z, y(z), y^{\prime}(z), y^{\prime \prime}(z)\right)-y^{\prime}(z)\right] d z
$$

Thus $y \in C_{B}^{3}$ and y satisfies $y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right)$.

Remark. Suppose the boundary conditions (i), (ii) or (iii) were replaced by
(iv) $y(c)=0, y^{\prime}(0)=0, y^{\prime \prime}(1)=0$
or
(v) $y(c)=0, y^{\prime}(1)=0, y^{\prime \prime}(0)=0$
where c is a fixed point of [0, 1]. It follows easily from an analysis similar to the one above that corollary 6.4 holds with y satisfying either (iv) or (v).

To conclude this section we examine the inhomogeneous boundary value problems,

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right), \quad t \in[0,1] \tag{6.4}\\
y \in \widetilde{B}
\end{array}\right.
$$

where \tilde{B} denotes either the boundary conditions
(vi) $y(c)=r, y^{\prime}(0)=\ell, y^{\prime}(1)=T$
or
(vii) $\quad s y(c)+d y^{\prime}(c)=r, s \neq 0$

$$
-\alpha y^{\prime}(0)+\beta y^{\prime \prime}(0)=\ell, \alpha, \beta>0
$$

$$
a y^{\prime}(1)+b y^{\prime \prime}(1)=T, a, b>0
$$

Here c is a fixed point of $[0,1]$. We now establish the existence of a solution (6.4) with fatisfying the same hypotheses as in Theorem 6.3.

Theorem 6.5. Let $f:[0,1] \times R^{3} \rightarrow R$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that $p f(t, u, p, 0) \geqslant 0$ for $|p|>M$, and (t, u) in $[0,1] \times \mathrm{R}$.
(b) Suppose that

$$
|f(t, u, p, q)| \leqslant A(t, u, p) q^{2}+B(t, u, p)
$$

where $A(t, u, p), B(t, u, p) \geqslant 0 \quad$ are functions bounded on bounded (t, u, p) sets.

Then the boundary value problem (6.4) has at least one solution in $C^{3}[0,1]$.

Proof Consider the family of problems
6.4) λ

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=\lambda f\left(t, y, y^{\prime}, y^{\prime \prime}\right), 0 \leqslant \lambda \leqslant 1 \\
y \in \widetilde{B} .
\end{array}\right.
$$

The existence of a solution in $C^{3}[0,1]$ follows immediately from Theorem 1.10 once a prior bounds independent of $\lambda \quad$ are established for solutions y to (6.4) λ_{λ} To establish a priory bounds for (6.4) λ_{λ}, let $y(t)$ be a solution to (6.4) λ^{\prime}. We assume at first that $p f(t, u, p, 0)>0$ for $|p|>M$ and (t, u) in
$[0,1] \times$ R. Now if $\lambda=0$ we have a unique solution, and thus $f^{\prime}(t) I \leqslant L$ for some constant $L<\infty$. otherwise for $0<\lambda \leqslant 1, p f(t, u, p, 0)>0$ for $|p|>M$
 satisfies (vi) it follows immediately from Theorem 6.2 that

$$
\left|y^{\prime}\right| \leqslant M_{0}=\max \{M,|\ell|,|T|\}
$$

On the other hand if y satisfies (vii) we have

$$
\left|y^{\prime}\right| \leqslant M_{1}=\max \langle M, \quad| \frac{\ell}{a}\left|,\left|\frac{T}{a}\right|\right\} .
$$

To see this suppose I^{\prime} (t$) \mathrm{l}$ assumes its maximum at $t=0$. Then $y^{\prime}(0) y^{\prime \prime}(0) \leqslant 0$ so

$$
0 \geqslant y^{\prime}(0) B y^{\prime \prime}(0)=\alpha\left[y^{\prime}(0)\right]^{2}\left[\frac{\ell}{a y^{\prime}(0)}+1\right]
$$

and consequently $\left|y^{\prime}(0)\right| \leqslant\left|\frac{\ell}{\alpha}\right|$. Likewise, $\left.\|^{\prime}(1)\left|\leqslant\left|\frac{T}{a}\right| \quad\right.$ if $| y^{\prime} \right\rvert\,$ achieves its maximum at $t=1$ 。 Thus, $\left|y^{\prime}\right| \leqslant M_{2}=m a x\left\langle M_{0}, M_{1}, L\right\}$ for any solution y to (6.4) λ_{λ} Furthermore there exists a constant M_{3}, independent of λ, $\quad \lambda c h$ that $|y| \leqslant M_{3}$ for any solution y to (6.4) $\lambda^{\text {. }} \quad A \quad$ prior bounds, independent of λ, for $y^{\prime \prime}$ and $y^{\prime \prime \prime}$ follow exactly as in the proof of Theorem 6.3 once we observe that

$$
\left|y^{\prime \prime}(\mu)\right| \leqslant K
$$

$K \geqslant 0$ a \quad fixed constant independent of λ, for some point $\mu \in[0,1]$ Thus existence of a solution to (6.4) follows from Theorem 1.10.

Now assume $p f(t, u, p, 0) \geqslant 0$ for $|p|>M$ and (ty) in $[0,1] \times R$. The existence of a solution in this case follows by an argument similar to corollary 6.4.

Example 6.1 (Sandwich Beam)
Beams formed by a few lamina of different materials are known as sandwich beams. In the analysis of such beams Krajcinvic [22] found that the distribution of shear deformation ψ is governed by the differential equation

$$
\psi^{\prime \prime \prime}-k^{2}(x, \psi) \psi^{\prime}+a(x, \psi)=0 .
$$

Here $k^{2} \neq 0$ For further information on k^{2} and a see Krajcinvic [22].

