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Arctic-boreal regions are exhibiting the symptoms of profound ecological shifts as they 

experience pronounced warming. Wildlife in high-latitudes are one such harbinger of change, and 

their populations are undergoing range-shifts, declines, and extinctions in response to their rapidly 

altering habitats. As the circumpolar and boreal north is snow-covered for up to 10 months of the 

year, changes to the quality, quantity and duration of snow are major factors driving disturbances in 

the region’s ecology. Yet the area’s vast expanse and inaccessibility presents great difficulty in 

obtaining data to better understand snow-wildlife interactions and their consequences for population 

dynamics. This dissertation hence presents novel approaches to produce maps of wildlife-relevant 

snow properties in Arctic-boreal North America, answering a call for improved data to compare to 

modern GPS-tracking sensors and long-term datasets of wildlife demography. 

To do so, it stands on the three fundamental supports of modern snow-science; modelling, 

remote-sensing, and ground observations. Chapter 1 presents the motivations for this research and 

provides a general literature review of; the observed changes to Arctic-boreal North American snow 

in recent decades, the effects of different snow properties on the endemic wildlife of the region and 



 

 

how these properties relate to observations of changing wildlife behaviour and populations, and 

lastly the state-of-the-science of snow modelling, remote-sensing, and ground-observations in 

relation to wildlife studies. 

Chapter 2 presents a snow modelling study in the Wrangell St Elias National Park, Alaska 

that demonstrates the incorporation of ground-observations to improve the simulation of snow 

conditions in the study region.  Using the improved model, it compares a 1980 to 2017 dataset of 

snow properties with observations of Dall’s sheep (Ovis dalli dalli) productivity. It reveals the 

importance of the seasonality of snow depth to Dall’s sheep, with fall snow depths better predicting 

productivity than spring snow depths, which previous work had suggested. 

Chapter 3 assesses the application of a high-density snow and ice layer detection algorithm 

across Alaska and uses a recently released, enhanced-resolution remote-sensing dataset to do so. It 

finds that high-density layers are mostly detected in coastal regions of low topographic complexity 

and of tundra-type vegetation. The occurrence, persistence, and disappearance of high-density layers 

were also linked to ground-observations of meteorological variables, and weather conditions 

corresponding to known controls on high-density layer establishment, maintenance and destruction, 

were established – suggesting the algorithm has promise.  

Chapter 4 details the development of an open-source, low-cost wireless sensor network for 

snow-based applications and compares its performance to research-grade traditional equipment. The 

network is shown to take comparably accurate measurements of snow depth, air temperature and 

relative humidity at a significantly lower cost. The addition of a satellite modem for data-

transmission establishes its credentials for use in remote regions where the difficulty of access for 

data-retrieval exasperates data-scarcity. 

Finally, Chapter 5 discusses the broader significance of the preceding chapter’s findings and 

proposes future research combining the three methodologies in a ‘data-model fusion’. Such an 

approach would overcome each method’s limitations and leverage their advantages, ultimately 

providing better data for use in wildlife ecology. 
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Chapter 1 General Introduction 

 

1.1 Research Motivation 

The Arctic-boreal region is changing profoundly. Warming at a rate greater than any place 

on Earth, its physical, chemical and biological systems are shifting as its most distinctive yet sensitive 

features – the perennial and seasonal expanses of frozen water held in ice and snow – are diminished 

in space and time (AMAP, 2017). The National Aeronautics and Space Administration’s (NASA) 

Arctic-Boreal Vulnerability Experiment (ABoVE), which funded the majority of the following 

research and is ongoing, seeks to better understand the vulnerability and resilience of Arctic-boreal 

North America in the face of such changes (Goetz et al., 2011). Of ABoVE’s six Science Questions1, 

this dissertation primarily responds to the 5th; ‘How are flora and fauna responding to changes in 

biotic and abiotic conditions, and what are the impacts on ecosystem structure and function?’. 

Likewise, the Science Objective to ‘Quantify how changes in the spatial and temporal distribution of 

snow impacts ecosystem form and structure’ directs its enquiry. As with ABoVE, the research herein 

seeks to reach across disciplines to advance a holistic comprehension of the impacts of climate 

change in the Arctic-boreal region. Hence, the three central chapters present novel approaches in 

the three fundamental technical areas of modern snow science - modelling, remote-sensing, and 

ground observations - to answer a recognised need in Arctic-boreal wildlife ecology; high-resolution 

maps of wildlife relevant snow properties (Boelman et al., 2019).  

Arctic-boreal wildlife are crucial components of ecosystem function and provide vital 

economic and cultural ecosystem services to remote human populations (Callaghan et al., 2011a). As 

the Arctic-boreal region is snow-covered for up 10 months of the year, mapping the presence and 

absence of snow properties that affect wildlife, and understanding how these properties vary in 

space and time, is critical to knowledge-based management of their populations. To date, studies 

have investigated the mechanics of different species’ movement, forage and migration, winter 

habitat selection preferences, behavioural and productivity responses to disappearance dates, as well 

as survival during and after extreme weather events, in relation to snow. However, research is 

 

1 https://above.nasa.gov/about.html?#questions 



 

 

2 

severely limited by the availability, type, quality, and scale of snow observations in the ABR region 

(Boelman et al., 2019). Remotely sensed snow data, such as snow-covered area (SCA), is available 

over large extents and at daily resolutions but does not capture wildlife-relevant snow properties 

such as snow depth, density, and the presence of ice-layers. Their relatively coarse spatial resolution, 

500 m at best for daily Moderate Resolution Spectroradiometer (MODIS) products (Hall et al., 

2002), is additionally problematic in mountain regions where the fine-scale spatial variability of snow 

is high as a result of heterogeneous terrain. Where snow observations are available at fine 

resolutions, i.e., ≤30 m and sub-daily, they are limited to sparse networks of single-point 

observations made by meteorological stations or are the result of expensive field campaigns 

increasingly restricted to a small spatial and temporal extent or single, long transects (Sturm, 2015).  

In an era described as the ‘golden age’ of animal-born sensors (Wilmers et al., 2015), when 

animal locations, movement patterns, and physiology can be monitored with ever-increasing 

accuracy and frequency, there hence exists a pressing need for snow products that complement the 

spatial and temporal granularity of this new frontier in wildlife-ecology. Longer-term datasets of 

wildlife observations, e.g. population per unit area and adult-to-juvenile ratios, are also under-served 

by snow data that does not capture interannual variability in properties that influence wildlife 

survival. There is hence limited opportunity to understand wildlife behavioural responses to snow 

properties at fine spatio-temporal scales, and in-turn linkages between these responses to population 

dynamics via comparison to long-term and spatially extensive observations of snow variability. 

Assessing the vulnerability of Arctic-boreal wildlife, and the communities that derive cultural and 

economic value from them, to projected changes in Arctic-boreal snow regimes is therefore subject 

to uncertainty. 

The research in this dissertation is consequently motivated by addressing the issue of data 

gaps in wildlife-relevant snow properties.  It does so by; (1) demonstrating how a spatially-explicit, 

physically based snow evolution model can be combined with ground-based measurements to 

provide a multi-decadal dataset of detailed snow properties in an alpine region, and how this dataset 

can be used to examine the response in productivity of an iconic North American animal, the Dall’s 

sheep (Ovis dalli dalli), to annually and seasonally variable snow conditions; (2) assessing the potential 

of a long-term, daily, enhanced-resolution space-borne passive microwave observation dataset to 

map layers of high-density snow and ice across the state of Alaska; (3) development of a low-cost, 

open-source, wireless sensor network for snow-based applications in remote regions; (4) reflecting 
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how using these methodologies in combination can further improve the accuracy of wildlife-relevant 

snow data, and how this research impacts other Arctic-boreal concerns.  

 

1.1 General Literature Review 

1.1.1 Changing snow conditions in Arctic-boreal North America 

Across the Arctic there is multi-dataset evidence that seasonal snow cover is reducing in 

volume and duration (Brown et al., 2017). The amplified warming trend, resulting from stronger 

albedo feedbacks as the region loses sea-ice and snow cover, is driving a shortening of the snow 

season by 2 to 4 days per decade for the area north of 60ºN in North America, with the greatest 

losses occurring in high-latitude and high-altitude areas (Brown et al., 2017). Snow depth, for the 

same area and as measured by meteorological stations spanning a time-frame from 1950 to 2013, is 

decreasing by 0.6 cm a decade (Brown et al., 2017). Snow water equivalent (SWE), as reconstructed 

from climate reanalysis products and remote-sensing observations, has likewise declined by 3.9 to 

4.2 mm per decade in Arctic land areas, with most of the interior of Alaska and Canada showing 

pronounced decreasing trends but with variability between datasets (Brown et al., 2017). Increased 

frequencies of mid-winter warming and rain-on-snow events (Liston and Hiemstra, 2011; Semmens 

et al., 2013) have been observed, resulting in higher bulk densities (Liston and Hiemstra, 2011) and 

ice-content of the snowpack (Chen et al., 2013).  

 

1.1.2 Wildlife-relevant snow properties 

The impact of seasonal snow cover upon wildlife, both mammalian and avian, is controlled 

by both the quantity and quality of snow properties and these properties’ distribution in time and 

space (Formozov, 1946). Certain conditions can lead to opportunity for some species while threaten 

the survival of others, despite specific adaptations to snow (Pruitt, Jr., 1959; Telfer and Kelsall, 1984; 

Pomeroy and Brun, 2001).  

From a mechanistic and behavioural point of view, the effects of snow depth, density and 

hardness, on locomotion and forage efficacy has been well-documented for grazing ungulates, where 

deep snow and high-density snow typically increases an animal’s energy expenditure in both 

activities, leading to preferential selection of areas less deep and dense snow (e.g. Kelsall, 1969; 
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Hoefs, 1976; LaPerriere and Lent, 1977; Skogland, 1978; Fancy and White, 1985; Collins and Smith, 

1991; Schaefer and Messier, 1995; Lundmark and Ball, 2008; Fancy and White, 2011; Robinson and 

Merrill, 2012). Conversely, high-density or hard snow conditions can also make locomotion more 

efficient relative to areas of low-density or soft snow, which has led to observations of preference 

for high-density snow when migrating or moving at larger scales typical of forage behaviour (e.g. 

Duquette, 1988; Mahoney et al., 2018). However, the ease of movement is dependent on the ratio of 

body-mass to footprint area, and snow-density thresholds for whether different species will sink into 

the snow have been found (Telfer and Kelsall, 1984; Sivy et al., 2018). This variable response has 

consequences for predator-prey dynamics, with some species of predator, e.g. wolves (Canis lupus) 

and coyotes (Canis latrans), able to move more efficiently on softer snow than the ungulates they prey 

upon (Fuller, 1991; Pozzanghera et al., 2016; Droghini and Boutin, 2017). Other species rely on the 

high thermo-insulative properties of snow to protect them from the harsh surface weather of Arctic-

boreal winters (Pomeroy and Brun, 2001). Two mammals at either end of the body-mass spectrum, 

lemmings (Lemmus lemmus) and bears (e.g. Ursus arctos), take advantage of this insulation for their 

winter nests and dens respectively (Reid et al., 2012; Vroom et al., 1980). Lemmings, and other small 

rodents that burrow in the sub-niveum, also benefit from the concealment of snow cover against avian 

predators. Similarly, many Arctic-boreal dwelling mammals and birds gain from the camouflage of 

changing their pelage or plumage white during winter. Another property, the date of snow 

disappearance, has been shown to influence the timing of large-scale migrations of caribou (Rangifer 

tarandus) (Le Corre et al., 2017) and egg-laying by migratory shorebirds and passerines (Meltofte et 

al., 2006). 

Cumulative behavioural responses to snow conditions across the seasonal snow period, or 

indeed multiple periods, ultimately influence an animal’s fitness and hence ability to both survive and 

reproduce. While other factors are important, such as the clemency of the preceding or intervening 

summer(s) and nutrition abundance and quality, studies have begun to link population dynamics of 

both single animals but also trophic interactions to snow conditions (Penczykowski et al., 2017). 

Notable in the instance of this dissertation is a range of studies that connect mass-mortality events 

of caribou to the presence of ice-layers in the snowpack as a result of rain-on-snow events (e.g. 

Putkonen and Roe, 2003; Putkonen et al., 2009; Hansen et al., 2013, 2011; Langlois et al., 2017; 

Dolant et al., 2017). Further studies have linked such events to increase of scavengers in the area’s 

affected (e.g. Sokolov et al., 2016). For Dall’s sheep (Ovis dalli dalli), an ungulate species endemic to 

Arctic-boreal North America and the focus of Chapter 2, two studies found that later spring snow 
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decreased the number of lambs that were observed relative to the number of ewes the following 

summer (Kerk et al., 2018; Rattenbury et al., 2018).  

 

1.1.3 Modelling snow for wildlife ecology research 

Using physically-based snow evolution models in wildlife research is underexplored 

(Boelman et al., 2019). This is despite their ability to simulate a wide-range of wildlife-relevant snow 

properties at great detail and in extents flexible to the requirements of a particular study. However, 

there do exist instances of their interface with wildlife ecology. An early study by Vikhamar-Schuler 

et al. (2013) used a 1-D physical multilayer snow model, SNOWPACK (Bartelt and Lehning, 2002) 

and compared its output to records of restricted grazing pastures for reindeer in northern Norway. 

Ouellet et al. (2017), attempted a spatialisation of this methodology using meteorological data from 

the Canadian Regional Climate Model reanalysis to force SNOWPACK across the range of the 

Peary caribou herd in the Canadian Arctic, albeit at a resolution of 45 km. 

More recently, spatially distributed snow evolution models, such as SnowModel (Liston and 

Elder, 2006), iSNOBAL (Marks et al., 1999), Alpine-3D (Lehning et al., 2006), have shown greater 

promise for wildlife studies. These models are capable of simulating blowing snow processes and the 

fine-scale variability of snowpack properties both horizontally and vertically. For instance, Liston et 

al. (2016), demonstrated how SnowModel could simulate the requisite depth and distribution of 

snow-drifts for the winter dens of polar bears (Ursus maritimus) in a coastal area of the North Slope 

of Alaska. Another Alaska based study, but on the opposite coast in Lake Clark National Park, used 

SnowModel to test the scale-dependent response of Dall’s sheep to snow depth and density 

(Mahoney et al., 2018). 

Despite their potential, the adoption of the latest snow evolution models in wildlife ecology 

is hampered by several issues. The technical expertise needed to run such models is highly 

concentrated within the hydrological research fields where they were first developed, limiting their 

exposure to wildlife ecologists. In the Arctic-boreal region, there is also the problem of not having 

meteorological data sufficient in quantity and accuracy to force the models, nor in-situ snow data to 

calibrate and validate them to (Sturm, 2015; Boelman et al., 2019). This data-scarcity is a product of 

the region’s remoteness and inaccessibility, but also its low-density of human settlements, which 
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would otherwise require local meteorological and snow observations for the estimation of water 

resources available to agriculture and other activities. 

 

1.1.4 Remote sensing of snow conditions for wildlife ecology research 

Remotely-sensed snow products have been utilised by wildlife studies with greater frequency 

than data derived from snow modelling due to their relative ease of use and access. They have the 

capacity to map snow properties at hemispherical scales yet provide comparatively little insight into 

the vertical dimensions of snowpacks, e.g. depth, density and stratigraphy, at resolutions useful to 

animal-ecology. However, approaches exploiting the visible and near-infrared bands (NIR) of 

sensors upon numerous satellite platforms have advanced SCA mapping in recent decades, and their 

products have had relatively widespread use in wildlife ecology. An example of such data is a pre-

processed product that classifies the fractional SCA in 500m MODIS pixels – the MODIS snow-

covered area and grain size (MODSCAG) product (Painter et al., 2009). Verbyla et al., (2017) used 

MODSCAG to predict May 15th snowline elevations from 2000 to 2016 in 28 mountain areas where 

Dall’s sheep are found, data that was later used to show that a low-elevation of spring snowline was 

detrimental to Dall’s sheep productivity (Kerk et al., 2018). Mahoney et al., (2018) complemented 

this work by linking large scale movements of Dall’s sheep to the selection of MODSCAG pixels 

where the fractional snow cover was less, indicating a selection for areas with improved access to 

forage. Other wildlife-related studies employing remotely-sensed snow cover products derived from 

visible light and NIR observations include Copeland et al.’s (2010) mapping of wolverine (Gulo gulo) 

distribution in relationship to MODIS SCA and LeCorre et al.’s (2017) investigation into the timing 

of spring and autumn caribou migration in Canada using the same product. In these studies, SCA 

serves only as a proxy for snow depth, with this and other variables pertaining to the amount and 

quality of snow inferred only by the persistence of the detected snow in the satellite product, and 

knowledge of the likely type of snow found in that region (Sturm et al., 1995). Uncertainty is 

inherent in this inference of snow depth as persistence may also be a result of cooler temperatures 

or additional fresh snowfall of unknown quantities. Additional issues with products utilising 

observations from MODIS and similar platforms is data-gaps caused by cloud-coverage, low-solar 

illumination, and polar night. Landsat derived SCA does improve on the spatial resolution of 

MODIS, 30 m versus 500 m, but at the cost of coarser temporal resolution, 16 days vs 1 day. 
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A remote sensing approach that is showing promise in detecting snow properties pertinent 

to wildlife is space-borne microwave radiometry. Dolant et al. (2016), building on work by Grenfell 

and Putkonen (2008), developed an empirical approach for detecting RoS events from ground-based 

passive microwave (PM) measurements. Their algorithm, ran with data from the Advanced 

Microwave Scanning Radiometer for Earth Observing System (AMSR-E), showed reasonable 

agreement to observations of RoS from citizen observers in the Canadian Arctic. Pan et al. (2018) 

extended this approach for a study domain across the entire state of Alaska, validating RoS 

detections with data from first-order meteorological stations. However, a RoS event does not always 

necessarily result in a snow property, such as an ice-layer, that could have a detrimental effect on 

wildlife. Hence, Langlois et al. (2017), used the RoS detection algorithm alongside a PM based ice-

detection method developed by Montpetit (2015), in the context of the Peary caribou herd’s decline, 

finding a negative relationship between the frequency of both RoS and icing events and caribou 

population. This ice-layer detection methodology has clear application to other ABR areas and 

species when mapped over a greater extent. However, the coarse resolution of traditional PM 

datasets (typically 25 km) complicates their use in areas with heterogeneous terrain nor provides the 

requisite detail for studies using fine-scale observations of animal location and movement. In this 

dissertation, the potential of an enhanced-resolution PM product is hence assessed. 

 

1.1.5 Ground observations of snow in Arctic-boreal North America 

A variety of networks of meteorological stations, such as the Snow Telemetry (SNOTEL) 

stations ran by the Natural Resource Conservation Service (NCRS), provide the majority of in situ 

snow observations across the conterminous United States, Canada, and Alaska. While these 

networks do measure some wildlife-relevant snow properties, such as depth and density, as latitude 

increases their coverage decreases, limiting their usefulness. Boelman et al. (2019) elegantly described 

this problem by contrasting the yearly snow coverage of the Western states of the conterminous US, 

<50% snow-covered for 6 months of the year, to that of Alaska, >95% snow-covered for >7 

months of the year, and the density of the respective areas’ in situ observation networks, finding that 

Alaska had <1/8 of the density of observations made by active meteorological stations. While other 

in situ data sources do exist in Arctic-boreal North America, such as that from snow courses or 

measured by field campaigns, they are uneven in time and space and often favour accessible sites 

near transport infrastructure that may not be representative of wildlife habitats (Boelman et al., 2019; 
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Brown et al., 2017). A confounding issue is the lack of a coordinated data archive of observations, 

but progress is being made with both the National Oceanic and Atmospheric Administration’s 

(NOAA) Sustaining Arctic Observing network2 and the National Science Foundation’s (NSF) Arctic 

Data Center3 increasing their archives. Extending networks is an expensive undertaking in remote 

Arctic-boreal areas as traditional meteorological stations require heavy equipment to install and must 

be robust enough to the severe climate in order to operate without maintenance for long periods. 

Similarly, field campaigns are costly and rely on observers trained in the measurement of snow 

properties. 

An opportunity to overcome these barriers of cost and representativeness is the burgeoning 

development of low-cost, open-source solutions for environmental monitoring. These platforms, 

such as those based on the Raspberry Pi4 and Arduino5 microcontrollers, utilise cost-effective 

sensors and balance the shortcomings of traditional and proprietary technology (Mao et al., 2019). 

Easily customisable for near real-time data transfer and site-specific applications, they are also 

sufficiently cost-efficient to set-up in extensive wireless sensor networks (WSN) that can capture 

important variability in snow properties caused by gradients of elevation, aspect and land cover. A 

variety of studies have shown their applicability in snow research (e.g. Varhola et al., 2010; Kerkez et 

al., 2012; Pohl et al., 2014; Skalka and Frolik, 2014; Malek et al., 2017) but at lower latitudes where 

maintenance and remote data-transfer are easier due to accessibility and cellular networks 

respectively. Chapter 4 of this dissertation hence describes the development of an open-source, 

wireless sensor network for snow applications in both high-latitude and high-altitude regions, where 

the use of the Iridium satellite network6 overcomes the lack of communications infrastructure. 

 

1.2 Dissertation Organisation 

This research seeks to exhibit how novel approaches in snow modelling, remote-sensing, and 

ground observations can be used both in isolation and in combination to provide improved, wildlife-

relevant snow data. In Chapter 2, an example of how snow-modelling and ground observations, 

 

2 arcticobserving.org/ 
3 arcticdata.io/ 
4 raspberrypi.org/ 
5 arduino.cc/ 
6 iridium.com/ 
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when used together, can better inform insights into the influence of snow on Dall’s sheep 

productivity is presented. Chapter 3 assesses the ability of a PM algorithm to map high-density snow 

and ice layers at enhanced resolutions across Alaska. The development of a low-cost, open-source, 

wireless sensor network for snow-based research, and its performance relative to traditional, 

proprietary equipment, is described in Chapter 4. Finally, in Chapter 5, how the methods presented 

in the preceding chapters could be effectively integrated into a hybrid or ‘data-fusion’ approach to 

overcome the limitations of each, is discussed alongside the broader impacts of the work. 
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2.1 Abstract 

Dall’s sheep (Ovis dalli dalli) are endemic to alpine areas of sub-Arctic and Arctic northwest 

America and are an ungulate species of high economic and cultural importance. Populations have 

historically experienced large fluctuations in size, and studies have linked population declines to 

decreased productivity as a consequence of late-spring snow cover. However, it is not known how 

the seasonality of snow accumulation and characteristics such as depth and density may affect Dall’s 

sheep productivity. We examined relationships between snow and climate conditions and summer 

lamb production in Wrangell-St Elias National Park and Preserve, Alaska over a 37-year study 

period. To produce covariates pertaining to the quality of the snowpack, a spatially-explicit snow 

evolution model was forced with meteorological data from a gridded climate re-analysis from 1980 

to 2017 and calibrated with ground-based snow surveys and validated by snow depth data from 

remote cameras. The best calibrated model produced an RMSE of 0.08 m (bias 0.06 m) for snow 

depth compared to the remote camera data. Observed lamb-to-ewe ratios from 19 summers of 

survey data were regressed against seasonally aggregated modelled snow and climate properties from 

the preceding snow season. We found that a multiple regression model of fall snow depth and fall 

air temperature explained 41% of the variance in lamb-to-ewe ratios (R2 = .41, F(2,38) = 14.89, 

p<0.001), with decreased lamb production following deep snow conditions and colder fall 

temperatures. Our results suggest the early establishment and persistence of challenging snow 

conditions is more important than snow conditions immediately prior to and during lambing. These 

findings may help wildlife managers to better anticipate Dall’s sheep recruitment dynamics. 

 

2.2 Introduction 

The terrestrial ecology of the Arctic Boreal region (ABR) is changing rapidly as a result of 

amplified increases in temperatures (Chapin et al., 2005; Cooper, 2014; Hinzman et al., 2005; Serreze 

and Barry, 2011). Seasonal snow coverage exists in the ABR for up to 10 months annually and 

profoundly impacts ecosystem function. Studies point towards continued reduction in the annual 

duration of snow cover and overall accumulation in the ABR, with region and elevation dependent 

variations in trend and severity (Brown et al., 2017). Mid-winter warming events have been seen to 

cause substantial alteration to snow properties and the incidence and severity of these events are 

thought to be increasing (Bokhorst et al., 2016; Johansson et al., 2011; Liston and Hiemstra, 2011). 
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Snow processes have been linked to the population dynamics, movement, habitat selection, and life-

cycles of a wide variety of mammals living in the ABR ranging in size from polar bears (Ursus 

maritimus, 13) and moose (Alces alces, 14), through to lemmings (Lemus lemus, 15) and snowshoe hares 

(Lepus americanus, 16). Due to their importance to Northern societies, ungulates native to the ABR, 

such as moose, caribou (Rangifer tarandus) and muskoxen (Ovibos moschatus) have been subject to 

broad scientific enquiry (e.g. Pruitt, Jr., 1959; Kelsall, 1969; LaPerriere and Lent, 1977; Duquette, 

1988; Collins and Smith, 1991; Lundmark and Ball, 2008; Hansen et al., 2010; Gilbert et al., 2017; 

Schaefer and Messier, 1995). These studies indicate that ungulate populations in the ABR are 

negatively affected by extreme conditions that could increase in severity and frequency due to 

climate change (Tyler N. J. C., 2010; Vors and Boyce, 2009). For example, ‘locked-pastures’, where 

access to winter forage is restricted through either deep snow or ice-layers, have been linked to 

caribou and muskox mass mortality events (Hansen et al., 2011; Langlois et al., 2017; Tyler N. J. C., 

2010; Vikhamar-Schuler et al., 2013).  

Snow cover in mountain areas is highly variable in both space and time (Sturm et al., 1995) 

as the interplay of temperature, precipitation, solar radiation, vegetation cover and wind produces 

intricate patterns of depth, density and stratigraphy in complex terrain. While remote sensing 

products utilising optical and infrared wavelengths have some ability to detect this variability, their 

coarse spatial grain (~500 m) at daily time scales, impediment by cloud cover, and inability to 

quantify snow depth and density, limit their application in snow ecology questions (Boelman et al., 

2018). Passive microwave derived remote-sensing products have shown promise in mapping snow 

properties such as water equivalent (Pulliainen and Hallikainen, 2001) and rain-on-snow events (Pan 

et al., 2018), but these products currently have a spatial resolution of >5 km, limiting their usefulness 

in mountain contexts.  

Physically-based snow evolution models offer a promising means of obtaining a variety of 

snow properties that cannot be obtained from remote sensing alone. These models solve the surface 

mass-energy balance to map snow properties at a user-defined spatial and temporal resolution. 

However, there has been limited application of these models in wildlife research relative to those 

incorporating remotely sensed snow data, possibly due to the different technical skills required. 

Models have been used to simulate detailed snow data at single point locations for comparison to 

long-term wildlife data (Domine et al., 2018; Vikhamar-Schuler et al., 2013), or to quasi-spatialize a 

single grid cell model at a coarse, 45 km resolution (Ouellet et al., 2017). To our knowledge, no study 
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has yet exploited the ability of modern snow models to produce longer time series of spatially-

distributed data to compare to population dynamics of wildlife. Here, we use a leading snow 

evolution model, SnowModel (Liston and Elder, 2006), capable of operating with a 3D snow 

redistribution sub-model (Liston et al., 2007), to map daily snow and climate conditions at a high 

spatial resolution for a mountainous sub-Arctic domain inhabited by a population of Dall’s sheep 

(Ovis dalli dalli) that has been surveyed periodically over the past 50 years. The advantage of this 

approach is that it allows identification of important seasonal snow properties, and allows the 

simulation of snow conditions across Dall’s sheep alpine habitat as opposed to potentially non-

representative point-locations, such as meteorological stations in valley-bottoms (Molotch and Bales, 

2005). 

We examined the importance of the preceding season’s snow conditions on summer lamb 

production of Dall’s sheep in Wrangell-St Elias National Park and Preserve, Alaska, USA (WRST) 

using model derived covariates of snowpack quality. Dall’s sheep are a wild ungulate endemic to 

mountains of the ABR in north-western North America and are an important herbivore in high-

latitude alpine ecosystems that may be acutely vulnerable to climate change (Dirnböck et al., 2011). 

They are also a highly prized Alaskan game species (Alaska Department of Fish and Game, 2014). 

Dall’s sheep often use windward aspects during snow-covered months, where they rely on wind-

scoured patches of snow-free or soft and shallow snow-covered forage to buffer caloric deficit 

(Bunnell, 1982). Populations of Dall’s sheep have historically fluctuated widely in size (Alaska 

Department of Fish and Game, 2014; Lambert Koizumi et al., 2011; Mitchell et al., 2015; Murphy 

and Whitten, 1976). These fluctuations are thought to be largely governed by variations in the 

production and survival of lambs, as adult survival has been shown to be relatively stable except 

after extreme winter events (Gaillard et al., 1998; Rattenbury et al., 2018), and only a limited number 

of mature rams are harvested each year (Arthur and Prugh, 2010). Mature Dall’s sheep ewes typically 

produce one lamb in mid-May to early-June (Rachlow and Bowyer, 1994), and decreased summer 

production and survival of lambs has been linked to adverse winter weather and persistent or deep 

snow conditions (Burles and Hoefs, 1984; van de Kerk et al., 2018; Murphy and Whitten, 1976; 

Rattenbury et al., 2018; Schults, 2004). However, previous studies have relied upon remotely-sensed 

snow cover phenology metrics, with vertical properties of snow, e.g. greater depth and density, 

inferred from the longer persistence of snow covered areas (van de Kerk et al., 2018; Rattenbury et 

al., 2018). Thus, the seasonal importance of different snow properties such as depth and density on 

Dall’s sheep remains unknown.  
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Snow properties are thought to affect ungulates such as Dall’s sheep in 3 main ways. First, 

access to forage may be restricted where snow is deeper or harder (Robinson and Merrill, 2012). 

Second, movement may be energetically expensive where deeper snow does not support an animal’s 

weight (Parker et al., 1984). Third, susceptibility to predation may be enhanced in deep snow 

conditions where the snow density supports a predator’s foot load but impedes movement of an 

ungulate (Telfer and Kelsall, 1984). Forage restriction from deep or hard snow cover established in 

fall has been shown to have stronger impacts on reindeer populations than restriction later in the 

winter or spring (Douhard et al., 2016), but whether these patterns occur in mountainous regions 

with more heterogeneous snow properties is not known.  

Here, we examine the relationships between preceding snow conditions and Dall’s sheep 

productivity, measured as the number of lambs per ewe-like sheep (hereafter, lamb-to-ewe ratios). 

Our methodology affords the novelty of examining when and which snow properties are most 

important. In other studies of alpine ungulates and Dall’s sheep low winter temperatures and high 

snowfall have been shown to decrease summer productivity (Burles and Hoefs, 1984; Coulson et al., 

2000), so we study these climate variables for influence relative to, and in combination with, model 

derived snow properties. Additionally, we present trends in modelled snow and climate covariates 

from 1980 to 2017 to shed light on potential linkages between climate change, snow properties, and 

Dall’s sheep population dynamics.  

To establish the relative importance of the seasonality of snow conditions we tested two 

contrasting hypotheses: (H1) the cumulative effects of persistent snow conditions that are 

unfavourable for Dall’s sheep productivity will be most important, in which case snow conditions 

established in the fall months and persisting through the winter months should better explain 

summer lamb-to-ewe ratios; (H2) snow conditions in the lambing season will have the strongest 

effect, in which case snow conditions in the spring months should better explain lamb-to-ewe ratios. 

As adult survival is considered stable relative to that of Dall’s sheep lambs, our first hypothesis 

proposes that the effect of snow conditions indirectly influences lamb production and survival via 

ewe body condition, which is affected by the winter-long accumulative effect of snow conditions 

aiding or abetting forage and movement. The second hypothesis instead emphasises that snow 

conditions may have a more direct influence on lamb survival, and hence productivity, both through 

their effect on foraging and movement immediate to and after birth. 
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2.3 Materials and Methods 

2.3.1 Study Area 

Our study area was a 8,678 km2 region located in northern Wrangell-St Elias National Park 

and Preserve (WRST; 62°18'46"N, 143° 15' 31"W; Figure 2.1). A small portion of the study area was 

outside WRST and included portions of state, U.S. Fish and Wildlife Service, and private lands. Our 

study area falls within the Southeast Interior Alaska climate division, as mapped by Bieniek et al. 

(2012). Precipitation is relatively low, given the rain-shadowing of the Chugach mountain range to 

the south, and falls predominantly in May through to October. The annual range of mean monthly 

temperatures is ~15 ºC in July to ~-20 ºC in January (Bieniek et al., 2012). In the subalpine zone 

(1200 – 1400 m.a.s.l), patches of 1 to 2 m high dwarf birch (Betula glandulosa) and willow (Salix spp.) 

are separated by lichens and moss (Danby and Slocombe, 2005). Alpine areas (> 1400 m.a.s.l) are 

either dry communities of low, matted alpine vegetation, consisting mostly of Dryas, or moist areas 

of grasses (Festuca spp. and Poa spp.) and sedges (Carex spp.) with occasional patches of low willow 

and birch shrubs (Danby and Slocombe, 2005). Dall’s sheep habitat extends from shrubline (~1400 

m) into alpine areas where they favor areas close to rugged escape terrain (Geist, 1971).  Using 

Moderate Resolution Imaging Spectroradiometer (MODIS) derived snow cover data from 2000 to 

2015, Cherry et al. (2017) found a median start of the continuous snow season (CSS) of the 26th 

September (±32 days SD) for elevations between 1219 m and 1524 m, and 30th August (±34 days 

SD) for elevations above 1524 m, across Denali National Park, Yukon Charley National Preserve 

and WRST. The median date for the end of the CSS at these elevations were respectively 30th May 

(±37 days SD) and the 28th June (±34 days SD) (Cherry et al., 2017). 
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Figure 2.1. Map of study area located in the in the northern Wrangell-St. Elias National Park and Preserve 

(WRST; brown dashed outline) and Alaska (inset). Field-based snow surveys, including the installation of 

remote cameras upon Jaeger Mesa and near Nabesna, took place in the central Jacksina sheep survey unit 

(yellow outline) to calibrate a physically-based, spatially distributed snow evolution model. With the calibrated 

model we simulated daily snow conditions for high-elevation Dall’s sheep terrain within the Jacksina survey 

unit domain from 1980 to 2017. A remote sensing analysis determined that the mean snow disappearance 

date (SDD) in 8 other survey units (outlined orange) was more similar to that of Jacksina compared to that of 

other units in the WRST (outlined red). We hence used observations of summer lamb-to-ewe ratios from 

Jacksina and these 8 nearby units to compare to model-derived metrics of seasonal snow conditions. GIS data 

for sheep survey units and WRST park boundary were sourced from (WRST Sheep and Goat Count Units - 

data.doi.gov; NPS - Land Resources Division, 2020) respectively, the background digital elevation model is 

built from  1 Arc-second Digital Elevation Models (DEMs) of the United States Geological Service National 

Map 3D Elevation Program (U.S. Geological Survey, 2017). 

 

2.3.2 Survey Unit Selection 

Within WRST there are 34 survey units in which summer Dall’s sheep surveys are conducted 

by the Alaska Department of Fish and Game (ADF&G) and National Park Service (NPS) (Figure 

2.1). These are delineated by high elevation terrain bounded by water courses or glaciated valleys and 
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are kept to a manageable size for surveying. We used survey data from 9 northern units that were 

selected based on proximity and similarity to the Jacksina survey unit (JSU) where our ground-based 

snow surveys were conducted (Figure 2.1). In the absence of long-term in-situ snow cover data 

within each survey unit, we used a 500 m MODIS-based remote sensing product, snow 

disappearance date (SDD), to identify units with similar snow cover phenology as the JSU from 

2000-2016 (Verbyla et al., 2017). We evaluated all units whose center point was within 100 km of the 

centre of the JSU (n = 17 units; Appendix 2.2). This search diameter of 200 km approximates to the 

maximum meso-b scale length forwarded by Orlanski (1975) as typical for mountain disturbances 

on meteorology, thus ensuring all units had similar climatic influences. SDDs were generally later for 

units south of the JSU, whereas units to the north, east, and west had similar values (Appendix 2.3), 

suggesting the high-elevation ice-fields that separated the northern and southern units influenced 

snow conditions. Thus, we used sheep survey data from units 1 (Mentasta Mountains), 2 (Mount 

Sandford), 4E (Cross Creek), 4W (Nikonda Creek), 5E (Mount Allen), 5W (Stone Creek), 7W 

(Chisana) and 10 (Mount Drum), alongside that of the JSU, unit 3 (Figure 2.1).  

 

2.3.3 Sheep Surveys 

Sheep survey data was obtained from a collated dataset of state and federal monitoring 

surveys conducted by ADF&G and NPS. A study period of 1980 to 2017 was determined by the 

availability of meteorological forcing data for SnowModel (see below), and within this period 19 

years of sheep survey data were available from 41 surveys in our selected survey units (Appendix 2.1, 

Figure 2.1). The earliest survey date was 21st June and the latest the 4th of August. Mean lamb-to-

ewe ratio was 0.30 (Max. = 0.55; Min. = 0.09, SD ±0.10) and the mean total sheep counted in each 

survey was 654 (Max. = 2549 Min. = 87, SD ±564). Surveys were conducted using either a small 

fixed-wing plane or by helicopter and all followed a minimum count method (Wells, 2018). We note 

that aerial minimum count methods are subject to potential biases in comparison to distance-based 

population estimates (Schmidt et al., 2012) but we only use full surveys, i.e. where the entire Survey 

Unit is reported as covered, in our dataset. The difficulty of distinguishing the sex of non-mature 

Dall’s sheep via aerial survey can lead to yearlings of both sexes and small-horned rams often being 

counted as ewes. A ‘ewe-like’ category is often used due to this uncertainty, and we therefore used 

reported ‘ewe-like’ counts as the denominator in lamb-to-ewe ratios where they are available. While 

this ratio is not a perfect measure of productivity because it is affected by a combination of factors 
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including parturition rates, lamb survival, and adult survival, the juvenile-to-female ratios have been 

shown to be a useful measure of productivity in other ungulate species because the majority (96%) 

of the variation in the ratio is caused by variation in juvenile survival (Gaillard et al., 1998). The 

inclusion of ‘ewe-likes’ leads to lower values than the true lamb-to-ewe ratio, but it is still a useful 

index of productivity and has been used as such in other Dall’s sheep studies (van de Kerk et al., 

2018; Rattenbury et al., 2018).  

 

2.3.4 SnowModel 

Snow and climate covariates were produced using SnowModel (Liston and Elder, 2006) at a 

daily timestep for the Jacksina study domain. SnowModel has been used successfully in wide variety 

of latitudinal settings and has previously been used for studies in continental Alaska and mountain 

regions (Liston et al., 2002; Mahoney et al., 2018; Sexstone et al., 2018) SnowModel’s five sub-

models, MicroMet (Liston et al., 2006), EnBal (Liston, 1995), SnowPack (Liston and Hall, 1995), 

SnowTran-3D (Liston et al., 2007), and SnowAssim (Liston and Hiemstra, 2008) in combination 

with topographic, land cover and meteorological data simulate a comprehensive set of snowpack 

evolution processes in a physically based manner (please refer to sub-model references for details on 

their physics and validation). MicroMet ingests meteorological data and distributes them throughout 

the model domain at each timestep on the basis of known relationships between landscape and 

meteorological variables. EnBal simulates the surface energy exchange according to the 

meteorological data distributed by MicroMet and snow evolution from the previous timestep. 

SnowPack evolves snow depth, density, and temperature according to precipitation input and 

surface conditions produced by EnBal. Last in the modelling process, SnowTran-3D redistributes 

snow in response to the interaction between the wind-fields at each timestep, surface topography, 

and vegetation snow holding capacity. SnowAssim allows the user to input in-situ or remotely 

sensed measurements of snow water equivalent and corrects the precipitation forcing retroactively 

before a second model simulation. A workflow diagram of the modelling procedure can be found in 

the Supplementary Materials (Appendix 2.5). 

We obtained meteorological data from the NASA Modern Era Retrospective-Analysis for 

Research and Applications Version 2 (MERRA-2; Gelaro et al., 2017). This gridded climate data is 

available hourly from 1980 to present at a resolution of 0.5º latitude to 0.625º longitude (~55 km by 

~32 km). We aggregated the hourly surface forcing variables from 16 grid points covering the study 
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domain into daily values, using the meteorological inputs required by MicroMet; temperature, 

relative humidity, wind speed, wind direction and precipitation. The topographic and vegetation 

layers required by SnowModel were derived from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Global Digital Elevation Model Version 2 (ASTER GDEM; 

NASA/METI/AIST/Japan Spacesystems, 2009) and the National Land Cover Database 2011 

(NLCD; Homer et al., 2015) respectively. We conducted a simple analysis of the land cover change 

in each of the 9 survey units by cropping a further dataset, the NLCD 2011 Land Cover Alaska 2001 

to 2011 From To Change Index (U.S. Geological Survey, 2015), and analysing the extent of 

landcover change from 2001 to 2011. Of the 8678 km2 of all 9 units, only 27 km2, or  0.32%, had 

been classified in this dataset has having changed in landcover over the 10 year period (Appendix 

2.4). We do not believe that the rate and magnitude of this change was fast or great enough to 

impinge on Dall’s sheep populations within the timeframe of this study, and we therefore kept land 

cover as a static layer in the modelling procedure. The ASTER GDEM was chosen for its complete 

coverage of the study domain and comparable 1-arc second resolution to the 30 m NLCD data. It 

was resampled (bilinear) to this resolution and reprojected into the Alaska Albers Equal Area Conic 

coordinate reference system to match that of NLCD. To cover the JSU, a domain of 1680 by 2244 

30-m grid cells (~50 km by 67 km) was created. The 30 m resolution represents a balance between 

computational efficiency and the ability of the model to simulate important features of the 

snowscape, e.g., wind-blown areas and drifts, that occur in mountainous regions.  

 

2.3.5 Snow surveys 

We obtained ground-based snow observations from September 2016 to August 2017 to 

calibrate and validate SnowModel. We installed 22 Reconyx Hyperfire PC900 (Reconyx, 2017) time-

lapse cameras in two areas of the domain, Jaeger Mesa (~1600 m to ~2100 m elevation) and a site 

near Rambler Mine, Nabesna (~900 m to ~1200 m elevation). Each camera was aimed at a 1.5 m tall 

snow stake with bands every 5 cm, and cameras were programmed to take hourly photos (Figure 

2.2). Camera sites were selected to capture gradients in elevation, vegetation and aspect with 

consideration for field safety in steep and rugged terrain. We conducted snow surveys in and around 

the camera sites from 18th to 24th March 2017. A snow pit was excavated at a randomly selected 

location within 5 m of each camera and we recorded the stratigraphic profile, the temperature profile 

at 10 cm intervals using a digital thermometer, and the density profile double-sampled at 10 cm 
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intervals using a Snowmetrics 1000c cutter and a digital scale. For ingestion into SnowAssim, the 

mean density of the double sample at each interval was calculated and converted into snow water 

equivalent (SWE). The product of each interval’s SWE was then used to calculate the bulk SWE for 

each pit location. In total 18 pits were possible with the remaining 4 cameras being located in areas 

that were snow-free. Alongside the snow pit measurements, 7806 snow depth measurements were 

taken and recorded using both manual and automated methods (Sturm and Holmgren, 2018), with 

location recorded by GPS in both instances. These measurements were obtained at 2 m intervals 

using 4 sampling configurations: (1) 50 m transects in a cross-pattern from each camera site, (2) 

transects following the elevation gradient between cameras grouped by aspect on the east and west 

sides of Jaeger Mesa and at Rambler Mine, (3) 50 m ‘spirals’ randomly located on top of Jaeger 

Mesa, and (4) a sequence of traverses running north-to-south, east-to-west and along the edge of the 

northern tip of Jaeger Mesa. This sampling strategy was conducted to characterise different scales of 

snow-depth variability in different configurations of topography and vegetation. 

 

 

Figure 2.2. (a) Remote camera and snow stake installation looking northeast to the Nabesna river from Jaeger 

Mesa on 20th March 2017. Note the wind-blown, snow free areas on the slopes to the immediate sides of the 

snow stake. Photo C. Cosgrove. (b) Nursery band of Dall’s sheep on Jaeger Mesa. (c) Laura Prugh operating 

the Magnaprobe to survey snow depth atop Jaeger Mesa. Photo Anne Nolin. (d) Chris Cosgrove surveying a 

snow pit for stratigraphy, temperature and density profile. Photo L. Prugh.  
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2.3.6 Calibration of SnowModel 

A fundamental first step in improving the modelled description of snow evolution is to 

assess and correct the precipitation forcing ingested in the model. To do this, SnowAssim was 

utilised with our recorded SWE measurements in low-elevation, sparsely forested areas near 

Rambler Mine within a modelling run from 1st September 2016 to 1st April 2017. Using only the 

forested SWE data protected against error caused by assimilating SWE values from areas subject to 

greater wind redistribution. The synoptic scale of precipitation in the region is greater in size than 

that of the modelling domain, so the precipitation accumulating in low-elevation forest areas is 

proxy to that falling in high elevations but is less likely to be highly redistributed by wind. A 

precipitation correction factor of 0.37 was found using this procedure and hence applied to the 

precipitation forcing from 1980 to 2017.  

To reproduce the field-observed patterns of snow distribution in our model simulations, we 

compared snow depth, density and water equivalent field measurements from a subset of the 

domain to their equivalent modelled outputs.  Given the focus of this study on snow conditions in 

Dall’s sheep habitat (see below), we calibrated the model for optimum performance at high-

elevations and thus used only field observations from alpine areas in this part of the calibration 

procedure.  

Initial examination of the wind forcing data derived from MERRA-2 revealed it to be 

insufficiently strong to redistribute snow, a potential bias in the original data but also likely due to 

the suppression caused by aggregating hourly data into daily values. As snow density and wind speed 

interact with one another, we adjusted a scalar increasing the windspeed in the meteorological 

forcing data and a SnowModel parameter controlling the snow density evolution together. After an 

initial sensitivity analysis, our calibration involved 72 SnowModel simulations from 1st September 

2016 to 1st April 2017 with the density adjustment factor ranging from 2.0 to 10.0 in increments of 

1.0, and the wind speed scalar ranging from 1.5 to 5.0 in increments of 0.5. To establish the best 

calibration, each snowpit-observed bulk snow density measurement was compared to the modelled 

bulk snow density in the equivalent model grid-cell and the Root Mean Squared Error (RMSE) was 

computed. Using the same procedure, observed snow depth was compared to modelled snow depth, 

with observed snow depths being aggregated into a mean value for each grid cell given the high 

resolution of our depth surveys. Additionally, for the grid cells where bulk density was available, we 

compared observed SWE to modelled SWE. RMSE values for density, depth, and SWE were ranked 
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among the 72 simulations, and the mean ranking of each simulation was then calculated. The 

parameters from the top-ranked calibration were then used to model snow properties for the study 

domain from September 1st 1980 to August 31st 2017. To further test the calibration, a validation 

was conducted using the snow depths acquired from the remote camera installations. 

 

2.3.7 Model derived covariates 

To limit our modelled snow properties to Dall’s sheep habitat, we selected only pixels that 

correspond to their preferred land cover above 1200 m. Roffler et al. (2017; see supplementary 

materials), found this elevation to be the lower limit of Dall’s sheep core habitat in WRST using 

locations of sheep observed during surveys, albeit for summer months. To delineate the land cover 

that Dall’s sheep select for, we included only pixels corresponding to the Dwarf Shrub and Barren 

Land classifications in the NLCD product (Homer et al., 2015). This follows numerous studies that 

have found that Dall’s sheep select for open, sparsely vegetated areas at mid- to high-elevations (e.g. 

Geist, 1971), and recent habitat selection models driven by GPS-collar data have confirmed this 

(Mahoney et al., 2018). We recognise that Dall’s sheep may use lower elevations in winter, but there 

are no currently published data describing their winter distribution in our study region. 

Four snow covariates were derived for comparison to the following summer’s lamb-to-ewe 

ratios: mean snow depth, mean snow density, total snowfall and percent ‘forageable area’. 

Additionally, we included SnowModel-derived mean air temperature as a climate covariate. For 

mean snow depth, mean snow density, total snowfall, and mean air temperature, the daily mean was 

found for all grid cells matching the above criteria first. Seasonal means (fall = September, October 

and November; winter = December, January and February; spring = March, April and May) were 

then calculated from the daily data in the case of mean snow depth, mean snow density and mean air 

temperature, whereas the daily data was summed by season for total snowfall. Higher incidences of 

snow depth, snow density and snowfall were expected to be deleterious to Dall’s sheep productivity, 

with increases in air temperature anticipated to lead to increases in lamb-to-ewe ratios. The final 

covariate, mean percent ‘forageable area’, was calculated as the seasonal mean of the daily percentage 

of Dall’s sheep habitat with snow depth beneath half-chest height (0.25 m) and snow density 

beneath 330 kg m-3. These snow conditions were found by Mahoney et al. (2018), and confirmed in 

the field by Sivy et al. (2018), to be selected by Dall’s sheep at movement scales typical of foraging 

behaviour. We hence expected greater percentages of forageable area to correlate with increased 
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Dall’ sheep productivity. To test whether there was a delayed effect from conditions in the previous 

snow season to parturition, i.e. >1 yr previous to the summer of sheep survey, we also calculated 

aggregate metrics for all of the above variables for both the previous summer (reported as ‘Previous 

Summer’) and all months where snow cover is a dominant feature in the study area (September 

through May, reported as ‘Previous Year’). 

 

2.3.8 Statistical Analyses 

To examine the relationships between the model derived snow and climate metrics and 

lamb-to-ewe ratios, we employed multiple regression models after a covariate selection process. All 

analyses were conducted in the R program (R Core Team, 2019). As a first step we tested whether 

the inclusion of Survey Unit as a random effect was significant in models using each of our seasonal 

snow and climate covariates as a single predictor. To do this we used ANOVA to test for significant 

difference between paired models of the same predictor but fitted with and without Survey Unit as a 

random effect using the R package nlme (Pinheiro et al., 2019). At this step, all models were fitted 

using restricted maximum likelihood (REML) to allow for valid comparison between the model with 

and the model without the random effect (Zuur et al., 2009) and we additionally tested a null model. 