For the case of free ends, the condition of zero shear bimoment at both ends leads to the boundary condition $\quad \psi^{\prime}(0)=\psi^{\prime}(1) \quad$ Also symmetry considerations yields $\quad \psi(1 / 2)=0 . \quad$ Thus we are interested in solving the boundary value problem

$$
\left\{\begin{array}{l}
\psi^{\prime \prime \prime}=k^{2}(\mathbf{x}, \psi) \psi^{\prime}-a(x, \psi), \quad x \in[0,1] \tag{6.5}\\
\psi^{\prime}(0)=\psi^{\prime}(1)=\psi(1 / 2)=0
\end{array}\right.
$$

Now we make the following assumptions on k and a:

Suppose $k^{2}(x, \psi) \quad$ and $\quad a(x, \psi)$ are continuous functions on $[0,1] \times R$ In addition, suppose there exists a constant $L<\infty$ such that

$$
\left|\frac{a(x, \psi)}{k^{2}(x, \psi)}\right| \leqslant L \quad \text { for } \quad(x, \psi) \in[0,1] \times R .
$$

Then $\psi^{\prime} f\left(x, \psi, \psi^{\prime}, 0\right)=\psi^{\prime}\left(k^{2} \psi^{\prime}-a\right)>0$ for $\left|\psi^{\prime}\right|>L$ and $(x, \psi) \in[0,1] \times R$, and so Theorem 6.3 implies that (6.5) has at least one solution in $c^{3}[0,1]$.
6.3 Another Approach to Third Order Boundary Value Problems

Abstract

In this section we place essentially different types of monotonicity and growth conditions on the class of third order problems. We consider problems of the form

6.6)

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right), t \in[0,1] \\
y \in B_{0}
\end{array}\right.
$$

where
$f:[0,1] \times R^{3} \rightarrow R \quad$ is continuous.
Here B_{0} denotes either the boundary conditions
(viii) $y(0)=0, y(1)=0, y^{\prime}(0)=0$
(ix) $\quad y(0)=0, y^{\prime}(0)=0, y^{\prime}(1)=0$
or
(x) $\quad-\mathbb{C y}(0)+B y^{\prime}(0)=0, \alpha, B>0$

$$
a y(1)+b y^{\prime}(1)=0, a, b>0
$$

$$
y^{\prime \prime}(0)=0
$$

Remark. It should be noted here that many of the boundary conditions in section will also be considered in this section. The behaviour of the nonlinearity f will determine which existence theorem to use.

The following theorem, although not the main result in this section, is a powerful existence theorem in its own right.

Theorem 6.6. Let $f:[0,1] \times R^{3} \rightarrow R \quad$ be continuous and $0 \leqslant \lambda \leqslant 1$. Suppose
$|f(t, u, p, q)| \leqslant[A(t, u)|p|+B(t, u)][C(t, u)|q|+D(t, u)]$
where $A(t, u), B(t, u), C(t, u), D(t, u) \geqslant 0$ arefunctions bounded on bounded (t, u) sets. Finally, we assume that there is a constant M such that

$$
|y(t)| \leqslant M, \quad t \in[0,1]
$$

for each solution $y(t)$ to
6.6) λ

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=\lambda f\left(t, y, y^{\prime}, y^{\prime \prime}\right), \quad t \in[0,1] \\
y \in B_{0} .
\end{array}\right.
$$

Then the boundary value problem (6.6) has at least one solution in $C^{3}[0,1]$.

Proof To prove existence of a solution in $c^{3}[0,1]$ we apply Theorem 1.9. To establish a priori bounds for (6.6) λ_{λ}, let $y(t)$ be a solution to (6.6) λ_{λ}. All that remains is to obtain a priori bounds for $y^{\prime}, y^{\prime \prime}$ and $y^{\prime \prime \prime}$. We first observe that boundary conditions (viii), (ix) or (x) imply that $y^{\prime \prime}$ vanishes at least once on [0, 1]. We also have

$$
|f(t, u, p, q)| \leqslant[A|p|+B][C|q|+D]
$$

where A, B, C and D denote upper bounds of $A(t, u)$, $B(t, u), C(t, u), D(t, u)$ respectively for $(t, u) \in[0,1] \times[-M, M]$ and so

$$
\left|\lambda f\left(t, y, y^{\prime}, y^{\prime \prime}\right)\right| \leqslant\left(A\left|y^{\prime}\right|+B\right)\left(C\left|y^{\prime \prime}\right|+D\right)
$$

Now each point $t \in[0,1]$ for which $y^{\prime \prime}(t) \neq 0$ belongs to an interval $[\mu, v]$ such that $y^{\prime \prime}$ maintains a fixed sign on $[\mu, v]$ and $y^{\prime \prime}(\mu)$ and/or $y^{\prime \prime}(v)$ is zero. Assume $y^{\prime \prime}(\mu)=0$ and $y^{\prime \prime} \geqslant 0$ on [$\left.\mu, v\right]$. Then the differential equation yields

$$
\begin{equation*}
\frac{y^{\prime \prime \prime}}{C y^{\prime \prime}+D} \leqslant A\left|y^{\prime}\right|+B \tag{6.7}
\end{equation*}
$$

Also since $y^{\prime \prime} \geqslant 0$ on $[\mu, v]$ we have y^{\prime} increasing on $[\mu, v]$, so in particular $y^{\prime}(s) \geqslant y^{\prime}(\mu)$ for s $\in[\mu, v]$. At this stage of the proof the argument breaks up into two cases, $y^{\prime}(\mu) \geqslant 0$ and $y^{\prime}(\mu)<0$.

Assume at first $y^{\prime}(\mu) \geqslant 0$, and so $y^{\prime}(s) \geqslant 0$ for s El $\mu, v]$. It follows from (6.7) that

$$
\frac{C y^{\prime \prime \prime}}{C y^{\prime \prime}+D} \leqslant A C y^{\prime}+B C
$$

and so integrating from μ to t we obtain

$$
\left|y^{\prime \prime}(t)\right| \leqslant \frac{D}{C}[\exp (2 A C M+B C)-1] \equiv M_{0} .
$$