We then ranked each single predictor model and the null model, when fitted without the addition of 

the random effect term and using Ordinary Least Squares (OLS), by their second-order Akaike 

Information Criterion (AICc). Covariates that were found to be ranked higher than the null model 

as single predictors were subsequently considered as additional additive terms in multiple regression 

models. To avoid over-parameterization on a small dataset we restricted the number of predictors 

per model to three and excluded any covariates that had a collinearity of greater than 0.7 in the same 

model. The final list of single- and multi-predictor models was finally ranked by their AICc to 

discern which snow and climate covariates had the greatest explanatory power in isolation or 

combination. Linear regression was used to test for trends in covariate values from 1980 to 2017 by 

season. Likewise, the coefficient of variation (CV) was calculated for a rolling 10-year window for 

each snow and climate metric, and linear regression was used to test whether the degree of 

interannual variability increased over time. An alpha of 0.05 was used for evaluating statistical 

significance throughout, with the exception of testing each productivity model’s intercept and 

predictor estimates, where a Bonferroni-corrected alpha level, as calculated by alpha divided by the 

total number of models in the final list, is reported to reduce the chance of type 1 error.  
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2.4 Results 

2.4.1 SnowModel Calibration 

The parameter combination that best produced our observations of depth, density and SWE 

was a density adjustment factor of 6.0 and a wind speed increase of 2.5, producing RMSEs of 0.09 m 

snow depth, 31.71 kg m-3 snow density and 0.04 m SWE (Appendix 2.6 and Appendix 2.7). Taking 

the snow depth from images recorded daily at 12:00 Alaska Standard Time, there were 4996 

available days of data from 17 cameras located outside of forested and shrub areas. Comparison of 

the camera snow depth to model snow depth yielded an RMSE of 0.08 m, which is comparable to 

that from the spatial calibration albeit with an average 0.06 m bias towards over estimation 

(Appendix 2.8). 

 

2.4.2 Summary of sheep surveys and modelled snow and climate metrics 

Of the 41 surveys across 19 years included in the analysis (Appendix 2.1), the mean lamb-to-

ewe ratio was 0.30 (±0.10 SD), with a maximum of 0.55 sampled in the Mount Drum survey unit in 

1981 and a minimum of 0.09 sampled in Jacksina in 1993. Snow depths in fall (mean = 0.28 m 

±0.06 SD) were always lower than both winter (mean = 0.40 m ±0.06 SD) and spring (mean = 0.42 

m ±0.07 SD), which generally had a similar mean snow depth and closely followed the interannual 

variability established in fall (Appendix 2.9; Figure 2.3). 

 

 

Figure 2.3. Time series and trends of each snow and climate covariate by season 1980 to 2017 within the 

Jacksina sheep survey unit within Wrangell-St. Elias National Park and Preserve, Alaska. Note the similar 

pattern of snow depth year-on-year across all three seasons and the close similarity of the mean snow depth 

in winter and spring. 
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2.4.3 Model derived covariates and lamb-to-ewe ratios 

The addition of Survey Unit as a random effect was not shown to be significant for any of 

the initial single predictor models (see Appendix 2.10). Hence, we continued our model selection 

with models fitted by OLS. When comparing the single predictor models of each snow and climate 

covariate 11 models were ranked higher by AICc than the null model (Appendix 2.10), none of 

which contained a covariate pertaining to the previous year’s Summer or snow season indicating that 

there wasn’t a delayed-effect from the previous snow season. Of the covariates ranked higher than 

the model only snowfall (fall, winter, and spring in order of weighting) and air temperature (fall) 

were found to be under the cut-off for collinearity. Fall snowfall and fall air temperature were 

therefore used in two and three predictor linear models in combination with the other covariates 

leaving 40 models, inclusive of the null model, in our final list (see Appendix 2.11). 

Of the top ranked models, 5 are shown to be well supported (ΔAICc < 2) and all include a 

seasonal covariate of snow depth and fall air temperature in their predictors (Table 2.1). The highest 

ranked model, fall snow depth and fall air temperature has an adjusted R-squared of 0.41 and is 

significant to the Bonferroni-corrected alpha level for the intercept and fall snow depth terms, and 

alpha for fall temperature (Table 2.1). Coefficients from this model indicate that increases in fall 

snow depth and decreases in fall air temperature lead to a decline in the following summer’s lamb-

to-ewe ratio (Figure 2.4). All models that contain snow depth as a term outperform models using 

other snow and climate metrics (see Appendix 2.11). Estimates of snow depth, snow density and 

snowfall in all models indicate that increases in these variables decreased lamb-to-ewe ratios, 

whereas estimates for air temperature and forageable area showed a positive relationship between 

these predictors and lamb-to-ewe ratios, following expected relationships (Table 2.1). 
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Table 2.1. Top 10 models as ranked by second order Akaike Information Criterion (AICc). Standard error (SE) shown in brackets for both the intercept 
and estimate of each predictor in each model. 1st Predictor indicates the 1st snow and climate covariable listed in the Model column. ** indicates 
significance at a Bonferroni corrected alpha level of 0.00125 (alpha / total models); * indicates significance at alpha = 0.05. P-values were computed in 
R by the Wald test method via use of the ‘summary’ core package (R Core Team, 2019). 

Model Intercept (SE) 
1st Predictor 

Estimate (SE) 

Fall Air 
Temperature 

(SE) 
Fall Snowfall 

(SE) K 
Delta 
AICc 

AICc 
weight 

R-
Sq. 

Adjusted 
R-Sq. 

Fall Snow Depth + Fall Air Temperature  0.690 (0.094)** -0.738 (0.193)** 0.027 (0.012)* – 3 0 0.188 0.439 0.41 
Winter Snow Depth + Fall Air Temperature + Fall Snowfall  0.900 (0.112)** -0.599 (0.214)* 0.032 (0.012)* -0.818 (0.398)* 4 0.134 0.176 0.472 0.429 
Spring Snow Depth + Fall Air Temperature + Fall Snowfall  0.851 (0.111)** -0.522 (0.192)* 0.027 (0.013)* -0.940 (0.388)* 4 0.523 0.145 0.467 0.424 
Fall Snow Depth + Fall Air Temperature + Fall Snowfall  0.780 (0.114)** -0.593 (0.219)* 0.030 (0.012)* -0.593 (0.435) 4 0.592 0.14 0.466 0.423 
Winter Snow Depth + Fall Air Temperature  0.792 (0.103)** -0.738 (0.211)** 0.029 (0.012)* – 3 1.963 0.071 0.412 0.381 
Fall Snow Depth  0.511 (0.046)** -0.895 (0.187)** – – 2 2.328 0.059 0.37 0.354 
Spring Snow Depth + Fall Snowfall  0.689 (0.081)** -0.720 (0.173)** – -0.848 (0.402)* 3 2.374 0.057 0.406 0.375 
Spring Snow Depth + Fall Air Temperature  0.706 (0.099)** -0.623 (0.199)* 0.023 (0.014) – 3 3.949 0.026 0.383 0.35 
Fall Snow Depth + Fall Snowfall  0.552 (0.068)** -0.818 (0.211)** – -0.367 (0.452) 3 4.084 0.024 0.381 0.348 
Spring Snow Depth  0.577 (0.064)** -0.788 (0.177)** – – 2 4.45 0.02 0.336 0.319 

 

2.4.4 Trends and variance in seasonal covariates 1980 to 2017  

No statistically significant trends were found for modelled snow metrics from 1980 to 2017 (Appendix 2.12; Figure 2.3). However, 

model estimates indicated decreasing snowfall, snow depth and snow density, and increasing forageable area and air temperature for all 

seasons (Figure 2.3). The interannual variation in winter snow density significantly increased during the time series (Appendix 2.13; Figure 

2.5). In contrast, winter snowfall was found to be significantly less variable over time (Appendix 2.13; Figure 2.5). The highest interannual 

CVs (non-rolling) occurred in fall for both snow depth (CV = 22.21 %) and snow density (CV = 8.06 %), winter for both snowfall (CV = 

21.87 %) and forageable area (CV = 15.46 %), and spring for air temperature (CV = 17.36%; Appendix 2.9). 
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Figure 2.4. A) An increase in fall mean snow depth decreases Dall’s sheep summer productivity, here defined 
as lamb-to-ewe ratio, whereas B) increased fall mean air temperature increases summer productivity. 
Estimates and the shaded grey 95 % confidence interval are derived from the top model as ranked by AICc in 
Table 3. 

 

Figure 2.5. Time series of 10-year rolling coefficient of variability (CV) for each snow and climate covariate by 
season within the Jacksina sheep survey unit within Wrangell-St. Elias National Park and Preserve, Alaska. 

 

2.5 Discussion 

The impact of changing snow conditions on wildlife in northern ecosystems is of both 

ecological and societal concern as these remote regions are signalling major impacts of accelerated 

warming (Callaghan et al., 2011). However, studies are limited by data that are scarcely distributed in 
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time and space in the region, especially in alpine areas (Boelman et al., 2018), and there remains 

uncertainty as to when and what snow conditions are most important to wildlife demography. Here 

we use a spatially distributed snow model to simulate snow and climate conditions over 37 years in 

the northern Wrangell-St Elias National Park and Preserve (WRST) to better understand the 

influence of snow properties on the dynamics of Dall’s sheep. Snow conditions, most notably 

increased snow depth, were strongly associated with declines in Dall’s sheep productivity, with 

decreased air temperature and increased snowfall also leading to decreased lambs being observed in 

summer, though with less predictive power in comparison to snow depth. Our top-ranked model(s) 

indicated that fall was the time period that these snow and climate conditions were most important. 

These findings suggest that challenging snow conditions that persist throughout the snow year, as 

per our first hypothesis, are more important to Dall’s sheep productivity than conditions during the 

spring lambing season, as described by our second hypothesis.  

Similar to other alpine and Arctic ungulates, Dall’s sheep access forage by either ‘cratering’, 

wherein they dig through the snow, or by finding snow-free areas. Deeper snow has been shown to 

reduce foraging efficiency in studies of other ungulates, potentially leading to increased caloric 

deficit and decreased birth mass in offspring (Couturier et al., 2009; Robinson and Merrill, 2012). 

Thus, early establishment of deep snow conditions may lead to energetically challenging conditions 

over many months, protractedly decreasing the body condition of ewes and therefore decreasing 

their ability to successfully produce, protect and nurse healthy lambs in the weeks immediately after 

birth. The significance of Fall air temperature as an additional term in the top models further 

suggests that early-season calorific expenditure, through the increased cost of thermoregulation in 

this instance (Jensen et al., 1999), is more damaging to productivity than that occurring closer to 

lambing.  

Two recent large-scale studies stand in contrast to our results. Van de Kerk et al. (2018) and 

Rattenbury et al. (2018) found that the date of snow disappearance best predicted Dall’s sheep 

productivity, with later dates resulting in lower lamb-to-ewe ratios. Both studies noted that this 

relationship was weaker at lower latitudes, including that of WRST, and suggested the comparatively 

extended growing season in these ranges may buffer the effect of severe winters due to increased 

forage abundance and quality. However, van de Kerk et al. (2018) additionally found that snow 

cover duration, i.e. the number of days snow is present each winter, also had an effect on lamb-to-

ewe ratios, albeit relatively weaker than snow disappearance date, and hence proposed that extended 
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exposure to difficult conditions is less important than the snow cover immediately before or after to 

lambing.  Snow disappearance dates depend on the energy balance of a snowpack, along with 

weather conditions and other variables. Thin, low density snow cover can extend later into the year 

if air temperatures are cool enough to preserve it, while deep, dense snows can rapidly disappear due 

to early spring conditions with high temperatures and rain (McCabe et al., 2007). Hence, inference of 

the vertical properties of snow from its extended presence in remote sensing data is not always 

reliable and cannot describe the evolution of snow depth and density throughout the entirety of a 

snow season. Our methods here highlight the importance of vertical snow properties on northern 

wildlife such as Dall’s sheep and show that detailed, local analyses of snow properties can reveal new 

insights that range-wide remote sensing methodologies, such as van de Kerk et al. (2018) and 

Rattenbury et al. (2018), may not be able to detect. Our results also compare well statistically; while 

van de Kerk et al. (2018) do not report comparable metrics, for the Nabesna area within their 

analysis, which is within our study area, Rattenbury et al. (2018; see Figure 2.4) report an R-squared 

of 0.33, which is lower than our top model’s adjusted R-squared of 0.41. 

 The effects of snow on the movement, habitat selection, and energetics of various wildlife 

has been relatively well studied (Boelman et al., 2018), but there is a lack of evidence linking the 

impact of snow conditions on fine-scale behavior to broad-scale demographic consequences 

(Mahoney et al., 2018). Mahoney et al. (2018) found that Dall’s sheep in Lake Clark National Park 

strongly favoured areas of less dense, shallow snow at fine-scale movements associated with 

foraging, illustrating that habitat selection is affected by snow density as well as depth. Forageable 

area, a variable derived from the area available below a threshold density and snow depth found in 

Mahoney et al. (2018), showed relatively poor predictive power (Appendix 2.10). This was 

unexpected given the forageable area metric’s increased detail and foundation in field observations 

(Sivy et al., 2018). However, we suggest that an explanation for this might be that the actual 

forageable area is quite different from the modelled forageable area. For example, low-snow or snow-

free areas might be devoid of forage or, even if forage is present, these areas might be in terrain that 

is avoided by Dall’s sheep due to predation risk. Mean snow depth, conversely, is highly ranked for 

all seasons and is possibly a more reliable metric for describing the relative efficiency of winter 

foraging behaviour.  

Here we have focused on the impact of snow conditions on Dall’s sheep productivity. 

However, it is important to note that productivity and survival are influenced by additional factors, 
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including predation and interspecific population dynamics (e.g. Burles and Hoefs, 1984; Murie, 1944; 

Arthur and Prugh, 2010), forage quantity and quality (e.g. Burles and Hoefs, 1984; Rachlow and 

Bowyer, 1994), and in rare cases by disease (e.g. Murie, 1944). Other mountain ungulates have 

shown declines in productivity in response to high population densities and climactic forcing (e.g. 

Jacobson et al., 2004; Portier et al., 1998; Serrano et al., 2011; White et al., 2011). However, a 

preliminary study of a simple regression of density (as calculated by the total number of surveyed 

adult sheep, inclusive of yearlings, divided by the area of the Survey Unit) vs lamb-to-ewe ratios in 

our dataset did not show any relationship suggesting density dependence was not important in our 

study area. This follows the findings of van de Kerk et al. (2018; see Appendix 2) that found no 

effect of the survey date and population density on lamb-to-ewe ratios and used data from a much 

larger, range-wide dataset of 534 surveys. However, habitat-selection models of Dall’s sheep, e.g. 

Roffler et al. (2017), suggest that Dall’s sheep likely utilize only certain locations of the Survey Units 

they are reported within, e.g. areas predominantly near escape terrain and devoid of tall vegetation. 

Hence, the simple calculation of density described above, and used by van de Kerk et al. (2018), is 

likely to be prone to underestimation and vary in accuracy according to the relative abundance of 

preferred habitat in each Survey Unit. We therefore suggest that further work incorporates insights 

from habitat selection modelling to better test for any density dependence on productivity in Dall’s 

sheep. 

In response to other studies that show a lagged effect of snow and climate conditions on the 

body condition and parturition rate of other ungulates (e.g. Boertje et al., 2019; Serrano et al., 2011) 

we tested the importance of the previous summer’s and the previous snow season’s snow and 

climate conditions on productivity. No significant relationships were found (Appendix 2.10), 

suggesting that the snow and climate conditions for the season immediately before lambing are more 

important for productivity. Our dataset however does not include variables pertaining to the quality 

of vegetation available to ewes in the summer preceding or current to lambing. Both early (Hoefs, 

1984) and more recent work (van de Kerk et al., 2020) has connected metrics of summer forage 

quality with both lamb survival rates (Hoefs, 1984; van de Kerk et al., 2020) and Dall’s sheep 

productivity (Hoefs, 1984). Also beyond the scope of the current study are the effects of 

interspecific relationships. The primary predators of Dall’s sheep, coyote (Canis latrans) and golden 

eagles (Aquila chrysaetos), have been shown to account for less lamb mortality in summers with a high 

Normalized Difference Vegetation Index (NDVI) (van de Kerk et al., 2020) and are likely to prey 

more on Dall’s sheep during years with low snowshoe hare numbers (Arthur and Prugh, 2010; 
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Burles and Hoefs, 1984). To gain a more holistic understanding of Dall’s sheep productivity and 

population dynamics, attention needs to be paid to a wide range of biotic and abiotic factors that are 

not considered here. The adjusted R-squared of our top ranked model with only snow properties 

included (fall snow depth, R-sq. = 0.35; Table 2.1), is likely indicative of our narrow focus. However, 

our findings do illustrate that snow properties, and in particular their early establishment, are 

important factors for Dall’s sheep productivity and stand to inform further research into population 

dynamics of Dall’s sheep and other wild ungulates. 

Seasonal snow throughout the northern hemisphere is being altered in terms of its coverage, 

timing, duration and physical properties as a response to climate change (Liston and Hiemstra, 

2011). The increase in extreme events, such as late snow disappearance in spring 2013 in Alaska, are 

considered a likely product of climate change that might impinge on Dall’s sheep productivity 

(Coumou and Rahmstorf, 2012). However, we found no evidence that snow conditions important to 

Dall’s sheep productivity have markedly changed in WRST from the long-term mean or have 

increased in terms of interannual variability during our study period. This may be due to the sub-

Arctic location of northern WRST in Alaska’s dry interior where changes to the form and volume of 

precipitation are less pronounced than in wetter and warmer maritime regions (Liston and Hiemstra, 

2011).  

Verbyla et al. (2017) noted substantial differences in climate and snowline elevation 

throughout Dall’s sheep ranges and found that the mean snow line elevation on May 15th had 

pronounced interannual variability in the central and eastern Brooks Range. It is in these Arctic 

Alaskan ranges that are on the fringe of suitable Dall sheep habitat where the greatest population 

decreases in Dall’s sheep have been observed, prompting emergency harvest closures in some areas 

(Alaska Department of Fish and Game, 2014). Dall’s sheep sensitivity to spring snow conditions at 

these high latitudes has been established by van de Kerk et al. (2018) and Rattenbury et al. (2018), 

and it may be that higher interannual variability in the elevation of spring snow line, potentially 

indicating a greater frequency of extreme events, is responsible for the recent declines in Dall’s 

sheep populations in these areas (van de Kerk et al., 2018; Rattenbury et al., 2018; Verbyla et al., 

2017). Dall’s sheep populations in sub-Arctic ranges in Alaska, including WRST, have population 

trends that are generally regarded as being stable, with the exception of the maritime Kenai 

peninsula (Alaska Department of Fish and Game, 2014). If the impact of climate change on snow 

conditions in these ranges has yet to be acute, such as in the case of our results, it is possible that 
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low-latitude interior mountain ranges may represent refugia for Dall’s sheep and other snow-

influenced alpine species (Keppel et al., 2012). Wildlife populations, particularly those that have low 

reproductive rates like Dall’s sheep, may be resilient to sporadic extreme conditions but become 

vulnerable if extreme conditions become more frequent (Boyce et al., 2006). Hence, further work 

examining regional, long-term trends in the interannual variability of snow conditions would prove 

valuable in determining where climate change poses the greatest threat to alpine wildlife populations. 

 Our modelling approach combined with several decades of survey data demonstrated 

seasonal variation in the impact of snow conditions on Dall’s sheep productivity in Wrangell-St Elias 

National Park and Preserve. However, some caution should be exercised when extending our results 

to other regions given the specificity and assimilation of in-situ data from our study area. While our 

methodological approach yields novel insights regarding seasonal snow properties in comparison to 

alternative approaches using optical remote sensing datasets, it also comes with its own inherent 

disadvantages, including limited spatial coverage, high computational demand, necessity of technical 

expertise, and inherent uncertainties when modelling a physical environment. Although we 

conducted intensive field surveys to improve the calibration of our model, these surveys occupied a 

small spatial and temporal extent within the larger modelling domain. This is despite efforts made to 

sample a wide representation of elevation, aspect and landcover during snow surveys and the 

installation of remote cameras. With data lacking to test the model against in-situ measurements 

from previous years it is possible that the model is only representative to its calibration year. While 

this is an important source of uncertainty, the small RMSE and bias shown in our calibration and 

temporal validation results does suggest our approach has promise in long-term studies of other 

wildlife, especially so where there are in-situ, long-term snow and meteorological datasets for model-

forcing and assimilation. 

 

2.6 Conclusions 

 The establishment of a deep snowpack in fall alongside low fall temperatures was found to 

best explain decreased Dall’s sheep productivity during the following summer. An incremental effect 

of season-long environmental conditions on ewe body condition hence appears to be of greater 

importance than spring snow conditions in our study area, a finding contrary to studies based on 

snow cover rather than depth (van de Kerk et al., 2018; Rattenbury et al., 2018). Our results 
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potentially demonstrate an important link between known fine-scale effects of snow conditions, i.e. 

selection of shallow and/or less dense snow, with broad-scale patterns of demography. We hence 

propose that our utilization of a spatially distributed snow model has scope for application in studies 

of other snow-influenced wildlife. Though additional data that establishes direct links between snow 

properties, animal movements and body condition, forage opportunity, and infant survival rates are 

needed for a complete mechanistic understanding of snow impacts. We found no significant trends 

in the long-term mean, or in a rolling measure of interannual variation, of modelled snow properties 

that were shown to be important to Dall’s sheep productivity. Climate change hence appears to not 

yet be having a strong effect on snow conditions in our study domain, a result that is of broader 

ecological interest. However, if climate change does lead to major changes in future snow depths, 

our findings indicate that Dall’s sheep productivity may be strongly affected.  
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2.9 Appendix 

2.9.1 Figures and tables 

Appendix 2.1. Northern Wrangell-St. Elias National Park and Preserve (WRST) sheep surveys 1981 to 2017 
conducted by the Alaska Department of Fish and Games (ADF&G) and the National Park Service (NPS); 41 
surveys across 19 years in 9 survey units had a mean lamb-to-ewe ratio of 0.30 (SD ±0.10).  

Year Survey unit Survey unit name Survey agency Date(s) of Survey Ewes  Lambs Lamb:Ewe Sum 
1981 4W Nikonda Creek ADF&G Tok 26 June, 28 June, 7 July, and 13 July 547 220 0.40 767 

 4E Cross Creek ADF&G Tok 26 June, 28 June, 7 July, and 13 July  147 46 0.31 193 
 5W Stone Creek ADF&G Tok 21-22 June 474 153 0.32 627 
 5E Mt Allen ADF&G Tok 21-22 June 224 81 0.36 305 
 7W Chisana ADF&G Tok 26-27 June 470 208 0.44 678 
 10 Mount Drum ADF&G Glennallen Unknown 107 59 0.55 166 

1984 5W Stone Creek ADF&G Tok 16-17 July  278 74 0.27 352 
 5E Mt Allen ADF&G Tok 16-17 July   231 63 0.27 294 
 7W Chisana ADF&G Tok 16-17 July   392 173 0.44 565 

1987 1 Mentasta ADF&G Tok 17 and 31 July, and 1 August  771 287 0.37 1058 
1993 3 Jacksina NPS 23 July  1628 144 0.09 1772 
1997 1 Mentasta ADF&G Tok 15, 17, 27 July  692 196 0.28 888 
1998 7W Chisana NPS 4 August  373 118 0.32 491 
1999 7W Chisana NPS 8 July 336 127 0.38 463 
2001 10 Mount Drum ADF&G Glennallen 12 July 65 13 0.20 78 

 5E Mt Allen ADF&G Tok 22 July 215 27 0.13 242 
 5W Stone Creek ADF&G Tok 22 July 301 63 0.21 364 

2002 1 Mentasta NPS 2 August 575 123 0.21 698 
 2 Mount Sanford NPS 2 August 105 38 0.36 143 
 10 Mount Drum ADF&G Glennallen 31 July  53 13 0.25 66 
 7W Chisana ADF&G Tok 21 July  270 76 0.28 346 

2005 7W Chisana NPS 27 July  260 63 0.24 323 
2006 4E Cross Creek ADF&G Tok 2 August  65 25 0.38 90 

 4W Nikonda Creek ADF&G Tok 2-3 August  315 136 0.43 451 
2007 5W Stone Creek ADF&G Tok 28 June and 15 July  209 66 0.32 275 
2011 4E Cross Creek ADF&G Tok 25 June 72 29 0.40 101 

 5E Mt Allen ADF&G Tok 9 July  142 35 0.25 177 
 7W Chisana ADF&G Tok 24-25 June  235 59 0.25 294 

2012 1 Mentasta NPS 30-31 July  664 167 0.25 831 
 3 Jacksina NPS 20, 28, and 30 July  1064 202 0.19 1266 

2013 2 Mount Sanford NPS 2 August 79 12 0.15 91 
 4W Nikonda Creek NPS 31 July 308 67 0.22 375 

2014 1 Mentasta ADF&G Tok 22 July  360 81 0.23 441 
 2 Mount Sanford NPS 21 July  102 19 0.19 121 
 5W Stone Creek NPS 17 July  162 41 0.25 203 
 7W Chisana ADF&G Tok 10 July  252 95 0.38 347 

2015 4E Cross Creek ADF&G Tok 3 August 55 22 0.40 77 
 4W Nikonda Creek ADF&G Tok 3 August  359 120 0.33 479 

2016 1 Mentasta ADF&G Tok 15 and 27 July  555 123 0.22 678 
 5E Mt Allen NPS 29 July 183 54 0.30 237 

2017 3 Jacksina ADF&G Tok and Glennallen 22-23 July 1386 490 0.35 1876 
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Appendix 2.2. Map of Wrangell-St. Elias National Park and Preserve (WRST; dark green), including; all 
WRST Survey Units (SheepSurveyUnits_WRST; light green, numbered); 100 km radius buffer 
(Jacksina_100km_buffer; transparent light blue) from the centre of the Jacksina Survey Unit (Survey Unit 03; 
Jacksina_centre); Survey Units with centres within the 100 km radius buffer (Buffer_units, dark blue outline). 
GIS data for sheep survey units and WRST park boundary were sourced from (“WRST Sheep and Goat 
Count Units - data.doi.gov,” n.d.; “National Park Boundaries - Data.gov,” n.d.) respectively. For context 
please see Figure 2.1. 

  



 

 

53 

 

Appendix 2.3. Box plot of the mean day of last spring snow cover in Dall’s sheep habitat by Survey Unit from 2000 to 2016. Date reported as Day of 
Year (DOY). 

To calculate the mean last day of spring snow (SDD) for a given year by Survey Unit we used Verbyla’s (2017) MODIS derived 

product for the years 2000 to 2016, please see the data reference for further details. To constrain the SDD to areas of Dall’s sheep habitat 

we resampled the National Land Cover Database 2011 (NLCD) product (Homer et al., 2015) to the same projection and resolution as the 

SDD product, calculating the majority land cover in each of the 500 m SDD pixels from the higher resolution 30 m NLCD product. We 

then clipped the yearly raster maps of SDD and the resampled NLCD product by each individual Survey Unit included in the 100 km 

buffer from the centre of the Jacksina Survey Unit (see Appendix 2.2). Finally, we found the yearly mean SDD for each Survey Unit by 

finding all pixels that were either Shrub/Scrub or Barren Land in the clipped NLCD raster of each Survey Unit. These two land cover types 

are known to be preferentially selected by Dall’s sheep (Mahoney et al., 2018). The corresponding pixels to these land covers were then 

used to find the mean SDD of each year for each Survey Unit
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Appendix 2.4. NLCD 2001 to NLCD 2011 Land Cover Change across Survey Units 1, 2, 3, 4E, 4W, 5E, 5W, 
7W and 10 in the Northern Wrangell St Elias National Park and Preserve (WRST) 

Code Area km-2 Area % Changed? Classification 
23 6.00 0.069 No Open Water to Open Water 
29 0.32 0.004 Yes Open Water to Barren Land 
44 0.02 0.000 Yes Perennial Ice/Snow to Open Water 
45 1210.31 13.947 No Perennial Ice/Snow to Perennial Ice/Snow 
50 1.51 0.017 Yes Perennial Ice/Snow to Barren Land 
149 0.39 0.005 Yes Barren Land to Open Water 
150 25.18 0.290 Yes Barren Land to Perennial Ice/Snow 
155 3592.57 41.400 No Barren Land to Barren Land 
177 15.58 0.180 No Deciduous Forest to Deciduous Forest 
191 0.02 0.000 Yes Evergreen Forest to Open Water 
199 114.50 1.319 No Evergreen Forest to Evergreen Forest 
221 25.64 0.296 No Mixed Forest to Mixed Forest 
233 0.00 0.000 Yes Dwarf Scrub to Open Water 
234 0.01 0.000 Yes Dwarf Scrub to Perennial Ice/Snow 
243 1233.50 14.214 No Dwarf Scrub to Dwarf Scrub 
254 0.01 0.000 Yes Shrub/Scrub to Open Water 
255 0.01 0.000 Yes Shrub/Scrub to Perennial Ice/Snow 
262 0.02 0.000 Yes Shrub/Scrub to Evergreen Forest 
265 2400.22 27.659 No Shrub/Scrub to Shrub/Scrub 
275 0.00 0.000 Yes Grassland/Herbaceous to Open Water 
287 7.74 0.089 No Grassland/Herbaceous to Grassland/Herbaceous 
309 2.41 0.028 No Sedge/Herbaceous to Sedge Herbaceous 
401 0.01 0.000 Yes Woody Wetlands to Open Water 
419 41.70 0.481 No Woody Wetlands to Wood Wetlands 
441 0.08 0.001 No Herbaceous Wetlands to Herbaceous Wetlands 

     
Total Area 8677.75 100.00   
Area unchanged 8650.2582 99.68   
Area changed 27.4932 0.32   

 

For the selected Survey Units (see Survey Unit Selection in manuscript) we calculated the 

amount and type of land cover change using the NLCD 2011 Land Cover Alaska 2001 to 2011 

From To Change Index (U.S. Geological Survey, 2015). To do this we first clipped the NLCD Land 

Cover Alaska 2001 to 2011 product to all the 9 selected units. Using the clipped layer we then ran 

the Raster Layer Unique Values Report in QGIS (QGIS Development Team, 2019) to find the area 

of each type of change and simply calculated the area changed or unchanged using the product’s 

change classification scheme (Appendix 2.4). 
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Appendix 2.5. Workflow diagram of SnowModel showing the interactions between each sub-model, meteorological forcing data (corrected by 
DataAssim), static layers (vegetation and elevation set furthest back and behind example spatially distributed SWE output respectively) and the previous 
timestep’s snow condition. Full descriptions can be found for each submodel in the following references; MicroMet (Liston et al., 2006), EnBal (Liston, 
1995), SnowPack (Liston and Hall, 1995), SnowTran-3D (Liston et al., 2007), and SnowAssim (Liston and Hiemstra, 2008)
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Appendix 2.6. Best calibration (ro_adj = 6.0; wspd_increase = 2.5) model vs observed SWE, Snow Depth 
and Snow Density by elevation and land cover class 

After an initial sensitivity analysis, our calibration involved 72 SnowModel simulations from 

1st September 2016 to 1st April 2017 with the density adjustment factor (ro_adj) ranging from 2.0 to 

10.0 in increments of 1.0, and the wind speed scalar (wspd_increase) ranging from 1.5 to 5.0 in 

increments of 0.5. 
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Appendix 2.7. RMSE for SWE, depth and density for each calibration simulation. Ranking is determined by 
minimum RMSE and Mean ranking is used to select the best calibration. 
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ro_adj06.0-wspd2.5 0.04 0.09 31.71 5 13 6 8.00 
ro_adj07.0-wspd2.5 0.04 0.09 34.30 6 9 10 8.33 
ro_adj08.0-wspd2.5 0.04 0.09 37.22 7 6 15 9.33 
ro_adj04.0-wspd2.5 0.04 0.10 30.45 4 24 5 11.00 
ro_adj09.0-wspd2.5 0.04 0.09 40.23 8 5 22 11.67 
ro_adj10.0-wspd2.5 0.04 0.09 43.19 9 4 27 13.33 
ro_adj03.0-wspd2.5 0.04 0.10 34.53 3 33 12 16.00 
ro_adj15.0-wspd2.5 0.04 0.09 48.76 10 3 36 16.33 
ro_adj20.0-wspd2.5 0.04 0.08 66.29 11 2 56 23.00 
ro_adj09.0-wspd3.0 0.06 0.10 33.05 44 21 9 24.67 
ro_adj08.0-wspd3.0 0.06 0.10 34.35 43 20 11 24.67 
ro_adj10.0-wspd3.0 0.06 0.10 32.34 45 22 8 25.00 
ro_adj07.0-wspd3.0 0.06 0.10 36.39 42 19 14 25.00 
ro_adj25.0-wspd2.5 0.04 0.08 69.72 12 1 62 25.00 
ro_adj15.0-wspd3.0 0.06 0.10 32.24 46 26 7 26.33 
ro_adj06.0-wspd3.0 0.06 0.10 39.37 41 18 21 26.67 
ro_adj02.0-wspd2.5 0.04 0.11 44.75 1 50 30 27.00 
ro_adj05.0-wspd2.5 0.04 0.11 44.75 2 51 31 28.00 
ro_adj04.0-wspd3.0 0.06 0.09 49.45 40 14 37 30.33 
ro_adj03.0-wspd3.0 0.06 0.09 57.70 39 10 45 31.33 
ro_adj20.0-wspd3.0 0.06 0.10 38.88 48 29 19 32.00 
ro_adj25.0-wspd3.0 0.06 0.10 41.00 47 30 23 33.33 
ro_adj02.0-wspd3.0 0.06 0.09 70.12 37 11 63 37.00 
ro_adj05.0-wspd3.0 0.06 0.09 70.12 38 12 64 38.00 
ro_adj02.0-wspd2.0 0.04 0.18 29.07 23 91 1 38.33 
ro_adj05.0-wspd2.0 0.04 0.18 29.07 24 92 2 39.33 
ro_adj06.0-wspd3.5 0.06 0.10 52.00 53 28 39 40.00 
ro_adj07.0-wspd3.5 0.06 0.10 48.34 54 34 33 40.33 
ro_adj03.0-wspd2.0 0.04 0.16 34.83 22 87 13 40.67 
ro_adj15.0-wspd3.5 0.06 0.11 38.87 60 44 18 40.67 
ro_adj09.0-wspd3.5 0.06 0.11 43.16 58 38 26 40.67 
ro_adj10.0-wspd3.5 0.06 0.11 41.35 59 41 24 41.33 
ro_adj20.0-wspd3.5 0.06 0.12 37.45 56 53 16 41.67 
ro_adj08.0-wspd3.5 0.06 0.11 45.45 57 36 32 41.67 
ro_adj04.0-wspd3.5 0.06 0.10 62.66 52 23 50 41.67 
ro_adj25.0-wspd3.5 0.06 0.12 38.18 55 55 17 42.33 
ro_adj04.0-wspd2.0 0.04 0.15 42.80 21 83 25 43.00 
ro_adj02.0-wspd1.5 0.05 0.23 29.97 35 95 3 44.33 
ro_adj03.0-wspd3.5 0.06 0.09 70.79 51 17 65 44.33 
ro_adj02.0-wspd3.5 0.06 0.09 82.56 49 7 79 45.00 
ro_adj05.0-wspd1.5 0.05 0.23 29.97 36 96 4 45.33 
ro_adj05.0-wspd3.5 0.06 0.09 82.56 50 8 80 46.00 
ro_adj20.0-wspd2.0 0.04 0.11 104.03 14 40 91 48.33 
ro_adj25.0-wspd2.0 0.04 0.11 107.94 16 35 94 48.33 
ro_adj06.0-wspd2.0 0.04 0.14 56.65 20 82 44 48.67 
ro_adj07.0-wspd2.0 0.04 0.13 62.37 19 79 48 48.67 
ro_adj03.0-wspd1.5 0.05 0.21 39.13 34 94 20 49.33 
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ro_adj08.0-wspd2.0 0.04 0.13 67.44 18 76 58 50.67 
ro_adj06.0-wspd4.0 0.06 0.11 62.44 65 39 49 51.00 
ro_adj10.0-wspd2.0 0.04 0.12 76.12 15 65 73 51.00 
ro_adj15.0-wspd2.0 0.04 0.12 83.35 13 59 81 51.00 
ro_adj07.0-wspd4.0 0.06 0.11 58.89 66 42 46 51.33 
ro_adj09.0-wspd2.0 0.04 0.13 72.00 17 71 66 51.33 
ro_adj25.0-wspd4.0 0.06 0.12 44.01 67 61 28 52.00 
ro_adj09.0-wspd4.0 0.06 0.11 53.60 70 46 40 52.00 
ro_adj20.0-wspd4.0 0.06 0.12 44.12 68 60 29 52.33 
ro_adj10.0-wspd4.0 0.06 0.11 51.63 71 48 38 52.33 
ro_adj08.0-wspd4.0 0.06 0.11 55.99 69 45 43 52.33 
ro_adj15.0-wspd4.0 0.06 0.11 48.64 72 52 35 53.00 
ro_adj04.0-wspd4.0 0.06 0.10 72.58 64 27 68 53.00 
ro_adj04.0-wspd1.5 0.05 0.19 48.48 33 93 34 53.33 
ro_adj02.0-wspd4.0 0.06 0.09 91.20 61 15 85 53.67 
ro_adj03.0-wspd4.0 0.06 0.10 80.19 63 25 76 54.67 
ro_adj05.0-wspd4.0 0.06 0.09 91.20 62 16 86 54.67 
ro_adj06.0-wspd1.5 0.05 0.18 63.48 32 90 52 58.00 
ro_adj07.0-wspd1.5 0.05 0.17 69.49 31 89 61 60.33 
ro_adj25.0-wspd4.5 0.06 0.12 54.43 77 64 41 60.67 
ro_adj20.0-wspd4.5 0.06 0.12 54.82 78 62 42 60.67 
ro_adj15.0-wspd4.5 0.06 0.12 59.94 83 58 47 62.67 
ro_adj07.0-wspd4.5 0.06 0.11 69.41 80 49 59 62.67 
ro_adj08.0-wspd1.5 0.05 0.17 74.79 30 88 71 63.00 
ro_adj09.0-wspd1.5 0.05 0.16 79.52 28 86 75 63.00 
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Appendix 2.8. Modelled vs Observed snow depth bias through time from the best calibration (ro_adj = 6.0; wspd_increase = 2.5) to observations of 
snow depth from cameras located at high elevations above shrubline. Mean bias is 0.06 cm. 
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Appendix 2.9. Summary statistics of model-derived snow and climate covariates by season within the Jacksina 
sheep survey unit within Wrangell-St. Elias National Park and Preserve, Alaska. 

Variable Season N Mean SD CV Min 25% 75% Max 
Snow Depth (m) Fall 37 0.25 0.06 22.21 0.15 0.21 0.28 0.40 
 Winter 37 0.36 0.05 15.10 0.25 0.32 0.40 0.46 
 Spring 37 0.37 0.06 15.45 0.23 0.33 0.41 0.47 
 
Snow Density (kg m-3) Fall 37 251.36 20.25 8.06 213.17 233.82 267.16 299.64 
 Winter 37 283.35 16.92 5.97 247.39 272.26 294.15 316.21 
 Spring 37 323.26 14.13 4.37 299.70 314.31 329.65 350.99 
 
Forageable Area (%) Fall 37 77.46 7.63 9.85 53.62 73.51 82.42 93.13 
 Winter 37 61.59 9.52 15.46 40.70 54.57 66.58 80.99 
 Spring 37 49.86 7.50 15.05 34.53 46.48 55.09 65.82 
 
Snowfall (m) Fall 37 0.16 0.03 21.47 0.08 0.13 0.18 0.22 
 Winter 37 0.11 0.02 21.87 0.06 0.09 0.12 0.16 
 Spring 37 0.10 0.02 17.32 0.07 0.09 0.11 0.14 
          
Air Temperature (ºC) Fall 37 -8.40 1.36 -16.14 -11.71 -9.26 -7.51 -5.05 
 Winter 37 -15.27 1.92 -12.59 -20.42 -16.07 -14.01 -11.75 
 Spring 37 -8.75 1.52 -17.36 -11.10 -10.04 -7.89 -5.16 
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Appendix 2.10. Table of single predictor models and null model showing; p-values (ANOVA P-value) for an 
ANOVA test between the model fitted with and without a random effect (Survey Unit) and using Restricted 
Maximum Likelihood; the second-order Akaike Information Criterion (AICc) of the single predictor model 
fitted without a random effect and by Ordinary Least Squares. Models are ranked by AICc and all predictors 
with an AICc greater than the Null model are taken forward into multiple predictor models (see Appendix 
2.11 below) 

Variable 
ANOVA P-

value AICc 
Fall Snow Depth (m) 0.64 -89.35 
Spring Snow Depth (m) 0.86 -87.23 
Winter Snow Depth (m) 0.77 -86.56 
Fall Air Temperature (ºC) 1.00 -80.76 
Spring Forageable Area (%) 0.60 -77.62 
Fall Forageable Area (%) 0.22 -77.20 
Fall Snowfall (m) 0.22 -76.33 
Winter Snowfall (m) 0.62 -75.13 
Spring Snow Density (kg m-3) 0.66 -74.99 
Fall Snow Density (kg m-3) 0.26 -74.49 
Spring Snowfall (m) 0.29 -74.06 
Null 0.43 -73.47 
Winter Forageable Area (%) 0.31 -72.01 
Previous Year Air Temperature (ºC) 0.45 -71.48 
Winter Snow Density (kg m-3) 0.34 -70.96 
Spring Air Temperature (ºC) 0.45 -70.51 
Winter Air Temperature (ºC) 0.47 -70.47 
Previous Summer Snow Depth (m) 0.46 -68.98 
Previous Year Snow Density (kg m-3) 0.21 -68.46 
Previous Summer Snowfall (m) 0.36 -67.99 
Previous Year Snow Depth (m) 0.45 -67.80 
Previous Year Forageable Area (%) 0.30 -67.61 
Previous Summer Forageable Area (%) 0.35 -67.57 
Previous Summer Air Temperature (ºC) 0.36 -67.40 
Previous Year Snowfall (m) 0.32 -67.28 
Previous Summer Snow Density (kg m-3) 1.00 -17.58 
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Appendix 2.11. Complete table of multi-predictor models and Null model ranked by their second-order Akaike Information Criterion (AICc). Standard 
error (SE) shown in brackets for both the intercept and estimate of each predictor in each model. 1st Predictor indicates the 1st snow and climate 
covariable listed in the Model column. ** indicates significance at a Bonferroni corrected alpha level of 0.00125 (alpha / total models); * indicates 
significance at alpha = 0.05. P-values were computed in R by the Wald test method via use of the ‘summary’ core package (R Core Team, 2019). 

Model Intercept (SE) 
1st Predictor 

Estimate (SE) 
Fall Air 

Temperature (SE) Fall Snowfall (SE) K 
Delta 
AICc 

AICc 
weight 

R-
Sq. 

Adjusted 
R-Sq. 

Fall Snow Depth + Fall Air Temperature  0.690 (0.094)** -0.738 (0.193)** 0.027 (0.012)* – 3 0 0.188 0.439 0.41 
Winter Snow Depth + Fall Air Temperature + Fall Snowfall  0.900 (0.112)** -0.599 (0.214)* 0.032 (0.012)* -0.818 (0.398)* 4 0.134 0.176 0.472 0.429 
Spring Snow Depth + Fall Air Temperature + Fall Snowfall  0.851 (0.111)** -0.522 (0.192)* 0.027 (0.013)* -0.940 (0.388)* 4 0.523 0.145 0.467 0.424 
Fall Snow Depth + Fall Air Temperature + Fall Snowfall  0.780 (0.114)** -0.593 (0.219)* 0.030 (0.012)* -0.593 (0.435) 4 0.592 0.14 0.466 0.423 
Winter Snow Depth + Fall Air Temperature  0.792 (0.103)** -0.738 (0.211)** 0.029 (0.012)* – 3 1.963 0.071 0.412 0.381 
Fall Snow Depth  0.511 (0.046)** -0.895 (0.187)** – – 2 2.328 0.059 0.37 0.354 
Spring Snow Depth + Fall Snowfall  0.689 (0.081)** -0.720 (0.173)** – -0.848 (0.402)* 3 2.374 0.057 0.406 0.375 
Spring Snow Depth + Fall Air Temperature  0.706 (0.099)** -0.623 (0.199)* 0.023 (0.014) – 3 3.949 0.026 0.383 0.35 
Fall Snow Depth + Fall Snowfall  0.552 (0.068)** -0.818 (0.211)** – -0.367 (0.452) 3 4.084 0.024 0.381 0.348 
Spring Snow Depth  0.577 (0.064)** -0.788 (0.177)** – – 2 4.45 0.02 0.336 0.319 
Winter Snow Depth + Fall Snowfall  0.689 (0.086)** -0.807 (0.215)** – -0.687 (0.426) 3 4.87 0.017 0.369 0.335 
Winter Snow Depth  0.614 (0.074)** -0.909 (0.210)** – – 2 5.121 0.015 0.326 0.308 
Fall Air Temperature + Fall Snowfall  0.847 (0.120)**  0.045 (0.012)** – -1.170 (0.410)* 3 5.411 0.013 0.36 0.327 
Fall Forageable Area + Fall Air Temperature  0.314 (0.165)  0.004 (0.002)* 0.041 (0.012)*  3 6.592 0.007 0.342 0.307 
Spring Snowfall + Fall Air Temperature + Fall Snowfall  0.878 (0.123)** -0.696 (0.622) 0.040 (0.013)* -1.181 (0.409)* 4 6.649 0.007 0.381 0.331 
Fall Forageable Area + Fall Air Temperature + Fall Snowfall  0.609 (0.257)*  0.002 (0.002) 0.043 (0.012)* -0.802 (0.540) 4 6.817 0.006 0.379 0.328 
Winter Snowfall + Fall Air Temperature + Fall Snowfall  0.881 (0.124)** -0.712 (0.690) 0.042 (0.013)* -1.060 (0.423)* 4 6.851 0.006 0.378 0.328 
Spring Forageable Area + Fall Air Temperature + Fall Snowfall  0.699 (0.208)*  0.002 (0.002) 0.041 (0.013)* -0.983 (0.463)* 4 7.169 0.005 0.373 0.323 
Fall Snow Density + Fall Air Temperature + Fall Snowfall  0.951 (0.180)** -0.001 (0.001) 0.044 (0.012)** -0.959 (0.494) 4 7.353 0.005 0.371 0.32 
Spring Snow Density + Fall Air Temperature + Fall Snowfall  1.013 (0.314)* -0.001 (0.001) 0.043 (0.013)* -1.072 (0.448)* 4 7.653 0.004 0.366 0.315 
Fall Snow Density + Fall Air Temperature  0.986 (0.186)** -0.001 (0.001)* 0.043 (0.013)* – 3 8.732 0.002 0.306 0.27 
Spring Forageable Area + Fall Air Temperature  0.407 (0.163)*  0.004 (0.002) 0.036 (0.013)* – 3 9.274 0.002 0.297 0.26 
Winter Snowfall + Fall Air Temperature  0.740 (0.118)** -1.150 (0.712) 0.039 (0.013)* – 3 10.658 0.001 0.273 0.235 
Fall Air Temperature  0.657 (0.108)**  0.044 (0.013)* – – 2 10.917 0.001 0.223 0.203 
Spring Snow Density + Fall Air Temperature  1.130 (0.328)* -0.002 (0.001) 0.039 (0.014)* – 3 10.944 0.001 0.268 0.229 
Spring Snowfall + Fall Air Temperature  0.684 (0.112)** -0.656 (0.680) 0.040 (0.014)* – 3 12.386 0 0.242 0.202 
Spring Snowfall + Fall Snowfall  0.622 (0.099)** -1.357 (0.645)* – -1.181 (0.451)* 3 13.289 0 0.225 0.184 
Spring Forageable Area  0.037 (0.096)  0.005 (0.002)* –  2 14.054 0 0.161 0.14 
Spring Forageable Area + Fall Snowfall  0.224 (0.158)  0.004 (0.002) – -0.746 (0.508) 3 14.247 0 0.206 0.165 
Fall Forageable Area -0.059 (0.135)  0.005 (0.002)* – – 2 14.48 0 0.153 0.131 
Winter Snowfall + Fall Snowfall  0.591 (0.098)** -1.277 (0.750) – -0.961 (0.474)* 3 14.795 0 0.196 0.153 
Fall Snowfall  0.483 (0.077)** -1.158 (0.471)* – – 2 15.346 0 0.134 0.112 
Spring Snow Density + Fall Snowfall  0.959 (0.352)* -0.002 (0.001) – -0.902 (0.501) 3 15.79 0 0.176 0.133 
Fall Forageable Area + Fall Snowfall  0.156 (0.252)  0.003 (0.002) – -0.619 (0.611) 3 15.848 0 0.175 0.131 
Winter Snowfall  0.477 (0.084)** -1.649 (0.756)* – – 2 16.546 0 0.109 0.086 
Spring Snow Density  1.063 (0.357)* -0.002 (0.001)* – – 2 16.687 0 0.106 0.083 
Fall Snow Density + Fall Snowfall  0.619 (0.177)** -0.001 (0.001) – -0.894 (0.566) 3 17.038 0 0.151 0.106 
Fall Snow Density  0.657 (0.179)** -0.001 (0.001) – – 2 17.186 0 0.095 0.072 
Spring Snowfall  0.428 (0.070)** -1.316 (0.691) – – 2 17.619 0 0.085 0.062 
Null  0.290 (0.015)** – – – 1 18.207 0 – – 
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Appendix 2.12. Coefficients and fit statistics of the linear models testing for trends in each variable by season 
from 1980 to 2017 

Variable Season Estimate R-squared P-value 
Snow Depth (m) Fall -0.001 0.023 0.37 

 Winter 0.000 0.009 0.58 

 Spring -0.001 0.019 0.41 
     

Snow Density (kg m-3) Fall -0.322 0.030 0.31 

 Winter -0.211 0.018 0.43 

 Spring -0.208 0.025 0.35 
     

Forageable Area (%) Fall 0.100 0.020 0.40 

 Winter 0.120 0.018 0.42 

 Spring 0.150 0.047 0.20 

     
Snowfall (m) Fall 0.000 0.004 0.71 

 Winter 0.000 0.009 0.57 

 Spring 0.000 0.040 0.23 

     
Air Temperature (ºC) Fall 0.033 0.068 0.12 

 Winter 0.038 0.046 0.20 

  Spring 0.002 0.000 0.93 
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Appendix 2.13. Coefficients and fit statistics of the linear models testing for trends in the rolling 10-year 
coefficient of variation of each variable by season from 1980 to 2017 

Variable Season Estimate R-squared P-value 
Snow Depth (m) Fall -0.019 0.002 0.81 

 Winter 0.041 0.018 0.46 

 Spring -0.038 0.011 0.57 
     

Snow Density (kg m-3) Fall 0.027 0.068 0.14 

 Winter 0.057 0.292 0.00 

 Spring -0.002 0.000 0.93 
     

Forageable Area (%) Fall 0.051 0.028 0.35 

 Winter -0.080 0.065 0.15 

 Spring -0.019 0.011 0.55 

     
Snowfall (m) Fall 0.050 0.012 0.54 

 Winter -0.165 0.254 0.00 

 Spring 0.087 0.064 0.16 

     
Air Temperature (ºC) Fall 0.076 0.123 0.05 

 Winter 0.005 0.000 0.92 

  Spring 0.002 0.000 0.96 
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Chapter 3 Assessment of a passive microwave algorithm to map layers of 

high-density snow and ice across Alaska; influences of topographic 

complexity, land cover, and meteorological conditions on detections 

 

Chris L. Cosgrove and Anne W. Nolin 

 

3.1 Abstract 

Layers of high-density snow and ice affect Arctic-boreal wildlife’s locomotion, foraging, den 

and nesting strategies, vulnerability to, and efficacy of, predation. Field observations of these layer’s 

increased occurrence in high-latitude snowpacks, and their catastrophic consequence for grazing 

ungulates, has driven research into their detection using remote sensing. Passive microwave (PM) 

radiometry has shown promise in several studies, but it has so far been limited to narrow spatio-

temporal extents where known animal mass-mortality events have occurred and by its relatively 

coarse resolution ~25 km. To address this, we used a passive microwave algorithm to map 

detections of layers of high-density snow and ice across a study domain encompassing the Alaskan 

peninsula. Via use of the Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 

Brightness Temperature product daily maps of detections from 1988 to 2019 were produced with 

data derived from the Special Sensor Microwave/Imager (SSM/I) upon three different satellites. 