On the other hand assume $y^{\prime}(\mu)<0$. Again the argument breaks up into two subcases, $y^{\prime}(s) \leqslant 0$ for $s \in[\mu, v]$ or there exists $\zeta \in(\mu, t)$ such that $y^{\prime}(5)=0$ and $y^{\prime}(s)>0$ for $s \in(\zeta, v]$. Suppose at first $y^{\prime}(s) \leqslant 0$ for $s \in[\mu, v]$ then (6.7) implies

$$
\frac{C y^{\prime \prime \prime}}{C y^{\prime \prime}+D} \leqslant-A C y^{\prime}+B C
$$

and so integrating from μ to t yields

$$
\left|y^{\prime \prime}(t)\right| \leqslant M_{0} \text {, }
$$

as before. Finally suppose there exists $5 \in(\mu, t)$ such that $y^{\prime}(5)=0$ and $y^{\prime}(s)>0$ for $s \in(5, v]$, then for $\eta \in[\mu, 5]$, (6.7) implies

$$
\frac{C y^{\prime \prime \prime}}{C y^{\prime \prime}+D} \leqslant-A C y^{\prime}+B C,
$$

which yields $\quad y^{\prime \prime}(5) \mid \leqslant M_{0}$. So for $s \in[5, v]$, (6.7) again implies

$$
\frac{C y^{\prime \prime \prime}}{C y^{\prime \prime}+D} \leqslant A C y^{\prime}+B C,
$$

and thus

$$
\left|y^{\prime \prime}(t)\right| \leqslant \frac{\left[C M_{0}+D\right] \exp (2 A C M+B C)-D}{C} \equiv M_{1}
$$

Thus $|y "(t)| \leqslant M_{1}$. The other cases are treated similarly and the same bound $\quad M_{1}=\max \left\langle M_{0}, M_{1}\right\} \quad$ is
obtained. Thus $\left|y^{\prime \prime}\right| \leqslant M_{1}$ for each solution y to (6.6) λ. Now if y satisfies (viii) then

$$
\left|y^{\prime}(t)\right|=\left|\int_{0}^{t} y^{\prime \prime}(z) d z\right| \leqslant M_{1}
$$

while if y satisfies (ix)

$$
\left|y^{\prime}(t)\right|=\left|\int_{t}^{1} y^{\prime \prime}(z) d z\right| \leqslant M_{1}
$$

Finally if y satisfies (x)

$$
\left|y^{\prime}(t)\right| \leqslant\left|\int_{0}^{t} y^{\prime \prime}(z) d z\right|+\left|y^{\prime}(0)\right| \leqslant M_{1}+\frac{\alpha M}{B} \equiv M_{2}
$$

Thus $\left|y^{\prime}\right| \leqslant M_{2}$ for each solution y to (6.6) $\lambda^{\text {. With }}$ these bounds the differential equation yields a priori bounds independent of λ for $\left|y^{\prime \prime \prime}\right| \quad i . e$.
$\left|y^{\prime \prime \prime}\right| \leqslant \max \{|f(t, u, p, q)|\} \equiv M_{3} \quad$ where the maximum is computed over $[0,1] \times[-M, M] \times\left[-M_{2}, M_{2}\right] \times\left[-M_{1}, M_{1}\right]$. Thus $|y|_{3} \leqslant K=\max \left\langle M, M_{1}, M_{2}, M_{3}\right\rangle$ and the existence of a solution to (6.6) is established.

For notational purposes, let (6.6) (viii) denote the boundary value problem $y^{\prime \prime \prime}=f\left(t, y, y^{\prime \prime}, y^{\prime \prime}\right), t \in[0,1]$, with satisfying (viii). Similarly, define (6.6) (ix) and (6.6) (x) Next sufficent conditions on f are given which imply a priori bounds on any solution
 Suppose $y(t)$ is a solution to (6.6) and $[y(t)]^{2}$ has a maximum at $t_{0} \in(0,1)$. Then $y^{\prime}\left(t_{0}\right)=0$ and $y\left(t_{0}\right) y^{\prime \prime}\left(t_{0}\right) \leqslant 0$.

Theorem 6.7. Suppose there is a constant \quad m $\geqslant 0$ such that
$\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0$
for $\| u(t) \mid>M$, where L and $n>-2$ are constants, with $u \in C^{2}[0,1]$ and $u^{\prime}(0)=0$.

Then any solution y to (6.6)(viii) or (6.6)(ix) satisfies

$$
|y(t)| \leqslant M \text { for } t \in[0,1]
$$

Proof Suppose lyl achieves a positive maximum at $t_{0} \in(0,1)$, then $y^{\prime}\left(t_{0}\right)=0$. Assume $\left|y\left(t_{0}\right)\right|>M$, and so

$$
\int_{0}^{t_{0}}\left[y^{\prime}(z) y^{\prime \prime \prime}(z)+L\left(y^{\prime}(z)\right)^{n+1} y^{\prime \prime}(z)\right] d z>0 .
$$

Integration by parts together with $y^{\prime}\left(t_{0}\right)=0 \quad y i e l d s$

$$
-\int_{0}^{t_{0}}\left(y^{\prime \prime}(z)\right)^{2} d z>0
$$

a contradiction. Thus, $\left|y\left(t_{0}\right)\right| \leqslant M$.
At this stage we divide the proof into two cases. Suppose first y is a solution to (6.6) (viii). If |y| assumes its maximum value at either $t=0$ or $t=1$ then trivially $|y(t)| \leqslant M$ for $t \in[0,1]$. So conclusion of theorem follows for (6.6) (viii). Now suppose y is a solution to (6.6) (ix). If y assumes its maximum value at $t=0$ then trivially $\quad y(t) \| \leqslant$ for $t \in[0,1]$. On the other hand suppose lyl achieves its maximum value at $t=1$. Suppose $\mid y(1) I>M$, and so

$$
\int_{0}^{1}\left[y^{\prime}(z) y^{\prime \prime \prime}(z)+L\left(y^{\prime}(z)\right)^{n+1} y^{\prime \prime}(z)\right] d z>0
$$

which yields

$$
-\int_{0}^{1}\left[y^{\prime \prime}(z)\right]^{2} d z>0,
$$

a contradiction. Thus $|y(1)| \leqslant M$ and the conclusion of the theorem follows for (6.6) (ix).

Remark. M is independent of L in Theorem 6.7.

$$
\text { An analogous theorem holds for }(6.6)(x)^{-}
$$

Theorem 6.8. Suppose there is a constant $M \geqslant 0$ such that

$$
\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0
$$

for $\mid u(t) l>M$, where n is an even integer greater than or equal to zero and $L \geqslant 0$ is a constant, with $u \in C^{2}[0,1]$ and $u^{\prime \prime}(0)=0$

Then any solution y to (6.6) (x) satisfies

$$
|y(t)| \leqslant M \text { for } t \in[0,1]
$$

Proof Suppose lyl achieves a positive maximumat $t_{0} \in(0,1)$ and assume $\left|y\left(t_{0}\right)\right|>M$. Then $y^{\prime}\left(t_{0}\right)=0$ and

$$
\int_{0}^{t_{0}}\left[y^{\prime}(z) y^{\prime \prime \prime}(z)+L\left(y^{\prime}(z)\right)^{n+1} y^{\prime \prime}(z)\right] d z>0
$$

yields

$$
-\int_{0}^{t_{0}}\left[y^{\prime \prime}(z)\right]^{2} d z-L \frac{\left(y^{\prime}(0)\right)^{n+2}}{n+2}>0
$$

a contradiction. Thus $\left|y\left(t_{o}\right)\right| \leqslant M$.
On the other hand $|y|$ cannot have a nontrivial maximum at 0 or 1. For suppose the maximum of $\mid y l$ occurs at 0 . Then $y(0) y^{\prime}(0) \leqslant 0$. However, from (x) $y(0) y^{\prime}(0)=\frac{B}{\alpha}[y(0)]^{2}>0$, a contradiction. A similar
argument works for the case $t=1$. Thus

$$
|y(t)| \leqslant M \quad \text { for } \quad t \in[0,1]
$$

We are now in a position to prove our main existence theorems for this section.

Theorem 6.8. Let $f:[0,1] \times R^{3} \rightarrow R$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that $\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0$ for $|u(t)|>M$, where L and $n>-2$ are constants, with $u \in C^{2}[0,1]$ and $u^{\prime}(0)=0$.
(b) Suppose

$$
|f(t, u, p, q)| \leqslant[A(t, u)|p|+B(t, u)][C(t, u)|q|+D(t, u)]
$$

where $A(t, u), B(t, u), C(t, u), D(t, u) \geqslant 0$ arefunctions bounded on bounded (t, u) sets.

Then the boundary value problem (6.6) (viii) and (6.6) (ix) have at least one solution in $C^{3}\{0,1]$.

Proof To prove existence of a solution in $C^{3}[0,1]$ we apply Theorem 6.6. We need establish a priori bounds for any solution $y(t)$ to (6.6) λ_{λ} Now if $\lambda=0$ we have the unique solution $y \equiv 0$. Otherwise for $0<\lambda \leqslant 1$

$$
\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0
$$

for $|u(t)|<M$ implies

$$
\int_{0}^{t} u^{\prime}(z)\left[\lambda f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+\lambda L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0
$$

Corollary 6.10. Let $f:[0,1] \times R^{3} \rightarrow R$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that

$$
\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left[u^{\prime}(z)\right]^{n} u^{\prime \prime}(z)\right] d z \geqslant 0
$$

for $|u(t)|>M$ where L and $n>-2$ are constants, with $u \in C^{2}[0,1]$ and $u^{\prime}(0)=0$.
(b) Suppose

$$
|f(t, u, p, q)| \leqslant[A(t, u)|p|+B(t, u)][C(t, u)|q|+D(t, u)]
$$

where $A(t, u), B(t, u), C(t, u), D(t, u) \geqslant 0$ are functions bounded on bounded (t, u) sets.

Then the boundary value problem (6.6) (viii) and (6.6) (ix) have at least one solution in $C^{3}[0,1]$.

Proof Let us consider
6.8)

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f_{n}\left(t, y, y^{\prime}, y^{\prime \prime}\right) \\
y \in(v i i i) \text { or (ix) }
\end{array}\right.
$$

where $f_{n}\left(t, y, y^{\prime}, y^{\prime \prime}\right)=f\left(t, y, y^{\prime}, y^{\prime \prime}\right)+\frac{y}{n} \quad$ for
$n=1,2, \ldots$ Clearly
$\int_{0}^{t} y^{\prime}(z)\left[f_{n}\left(z, y(z), y^{\prime}(z), y^{\prime \prime}(z)\right)+L\left(y^{\prime}(z)\right)^{n} y^{\prime \prime}(z)\right] d z$
$=\int_{0}^{t} y^{\prime}(z)\left[f\left(z, y(z), y^{\prime}(z) y^{\prime \prime}(z)\right)+L\left(y^{\prime}(z)\right)^{n} y^{\prime \prime}(z)\right] d z+\frac{1}{n} \frac{y^{2}(t)}{2}$
>0
for $|y(t)|>M$ since $y(0)=0$.
Thus Theorem 6.7 implies $|y| \leqslant M$ for any solution y_{n} to (6.8) and $n=1,2, \ldots$.... Also

$$
\text { |f} f_{n}\left(t, y, y^{\prime}, y^{\prime \prime}\right) \mid
$$

$$
\leqslant\left[A(t, y)\left|y^{\prime}\right|+B(t, y)\right]\left[C(t, y)\left|y^{\prime \prime}\right|+D(t, y)\right]+M .
$$

Now we can apply Theorem 6.9 to (6.8): If y_{n} is a solution to (6.8) for $n=1,2, \ldots$ we have $\quad l_{n} y_{3} \leqslant k$ for some constant K independent of n. By Theorem 1.7 there is a subset N of the natural numbers and a function $y \in C^{2}[0,1]$ so that $\mid y_{n}-y l_{2} \rightarrow 0 \quad$ as $n \rightarrow \infty$ in N. If $G(t, z)$ is the Green's function for (L, B_{o}) where $L y=y^{\prime \prime \prime}$ and B_{0} denotes the boundary conditions (viii) or (ix) then

$$
y_{n}(t)=\int_{0}^{1} G(t, z) f_{n}\left(z, y_{n}(z), y_{n}^{\prime}(z), y_{n}^{\prime \prime}(z)\right) d z
$$

Let $n \rightarrow \infty$ through N to obtain

$$
y(t)=\int_{0}^{1} G(t, z) f\left(z, y(z), y^{\prime}(z), y^{\prime \prime}(z)\right) d z
$$

Thus $y \in C_{B_{o}}^{3}$ and y satisfies $y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right)$.