Two different frequencies were contrasted for their sensitivity to changes in the snow stratigraphy, 

19 and 37 GHz, which have an enhanced resolution of 6.25 km and 3.125 km respectively. We 

assessed the regional and interannual variability, and influences of topographic complexity and 

vegetation of detections, upon detections. Additionally presented is a preliminary assessment of the 

algorithm’s promise via comparison of the preceding meteorological conditions, as measured by two 

climatological station networks, of algorithm-detected high-density layer occurrence, persistence, 

and disappearance. With a limited dataset of snowpit-measured snow density we also looked for 

relationships between ground-observations of stratigraphy and the PM record. The algorithm 

appeared to perform best in coastal regions of low topographic complexity and tundra-like 

vegetation, as evidenced by a greater frequency of detections, and the 19 GHz channel was generally 

more sensitive than the 37 GHz, possibly due to its greater footprint and lower density threshold for 
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detection. We found significant differences between the preceding meteorology of days where an 

occurrence, persistence, and disappearance event was observed, and the meteorological conditions 

that corresponded to known controls on the formation, maintenance, and destruction of layers of 

high-density snow and ice. In contrast to this promising result, no relationships between snowpit 

measured density and the PM record. We anticipate that this research will be of great interest to 

wildlife ecologists examining different scales of animal’s responses to snow properties but counsel 

that further work needs to be completed to ensure its accuracy.  

 

3.2 Introduction 

Seasonal snow cover is an integral and vital element in high-latitude areas’ ecosystem 

function, its properties lending both opportunity and hindrance to culturally important wildlife 

dynamically in space and time (Berteaux et al., 2016; Bokhorst et al., 2016). In the Arctic Boreal 

region, increasing air temperatures and observations of mid-winter melt events have led to 

widespread concern for populations of grazing wildlife, e.g., caribou (Rangifer tarandus) and Dall’s 

sheep (Ovis dalli dalli), due to layers of high-density snow and ice impeding access to forage (Tyler N. 

J. C., 2010; Mallory and Boyce, 2017; Rattenbury et al., 2018). Yet, the region’s remoteness and 

inaccessibility, as well as the wide geographic range of these species, mean that there are scant 

measurements of snow coincident to the presence, or indeed absence, of ungulate populations 

(Boelman et al., 2018). The so-called ‘golden age’ of animal-born sensors, where advances in 

technology now offer researchers the possibility of high-accuracy and high-frequency location data 

for individual animals, has driven insights into northern species previously challenging to study 

(Wilmers et al., 2015; Davidson et al., 2020). However, despite the utilization of this technology, 

there remain limits to our understanding of animal behaviour and possible population responses to 

climate change, as we have little knowledge of the spatiotemporal scale of the occurrence and 

persistence of important snow properties, such as depth, density and the presence of ice layers 

(Boelman et al., 2018). To address this, we here assess the applicability of a high-density snow layer 

detection algorithm utilizing space-borne passive microwave (PM) observations across Arctic boreal 

Alaska. 

Microwave remote sensing from orbiting satellite platforms began in the 1960s (Ulaby et al., 

1981) and, in contrast to observations utilizing the visible light and near-infrared spectrums, offers 
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unique information on the properties of snow cover, as well as data collection uninhibited by night 

or cloud conditions (Foster et al., 1984; Saberi et al., 2019). The development of algorithms to 

estimate snow’s various properties is ongoing but has primarily concentrated on producing 

information important to hydrological processes, most notably snow water equivalent (SWE) and 

snow-covered area (SCA; Saberi, 2019). Inherent to the method of using PM is their characteristic 

interaction with snow grains and liquid water – a feature that has been exploited to infer further 

important properties and dynamics of snow cover, such as freeze-thaw events (e.g. Kim et al., 2018), 

snow-off date (e.g. Pan et al., 2020), instances of rain-on-snow (e.g. Grenfell T. C. and Putkonen J., 

2008; Pan et al., 2018), and stratigraphic features like depth hoar (e.g. Hall et al., 1986) or the 

presence of ice lenses or high-density layers (e.g. Montpetit et al., 2013). The traditionally large 

footprint of space-born PM measurements, typically ~25 km2 in the 19 GHz and 37 GHz bands 

most commonly used in snow applications, consequently limits the accuracy of their derived data 

products in areas of complex topography or landcover (Mätzler and Standley, 2000; Tong et al., 

2010). However, the 2016 release of the Calibrated Enhanced-Resolution Passive Microwave Daily 

EASE-Grid 2.0 Brightness Temperature (CETB; Brodzik,  M.J. and Long,  D.G., 2016) Earth 

System Data Record (ESDR) offers an opportunity to test whether mapping snow properties at 

resolutions more appropriate to important spatial scales of wildlife habitat selection is possible 

(Holland et al., 2004). 

Northern wildlife is affected by snow properties in contrasting ways. Both rodents, e.g., 

lemmings (Lemmus lemmus), and species of bears, e.g., brown bears (Ursus arctos), rely on thermo-

insulative properties of snow cover to protect them from the harsh winter environment when 

nesting and denning respectively (Reid et al., 2012; Vroom et al., 1980). Years with minimal snow 

cover hence comes at an increased fitness cost, and in the case of lemmings, increased exposure to 

predation (Bilodeau et al., 2013). For species that instead have a supraniveal winter habitat, snow 

cover instead influences their access to nutrition (e.g. Collins and Smith, 1991), locomotive energy 

expenditure (e.g. Fancy and White, 2011), and therefore their efficacy of, or vulnerability to, 

predation (e.g. Nelson and Mech, 1986). For grazing ungulates, the depth, density, and hardness of 

snow cover have been linked to recruitment success rates (e.g. Kerk et al., 2018) and corresponding 

shifts in population dynamics (Tyler N. J. C., 2010). In separate locations, Svalbard and Banks 

Island, Canada, a mid-winter formation of a high density or ice-layer, has had catastrophic 

consequences for caribou populations unable to access forage (Grenfell T. C. and Putkonen J., 2008; 

Descamps et al., 2017). Such mass-mortality events have ecological impacts, such as increasing 
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populations of scavenging species (Sokolov et al., 2016), economic impacts in the instance of 

reduced harvest and sport-hunting opportunities (Alaska Department of Fish and Game, 2014), and 

threatens the continued culture and traditional knowledge of indigenous people in the circumpolar 

North (Eira et al., 2018). Wildlife studies incorporating PM data have primarily been locally-focused 

on known mass-mortality events (e.g. Grenfell T. C. and Putkonen J., 2008; Langlois et al., 2017; 

Dolant et al., 2018). Alternatively, they have used datasets that do not explicitly indicate challenging 

snow conditions but instead have mapped events, such as surface thawing, which could lead to 

reduced forage access (Kerk et al., 2020). In this study, we instead aim to broaden the spatial scope 

of enquiry and look for the potentially persistent consequence of meteorological events, by examining 

the degree to which we can map high-density snow or ice layers across Alaska, an Arctic boreal 

region of diverse landscapes and home to large populations of caribou and other ungulates. 

Seasonal snow cover can be thought of as aeolian sediment that develops a dynamic 

stratigraphy as it accumulates, metamorphizes, and ablates in a variety of different processes (Fierz 

et al., 2009). High-density layers are formed in both dry and wet snow conditions (Colbeck, 1982). 

In dry snow conditions, where the temperature gradient across a snow layer is low, equi-temperature 

metamorphism rounds snowflakes due to water vapour gradients between convex and concave 

surfaces. The process of rounding decreases the snow’s surface area relative to its mass, increasing 

its density. Snow deposited during periods of higher wind speeds, either as new snow or that 

redistributed by the wind, are higher density than that deposited in relatively still conditions 

(Sommer, 2018). While the mechanisms for this remain unclear (Sommer et al., 2018), there is 

substantial evidence for its occurrence - leading to the commonly used stratigraphic descriptions of 

‘wind-crust’ and ‘wind-slab’ (Fierz et al., 2009). Wet snow conditions, where liquid water is 

introduced to the snowpack due to surface melting or liquid precipitation, increases density by 

eliminating smaller snow crystals and growing larger crystals while conserving the total mass 

(Colbeck, 1982). Depending on the amount of liquid water and the existing stratigraphic properties 

of the snow, ice lenses and layers can form at the snowpack’s surface or interface with the soil. With 

temperatures in the Arctic increasing at a rate greater than elsewhere, rain-on-snow and melt events 

are expected to occur with greater frequency (Semmens et al., 2013; Jeong and Sushama, 2018). 

Already there is multi-dataset evidence of increases in both these events (e.g. Liston and Hiemstra, 

2011) and their effect upon snow stratigraphy and conditions (Johansson et al., 2011b; Eira et al., 

2018; Rasmus et al., 2018), causing concern for the continued sustainability of traditional reindeer 

husbandry (Eira et al., 2018). 
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The use of an enhanced resolution passive microwave product with a multi-decadal record 

has promise for wildlife studies requiring long-term data to compare to records of population 

dynamics, but also those requiring finer-scale data to understand habitat selection behaviour. To 

assess the algorithm, we compare instances where it ‘detects’ a high-density snow layer to in-situ 

meteorological and snow stratigraphy data. Additionally, we consider the spatio-temporal pattern of 

detections in relation to the diverse climate, vegetation, and topography of Alaska.  The following 

questions lead our research; 1) where and when do we detect high-density and ice-layers in Alaskan 

snowpacks? 2) Can we establish the meteorological cause of detected high-density and ice-layers? 

We additionally test whether we can validate our results by comparing the PM observations to snow 

density data obtained via snowpit excavation within our study domain. 

 

3.3 Materials and methods 

3.3.1 Study domain 

Alaska extends from ~51º N to ~71º N and from ~130 W to ~172º E, encompassing a 

great diversity of landscapes and climates. Bordered to the east by the Yukon Territory, Canada, the 

south by the Gulf of Alaska, the southwest by the Bering Sea, the northeast by the Chukchi Sea, and 

the north by the Beaufort Sea, there exist multiple influences on its climate due to gradients of 

latitude, proximity to coastal waters, elevation, and topography. Snow covers much of the region for 

6 to 9 months of the year and is hence a primary component in the area’s energy, hydrological, and 

carbon cycles, as well as ecosystem function. Alaskan snowpacks reflect the state’s distinct climate 

zones; deep, warm maritime snow is found in high elevations of southeast Alaska, whereas low-

density taiga type snow is typical in the interior’s extensive boreal forest (Sturm et al., 1995). 

Elsewhere, tundra type snow, with its classic stratigraphy of depth hoar and wind-slabs, extends 

across sub-Arctic and Arctic areas (Sturm and Benson, 2004). To examine regional patterns in the 

frequency of high-density snow detections, we here use Bieniek et al.’s (2012) climate divisions. 

However, due to masking areas close to major water-bodies, such as the entirety of the Alaskan 

Panhandle, we present data only from Bristol Bay, Central Interior, Cook Inlet, North Slope, 

Northeast Gulf, Northeast Interior, Northwest Gulf, Southeast Interior, and West Coast climate 

divisions (Appendix 3.1). 
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Figure 3.1. map of study area. The digital elevation model derived from the Shuttle Radar Topography 
Mission (SRTM) is shown with a 25 km water body buffer applied. Inset shows snowpit locations at greater 
detail. 

 

3.3.2 Passive microwave data 

The CETB ESDR was publicly released in 2017 as part of the National Aeronautics and 

Space Administration’s Making Earth System Data Records for Use in Research Environments 

(NASA MEaSUREs) program (Brodzik,  M.J. and Long,  D.G., 2016). It assembles Level-2 satellite 

PM observations from 4 different sensors - the Scanning Multichannel Microwave Radiometer 

(SMMR), the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave 

Imager/Sounder (SSMIS), and the Advanced Microwave Scanning Radiometer – Earth Observing 

System (AMSR-E), and re-grids them to the Equal-Area Scalable Earth Grid 2.0 (EASE-2) format at 

both a standard resolution (25 km) and a nested, enhanced resolution dependent on channel 

frequency. Standard resolutions, which we do not use here, are generated using a ‘drop-in-the-

bucket’ averaging technique, whereas enhanced resolutions are derived using a radiometer version of 

the Scatterometer Image Reconstruction (rSIR) algorithm (Brodzik and Long, 2018). While the 
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complete CETB dataset has twice-daily, global data from 12 different satellite platforms, and has 

temporal coverage from 1978 through 2019, we present enhanced resolution data for the 19 and 37 

GHz channels derived from SSM/I sensors onboard the Defence Meteorological Satellite Program’s 

(DMSP) F08, F11 and F15 satellite platforms. Measurements by the SSMI/S sensor are highly 

correlated across platforms, so use of data from F08, F11 and F15 DMSP satellites allows for a 

continuous and consistent record from the 7th of September 1988 to the 31st of December 2019. 

Both 19 and 37 GHz channels are sensitive to changes in snow stratigraphy (Grenfell T. C. and 

Putkonen J., 2008), and the CETB dataset grids each at 6.25 km and 3.125 km resolution 

respectively.  We further selected a subset of data corresponding to the descending pass of the 

satellites as descending orbits have a local overpass in the early morning (~0600), which is more 

likely to be unaffected by high PM emissions from wet snowpacks in contrast to ascending 

afternoon passes (Derksen et al., 2000).  

 

3.3.3 High-density and ice-layer detection algorithm 

The high-density and ice-layer detection algorithm we use here is based upon the 

methodology first used in a wildlife context by Grenfell and Putkonen (2008), and elaborated by the 

work of Montpetit et al. (2013), Langlois et al. (2017), and Dolant et al. (2018). The algorithm 

calculates the ratio between the brightness temperatures observed in the vertical and horizontal 

polarizations of a single channel (Langlois et al., 2017). A positive increase in the ratio suggests the 

establishment of layers in the snowpack as the horizontal polarization is more sensitive to layering 

than that of the vertical polarization. For a given frequency	", the polarization ratio PRf is calculated 

as 

PR! =
&"!
#$%&' − &"!

($%&'

&"!
#$%&' + &"!

($%&' 

Where &"! is the brightness temperature in Kelvin (K) for a given frequency, and V-pol and H-pol 

refer to the vertical and horizontal polarizations respectively. A thresholding approach for detecting 

high-density or ice-layers was established by Montpetit (2015) and developed by Dolant et al. (2018). 

Both studies used a radiative transfer model to simulate the expected PM emissions of an ensemble 

of snowpacks with and without high-density or ice-layers. Dolant et al. (2018) report that a 
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difference of greater than 0.0127 (19 GHz) and 0.0124 (37 GHz) in the daily PR!, when compared 

to the mean winter PR (PR!), indicated the presence of a layer greater than 425 kg m-3 (19 GHz) and 

520 kg m-3 (37 GHz). We hence calculated ∆PRf for each pixel in our study domain using the 

following equation 

∆PR! =	PR! −	PR! 

Where PR! is calculated from daily data between the 1st of November and the 31st of April of each 

water year (WY), following Dolant et al. (2018) and a timeframe where seasonal snow is highly likely 

to be present. When the threshold is reached in the daily record, we hereafter refer to this as a 

‘detection’ while acknowledging that this does not necessarily mean that a high-density layer is 

actually present. Several studies have linked persistent snow layers greater than >350 kg m-3 in 

density with population declines in caribou (Vikhamar-Schuler et al., 2013; Ouellet et al., 2017), and 

other research has described a doubling in energy expenditure for caribou foraging in snow densities 

between 280 and 500 kg m-3 versus ‘fluffy’ snow of ~180 kg m-3 (Fancy and White, 1985). For Dall’s 

sheep, a critical density of 327 kg m-3 has been identified as the threshold above which the animals 

do not break the snow surface while walking (Sivy et al., 2018). Hence, the densities corresponding 

to the detection thresholds for ∆PRf  are within and above density ranges known to have effects on 

grazing animals.  

 

3.3.4 Processing approach 

The CETB product was released with a high degree of interoperability and usability in mind, 

utilizing the highly flexible netCDF file format and machine-readable metadata (Brodzik et al., 2018). 

As such, our processing workflow could employ the xarray Python package (Hoyer and Hamman, 

2017) to efficiently apply the high-density snow detection algorithm at a hemispheric scale, and to 

nimbly construct, manage, and analyze spatial and temporal subsets of the resulting 

multidimensional dataset. While we focus on Alaska in this research, we have processed polarization 

data for the entire Northern hemisphere for the frequencies and platforms described above. We 

anticipate that this will aid similar research in other spatial domains. A schematic of the processing 

approach is shown in Appendix 3.2. 
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Table 3.1. List of meteorological stations used. RMSD refers to the Root Mean Standard Deviation of sub-
pixel topography for the 3.125 km EASE-2 pixel where the station is located. Likewise, TRI is the mean 
Topographic Ruggedness Index, and NLCD is the majority land cover class found for the same pixel (see 
landcover and topographic complexity section for details). Climate division is determined using the divisions 
proposed by Bieniek et al. (2012). 

Station Name Network Latitude Longitude Elevation RMSD TRI Climate division NLCD 
Bethel Airport GHCN 60.79 -161.83 31.10 7.89 4.90 West Coast Dwarf Scrub 
Bettles Field GHCN 66.92 -151.52 193.20 18.42 15.88 Central Interior Shrub/Scrub 
Big Delta Airport GHCN 63.99 -145.72 389.20 27.55 5.01 Southeast Interior Evergreen 
Gulkana Airport GHCN 62.16 -145.46 476.10 37.44 13.06 Southeast Interior Evergreen 
McGrath Airport GHCN 62.96 -155.61 101.50 55.37 4.27 Central Interior Deciduous 
McKinley Park GHCN 63.72 -148.97 630.90 145.91 90.34 Southeast Interior Shrub/Scrub 
McKinley River GHCN 63.65 -151.64 256.00 11.16 2.75 Central Interior Evergreen 
Northway Airport GHCN 62.96 -141.99 522.10 2.86 1.60 Southeast Interior Woody Wetlands 
Umiat Airport GHCN 69.37 -152.14 81.10 21.94 14.01 North Slope Dwarf Scrub 
Alexander Lake SNOTEL 61.75 -150.89 48.77 33.37 2.08 Cook Inlet Emergent Herb. Wetlands 
Bettles Field SNOTEL 66.92 -151.53 195.07 18.42 15.88 Central Interior Shrub/Scrub 
Chisana SNOTEL 62.07 -142.05 1011.94 82.87 26.69 Southeast Interior Evergreen 
Coldfoot SNOTEL 67.25 -150.18 316.99 98.46 58.36 Central Interior Shrub/Scrub 
Fairbanks F.O. SNOTEL 64.85 -147.80 137.16 0.80 3.34 Southeast Interior Developed, Low Intensity 
Fielding Lake SNOTEL 63.20 -145.63 914.40 74.02 38.23 Southeast Interior Shrub/Scrub 
Grandview SNOTEL 60.61 -149.06 335.28 143.98 170.20 Cook Inlet Shrub/Scrub 
Granite Creek SNOTEL 63.94 -145.40 377.95 14.48 3.43 Southeast Interior Cultivated Crops 
Independence Mine SNOTEL 61.79 -149.28 1082.04 146.86 134.19 Cook Inlet Dwarf Scrub 
Kelly Station SNOTEL 67.93 -162.28 94.49 15.74 5.97 West Coast Shrub/Scrub 
Little Chena Ridge SNOTEL 65.12 -146.73 609.60 109.94 77.37 Southeast Interior Shrub/Scrub 
May Creek SNOTEL 61.35 -142.71 490.73 46.14 45.94 Southeast Interior Evergreen 
Monument Creek SNOTEL 65.08 -145.87 563.88 123.73 106.98 Southeast Interior Shrub/Scrub 
Mt. Ryan SNOTEL 65.25 -146.15 853.44 112.54 64.98 Southeast Interior Evergreen 
Munson Ridge SNOTEL 64.85 -146.21 944.88 114.01 84.77 Southeast Interior Shrub/Scrub 
Summit Creek SNOTEL 60.62 -149.53 426.72 145.93 159.45 Cook Inlet Shrub/Scrub 
Susitna Valley High SNOTEL 62.13 -150.04 114.30 21.32 11.52 Cook Inlet Deciduous 
Teuchet Creek SNOTEL 64.95 -145.52 499.87 136.02 80.26 Southeast Interior Evergreen 
Tokositna Valley SNOTEL 62.63 -150.78 259.08 110.48 79.98 Cook Inlet Shrub/Scrub 
Upper Chena SNOTEL 65.10 -144.93 868.68 143.33 98.59 Southeast Interior Shrub/Scrub 
Upper Tsaina River SNOTEL 61.19 -145.65 533.40 155.06 122.62 Northeast Gulf Shrub/Scrub 

 

3.3.5 Meteorological data 

To examine the meteorological conditions of the occurrence, persistence and disappearance of a 
high-density layer we utilized climate observations from two weather station networks established in 
Alaska; the Global Historical Climatology Network (GHCN), downloaded from the National 
Oceanic and Atmospheric Administration’s Nation Centers for Environmental Information 
(NOAA, 2020), and the Snow Telemetry (SNOTEL) network run by the Natural Resources 
Conservation Service (NCRS). The SNOTEL data used is the Bias Correction and Quality Control 
data distributed by the Pacific Northwest National Laboratory (Yan et al., 2018; Sun et al., 2019). In 
total, 30 climate stations across the two networks were available in EASE-2 pixels that were not 
masked by their proximity to major water-bodies (see below). For each station, we retrieved available 
surface observations of daily mean/maximum/minimum air temperature, average/peak wind speed, 
total precipitation, snowfall, rainfall, snow depth, and SWE for a subset of our study period (see 
Figure 3.1 and Table 3.1).  
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3.3.6 Land cover and topographic data 

To consider the effects of different land covers on high-density layer detections we 

calculated the majority land cover class within each 3.125 km (37 GHz) and 6.25 km (19 GHz) 

EASE-2 pixel by use of the 30 meter National Land Cover Database 2011 Alaska data product 

(NLCD; Homer et al., 2015). For both resolutions, we also derived two metrics of topographic 

complexity by calculating the sub-pixel Root Mean Standard Deviation (RMSD) of elevation and the 

mean sub-pixel Topographic Ruggedness Index (TRI; Riley et al., 1999) via the use of the United 

States Geological Services’ Global 30 Arc-Second Elevation dataset (GTOPO30; Earth Resources 

Observation And Science (EROS) Center, 2017). Measures of rugosity have been used extensively in 

wildlife studies (e.g. Nellemann and Fry, 1995; Danks and Klein, 2002; Sappington et al., 2007) and 

have also been used to describe sub-pixel topographic complexity in research utilizing space-borne 

PM observations (e.g. Pan et al., 2020). The QGIS program (QGIS Development Team, 2020) was 

used to produce the raster grids for both landcover and topographic complexity and to additionally 

mask all pixels within 25 km of, and including, pixels classified as ‘Open Water’ in both the 3.125 

km and 6.25 km land cover raster products (see Figure 3.1). This latter step is to reduce 

contamination of PM retrievals by major water-bodies in the native footprint of the SSMI/S sensor. 

 

3.3.7 Snowpit data 

Snow density data for 84 snow pits excavated in 2018 and 2019 (see Figure 3.1) in the 

Brooks Range, North Slope and Coastal Plain of Alaska was obtained from the Arctic Data Centre 

(Pedersen et al., 2019). For each snowpit, we averaged the density observations for each stratigraphic 

layer and then derived the maximum, standard deviation, and range in density across the pit’s layers.  

 

3.3.8 Spatiotemporal assessment of potential high-density layer detections 

To assess the spatial variability of possible detections of high-density snow layers, we first 

mapped the mean count of detections per WY for each pixel across the study domain. To gauge the 

temporal variability, we found and mapped the mean count of possible detections for each of the six 

months included in our analysis window (November through April). Further, we mapped the total 

count of possible detections for each pixel on a WY-by-WY basis. Lastly, we found the percentage 



 

 

76 

of the total possible detections within each of Bieniek et al.’s (2012) climate divisions and compared 

this to the percentage area of the total study domain each climate division represents.  

 

3.3.9 Assessment of the influence of topographic complexity and landcover on the frequency 

of high-density layer detection 

As with the assessment of total possible detections by climate division, we found the 

percentage of total possible detections within each NLCD landcover class and compared it to the 

percentage area each landcover class represents in the study domain. For the metrics of topographic 

complexity, we categorized each metric into ten equally incremented bins. Across the study domain, 

sub-pixel RMSD of elevation ranged from 0 to 180 m and was hence binned at 18 m increments, 

mean sub-pixel TRI likewise ranged from 0 to 450 m and was therefore binned in 45 m increments. 

For both metrics, we then compared the percentage of total detections within each bin to the 

percentage area of the study domain represented by each bin. 