We can obtain a similar result to Theorem 6.9 for $(6.6)_{(x)}$.

Theorem 6.11. Let $f:[0,1] \times R^{3} \rightarrow R \quad$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that

$$
\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0
$$

for $\left.\quad u^{\prime}(t)\right\rangle M$, where n is an even integer greater than or equal to zero and $L \geqslant 0$ is a constant, with $u \in C^{2}[0,1]$ and $u^{\prime \prime}(0)=0$.
(b) Suppose

$$
|f(t, u, p, q)| \leqslant[A(t, u)|p|+B(t, u)][C(t, u)|q|+D(t, u)]
$$

where $A(t, u), B(t, u), C(t, u), D(t, u) \geqslant 0$ arefunctions bounded on bounded (t,u) sets.

Then the boundary value problem (6.6) (x) has at least one solution in $C^{3}[0,1]$.

Remark. We can obtain similar results to those in Theorem's 6.9 and 6.11 if the boundary conditions (viii), (ix) or (x) are replaced by either
(xi) $y(0)=0, y(1)=0, y^{\prime \prime}(0)=0$
(xii) $y(0)=0, y^{\prime}(1)=0, y^{\prime \prime}(0)=0$
(xiii) $y(1)=1, y^{\prime}(0)=0, y^{\prime}(1)=0$
(xiv) $y(0)=0, y(1)=0, y^{\prime}(1)=0$
(xv) $y(0)=0, y(1)=1, y^{\prime \prime}(1)=0$
(xvi) $y(1)=0, y^{\prime}(0)=0, y^{\prime \prime}(1)=0$
or
(xvii) $-\alpha y(0)+B y^{\prime}(0)=0, \alpha, \beta>0$
$a y(1)+b y(1)=0, a, b>0$ $y^{\prime \prime}(1)=0$.

An example of this is the following:

Theorem 6.12. Let $f:[0,1] \times R^{3} \rightarrow R$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that

$$
\int_{t}^{1} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z) u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0
$$

for $|u(t)|>M$, where n is an even integer greater than or equal to zero and $L \leqslant 0$ is a constant, with $u \in C^{2}[0,1]$ and $u^{\prime \prime}(1)=0$.
(b) Suppose

$$
|f(t, u, p, q)| \leqslant[A(t, u)|p|+B(t, u)][C(t, u)|q|+D(t, u)]
$$

where $A(t, u), B(t, u), C(t, u), D(t, u) \geqslant 0$ are functions bounded on bounded (t, u) sets.

Then the boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right), t \in[0,1] \\
y \in(x v i i)
\end{array}\right.
$$

has at least one solution in $c^{3}[0,1]$.

The following example illustrates the ideas and results of this section.

Example 6.2 Consider the boundary value problem

BUR) $\quad\left\{\begin{aligned} y^{\prime \prime \prime}(t)= & A_{0}+B_{0}[y(t)]^{P}+C_{0}[y(t)]^{m} y^{\prime}(t)+D_{o} y^{\prime \prime}(t) \\ & +E_{0} y^{\prime}(t) y^{\prime \prime}(t), t \in[0,1] \\ y(0)= & y(1)=y^{\prime}(0)=0\end{aligned}\right.$
where $A_{0}, B_{0}>0, C_{0} \geqslant 0, D_{0}, E_{0}$ are constants with $m \geqslant 0$ even and $p>0$ odd.

We will now show that (BVP) has a solution in $C^{3}[0,1]$ via Theorem 6.8. Now if $f\left(t, y, y^{\prime}, y^{\prime \prime}\right)=A_{o}+B_{o} y^{p}+C_{o} y^{m} y^{\prime}+D_{o} y^{\prime \prime}+E_{o} y^{\prime} y^{\prime \prime}$ and $L=-E_{0}, n=1, \tilde{L}=-D_{0}, \hat{n}=0$ we have $\int_{0}^{t} y^{\prime}(z)\left[f\left(z, y(z), y^{\prime}, y^{\prime \prime}\right)+L\left(y^{\prime}(z)\right)^{n} y^{\prime \prime}(z)+\tilde{L}\left(y^{\prime}(z)\right)^{\tilde{n}} y^{\prime \prime}(z)\right] d z$
$=\int_{0}^{t}\left[A_{0} y^{\prime}(z)+B_{0}[y(z)]^{p_{y}} y^{\prime}(z)+C_{0}[y(z)]^{m}\left[y^{\prime}(z)\right]^{2}\right] d z$
$\geqslant \int_{0}^{t}\left[A_{0} y^{\prime}(z)+B_{0}(y(z))^{P_{y}} y^{\prime}(z)\right] d z$ since $y^{\prime}(0)=0$ $=y(t)\left[A_{0}+\frac{B_{o}}{p+1}[y(t)]^{p}\right]$ since $y(0)=0$
>0 for $|y(t)|>\left[\left|\frac{-(p+1) A_{o}}{B_{o}}\right|\right]^{1 / p}$
Finally it is clear that we can find constants A, B, C, D such that

$$
\left|f\left(t, y, y^{\prime}, y^{\prime \prime}\right)\right| \leqslant\left(A\left|y^{\prime}\right|+B\right)\left(C\left|y^{\prime \prime}\right|+D\right)
$$

for (t, y) in a bounded set.

Hence all conditions in Theorem 6.8 are satisfied so (BVP) has at least one solution in $C^{3}[0,1]$.

To conclude this chapter we examine the inhomogeneous boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right), \quad t \in[0,1] \tag{6.9}\\
y(0)=r, y(1)=s, y^{\prime}(0)=\ell
\end{array}\right.
$$

or
6.10)

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}=f\left(t, y, y^{\prime}, y^{\prime \prime}\right), t \in[0,1] \\
y(0)=r, y(1)=s, y^{\prime \prime}(0)=\ell
\end{array}\right.
$$

and establish the existence of a solution (6.9), (6.10) in $C^{3}[0,1]$ under essentially the same hypothesis on f used in Theorem 6.9.

Theorem 6.13. Let $f:[0,1] \times R^{3} \rightarrow R$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that

$$
\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z) u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0
$$

for $|u(t)|>M$, where L and $n>-2$ are constants with $u \in C^{2}[0,1]$ and $u^{\prime}(0)=0$.
(b) Suppose

$$
|f(t, u, p, q)| \leqslant\{A(t, u)|p|+B(t, u)][C(t, u)|q|+D(t, u)]
$$

where $A(t, u), B(t, u), C(t, u), D(t, u) \geqslant 0$ are functions bounded on bounded (t,u) sets.

Then the boundary value problem (6.9) has at least one solution in $C^{3}[0,1]$.

Proof Consider the family of problems
$6.9)_{\lambda} \quad\left\{\begin{array}{l}y^{\prime \prime \prime}=\lambda f\left(t, y, y^{\prime}, y^{\prime \prime}\right), 0 \leqslant \lambda \leqslant 1 \\ y(0)=r, y(1)=s, y^{\prime}(0)=\ell .\end{array}\right.$
The existence of a solution in $C^{3}[0,1]$ follows immediately from Theorem 1.10 once a priori bounds independent of λ are established for solutions y to (6.9) $\lambda^{\text {. }}$ To establish a priori bounds for (6.9) λ_{λ}, let $y(t)$ be a solution to (6.9) λ_{λ}. Now if $\lambda=0$ we have a unique solution and thus $|y(t)| \leqslant M_{o}$, for some constant M_{0}. Otherwise for $0<\lambda \leqslant 1$, let
$\mathbf{w}=\mathrm{y}-\ell \mathrm{t}$, so $\mathbf{w}(0)=\mathbf{r}, w^{(1)}=\mathbf{s}-\ell, \mathbf{w}^{\prime}(0)=0$. Now

$$
\int_{0}^{t} w^{\prime}(z)\left[f\left(z, w(z), w^{\prime}(z), w^{\prime \prime}(z)\right)+L\left(w^{\prime}(z)\right)^{n} w^{\prime \prime}(z)\right] d z>0
$$

for $|w(t)|>M \quad$ implies

$$
\int_{0}^{t} w^{\prime}(z)\left[\lambda f\left(z, w(z), w^{\prime}(z), w^{\prime \prime}(z)+\lambda L\left(w^{\prime}(z)\right)^{n} w^{\prime \prime}(z)\right] d z>0\right.
$$

for $|w(t)|>M . \quad$ It follows from Theorem 6.7 and its remark that

$$
|w(t)| \leqslant \max \langle M,| r|,|s-\ell|\rangle=\tilde{K} \quad \text { for } \quad t \in[0,1]
$$

Thus $|y(t)| \leqslant M_{1} \equiv \max \left\langle\tilde{\mathrm{~K}}+i \ell I, M_{o}\right\}$ for any solution y to (6.9) λ_{λ}, $0 \leqslant \lambda \leqslant 1$. A priori bounds independent of λ for $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$ will follow from a slight modifictation of the proof in Theorem 6.6 once we observe that $\left|y^{\prime \prime}(\mu)\right| \leqslant K, K \geqslant 0 \quad$ a fixed constant independent of λ, for some $\mu \in[0,1]$. We accomplish this by letting $v(t)=y(t)-\left(1-t^{2}\right) r-t^{2} s+\ell t^{2}$ and noticing that $v(0)=0, v(1)=\ell, v^{\prime}(0)=\ell$. Hence by the Mean Value Theorem there exists $\mu \in(0,1)$ such
that $v^{\prime \prime}(\mu)=0$ i.e. $y^{\prime \prime}(\mu)=2 s-2 \ell-2 r$. The existence of a solution to (6.9) follows from Theorem i. 10 .

We can obtain a corresponding existence theorem for (6.10):

Theorem 6.14. Let $f:(0,1) \times R^{3} \rightarrow R$ be continuous.
(a) Suppose there is a constant $M \geqslant 0$ such that

$$
\int_{0}^{t} u^{\prime}(z)\left[f\left(z, u(z), u^{\prime}(z), u^{\prime \prime}(z)\right)+L\left(u^{\prime}(z)\right)^{n} u^{\prime \prime}(z)\right] d z>0
$$

for $|u(t)|>M$, where n is an even integer greater than or equal to zero and $L \geqslant 0$ is a constant, with $u \in C^{2}[0,1]$ and $u^{\prime \prime}(0)=0$.
(b) Suppose

$$
|f(t, u, p, q)| \leqslant\{A(t, u)|p|+B(t, u)][C(t, u)|q|+D(t, u)\}
$$

where $A(t, u), B(t, u), C(t, u), D(t, u) \geqslant 0$ are functions bounded on bounded (t, u) sets.

Then the boundary value problem (6.10) has at least one solution in $C^{3}\{0,1]$.
VII.

Nonlinear Differential
Equations in Hilbert Spaces
7.1 Introduction

The theory of nonlinear differential equations in abstract spaces became popular in the 1970's and is still being studied in great depth. For a detailed account of the subject see Deiming [10], Lakshmikantham and Leela [24] and Martin [25]. In this chapter we present a new approach via the Topological Transversality Theorem, to studying problems of the form
7.1)

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), t \in[0, T] \\
y(0)=y_{0} .
\end{array}\right.
$$

Here y takes values in a real Hilbert space (H, \|fll), $y_{o} \in H$ and $f:[0, T] \times H \rightarrow H$ is continuous.

For notational purposes let $C^{1}([0, T], H)$ denote the space of continuously differentiable functions g on $[0, T]$. Now $C^{1}([0, T], H)$ with norm

$$
\|g\|_{1}=\max \left(\sup _{t \in[0, T]}\|y(t)\|, t \in[0, T] \quad\left\|y^{\prime}(t)\right\|\right)
$$

$\equiv \max \left[\|y\|_{0},\|y '\|_{0}\right]$
is a Banach space. Similarly we define $C([0, T], H)$. Finaily, by a solution to (7.1) we mean a function $y \in C^{1}([0, T], H)$ together with y satisfying $y^{\prime}=f(t, y), t \in[0, T]$, and $y(0)=y_{0}$.