 

3.3.10 Analysis of meteorological conditions coincident to occurring, persisting, and 

disappearing high-density snow layers 

For each of the 30 climate stations, according to their pixel location in both the 19 and 37 

GHz datasets we extracted a time series of ∆PRf  and matched it to the corresponding time-series of 

meteorological data available from the station. As an initial step, for each station we plotted the ∆PRf  

data next to the meteorological data for each WY where meteorological data was available, see figure 

2 below. Study of these time-series revealed patches of missing meteorological and PM data, so to 

ensure fair comparison we further selected for WYs with >95% data completeness. To fill the 

remaining gaps, we used linear interpolation. According to the thresholds described above, we then 

classified the daily ∆PR data into four categories of detection. If ∆PR was below the threshold for 

the present day and the previous day, the present day was classed no detection. If the threshold was 

met in the present day but not the previous, we classed the day as an occurrence. When both the 

present and previous day exceeded the ∆PR threshold, the persistence class was used. Finally, if the 

previous day was above the threshold, but the present day was below, we counted the day as a 

disappearance. To our knowledge, this is the first time that the meteorological conditions of a 

potentially persisting and latterly disappearing high-density snow layer have been assessed. To 
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examine differences in the meteorological conditions for each category of ∆PR observation, we 

aggregated data for all of the stations and tested the distributions of meteorological data between 

each detection category on a variable-by-variable basis. As the PM observations occurred in the 

morning, we compiled the previous day’s and the previous two days’ meteorological data for each of 

the detection categories across all 30 stations. We additionally compare to the previous two days 

because meteorological conditions that form high-density layers, such as a warm snow-storm, can 

occur over a period longer than a single day. The meteorological data distributions were tested for 

normalcy, and pairwise t-tests were conducted between the categories when normal distributions 

were found. Otherwise, pairwise Wilcoxon tests were used. All analyses were conducted in the R 

program (R Core Team, 2019) and the Bonferroni Correction was utilized for tests of significance. 

 

3.3.11 Comparison between in-situ observations of snow density and satellite-observed 

polarization ratios 

As with the climate stations, for the snowpit observations of layer density we extracted by 

location the time-series of PR observations in the WY prior to the date of each snowpit’s 

excavation. From these time-series we found the maximum observed PR and compared the 

aggregated paired maximum PR and density metrics via linear regression. 
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Figure 3.2. time series of ∆PR and meteorological observations for the 1989 water year at Umiat Airport GHCN climate station. Panel a shows the 
evolution of ∆PR in the 37 GHz channel, with the dashed horizontal line representing the threshold for a high-density layer detection. Green vertical 
lines extend down through the other panels for all days where this threshold is met. Panel b shows the same for the 19 GHz channel, with yellow lines 
indicating days where a detection occurs. Panel c shows observations of snow depth, panel d maximum and minimum daily temperatures, and panel e 
daily snowfall and precipitation. 

a

e

d

c

b
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3.4 Results 

3.4.1 Where and when high-density snow layer detections occur 

There are distinct spatial and temporal patterns in detections of high-density layers across 

Alaska, as well as variation in the pattern of detections between the two PM frequencies utilized. In 

the 19 GHz observations, the West Coast, Bristol Bay, and the Central Interior climate divisions 

each have a greater percentage of detections versus the percentage area they represent, whereas the 

Southeast Interior and Northeast Interior have very few detections given their relatively large size 

(see Figure 3.3 andFigure 3.4, and Table 3.2). In contrast, in the 37 GHz data, the North Slope also 

has a greater percentage of the total detections compared to the percentage area it represents in the 

study domain, but the Central Interior instead has much less (see Figure 3.3 andFigure 3.4, and 

Table 3.2). In each frequency, the West Coast leads the average number of detections per WY, 

followed by Bristol Bay (see Figure 3.3 andFigure 3.4, and Table 3.2). The timing of when detections 

most frequently occur appears to be consistent between frequencies; the highest mean detections are 

observed in February or March for all climate divisions except for the North Slope, where April 

shows the highest mean number of detections (see Table 3.2 and Figure 3.5). On a WY-by-WY 

basis, there are WYs with a far greater frequency of detections, e.g. 1984, 1994, 2008, and 2019, 

however, there exists regionality to this pattern. For example, there are many detections across the 

North Slope and northern West Coast in WY 2019, yet little for the southern West Coast or Bristol 

Bay (Figure 3.6). Notably, a greater frequency and area of detections are observed in the data from 

the 19 GHz frequency (see Figure 3.3 toFigure 3.6, and Table 3.2). 
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Table 3.2. Climate division percentage of total high-density snow layer detections by frequency compared to 
the percentage of the study area, and the mean number of days with a detection per water year (WY) and 
month (November through April). 

 

 

 

Figure 3.3. Mean count of possible high-density layer detections per WY across Alaska as derived by SSMI/S 
PM observations from water years 1988 to 2019. 

 

Frequency Climate Division Detections Area Difference WY Nov Dec Jan Feb Mar Apr
19 GHz Bristol Bay 16.48 6.95 9.53 24.74 0.65 2.19 4.97 7.30 8.08 1.56

Central Interior 29.08 26.65 2.43 11.39 0.06 0.51 1.88 3.11 4.45 1.38
Cook Inlet 2.93 4.08 -1.14 7.51 0.06 0.53 1.60 2.91 2.22 0.20
North Slope 11.79 17.06 -5.27 7.21 1.11 0.61 0.87 1.03 1.42 2.17
Northeast Gulf 0.39 1.27 -0.88 3.20 0.29 0.34 0.70 1.14 0.60 0.11
Northeast Interior 1.55 11.79 -10.24 1.37 0.05 0.15 0.14 0.27 0.44 0.32
Northwest Gulf 0.17 0.20 -0.03 8.78 0.10 0.78 1.72 2.69 3.02 0.47
Southeast Interior 2.74 16.92 -14.19 1.69 0.02 0.08 0.20 0.53 0.70 0.15
West Coast 34.86 15.07 19.79 24.13 0.38 1.45 4.58 6.48 7.91 3.32

37 GHz Bristol Bay 17.04 7.39 9.65 11.99 0.83 1.69 2.32 3.40 3.34 0.40
Central Interior 15.97 26.34 -10.37 3.15 0.03 0.17 0.54 0.86 1.37 0.19
Cook Inlet 1.87 4.10 -2.22 2.38 0.04 0.26 0.57 0.84 0.64 0.02
North Slope 18.15 16.94 1.20 5.57 0.64 0.36 0.70 0.84 1.37 1.66
Northeast Gulf 0.52 1.26 -0.74 2.15 0.12 0.29 0.46 0.57 0.48 0.24
Northeast Interior 0.67 11.63 -10.96 0.30 0.02 0.02 0.04 0.03 0.10 0.07
Northwest Gulf 0.09 0.18 -0.09 2.53 0.02 0.27 0.51 0.81 0.86 0.07
Southeast Interior 2.20 16.47 -14.27 0.70 0.01 0.04 0.08 0.18 0.31 0.07
West Coast 43.49 15.69 27.81 14.42 0.31 1.17 3.15 4.03 4.55 1.20

Mean Detections%
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Figure 3.4. Percentage high-density layer detections (orange bars) versus percentage study domain area (blue 
bars) for climate divisions (top), NLCD classes (2nd from top), RMSD bins (3rd from top), and TRI bins 
(bottom). Note that the x-axes are different for the 19 GHz (left column) and 37 GHz (right column) results. 

 

 
Figure 3.5. Mean count of possible high-density snow layer detections per WY grouped by month, as derived 
from SSMI/S PM observations from 1988 to 2019. 
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Figure 3.6. Total high-density snow layer detections in both frequencies by WY, 1988 to 2019  
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Table 3.3. NLCD derived land cover class percentage of total high-density snow layer detections by frequency 
compared to the percentage of the study area. 

 

 

3.4.2 Meteorological conditions of occurring, persisting, disappearing high-density snow 

layers 

 Compared to days where there was no detection of a high-density snow layer, the previous 

day’s maximum temperature and mean temperature were higher on average when there was an 

occurrence of a high-density snow layer (Figure 3.7). For the 37 GHz channel, this difference was 

significant, and while there was no significance found for the previous day’s data in the 19 GHz 

channel, the mean temperature and mean maximum temperature across the previous two days was 

significantly higher for an occurrence versus no detection (see Appendix 3.3). The same pattern is 

observed in the mean wind speed data; significantly higher wind speeds in the previous day for 

Frequency NLCD Land Cover Class Detections Area Difference
19 GHz Barren Land 1.63 9.86 -8.23

Cultivated Crops 0.00 0.02 -0.02
Deciduous 0.98 1.88 -0.90
Developed, Low Intensity 0.00 0.00 0.00
Dwarf Scrub 28.66 23.22 5.44
Emergent Herbaceous Wetlands 1.83 0.62 1.21
Evergreen 14.54 18.67 -4.13
Grassland/Herbaceous 1.38 1.37 0.01
Mixed Forest 1.62 1.25 0.37
Open Water 0.01 0.00 0.00
Sedge/Herbaceous 6.04 4.04 2.00
Shrub/Scrub 39.94 34.27 5.67
Snow/Ice 0.48 2.51 -2.03
Woody Wetlands 2.90 2.29 0.61

37 GHz Barren Land 1.49 9.34 -7.85
Cultivated Crops 0.00 0.02 -0.02
Deciduous 0.83 2.48 -1.65
Developed, Low Intensity 0.00 0.00 0.00
Developed, Open Space 0.00 0.00 0.00
Dwarf Scrub 39.07 22.85 16.22
Emergent Herbaceous Wetlands 2.87 1.02 1.85
Evergreen 6.84 18.32 -11.49
Grassland/Herbaceous 0.83 1.47 -0.63
Mixed Forest 0.99 1.55 -0.55
Moss 0.00 0.00 0.00
Sedge/Herbaceous 10.52 4.66 5.86
Shrub/Scrub 32.73 32.82 -0.09
Snow/Ice 0.70 2.53 -1.82
Woody Wetlands 3.13 2.93 0.20

%
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occurrences versus no detections when observed in the 37 GHz channel, and likewise for the 19 

GHz channel but only when considering the average wind speed over the previous two days 

(Appendix 3.3). Occurrences had a significantly higher rainfall in the previous day than days where 

there was no detection for both channels (Figure 3.7). Snowfall was significantly higher in the 

previous day to an occurrence than that of a non-detection in the 19 GHz data, and in the 37 GHz 

channel if the previous two days snowfall was considered (Figure 3.7 and Appendix 3.4). 

 The previous day’s maximum temperature, mean temperature, rainfall, and snowfall were all 

significantly lower when a persistence versus an occurrence of a high-density snow layer was detected in 

both frequencies (Figure 3.7). Mean wind speeds, however, showed no significant difference 

between an occurrence or a persistence in either the previous or previous two days (Appendix 3.3 

and Appendix 3.4). Maximum temperature in the previous day was significantly higher when a 

disappearance versus a persistence was detected in both frequencies. Likewise, the previous day’s mean 

temperature in the 19 GHz channel was higher in the case of a disappearance versus a persistence 

(Figure 3.7). However, neither the previous day’s nor previous two day’s mean temperature was 

significantly different in this comparison when using observations from the 37 GHz frequency (see 

Appendix 3.4). Other significant differences between a persistence and a disappearance were shown 

for the previous day’s rainfall in the 37 GHz channel (higher in a disappearance), and the previous 

day’s mean wind speed in the 19 GHz channel (lower in a disappearance; Figure 3.7). 

 

3.4.3 Comparisons between maximum snow density and observed polarization ratio 

No significant relationships were found when comparing the snowpit observations of 

maximum density, density range, and density standard deviation to the maximum PR derived from 

prior PM observations (see Table 3.4 and Figure 3.8). However, in the observations for maximum 

density, it was notable that the pits with lower maximum PR were in locations of greater 

topographic complexity (Figure 3.8). 
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Figure 3.7. Boxplots of the previous days’ meteorological variables for the four different categories of high-
density snow layer observations; no detection, occurrence, persistence, and disappearance. Results from the 
19 GHz observations are in the left column, 37 GHz in the right column. Bonferroni corrected P-values from 
pairwise t-tests (parametric) and pairwise Wilcoxon tests (non-parametric) are shown between the 6 possible 
pairings; ns indicates no significance, * indicates p ≤0.05, ** ≤0.01, *** ≤0.001, **** ≤0.0001. Outliers are 
removed. Further statistics are shown in Appendix 3.4 and Appendix 3.4.  
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Table 3.4. statistical results of the linear regression between snowpit measured density metrics (maximum, 
range, and standard deviation) and maximum observed PR. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8. Comparison of maximum density observed in each snowpit to the maximum PR observed in both 
the 19 GHz (left) and 37 GHz (right) PM data. Each point corresponds to a snow pit, blue line with grey 
shaded area indicates the linear regression between the variables and its standard error. Point colours 
correspond to the snowpit’s pixel RMSD with lighter blues indicating greater topographic complexity. 

 

 Dependent variable: 
 Maximum PR 19 GHz  Maximum PR 37 GHz 

Max. Density kg m-3 0.00002    0.00002   
 (0.00001)    (0.00002)   

Density Range kg m-3  0.00001    0.00001  
  (0.00001)    (0.00001)  

Density Std. kg m-3   -0.00001    -0.00002 
   (0.00003)    (0.00003) 

Constant 0.035*** 0.041*** 0.043***  0.029*** 0.036*** 0.039*** 
 (0.005) (0.003) (0.003)  (0.006) (0.003) (0.003) 

Observations 81 81 81  81 81 81 

R2 0.025 0.003 0.001  0.027 0.003 0.004 

Adjusted R2 0.013 -0.010 -0.012  0.014 -0.010 -0.009 

Residual Std. Error (df = 79) 0.009 0.009 0.009  0.010 0.010 0.010 

F Statistic (df = 1; 79) 2.040 0.212 0.064  2.158 0.210 0.290 

Note :*p**p***p<0.01      
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3.5 Discussion 

In this study, we applied a high-density snow and ice layer detection algorithm to enhanced 

resolution PM data collected from 1988 to 2019 across Alaska. We found that the majority of 

detections occur in regions close to Alaska’s coast and that fewer detections were observed in the 

continental interior. For all climate zones, most detections occurred in either February or March, 

except for the North Slope where April had the most detections on average. This temporal pattern is 

perhaps indicative of the months where sufficiently warm meteorological conditions are most likely 

to occur in each respective region. We further mapped detections on a WY-by-WY basis, revealing 

WYs where a high-degree of regionality in detections existed – a finding that has potential 

application in studies looking at the population dynamics and migration patterns of grazing wildlife, 

such as caribou. Increased sub-pixel topographic complexity corresponded to a lower frequency of 

detection, an expected finding as PM retrievals of snow properties in heterogenous terrain have 

previously been shown to be subject to errors (e.g. Mätzler and Standley, 2000; Li et al., 2014). 

Studies of wildlife that inhabit alpine areas, such Dall’s sheep, potentially have less to gain from our 

results despite our use of an enhanced resolution dataset. However, if relatively flat areas of 

topography can be identified within their habitat, some inference of the presence of high-density 

layers may be possible. We also recognize that our choice of DEM to calculate the metrics of sub-

pixel topographic complexity was relatively coarse in resolution compared to other available data, 

such as the Arctic DEM (Morin et al., 2016), which may have a bearing on our results. 

Landcovers that are typical of low-land tundra, such as the NLCD classes Dwarf Scrub, 

Shrub/Scrub, and Sedge/Herbaceous (Homer et al., 2015), had a greater percentage of the total 

detections relative to their percentage area within the study domain. This result was also anticipated 

as dense vegetation is thought to attenuate PM emissions above snow cover, making inference of 

snow properties challenging (Derksen et al., 2003). The high frequency of detections in the 

Evergreen landcover class in the 19 GHz frequency data was therefore unexpected. We suggest two 

factors might be at play, albeit in opposition to each other. Across all regions the 19 GHz channel 

was shown to be more sensitive than that of the 37 GHz channel, described by a greater number of 

detections per unit time. This increased sensitivity is likely due to both the coarser resolution of the 

19 GHz data, 6.25 km versus 3.125 km, and the lower density that the detection threshold 

corresponds to, 425 kg m-3  versus 520 kg m-3. In a forested pixel, where the meteorological causes of 

high-density layers are potentially moderated, e.g. via reduced surface wind speeds and canopy 
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interception of snowfall, higher density layers are less likely to be observed (Sturm et al., 1995). 

Hence, the ∆PR needed to indicate a detection in the 37 GHz channel is possibly less frequently 

reached. However, it is also possible that the coarser resolution of the 19 GHz pixel also means that 

a higher proportion of the pixel could be of a lower vegetation landcover, which might contribute 

enough signal to counteract that emitted in the forested area. To address this uncertainty, a more 

detailed analysis that considers the sub-pixel heterogeneity of land-cover, rather than utilizing the 

majority land cover within a pixel, is needed. Of note though, is Pan et al.’s (2020) finding that PM 

observations of snow-off dates within a similar study area were robust to increased percentages of 

sub-pixel forest fraction. 

Meteorological conditions correspondent to warm snow-storms – high mean and maximum 

surface air temperatures, and increased wind speeds, rainfall and snowfall – preceded the detected 

occurrence of a high-density layer in our results. This finding compares to those from studies using 

similar methodologies (Grenfell T. C. and Putkonen J., 2008; Langlois et al., 2017; Dolant et al., 

2018) and reflects known processes of high-density or ice-layer formation (Colbeck, 1982; Fierz et 

al., 2009; Sommer et al., 2018). In what we believe to be a novel analysis, we also examined the 

meteorological conditions for the persistence of a high-density snow layer detection. A decrease in 

temperature and precipitation was found when comparing days with a persistent snow-layer versus 

days where a snow layer occurred. This relationship is indicative of a scenario where a high-density 

snow layer is formed after a warm meteorological event before being ‘frozen’ into the snow 

stratigraphy by decreasing temperatures. From study of the time-series of meteorological data 

alongside ∆PR observations at each metrological station (e.g. Figure 3.2), this appears to be the case 

for the majority of persisting layers. Similarly explained by known physical processes is the finding 

that higher temperatures precede a disappearance of a detected high-density layer when compared to 

temperatures observed during a persistence. In this instance, a ‘ripening’ snowpack, as induced by 

warmer temperatures, might become isothermal and hence lose stratigraphic definition (Colbeck, 

1982). However, we do not conduct a more detailed analysis here, so we can only infer the processes 

governing the observations in the PM record. Future work with further and more complete in-situ 

meteorological observations, alongside gridded climate data such as the Modern-Era Retrospective 

Analysis for Research and Applications (Gelaro et al., 2017), could potentially reveal a more nuanced 

and regional picture. In such a study, the intensity and combination of meteorological variables 

should be additionally considered, as well as the temporal energy balance of the existing snowpack.  
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In contrast to expectations, no relationship was found between the snowpit measurements 

of density parameters and the satellite-observed PR data. We had anticipated that higher maximum, 

range, and standard deviation of measured density would predict a higher maximum observed PR in 

the period preceding snowpit excavation. As such, what we here describe as a ‘detection’ has to be 

treated with due caution; we do not propose that any in-situ snow observations have validated our 

results. Rather, we suggest that this study is a step towards useful maps of the stratigraphic 

properties of snow as we have shown that their detections correspond to meteorological conditions 

likely to lead their occurrence, persistence, and disappearance. However, we do note that our 

snowpit dataset is limited in space and time within our study domain and period. Aside from being 

restricted to the 2018 and 2019 WYs, all snowpits were excavated before the 3rd of April and were 

mostly located in the North Slope climate division - where most detections occurred in April. It is 

also important to consider that a single snowpit of ~1 m measurement support (Sturm, 2015) 

represents a very small percentage of a single pixel’s area. Therefore caution needs to be exercised 

when assuming its stratigraphic profile extends over a wider area, though there is some evidence that 

snow cover is consistent in its properties over large areas in Arctic tundra (Sturm and Benson, 2004). 

Not pursued in this study, but of worthwhile future enquiry, is an analysis of how the topographic 

complexity and landcover of the snowpit locations affect the observed PR data, or likewise how the 

stratigraphic sequence recorded corresponds to the temporal variation in ∆PR. 

Further consideration needs to be paid to the accuracy of the CETB product due to its re-

gridding technique. The raw footprints of the SSMI/S observations remain coarse, and hence the 

posted enhanced-resolution is subject to uncertainties from combining multiple footprints to derive 

the PM value in a higher resolution pixel (Brodzik and Long, 2018). While these uncertainties do 

influence our results we suggest they are of less importance when attempting to establish a binary 

condition of the snowpack, i.e. is there or isn’t there a high-density layer, compared to seeking the 

absolute value of a continuous property, such as SWE. We acknowledge additional uncertainty in 

consideration that the ∆PR thresholds for detection are derived from simulations of high-density 

layers at the surface of typical Arctic tundra snowpacks, which were also observed in a domain 

outside of our study region (Montpetit et al., 2013; Dolant et al., 2018). However, previous work has 

established the similarities of snow cover throughout the North American sub-Arctic and Arctic 

(Sturm et al., 1995; Sturm and Benson, 2004), and our results that show a higher frequency of 

detections in landcovers typical of tundra suggest that the thresholds have some validity across a 

wider domain than originally intended. Further modelling of the expected PM signal in instances of 
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ice-layers being present at the snow-soil interface is needed for the approach to accurately detect all 

configurations of stratigraphy hazardous to grazing wildlife. 

Research beyond the scope of this current study could also better constrain the timeframe 

from which ∆PR is calculated via the use of reliable SCA products remotely-sensed in the visible 

light and NIR wavelengths. The snow season likely extends before the 1st of November and after 

the 30th of April, but it is also possible that snow-free periods occur in the study domain within this 

period – a factor that would critically affect PM observations. The CETB dataset has data from 

further satellites that could both extend the study period back to 1979 and be used to corroborate 

observations across sensors and platforms. Other future directions should include the use of GPS 

collar locations of ‘snow-sensitive’ wildlife species to act as living validation data, an approach that 

has already shown some promise (e.g. Mahoney et al., 2018). The recent release of the Arctic Animal 

Movement Archive (Davidson et al., 2020) greatly improves the possibility of such interdisciplinary 

research; we therefore hope that the findings of this research begin to address important data-gaps 

identified by wildlife ecologists (Boelman et al., 2018). 

 

3.6 Acknowledgements 

Valuable insights into the observation of snowpacks by passive microwave remote sensing 

were passed onto the lead author via correspondence with Ed Kim and from attendance of the 2018 

Snow Microwave Radiative Transfer model workshop at Col du Lautaret, France. Matthew Sturm 

kindly shared some of his vast knowledge of Alaskan snow processes, which aided the lead author’s 

decisions for the meteorological analysis of the detections.  

  

3.7 References 

Alaska Department of Fish and Game, 2014. Trends in Alaska Sheep Populations, Hunting, and 

Harvests. Division of Wildlife Conservation, Wildlife Management Report ADF&G/DWC/ 

WMR-2014-3, Juneau. 

Berteaux, D., Gauthier, G., Domine, F., Ims, R.A., Lamoureux, S.F., Lévesque, E., Yoccoz, N., 

2016. Effects of changing permafrost and snow conditions on tundra wildlife: critical places 

and times. Arctic Science 3, 65–90. https://doi.org/10.1139/as-2016-0023 



 

 

91 

Bieniek, P.A., Bhatt, U.S., Thoman, R.L., Angeloff, H., Partain, J., Papineau, J., Fritsch, F., 

Holloway, E., Walsh, J.E., Daly, C., Shulski, M., Hufford, G., Hill, D.F., Calos, S., Gens, R., 

2012. Climate Divisions for Alaska Based on Objective Methods. J. Appl. Meteor. Climatol. 

51, 1276–1289. https://doi.org/10.1175/JAMC-D-11-0168.1 

Bilodeau, F., Gauthier, G., Berteaux, D., 2013. The effect of snow cover on lemming population 

cycles in the Canadian High Arctic. Oecologia 172, 1007–1016. 

Boelman, N., Liston, G.E., Gurarie, E., Meddens, A.J.H., Mahoney, P.J., Kirchner, P.B., Bohrer, G., 

Brinkman, T.J., Cosgrove, C.L., Eitel, J., Hebblewhite, M., Kimball, J.S., LaPoint, S.D., 

Nolin, A.W., Pedersen, S.H., Prugh, L.R., Reinking, A.K., Vierling, L., 2018. Integrating 

snow science and wildlife ecology in Arctic-boreal North America. Environ. Res. Lett. 

https://doi.org/10.1088/1748-9326/aaeec1 

Bokhorst, S., Pedersen, S.H., Brucker, L., Anisimov, O., Bjerke, J.W., Brown, R.D., Ehrich, D., 

Essery, R.L.H., Heilig, A., Ingvander, S., Johansson, C., Johansson, M., Jónsdóttir, I.S., Inga, 

N., Luojus, K., Macelloni, G., Mariash, H., McLennan, D., Rosqvist, G.N., Sato, A., Savela, 

H., Schneebeli, M., Sokolov, A., Sokratov, S.A., Terzago, S., Vikhamar-Schuler, D., 

Williamson, S., Qiu, Y., Callaghan, T.V., 2016. Changing Arctic snow cover: A review of 

recent developments and assessment of future needs for observations, modelling, and 

impacts. Ambio 45, 516–537. https://doi.org/10.1007/s13280-016-0770-0 

Brodzik,  M.J., Long,  D.G., 2016. MEaSUREs Calibrated Enhanced-Resolution Passive Microwave 

Daily EASE-Grid 2.0 Brightness Temperature ESDR, Version 1. 

https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001 

Brodzik, M.J., Long, D., G., 2018. Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness 

Temperature ESDR (CETB) Alogorithm Theoretical Basis Document 103. 