Unlike the finite dimensional case continuity assumptions on alone will not guarantee even local existence; see Banas and Goebel [2]. In this chapter by placing compactness conditions on f we obtain, with a restriction on T which depends on the nonifearity f, solutions to (7.1) in $C^{i}([0, T], H)$.
7.2 Preliminary Results

We begin with some standard theorems on the calculus of functions from an interval into a real Hilbert space; see Martin [25], Barbu [3] and Shilov [30] for details. Supposefor theremainder of this section that H is a real Hilbert space (H, < ., •>) and J is a compact interval in R.

Theorem 7.1. Suppose f is a differentiable function from J into H and $f^{\prime}(t)=0$ for all $t \in J$. Then f is constant on J.

Theorem 7.2. Suppose f is a differentiable function from J into H. Then

$$
\frac{d}{d t}\langle f(t), f(t)\rangle=2\left\langle f^{\prime}(t), f(t)\right\rangle
$$

Theorem 7.3. Suppose $J=[a, b]$ and $f(u)$ is a continuous function from J into H. Also let $u=u(t)$ be a continuously differentiable function on $\alpha \leqslant t \leqslant \beta$ where $u(\alpha)=a$ and $u(B)=b$. Then

$$
\int_{a}^{b} f(u) d u=\int_{\alpha}^{B} f(u(t)) u^{\prime}(t) d t
$$

To obtain our existence theorems in the following section we need a more general version of the arzela Ascoli Theorem.

Theorem 7.4. Suppose M is a subset of $C(J, H)$. Then M is relatively compact in $C(J, H)$ (i.e. \bar{M} is a compact subset of $C(J, H)$) if and only if M is bounded, equicontinuous and the set $\langle f(t): f \in M$ is relatively compact for each $t \in J$.
7.3 Initial Value Problems in Hilbert Spaces

We begin, as usual, by examining the homogeneous first order initial value problem
7.2)
$\left\{\begin{array}{l}y^{\prime}=f(t, y), t \in[0, T] \\ y(0)=0\end{array}\right.$
where y takes values in a real Hilbert space ($H,<\cdot, \cdot\rangle$) and $f:[0, T] \times H \rightarrow H$ is continuous. Let $\|\cdot\|^{2}=\langle\cdot, \cdot\rangle$.

Now the Topological Transuersality Theorem and the Arzela Asocoli Theorem are used to extend Theorem 1.9 for initial value problems in Hilbert spaces.

Theorem 7.5. Let $f:[0, T] \times H \Rightarrow H$ be continuous and $0 \leqslant \lambda \leqslant 1$ Suppose in addition $\quad f$ satisfies the following:
7.3) $\left\{\begin{array}{l}\text { There is a continuous function } \psi:[0, \infty) \rightarrow(0, \infty) \\ \text { such that }\|f(t, y)\| \leqslant \psi(\|y\|) .\end{array}\right.$
7.4) f is completely continuous on [0,T] $\times \mathrm{H}$.

Finally suppose there is a constant K such that $\|y\|_{1} \leqslant K$ for each solution $y(t)$ to 7.2) λ

$$
\left\{\begin{array}{l}
y^{\prime}=\lambda f(t, y), t \in[0, T] \\
y(0)=0 .
\end{array}\right.
$$

Then the boundary value problem (7.2) has at least one solution in $C^{1}([0, T], H)$.

Proof As before let
$C_{B}^{1}([0, T], H)=\left\{u \in C^{1}([0, T], H): u(0)=0\right\}$. Also let $\bar{V}=\left\langle u \in C_{B}^{1}(\{0, T\}, H): \quad\|u\|_{1} \leqslant K+1\right\rangle \quad$ and define $F_{\lambda}: C_{B}^{1}([0, T], H) \rightarrow C([0, T], H), 0 \leqslant \lambda \leqslant 1, \quad b y$
$F_{\lambda}[u](t)=\lambda f(t, v(t))$. Now assumptions (7.3), (7.4) and (7.5) together with Theorem 7.4 imply that F_{λ} is completely continuous. To see this let Ω be a bounded subset of $C^{1}([0, T], H)$, then for $u \in \Omega$
$\left\|F_{\lambda} u\right\|=\|\lambda f(t, u)\| \leqslant \psi(\|u\|) \equiv M_{0} \quad$ where $M_{0}<\infty \quad$ is a constant. Clearly from (7.5) $\quad F_{\lambda}(\Omega)$ is equicontinuous and we have also for each $t[0, T], F(\Omega(t))=$ $\langle f(t, u(t)) ; u \in \Omega\rangle$ which is relatively compact in H since f is completely continuous.

Finally we define $L: C C_{B}^{1}([0, T], H) \rightarrow C([0, T], H)$ by LI $=y^{\prime}$. It follows from Theorem 1.6 that L^{-1} is a bounded linear operator. Thus $H_{\lambda}=L^{-1} F_{\lambda}$ defines a homotopy $H_{\lambda}: \overline{\mathrm{V}} \rightarrow \mathrm{C}_{B}^{1}([0, T], H)$. It is clear that the fixed points of H_{λ} are precisely the solutions to (7.2) λ_{λ} Moreover the complete continuity of F_{λ} together with the continuity of L^{-1} imply that the homotopy H_{λ} is compact. Now Ho is essential so Theorem 1.5 implies that H_{1} is essential. Thus (7.2) has a solution.
 replacing H.

$$
\text { In view of Theorem } 7.5 \text { we obtain immediately: }
$$

Theorem 7.5. Suppose $f:\{0, T] \times H \rightarrow H \quad$ is continuous and satisfies (7.3) , (7.4) and (7.5) . Then the initial value problem (7.2) has a solution in $C^{1}([0, T], H)$ for each $T<\int_{0}^{\infty} \frac{d u}{\psi(u)}$.

Proof To prove existence of a solution in $C^{1}([0, T], H)$ we apply Theorem 7.5. To establish a prior bounds for
(7.2) λ_{λ}, let $y(t)$ be a solution to (7.2) λ_{λ} Then $\left\|y^{\prime}\right\|=\|\lambda f(t, y)\| \leqslant \psi(\|y\|)$.
Now if $\|y(t)\|=0$ we have from Theorem 7.2 and the Cauchy Schwartz inequality that

$$
\|y\|^{\prime}=\frac{\left\langle y^{\prime}, y\right\rangle}{\|y\|} \leqslant\left\|y^{\prime}\right\|
$$

and the inequality above yields
ily\|' $\leqslant \psi(\|y\|)$
at any point t where $\|y(t)\| \neq 0$. Suppose $\|y(t)\| \neq 0$ for some point $t \in[0, T]$. Then since $y(0)=0$ there is an interval $[a, t]$ in $[0, T]$ such that $\|y(s)\|>0$ on $a<s \leqslant t$ and $\|y(a)\|=0$. Then the previous inequality implies

$$
\begin{gathered}
\int_{a}^{t} \frac{\|y(s)\|^{\prime}}{\psi(\|y(s)\|)} d s \leqslant t-a . \\
\text { So, } \quad \int_{0}^{\|y(t)\|} \frac{d u}{\psi(u)} \leqslant T<\int_{0}^{\infty} \frac{d u}{\psi(u)} .
\end{gathered}
$$

This inequality implies there is a constant M_{1} such that $\|y\|_{0} \leqslant M_{1}$. Also (7.2) and (7.3) implies $\left\|^{\prime}(t)\right\| \leqslant \max _{0 \leqslant u \leqslant M_{1}} \psi(u) \equiv M_{2}$ for some constant M_{2}. So $\|y\|_{1} \leqslant K=\max \left\{M_{1}, M_{2}\right\}$ and the existence of a solution is established.

Theorem 7.5 also holds for the inhomogeneous initial condition $y(0)=y_{o} \in H$. In fact Theorem 1.10 and trivial adjustments in the above proof yield:

Theorem 7.7. Suppose f: $0, T] \times H \rightarrow H$ is continuous and satisfies (7.3) (7.4) and (7.5). Then the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y), t \in[0, T] \\
y(0)=y_{0} \in H
\end{array}\right.
$$

has a solution in $C^{1}([0, T], H)$ for each

$$
T<\int_{\left\|y_{0}\right\|}^{\infty} \frac{d u}{\psi(u)}
$$

Example 7.1 The techniques above may be applied to integro-differential equations of the form
7.6) $\quad\left\{\begin{array}{l}\frac{\partial}{\partial t} y(t, s)=\int_{0}^{T} g(t, s, r, y(t, r)) d r ; t, s \in[0, T] \\ y(0, s)=\mu(s)\end{array}\right.$
where $\mu:[0, T] \rightarrow R$ is continuous.

Let $H=L^{2}([0, T], R)$, with the usual inner product and define the mapping B from $[0, T] \times H$ into H by

$$
[B(t, u)](s)=\int_{0}^{T} g(t, s, r, u(r)) d r \text { for all }
$$

$(t, s, u) \in[0, T] \times[0, T] \times E$ where $E \subset H$.

We begin by examining the initial value problem
7.7)

$$
\left\{\begin{array}{l}
u^{\prime}=B(t, u(t)), t \in\{0, T\} \\
u(0)=\mu
\end{array}\right.
$$

where $\mathrm{B}:[0, \mathrm{~T}] \times \mathrm{H} \rightarrow \mathrm{H}$.

Various conditions on 8 insuring the continuity and complete continuity of B from $[0, T] \times H$ into H may be found in Krasnoselski [23]. We also assume g satisfies certain growth conditions so that
where $\psi:[0, \infty) \rightarrow(0, \infty) \quad$ is $\quad\|B(t, u)\|_{2} \leqslant \psi\left(\|u\|_{2}{ }^{2}\right)$ continuous. Now assume
$T<\int_{\|\mu\|_{L}}^{\infty} \frac{d u}{\psi(u)}$. Finally suppose conditions are put on g so that, for $t, t^{\prime} \in[0, T]$ and Ω a bounded subset of $C^{1}([0, T], H)$, there exists a constant $A \geqslant 0$ such that $\| B(t, u(t))-B\left(t^{\prime}, u\left(t^{\prime}\right)\left\|_{L} 2 \leqslant A \mid t-t^{\prime}\right\|\right.$
for all $u \in \Omega$.

Then Theorem 7.7 implies that (7.7) has a solution on $[0, T]$. Suppose $u(t)$ is a solution to (7.7) on [0,T], then one sees that if $y(t, s)=[u(t)](s)$ for all $t \in[0, T]$ and $s \in(0, T]$, then $y(0, \alpha)=\mu(\alpha)$ and y is a solution to (7.6). To see this let $[u(t)](s) \equiv v(s)$, so

$$
\begin{aligned}
\frac{\partial}{\partial t} y(t, s) & =B(t, v)(s)=\int_{0}^{T} g(t, s, r, v(r)) d r \\
& =\int_{0}^{T} g(t, s, r, y(t, r)) d r .
\end{aligned}
$$

BIBLIOGRAPHY

i. P.B. Bailey, L.F. Shampine and P.E. Waltman: Nonlinear Two Point Boundary Value Problems, Academic Press, New York and London, 1968 .

Measures of Noncompactness in Banach Spaces, Marcel Dekker Inc., New York and Basel, 1980 .
3. V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces, Nordhoff International Publishing, 1976 .
4. T.A. Botts and E.J. McShane: Real Analysis. D. Van Nostrand Co. Inc., 1959.
5. E.M. Buturla, P.E. Cottrell, B.M. Grossman and K.A. Salsburg: Finite-Elements Analysis of Semiconductor Devices, The FIELDAY program IBM J. Res. Dev., 24 (1981), 218-231.
6.

Choong-ki Kim: The physics of charge coupled devices in change coupled devices and systems, edited by M.J. Howes and D.V. Morgan, Wiley-Interscience, New York, 1979 .
7. J.B. Conway: Functions of one Complex Variable, Springer-Verlag, New York - Heidelberg and Beriin, 1978.
8. C. Corduneanu: Principles of Differential and Integral Equations, Chelsea Pub. Co., New York, 1977.

[^0]: Completed April25, 1985