Brodzik, M.J., Long, D.G., Hardman, M.A., 2018. Best Practices in Crafting the Calibrated, 

Enhanced-Resolution Passive-Microwave EASE-Grid 2.0 Brightness Temperature Earth 

System Data Record. Remote Sensing 10, 1793. https://doi.org/10.3390/rs10111793 

Colbeck, S.C., 1982. An overview of seasonal snow metamorphism. 

https://doi.org/10.1029/RG020i001p00045 



 

 

92 

Collins, W.B., Smith, T.S., 1991. Effects of Wind-Hardened Snow on Foraging by Reindeer 

(Rangifer tarandus). Arctic 44, 217–222. 

Danks, F.S., Klein, D.R., 2002. Using GIS to predict potential wildlife habitat: A case study of 

muskoxen in northern Alaska. International Journal of Remote Sensing 23, 4611–4632. 

https://doi.org/10.1080/01431160110113890 

Davidson, S., Bohrer, G., Gurarie, E., LaPoint, S., Mahoney, P., Boelman, N., Eitel, J., Prugh, L., 

Vierling, L., Jennewein, J., Grier, E., Couriot, O., Kelly, A., Meddens, A., Oliver, R., Kays, 

R., Wikelski, M., Aarvak, T., Ackerman, J., 2020. Ecological insights from three decades of 

animal movement tracking across a changing Arctic. Science 370, 712–715. 

https://doi.org/10.1126/science.abb7080 

Derksen, C., LeDrew, E., Walker, A., Goodison, B., 2000. Influence of Sensor Overpass Time on 

Passive Microwave-Derived Snow Cover Parameters. Remote Sensing of Environment 71, 

297–308. https://doi.org/10.1016/S0034-4257(99)00084-X 

Derksen, C., Walker, A., Goodison, B., 2003. A comparison of 18 winter seasons of in situ and 

passive microwave-derived snow water equivalent estimates in Western Canada. Remote 

Sensing of Environment 88, 271–282. https://doi.org/10.1016/j.rse.2003.07.003 

Descamps, S., Aars, J., Fuglei, E., Kovacs, K.M., Lydersen, C., Pavlova, O., Pedersen, \AAshild, 

Ravolainen, V., Strøm, H., 2017. Climate change impacts on wildlife in a High Arctic 

archipelago – Svalbard, Norway. Global Change Biology 23, 490–502. 

https://doi.org/10.1111/gcb.13381 

Dolant, C., Montpetit, B., Langlois, A., Brucker, L., Zolina, O., Johnson, C.A., Royer, A., Smith, P., 

2018. Assessment of the Barren Ground Caribou Die-off During Winter 2015–2016 Using 

Passive Microwave Observations. Geophysical Research Letters 45, 4908–4916. 

https://doi.org/10.1029/2017GL076752 

Earth Resources Observation And Science (EROS) Center, 2017. Global 30 Arc-Second Elevation 

(GTOPO30). https://doi.org/10.5066/F7DF6PQS 

Eira, I.M.G., Oskal, A., Hanssen-Bauer, I., Mathiesen, S.D., 2018. Snow cover and the loss of 

traditional indigenous knowledge. Nature Clim Change 8, 928–931. 

https://doi.org/10.1038/s41558-018-0319-2 



 

 

93 

Fancy, S.G., White, R.G., 2011. Energy expenditures for locomotion by barren-ground caribou. 

Canadian Journal of Zoology. https://doi.org/10.1139/z87-018 

Fancy, S.G., White, R.G., 1985. Energy Expenditures by Caribou while Cratering in Snow. The 

Journal of Wildlife Management 49, 987–993. https://doi.org/10.2307/3801384 

Fierz, C., Armstrong, R.L., Durand, Y., Etchevers, P., Greene, E., McClung, D.M., Nishimura, K., 

Satyawali, P.K., Sokratov, S. a., 2009. The international classification for seasonal snow on 

the ground. IHP-VII Technical Documents in Hydrology 83, 90. 

http://www.cosis.net/abstracts/EGU05/09775/EGU05-J-09775.pdf 

Foster, J.L., Hall, D.K., Chang, A.T.C., Rango, A., 1984. An overview of passive microwave snow 

research and results. https://doi.org/10.1029/RG022i002p00195 

Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, 

A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., 

Buchard, V., Conaty, A., da Silva, A.M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., 

Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, 

S.D., Sienkiewicz, M., Zhao, B., Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, 

A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, 

L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., 

Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., 

Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., Zhao, B., 2017. The Modern-

Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of 

Climate 30, 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1 

Grenfell T. C., Putkonen J., 2008. A method for the detection of the severe rain-on-snow event on 

Banks Island, October 2003, using passive microwave remote sensing. Water Resources 

Research 44. https://doi.org/10.1029/2007WR005929 

Hall, D.K., Chang, A.T.C., Foster, J.L., 1986. Detection of the Depth-Hoar Layer in the Snow-Pack 

of the Arctic Coastal Plain of Alaska, U.S.A., Using Satellite Data. Journal of Glaciology 32, 

87–94. https://doi.org/10.3189/S0022143000006912 

Holland, J.D., Bert, D.G., Fahrig, L., 2004. Determining the Spatial Scale of Species’ Response to 

Habitat. BioScience 54, 227–233. https://doi.org/10.1641/0006-

3568(2004)054[0227:dtssos]2.0.co;2 



 

 

94 

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., 2015. Completion of the 2011 National Land 

Cover Database for the Conterminous United States – Representing a Decade of Land 

Cover Change Information. PHOTOGRAMMETRIC ENGINEERING 11. 

Hoyer, S., Hamman, J.J., 2017. xarray: N-D labeled Arrays and Datasets in Python. Journal of Open 

Research Software 5, 10. https://doi.org/10.5334/jors.148 

Jeong, D.I., Sushama, L., 2018. Rain-on-snow events over North America based on two Canadian 

regional climate models. Climate Dynamics 50, 303–316. 

Johansson, C., Pohjola, V.A., Jonasson, C., Callaghan, T.V., 2011. Multi-Decadal Changes in Snow 

Characteristics in Sub-Arctic Sweden. AMBIO 40, 566. https://doi.org/10.1007/s13280-

011-0164-2 

Kerk, M.V. de, Arthur, S., Bertram, M., Borg, B., Herriges, J., Lawler, J., Mangipane, B., Koizumi, 

C.L., Wendling, B., Prugh, L., 2020. Environmental Influences on Dall’s Sheep Survival. The 

Journal of Wildlife Management. https://doi.org/10.1002/jwmg.21873 

Kerk, M. van de, Verbyla, D., Nolin, A.W., Sivy, K.J., Prugh, L.R., 2018. Range-wide variation in the 

effect of spring snow phenology on Dall sheep population dynamics. Environ. Res. Lett. 13, 

075008. https://doi.org/10.1088/1748-9326/aace64 

Kim, Y., Kimball, J.S., Du, J., Schaaf, C.L.B., Kirchner, P.B., 2018. Quantifying the effects of freeze-

thaw transitions and snowpack melt on land surface albedo and energy exchange over Alaska 

and Western Canada. Environ. Res. Lett. 13, 075009. https://doi.org/10.1088/1748-

9326/aacf72 

Langlois, A., Johnson, C.-A.A., Montpetit, B., Royer, A., Blukacz-Richards, E.A.A., Neave, E., 

Dolant, C., Roy, A., Arhonditsis, G., Kim, D.-K.K., Kaluskar, S., Brucker, L., 2017. 

Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave 

radiometry: A context for Peary caribou habitat in the Canadian Arctic. Remote Sensing of 

Environment 189, 84–95. https://doi.org/10.1016/j.rse.2016.11.006 

Li, X., Zhang, L., Weihermüller, L., Jiang, L., Vereecken, H., 2014. Measurement and Simulation of 

Topographic Effects on Passive Microwave Remote Sensing Over Mountain Areas: A Case 

Study From the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing 52, 

1489–1501. https://doi.org/10.1109/TGRS.2013.2251887 



 

 

95 

Liston, G.E., Hiemstra, C.A., 2011. The Changing Cryosphere: Pan-Arctic Snow Trends (1979–

2009). J. Climate 24, 5691–5712. https://doi.org/10.1175/JCLI-D-11-00081.1 

Mahoney, P.J., Liston, G.E., LaPoint, S., Gurarie, E., Mangipane, B., Wells, A.G., Brinkman, T.J., 

Eitel, J.U.H., Hebblewhite, M., Nolin, A.W., Boelman, N., Prugh, L.R., 2018. Navigating 

snowscapes: scale-dependent responses of mountain sheep to snowpack properties. 

Ecological Applications 0. https://doi.org/10.1002/eap.1773 

Mallory, C.D., Boyce, M.S., 2017. Observed and predicted effects of climate change on Arctic 

caribou and reindeer. Environ. Rev. 26, 13–25. https://doi.org/10.1139/er-2017-0032 

Mätzler, C., Standley, A., 2000. Technical note: Relief effects for passive microwave remote sensing. 

International Journal of Remote Sensing 21, 2403–2412. 

https://doi.org/10.1080/01431160050030538 

Montpetit, B., 2015. Analyse de la modélisation de l’émission multi-fréquences micro-onde des sols 

et de la neige, incluant les croutes de glace à l’aide du modèle Microwave Emission Model of 

Layered Snowpacks (MEMLS). Université de Sherbrooke. 

Montpetit, B., Royer, A., Roy, A., Langlois, A., Derksen, C., 2013. Snow microwave emission 

modeling of ice lenses within a snowpack using the microwave emission model for layered 

snowpacks. IEEE Transactions on Geoscience and Remote Sensing 51, 4705–4717. 

https://doi.org/10.1109/TGRS.2013.2250509 

Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.-J., Willis, M., Bates, B., Willamson, C., 

Peterman, K., 2016. ArcticDEM; A Publically Available, High Resolution Elevation Model 

of the Arctic 18, EPSC2016-8396. 

Nellemann, C., Fry, G., 1995. Quantitative analysis of terrain ruggedness in reindeer winter grounds. 

Arctic 172–176. 

Nelson, M.E., Mech, L.D., 1986. Relationship between Snow Depth and Gray Wolf Predation on 

White-Tailed Deer. The Journal of Wildlife Management 50, 471–474. 

https://doi.org/10.2307/3801108 

NOAA, 2020. Global Historical Climatology Network (GHCN) | National Centers for 

Environmental Information (NCEI) formerly known as National Climatic Data Center 

(NCDC) [WWW Document]. URL https://www.ncdc.noaa.gov/data-access/land-based-



 

 

96 

station-data/land-based-datasets/global-historical-climatology-network-ghcn (accessed 

11.18.20). 

Ouellet, F., Langlois, A., Blukacz-Richards, E.A., Johnson, C.A., Royer, A., Neave, E., Larter, N.C., 

2017. Spatialization of the SNOWPACK snow model for the Canadian Arctic to assess 

Peary caribou winter grazing conditions. Physical Geography 38, 143–158. 

https://doi.org/10.1080/02723646.2016.1274200 

Pan, C.G., Kirchner, P.B., Kimball, J.S., Du, J., 2020. A Long-Term Passive Microwave Snowoff 

Record for the Alaska Region 1988–2016. Remote Sensing 12, 153. 

https://doi.org/10.3390/rs12010153 

Pan, C.G., Kirchner, P.B., Kimball, J.S., Kim, Y., Du, J., 2018. Rain-on-snow events in Alaska, their 

frequency and distribution from satellite observations. Environ. Res. Lett. 13, 075004. 

https://doi.org/10.1088/1748-9326/aac9d3 

Pedersen, S.H., Liston, G.E., Welker, J.M., 2019. Snow depth and snow density measured in Arctic 

Alaska for caribou winter applications in 2018 and 2019. 

QGIS Development Team, 2020. QGIS Geographic Information System. QGIS Association. 

R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

Rasmus, S., Kivinen, S., Irannezhad, M., 2018. Basal ice formation in snow cover in Northern 

Finland between 1948 and 2016. Environ. Res. Lett. 13, 114009. 

https://doi.org/10.1088/1748-9326/aae541 

Rattenbury, K.L., Schmidt, J.H., Swanson, D.K., Borg, B.L., Mangipane, B.A., Sousanes, P.J., 2018. 

Delayed spring onset drives declines in abundance and recruitment in a mountain ungulate. 

Ecosphere 9, e02513. https://doi.org/10.1002/ecs2.2513 

Reid, D.G., Bilodeau, F., Krebs, C.J., Gauthier, G., Kenney, A.J., Gilbert, B.S., Leung, M.C.-Y., 

Duchesne, D., Hofer, E., 2012. Lemming winter habitat choice: a snow-fencing experiment. 

Oecologia 168, 935–946. https://doi.org/10.1007/s00442-011-2167-x 

Riley, S.J., DeGloria, S.D., Elliot, R., 1999. Index that quantifies topographic heterogeneity. 

intermountain Journal of sciences 5, 23–27. 

Saberi, N., 2019. Snow Properties Retrieval Using Passive Microwave Observations. 



 

 

97 

Saberi, N., Kelly, R., Flemming, M., Li, Q., 2019. Review of snow water equivalent retrieval methods 

using spaceborne passive microwave radiometry. International Journal of Remote Sensing 0, 

1–23. https://doi.org/10.1080/01431161.2019.1654144 

Sappington, J.M., Longshore, K.M., Thompson, D.B., 2007. Quantifying landscape ruggedness for 

animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. The Journal 

of wildlife management 71, 1419–1426. 

Semmens, K.A., Ramage, J., Bartsch, A., Liston, G.E., 2013. Early snowmelt events: detection, 

distribution, and significance in a major sub-arctic watershed. Environ. Res. Lett. 8, 014020. 

https://doi.org/10.1088/1748-9326/8/1/014020 

Sivy, K.J., Nolin, A.W., Cosgrove, C., Prugh, L., 2018. Critical snow density threshold for Dall sheep 

(Ovis dalli dalli). Can. J. Zool. https://doi.org/10.1139/cjz-2017-0259 

Sokolov, A.A., Sokolova, N.A., Ims, R.A., Brucker, L., Ehrich, D., 2016. Emergent Rainy Winter 

Warm Spells May Promote Boreal Predator Expansion into the Arctic. Arctic 69, 121–129. 

Sommer, C.G., 2018. Wind-packing of snow: How do wind crusts form? [WWW Document]. 

Infoscience. https://doi.org/10.5075/epfl-thesis-8628 

Sommer, C.G., Lehning, M., Fierz, C., 2018. Wind tunnel experiments: influence of erosion and 

deposition on wind-packing of new snow. Frontiers in Earth Science 6, 4. 

Sturm, M., 2015. White water: Fifty years of snow research in WRR and the outlook for the future. 

Water Resources Research 51, 4948–4965. https://doi.org/10.1002/2015WR017242 

Sturm, M., Benson, C., 2004. Scales of spatial heterogeneity for perennial and seasonal snow layers. 

Annals of Glaciology 38, 253–260. https://doi.org/10.3189/172756404781815112 

Sturm, M., Holmgren, J., Liston, G.E., Holmgren, J., Liston, G.E., 1995. A Seasonal Snow Cover 

Classification System for Local to Global Applications. Journal of Climate 8, 1261–1283. 

https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2 

Sun, N., Yan, H., Wigmosta, M.S., Leung, L.R., Skaggs, R., Hou, Z., 2019. Regional Snow 

Parameters Estimation for Large-Domain Hydrological Applications in the Western United 

States. Journal of Geophysical Research: Atmospheres 124, 5296–5313. 

https://doi.org/10.1029/2018JD030140 



 

 

98 

Tong, J., Déry, S.J., Jackson, P.L., Derksen, C., 2010. Testing snow water equivalent retrieval 

algorithms for passive microwave remote sensing in an alpine watershed of western Canada. 

Canadian Journal of Remote Sensing 36, S74–S86. https://doi.org/10.5589/m10-009 

Tyler N. J. C., 2010. Climate, snow, ice, crashes, and declines in populations of reindeer and caribou 

(Rangifer tarandus L.). Ecological Monographs 80, 197–219. https://doi.org/10.1890/09-

1070.1 

Ulaby, F.T., Moore, R.K., Fung, A.K., 1981. Microwave remote sensing: Active and passive. volume 

1-microwave remote sensing fundamentals and radiometry. 

Vikhamar-Schuler, D., Hanssen-Bauer, I., Schuler, T.V., Mathiesen, S.D., Lehning, M., 2013. Use of 

a multilayer snow model to assess grazing conditions for reindeer. Annals of Glaciology 54, 

214–226. https://doi.org/10.3189/2013AoG62A306 

Vroom, G.W., Herrero, S., Ogilvie, R.T., 1980. The ecology of winter den sites of grizzly bears in 

Banff National Park, Alberta. Bears: their biology and management 321–330. 

Wilmers, C.C., Nickel, B., Bryce, C.M., Smith, J.A., Wheat, R.E., Yovovich, V., 2015. The golden age 

of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. Ecology 

96, 1741–1753. https://doi.org/10.1890/14-1401.1 

Yan, H., Sun, N., Wigmosta, M., Skaggs, R., Hou, Z., Leung, R., 2018. Next-Generation Intensity-

Duration-Frequency Curves for Hydrologic Design in Snow-Dominated Environments. 

Water Resources Research 54, 1093–1108. https://doi.org/10.1002/2017WR021290 

 



 

 

99 

3.8 Appendix 

 

Appendix 3.1. Map of Alaska’s climate divisions after Bieniek et al. (2012). 
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Appendix 3.2. Schematic of input data streams, processing steps, intermediate data products, and analysis. 
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Appendix 3.3. Table of statistics for the comparison of the previous days’ (-1 day) and previous two days’ (-2 
day) meteorological variables between the different classes of high-density snow layer detection observed 
from the 19 GHz PM data 

 

Frequency Variable Group 1 Group 2 n1 n2 p p-adjusted significance
19 GHz Max. Temp. -1 day No detection Occurrence 51498 349 0.126 0.756 ns

No detection Persistence 51498 687 5.51E-47 3.31E-46 ****
No detection Disappearence 51498 344 0.000725 0.004 **
Occurrence Persistence 349 687 7.19E-28 4.31E-27 ****
Occurrence Disappearence 349 344 0.000344 0.002 **
Persistence Disappearence 687 344 8.62E-11 5.17E-10 ****

Mean. Temp. -1 day No detection Occurrence 37503 265 0.043 0.26 ns
No detection Persistence 37503 565 2.42E-52 1.45E-51 ****
No detection Disappearence 37503 263 9.13E-06 5.48E-05 ****
Occurrence Persistence 265 565 9.87E-32 5.92E-31 ****
Occurrence Disappearence 265 263 2.29E-06 1.37E-05 ****
Persistence Disappearence 565 263 2.09E-09 1.25E-08 ****

Mean Wind Speed -1 day No detection Occurrence 12715 109 0.056 0.335 ns
No detection Persistence 12715 204 1.99E-04 1.00E-03 **
No detection Disappearence 12715 106 4.81E-13 2.89E-12 ****
Occurrence Persistence 109 204 5.48E-01 1.00E+00 ns
Occurrence Disappearence 109 106 0.001 0.008 **
Persistence Disappearence 204 106 1.00E-03 7.00E-03 **

Rainfall -1 day No detection Occurrence 18832 118 1.61E-06 9.66E-06 ****
No detection Persistence 18832 225 7.11E-01 1.00E+00 ns
No detection Disappearence 18832 113 6.45E-01 1.00E+00 ns
Occurrence Persistence 118 225 1.41E-04 8.46E-04 ***
Occurrence Disappearence 118 113 8.00E-03 4.80E-02 *
Persistence Disappearence 225 113 5.64E-01 1.00E+00 ns

Snowfall -1 day No detection Occurrence 12221 110 0.000889 0.005 **
No detection Persistence 12221 212 1.91E-01 1.00E+00 ns
No detection Disappearence 12221 105 0.433 1 ns
Occurrence Persistence 110 212 8.84E-04 5.00E-03 **
Occurrence Disappearence 110 105 0.007 0.044 *
Persistence Disappearence 212 105 9.15E-01 1.00E+00 ns

Temp. Max. -2 days No detection Occurrence 51498 349 0.028 0.168 ns
No detection Persistence 51498 687 1.62E-39 9.72E-39 ****
No detection Disappearence 51498 344 2.18E-04 1.00E-03 **
Occurrence Persistence 349 687 8.75E-26 5.25E-25 ****
Occurrence Disappearence 349 344 1.99E-05 1.19E-04 ***
Persistence Disappearence 687 344 1.98E-07 1.19E-06 ****

Temp. Mean -2 days No detection Occurrence 37503 265 0.005 0.028 *
No detection Persistence 37503 565 8.67E-44 5.20E-43 ****
No detection Disappearence 37503 263 3.77E-05 0.000226 ***
Occurrence Persistence 265 565 4.66E-30 2.80E-29 ****
Occurrence Disappearence 265 263 5.8E-07 3.48E-06 ****
Persistence Disappearence 565 263 6.48E-08 3.89E-07 ****

Mean Wind Speed -2 days No detection Occurrence 12715 109 1.02E-05 0.0000612 ****
No detection Persistence 12715 204 2.70E-04 2.00E-03 **
No detection Disappearence 12715 106 1.04E-09 6.24E-09 ****
Occurrence Persistence 109 204 1.92E-01 1.00E+00 ns
Occurrence Disappearence 109 106 1.56E-01 9.36E-01 ns
Persistence Disappearence 204 106 4.00E-03 2.50E-02 *

Rainfall -2 days No detection Occurrence 18832 118 1.67E-08 0.0000001 ****
No detection Persistence 18832 225 5.00E-01 1.00E+00 ns
No detection Disappearence 18832 113 0.464 1 ns
Occurrence Persistence 118 225 1.16E-04 6.96E-04 ***
Occurrence Disappearence 118 113 0.002 0.012 *
Persistence Disappearence 225 113 8.50E-01 1.00E+00 ns

Snowfall -2 days No detection Occurrence 12221 110 0.001 0.008 **
No detection Persistence 12221 212 7.73E-01 1.00E+00 ns
No detection Disappearence 12221 105 7.83E-01 1.00E+00 ns
Occurrence Persistence 110 212 1.00E-02 5.90E-02 ns
Occurrence Disappearence 110 105 1.80E-02 1.07E-01 ns
Persistence Disappearence 212 105 9.65E-01 1.00E+00 ns
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Appendix 3.4. Table of statistics for the comparison of the previous days’ (-1 day) and previous two days’ (-2 
day) meteorological variables between the different classes of high-density snow layer detection observed 
from the 37 GHz PM data 

 

Frequency Variable Group 1 Group 2 n1 n2 p p-adjusted significance
37 GHz Max. Temp. -1 day No detection Occurrence 57840 298 0.0000555 0.000333 ***

No detection Persistence 57840 435 1.07E-08 6.42E-08 ****
No detection Disappearence 57840 297 0.694 1 ns
Occurrence Persistence 298 435 7.73E-12 4.64E-11 ****
Occurrence Disappearence 298 297 0.014 0.083 ns
Persistence Disappearence 435 297 6.97E-05 4.18E-04 ***

Mean. Temp. -1 day No detection Occurrence 41757 194 0.000629 0.004 **
No detection Persistence 41757 265 3.00E-03 2.00E-02 *
No detection Disappearence 41757 194 3.61E-01 1.00E+00 ns
Occurrence Persistence 194 265 6.11E-06 3.67E-05 ****
Occurrence Disappearence 194 194 9.60E-02 5.75E-01 ns
Persistence Disappearence 265 194 1.00E-02 5.90E-02 ns

Mean Wind Speed -1 day No detection Occurrence 16788 203 5.2E-24 3.12E-23 ****
No detection Persistence 16788 298 8.02E-47 4.81E-46 ****
No detection Disappearence 16788 203 1.47E-19 8.82E-19 ****
Occurrence Persistence 203 298 2.63E-01 1.00E+00 ns
Occurrence Disappearence 203 203 0.499 1 ns
Persistence Disappearence 298 203 6.60E-02 3.94E-01 ns

Rainfall -1 day No detection Occurrence 23097 210 4.13E-15 2.48E-14 ****
No detection Persistence 23097 313 3.50E-02 2.08E-01 ns
No detection Disappearence 23097 209 1.40E-02 8.20E-02 ns
Occurrence Persistence 210 313 5.45E-12 3.27E-11 ****
Occurrence Disappearence 210 209 6.43E-04 4.00E-03 **
Persistence Disappearence 313 209 1.00E-03 6.00E-03 **

Snowfall -1 day No detection Occurrence 15771 198 0.066 0.397 ns
No detection Persistence 15771 293 1.02E-05 6.12E-05 ****
No detection Disappearence 15771 197 0.069 0.412 ns
Occurrence Persistence 198 293 6.46E-06 3.88E-05 ****
Occurrence Disappearence 198 197 0.009 0.053 ns
Persistence Disappearence 293 197 1.00E-01 6.00E-01 ns

Temp. Max. -2 days No detection Occurrence 57840 298 0.000015 0.00009 ****
No detection Persistence 57840 435 2.51E-06 1.51E-05 ****
No detection Disappearence 57840 297 4.73E-01 1.00E+00 ns
Occurrence Persistence 298 435 1.63E-10 9.78E-10 ****
Occurrence Disappearence 298 297 2.00E-02 1.18E-01 ns
Persistence Disappearence 435 297 4.70E-04 3.00E-03 **

Temp. Mean -2 days No detection Occurrence 41757 194 0.0000783 0.00047 ***
No detection Persistence 41757 265 3.30E-02 2.00E-01 ns
No detection Disappearence 41757 194 0.169 1 ns
Occurrence Persistence 194 265 1.14E-05 6.84E-05 ****
Occurrence Disappearence 194 194 0.104 0.624 ns
Persistence Disappearence 265 194 1.60E-02 9.70E-02 ns

Mean Wind Speed -2 days No detection Occurrence 16788 203 6.07E-27 3.64E-26 ****
No detection Persistence 16788 298 2.17E-56 1.30E-55 ****
No detection Disappearence 16788 203 8.25E-25 4.95E-24 ****
Occurrence Persistence 203 298 2.70E-02 1.61E-01 ns
Occurrence Disappearence 203 203 7.21E-01 1.00E+00 ns
Persistence Disappearence 298 203 9.20E-02 5.53E-01 ns

Rainfall -2 days No detection Occurrence 23097 210 3.8E-17 2.28E-16 ****
No detection Persistence 23097 313 8.06E-01 1.00E+00 ns
No detection Disappearence 23097 209 0.000192 0.001 **
Occurrence Persistence 210 313 2.17E-10 1.30E-09 ****
Occurrence Disappearence 210 209 0.003 0.016 *
Persistence Disappearence 313 209 3.00E-03 1.60E-02 *

Snowfall -2 days No detection Occurrence 15771 198 0.003 0.016 *
No detection Persistence 15771 293 1.00E-03 6.00E-03 **
No detection Disappearence 15771 197 1.70E-02 1.00E-01 ns
Occurrence Persistence 198 293 4.93E-06 2.96E-05 ****
Occurrence Disappearence 198 197 7.65E-05 4.59E-04 ***
Persistence Disappearence 293 197 7.99E-01 1.00E+00 ns
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Chapter 4 An open-source, micro weather station network with Iridium 

communication for remote deployment. 

 

Chris L. Cosgrove and Anne W. Nolin 

 

4.1 Abstract 

 Meteorological data scarcity in high-latitude and high-altitude areas is a significant 

challenge in understanding the impacts of a warming climate on seasonal snowcover; a critical 

component of regional hydrology and ecosystem functions. The development of low-cost, open-

source wireless sensor networks (WSN) however offers an opportunity to address data gaps in these 

regions and widen the availability of environmental monitoring to non-traditional audiences. Here 

we present a WSN for snow-related applications built on the Arduino platform and utilizing Long 

Range Radio (LoRa) for two-way, local inter-node communication, and the Iridium constellation of 

satellites for data transmission from any global location with a clear view of the sky. The electronic 

hardware in each LoRa-enabled sensor node in our WSN costs approximately $270, the addition of 

an Iridium modem in a ‘base-station’ configuration costs an additional $250 and allows easy 

integration with Google Sheets, or other services, for near real-time data dissemination. Promising 

results are shown for low-cost sensors measuring snow depth, temperature, and relative humidity, in 

comparison to traditional research-grade components. Highlighting the WSN’s relative strengths and 

weaknesses we propose three alternative deployment scenarios where it would enhance current 

snow-related research; the calibration and validation of physically-based models forced by gridded 

reanalysis data in remote regions, animal behavior and habitat selection in snowscapes, and rain-on-

snow flood forecasting and monitoring. As the project is financially accessible, freely available to 

replicate, and has data streams that can be easily made publicly accessible, we envision its 

deployment in developing countries and/or in public-facing applications. 
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4.2 Introduction 

High-latitude and high-altitude regions are being increasingly recognized as a frontline of 

climate change (Serreze and Barry, 2011; Pepin et al., 2015; Bormann et al., 2018; Box et al., 2019). 

Accelerated warming is causing dramatic changes to the hydrological cycle and unique ecosystems 

native to these areas, with cascading effects on the many services that each provides (AMAP, 2017). 

However, these regions are noted for their comparative data-scarcity and inaccessibility (Boelman et 

al., 2018, Figure 1; Klein et al., 2019), which is a major obstacle to research efforts and monitoring 

programs. A conspicuous and vital characteristic of these landscapes is the seasonal-to-perennial 

presence of snow. Snow cover has importance across many scales and processes, e.g.; as a feedback 

in land surface-atmosphere energy exchange due to its high reflectivity (Groisman et al., 1994), as 

terrestrial water storage depended upon by nearly 20% of the world’s population (Barnett et al., 

2005), and as a key component to ecosystem function in a wide range of habitats (Boelman et al., 

2018). There is multi-dataset agreement that snow cover in high-latitude and high-altitude regions is 

decreasing (AMAP, 2017; Brown and Mote, 2009; Notarnicola, 2020) with often detrimental 

consequences for both natural and human systems (e.g. Brown et al., 2017). Yet there remain 

significant challenges in retrieving in situ data of snow properties from remote regions, limiting our 

ability to calibrate and validate physically-based models and remote-sensing datasets (Sturm, 2015). 

Manual surveys of snow properties are a long-established measurement method of snow 

properties, most frequently snow depth (SD) and snow water equivalent (SWE), yet are expensive to 

conduct, which limits their coverage in space and time, even in accessible areas (Kinar and Pomeroy, 

2015). The development of automatic weather stations (AWS) and instruments measuring SD using 

ultrasound, and SWE through a variety of methods, has allowed long-term monitoring of both snow 

properties and meteorological variables important to the energy balance of the snowpack (Kinar and 

Pomeroy, 2015). Networks of these stations, such as SNOTEL (NCRS, 2020) in the western United 

States, have greatly enhanced the ability to characterize different snow regimes and their interaction 

with climate variability. Yet, as point-scale measurement sites with high-costs of deployment and 

maintenance, they have poor spatial distribution and are often located in non-representative areas in 

terms of topography and vegetation, limiting their utility (Molotch and Bales, 2005). 

More recently there has been an increased interest in developing and testing distributed 

sensor networks for snow-research. This research has been largely driven by the need to address 

critical knowledge gaps concerning the spatiotemporal scales of snow processes that a single AWS 
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or remote sensing datasets cannot resolve (Sturm, 2015), but has been made possible by the 

increased availability of affordable sensors and supporting hardware (Mao et al., 2019). Early forms 

of these networks had no inter-station connectivity built-in, instead taking the form of standalone, 

cost-efficient nodes, each with data-logging capacity (e.g. Varhola et al., 2010; Pohl et al., 2014). 

Latterly, they have developed rapidly past wired connectivity (e.g. Rice and Bales, 2010) to wireless 

sensor networks (WSN) of >100 sensor nodes relaying data in near real-time to base stations 

connected to the internet (e.g. Kerkez et al., 2012; Malek et al., 2017). However, these advanced 

systems rely on either a cellular network or an ethernet connection for transmission of data to the 

internet for later downstream use. In remote areas, without such communication infrastructure, this 

reduces their usefulness for near real-time event monitoring and doesn’t alert in the case of 

instrument failure - potentially leading to avoidable data loss. Additionally, their replicability and 

adaptability for development and deployment by other users is stymied due to the use of 

components and software that either demand a high degree of technical expertise or are proprietary 

(Mao et al., 2019).  

Here we present a working prototype of a WSN for measuring SD and meteorological 

variables in remote high-latitude and high-altitude regions without traditional communication 

infrastructure. To examine its appropriateness in a research context in these environments, we 

demonstrate and compare its deployment alongside proprietary ‘research-standard’ equipment at a 

remote alpine site. The WSN uses the Iridium constellation of satellites for near real-time data 

transmission and monitoring, enabling its deployment at any global location with a clear view of the 

sky. Due to the use of open-source hardware and software that is accessible in terms of technical 

expertise and budget, we suggest it as an option suitable for non-traditional users and applications. 

Further, and in response to the recommendations proposed in Mao et al.’s (2019) review of low-cost 

sensor networks, we address the linking of data collection and downstream use (i.e. sharing and 

visualization) by demonstrating integration with Google Sheets.  

 

4.3 Methods  

4.3.1 WSN design and specifications 

The WSN we present here is built entirely from off-the-shelf or open-source components, 

and by choosing to base hardware on the Arduino (2020) open-source electronics platform, we aim 

to create a low-entry point for a variety of users from non-traditional backgrounds with minimal 
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electronic engineering experience. Arduino has an active global community of users that contribute 

to an impressive collective knowledge base, accessible in online tutorials and forums, and is a 

platform widely used for environmental sensing in peer-reviewed scientific literature (Mao et al., 

2019). Following the spirit of the open-source movement, we hope that by distributing hardware 

and software details freely on Github interested readers can easily replicate and adapt the WSN 

according to their specific needs.  

 

4.3.2 Hardware 

Our system has two types of deployments, a sensor node, and a base station node. Each 

share a common set of components with a minimum operating temperature range of -40 ºC to 80 ºC 

(see Figure 4.1). 

- Adafruit Industries Feather M0 with RFM95 LoRa Radio 

https://www.adafruit.com/product/3178. The Adafruit Feather line of development boards 

is available from distributors on six continents7. They are well-built, compact (51 mm by 23 

mm), and can be neatly stacked upon one another for ease and flexibility of assembly. The 

Feather M0 with RFM95 LoRa Radio board comes equipped with an ATSAMD21G18 

ARM Cortex M0 processor to run each nodes’ software and has a Long Range (LoRa) 

packet radio transceiver built-in for node-to-node communication. We chose this board as 

the microcontroller due to its variety of digital and analog pins, processor specification, and 

flexible telemetry capable of operating at the non-licensed frequencies of 868 MHz or 915 

MHz in Europe and North America respectively. LoRa radios have documented ranges of 

up to 2 km line-of-sight with simple omnidirectional aerials making them an excellent choice 

for remote applications looking to maximize spatial coverage. 

 

7 https://www.adafruit.com/distributors 
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- Adafruit Industries DS3231 Precision RTC FeatherWing 

https://www.adafruit.com/product/3028. The FeatherWing series of breakout boards from 

Adafruit easily configure with the Feather line of microprocessor boards. For time-stamping 

sensor measurements and to wake the microprocessor from a low-power, deep-sleep mode 

between measurements, we use a FeatherWing with a DS3231 Real Time Clock (RTC) run 

off a separate coin cell battery. 

- Adafruit Industries Adalogger Featherwing https://www.adafruit.com/product/2922. Each 

sensor node is equipped with its own local data storage via the use of the Adalogger 

Featherwing, which has a microSD8 memory card socket. 

- Adafruit Industries Terminal Block Breakout Featherwing 

https://www.adafruit.com/product/2926. Completing the microprocessor assembly is a 

Terminal Block Breakout that allows flexible prototyping and deployment of different 

sensors by negating the need for permanently soldering them to the development boards. 

- SONBEST SHT-10 Mesh-protected Weatherproof Temperature and Humidity Sensor 

https://www.adafruit.com/product/1298. Air temperature and relative humidity are 

fundamental meteorological variables and are required as minimum forcing data for a variety 

of physically-based snow evolution models (e.g. SNOWPACK, Bartelt and Lehning, 2002; 

SnowModel, Liston and Elder, 2006). We use a weatherproofed Sensirion SHT-10 sensor 

with 4.5 % and 0.5 % precision for humidity and temperature respectively, though a wide 

range of temperature and relative humidity sensors interface with the microprocessor. For 

our initial deployment, from which the data presented in this paper is derived, we ‘shielded’ 

SHT-10 sensor in a horizontal PVC pipe with holes drilled in it to allow for airflow and 

 

8 https://www.sdcard.org/index.html 
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drainage. Future deployments could make use of a 3D printed radiation shield such as those 

designed by the 3D-Printed Automatic Weather Station initiative (3D-PAWS, 2020). 

- MaxBotix® MB7374 HRXL-MaxSonar-WRST7 Ultrasonic Precision Range Finder 

https://www.maxbotix.com/Ultrasonic_Sensors/MB7374.htm. To measure SD we use a 

MaxBotix® MB7374 (hereafter referred to as MaxBotix) ultrasonic range finder that 

calculates the distance to the snow-surface, or ground, from the return time of an ultrasonic 

pulse. It has a resolution of 1 mm, internal temperature compensation, a range of 50 to 500 

cm, and is specifically calibrated for snow level measurement. 

 

The base station node additionally has a; 

- Rock Seven RockBlock Mk II Iridium Satellite Modem http://www.rock7.com/products-

rockblock. The RockBlock Mk II’s Iridium 9602 satellite modem (hereafter referred to as 

RockBlock) enables the transmission and reception of short messages from any global 

location that has a clear view of the sky. In comparison to previous systems, this allows our 

WSN to transfer data in near real-time from remote areas beyond the reach of traditional 

terrestrial communication networks. The RockBlock has a successful deployment history in 

research settings (e.g. Martinez et al., 2017) and line-rental and credits are easily managed via 

an online application9 

 

4.3.3 Power Management 

For successful deployment in remote and inaccessible areas effective power management is 

an important consideration within a WSN. The hardware above was selected for power efficiency 

and the ability to programmatically enable a deep-sleep mode using minimal current draw. 

 

9 https://rockblock.rock7.com/Operations 
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Complimenting this is a relatively low measurement frequency, which limits the time each node 

spends in power-intensive measurement or communication processes, greatly extending the 

deployment period without needing to replace batteries. For our test deployment, we used 

rechargeable 2500 mAh and 4400 mAh lithium-ion batteries in the sensor and base station nodes 

respectively, with the larger battery in the base station accounting for the additional power needs of 

the satellite modem. Further, we included a 6V solar panel10 and battery charger11 in the base station 

node set-up to ‘scavenge’ extra power in daylight hours. This represents a relatively light weight set-

up where keeping the physical size and mass of each node to a minimum is a key criterion and where 

hourly measurements are adequate for the project’s requirements. However, there exists great 

flexibility in terms of battery size/type and/or sampling interval, which is easy to implement using 

readily available batteries, e.g. single D-cells, AA type batteries, or other, as well as programmatically. 

 

 

Figure 4.1. Photo of a SnowBot node installed at Sagehen Creek Field Station. Note the MaxBotix acoustic 
depth sensor mounted on the end of the boom. Radiation shield containing temperature and humidity 
sensors not pictured. For scale, the antenna to the right of the unit is 17 cm long.  

 

10 https://www.adafruit.com/product/200 
11 https://www.adafruit.com/product/390 
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4.3.4 Network design 

For the demonstration of this prototype, we implemented a star-type network topology 

where only the base station node receives sample data packets from the WSN nodes. This is in 

contrast to other possible topologies, e.g. mesh, where multiple neighboring nodes communicate with 

one another and create multiple paths back to a base station, which can allow for deployment over a 

greater area depending on the communication technology employed (Kerkez et al., 2012). Here we 

opt for a star topology due to the simplicity of our test deployment environment (see Figure 4.2), 

long-range of the LoRa radios, and reduced software overhead and technical expertise it requires. To 

do so we make use of the Airspayce RadioHead Packet Radio12  library for embedded 

microprocessors and note that mesh network topologies are possible using the above 

hardware/software combination. 

 

 

Figure 4.2. Schematic of star-topology network design between WSN sensor nodes and base station, possible 
two-way communication via Iridium, and data management and visualization in the cloud and on personal 
computers/devices. 

 

12 https://www.airspayce.com/mikem/arduino/RadioHead/ 
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4.3.5 Software design – data collection and transmission 

Adafruit Feathers are programmed using C/C++ (International Organization for 

Standardization, 2020) and there exists a wealth of open-source libraries for incorporating specific 

sensors and communication technologies. Examples of the code used for the current project can be 

found freely online on Github. Each sensor node is programmed to ‘wake’ at a user-specified 

interval and take readings from each sensor and of the battery’s voltage. It then writes these readings 

with a timestamp to the local microSD card before sending them in a compressed binary format via 

LoRa to the base station node. Finally, it re-enters a low-power, deep ‘sleep’ mode before its next 

measurement and communication cycle. The base station fulfills these same steps but instead of 

sending its data via LoRa, it collects each sensor nodes’ incoming data, writing this ‘global’ data to a 

specific file on its local data storage. To improve the success of data transmission, and to allow the 

base station to also enter into a deep-sleep state between readings and communication, both the 

nodes and base station are programmed to transmit and ‘listen’ for data for a user-specified interval 

and to shift to sleep mode at all other times. Additionally, a reliable datagram protocol is 

implemented for data-packet transmission where transmissions are addressed to the base station and 

sensor nodes are sent acknowledgment that their packets have been received. Lastly, the base station 

packages the most recent data from all nodes and transmits it via the Iridium network to a remote 

server at a user-defined interval. In contrast to other satellite data-transmission options, e.g. the 

National Aeronautics Space Agency’s Geostationary Operational Environmental Satellite Program 

(GOES), the Iridium network has the advantage of functioning globally, making it appropriate for 

high-latitude deployments, and projects utilizing its technology do not require special authorization 

to send data over the network. 

 

4.3.6 Software design – data storage and dissemination 

A major advantage of the implementation of the RockBlock is the possibility of near-real 

time data monitoring and sharing. Rock Seven’s remote server stores all incoming transmissions but 

also enables delivery of them either via email or HTTP POST. This opens up the opportunity for 

users to be alerted to new data locally via email client software and for publicly available databases to 

be updated. For this project, a relatively simple Python (Van Rossum and Drake, 2009) program was 

written to continuously monitor for new incoming RockBlock messages, decode those messages 

from their binary format, and further push the data to a Google Sheet viewable to anyone who has a 



 

 

112 

copy of its link13. More advanced applications could deepen the data-user experience by similarly 

pushing near real-time data to interactive, web-based cartography and visualization platforms.  

 

4.3.7 Field testing and sensor comparisons 

To test our WSN we installed four sensor nodes and one base-station upon five research-

grade meteorological towers at Sagehen Creek Field Station (SCFS), CA, USA (see Figure 4.3) from 

January to April 2020. Located in the northern Sierra Nevada, SCFS is maintained by the University 

of California, Berkeley, and encompasses 3,642 hectares of mixed forests, mountain meadows, and 

fens, across an elevational range of 1700 m to 2650 m. Average March SD is 1.04 m and average 

minimum January temperatures are -9.4 ºC (Western Regional Climate Centre, 2020).  

Sensor data from the meteorological towers that we use to compare with SnowBot sensor 

data include temperature and humidity from Vaisala HMP155 Thermohygrometers14 (hereafter to 

referred to as HMP155) housed in passive radiation shields on towers 1 to 3, incoming short-wave 

radiation from Campbell Scientific® CNR4 radiometers15 (hereafter referred to as CNR4) on towers 

1 to 3, and Campbell Scientific® SR50 (hereafter referred to as SR50) acoustic distance sensors16 on 

all 5 towers. The WSN and meteorological tower sensors were mounted within 0.5 m height and 2 

m horizontal distance of each other and at approximately 2 m above ground. We compare the 

performance of the co-located WSN sensors through calculating the Root Mean Standard Error 

(RMSE), bias, and linear regression between the WSN sensor data and the tower sensor data, both 

for the complete aggregated data and at each tower location. In the case of the acoustic distance 

sensors, we compare the distance to the snow surface as opposed to SD as the WSN was deployed 

after the establishment of the snowpack. Further, and to allow for comparison between locations 

with sensors mounted at different heights above the snowpack, we report the anomaly of each 

sample to its particular sensor’s mean. For air temperature, humidity, and acoustic distance sensors a 

quality assessment was conducted on the samples prior to analysis. Anomalies and data outside of 

 

13 https://docs.google.com/spreadsheets/d/1bXNfe84xI_Z1eRQMcSj2ED9A3_uALM4kU8zc68iRorU/ 
14 https://www.campbellsci.com/hmp155a 
15 https://www.campbellsci.com/cnr4 
16 https://www.campbellsci.com/sr50a 
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the range of the sensors were removed and in the SR50’s case, the instrument’s in-built quality flag 

was used to identify unreliable data. 

 

 

Figure 4.3. map of Sagehen Creek Field Station, CA, and its location in the conterminous USA (inset). SB01-
05 are the locations of co-deployed meteorological towers and SnowBot WSN nodes in an ~250m west-east 
transect across an open meadow. Contour lines are at 5m intervals. 
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4.4 Results 

4.4.1 Acoustic distance sensor comparison 

A total of 925 distance samples were available after quality assessment and an RMSE of 

0.028 m was found when comparing all the WSN’s MaxBotix data to the meteorological tower’s 

SR50 data (Table 4.1). An adjusted R-squared of 0.89 and b of 0.959 (SE ±0.011, p <0.001; Table 

4.1) indicates that the MaxBotix data measures a comparatively greater distance than the SR50, albeit 

only slightly. When compared on a location-by-location basis only relatively minor local differences 

are observed; locations 4 and 5 showing that the MaxBotix measures a relatively shorter distance to 

the ground surface (Table 4.1 and Figure 4.4) instead of a greater distance. Adjusted R-squared at 

locations 2 and 5 are lower, <0.7, than the other locations. There is remarkably very little bias 

towards either of the sensors (Table 4.1 and Figure 4.4), both in the aggregated data and for each 

location. Likewise, RMSEs of <0.025 m demonstrate close agreement between the sensors, with the 

exception of location 5 (RMSE = 0.055 m).   

 

Table 4.1. statistical comparison between the MaxBotix (x) and SR50 (y) acoustic distance sensors. Location 
refers to meteorological tower number (see Figure 3); n the number of sample compared; RMSE the root 
mean standard error in meters; Bias is in meters; Estimate is the slope coefficient of the fitted linear 
regression line; Std. Error is the standard error in meters; Adj. R-sq is the adjusted R-squared metric; df is the 
degrees of freedom. 

Location n RMSE Bias Estimate Std. Error Adj. R-sq P-value df 
All 925 0.028 0.0000 0.959 0.011 0.892 0.000 2 
1 277 0.018 0.0000 0.850 0.025 0.807 0.000 2 
2 110 0.021 0.0000 0.782 0.052 0.669 0.000 2 
3 433 0.025 0.0000 0.957 0.011 0.948 0.000 2 
4 3 0.003 0.0000 1.088 0.018 0.999 0.010 2 
5 96 0.055 0.0000 1.143 0.081 0.671 0.000 2 
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Figure 4.4. Comparison of the acoustic depth sensor performance by location. Each data point is the anomaly 
to the mean distance to the surface as measured by the WSN-mounted MaxBotix (x-axis) and meteorological 
tower-mounted SR50 (y-axis). Linear trend line shown in blue with shaded grey 95% confidence interval. 
Only data where both MaxBotix and SR50 measurements are available are shown. 

 

An apparent influence of the diurnal cycle on acoustic distance sensor performance is seen 

in Figure 4.5 panel A. Daily spikes up to 5 cm in increased difference to the mean distance to the 

surface occur in both the MaxBotix and SR50 data during daylight hours (x-axis major tick marks 

occur at 00:00 local time, minor tick marks at 6-hr intervals) and match the daily peaks shown in the 

temperature measurements (Figure 4.5 panel B). The spikes are observed across a range of daytime 

temperature, both above and below 0 ºC, suggesting an alternative cause than the effect of 

temperature on the speed of the ultrasonic pulse through air. A simple method for cleaning these 

daily spikes from the acoustic distance sensor data is to discard the data during the offending hours 

and instead interpolate from the distance measured prior to and after them. An example of this 

interpolation is shown by the solid lines in Figure 4.5 panel A. 
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Figure 4.5. Two-week time series plot of distance to surface anomalies (panel A), air temperature (panel B), 
and relative humidity (panel C), as measured by the WSN-mounted MaxBotix and SHT10 sensors and 
meteorological tower-mounted SR50 and HMP155 sensors at location 3. Panel A shows the raw data 
measured by both the MaxBotix and SR50 acoustic distance sensors (dashed lines) and interpolated data to 
remove daily spikes in increased distance measured during daylight hours (08:00 and 17:00 Pacific Standard 
Time; solid lines). The y-axis in panel A is reversed to show more intuitively the changes in snow depth, i.e. 
greater distance measured corresponds to decreased snow depth. Panels B and C show the air temperature 
and relative humidity respectively, with dashed lines indicating measurements by the WSN mounted SHT10 
and solid lines corresponding to measurements by the meteorological tower mounted HMP155. 

 

4.4.2 Temperature sensor comparison 

Comparison of the WSN-mounted SHT10 temperature sensors to the meteorological tower-

mounted HMP155 sensors showed a general overestimation of air temperature by the SHT10 

sensors when all available data points were compared (bias = -1.05 %, RMSE = 2.13 ºC, b = 0.821, 

SE ±0.006, p <0.001; Table 4.2). Comparing data at each individual location however reveals local 

differences. Locations 2 and 3, which are situated on the edge of and in an open meadow, 

respectively show greater biases towards lower temperature measured by the HMP155 (location 2 = 
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-2.12 ºC, location 3 = -1.1 ºC; Table 4.2 and Figure 4.6), whereas location 1, located in a dense forest 

stand, displays close agreement between the sensors (bias = -0.65). The role of incoming shortwave 

radiation in this pattern is shown in Figure 4.6 where location 1 has receives relatively little 

shortwave radiation in comparison to locations 2 and 3 (size of data points). It is noticeable that 

relatively warmer temperatures are measured by the SHT10 sensor at locations 2 and 3 when greater 

shortwave radiation is received; a finding that corresponds to the data shown in Figure 4.5 panel B 

where greater temperatures are measured by the SHT10 sensor at location 3 during daylight hours.  

 

Table 4.2. statistical comparison between the SHT10 (x) and HMP155 (y) temperature sensors. Location 
refers to meteorological tower number (see Figure 4.3); n the number of sample compared; RMSE the root 
mean standard error in ºC; Bias is in ºC; Estimate is the slope of the fitted linear regression line; Std. Error is 
the standard error in ºC; Adj. R-sq is the adjusted R-squared metric; df is the degrees of freedom. 

Location n RMSE Bias Estimate Std. Error Adj. R-sq P-value df 
All 1352 2.113 -1.05 0.821 0.006 0.94 0.000 2 
1 503 0.950 -0.65 0.946 0.006 0.98 0.000 2 
2 157 3.125 -2.12 0.754 0.024 0.86 0.000 2 
3 688 2.419 -1.10 0.789 0.007 0.95 0.000 2 

 

 

Figure 4.6. Comparison of the temperature sensor performance by location with the WSN-mounted SHT-10 
on the x-axis and the meteorological tower-mounted HMP155 on the y-axis. Linear trend line shown in blue 
with shaded grey 95% confidence interval. Size of data-point indicates incoming shortwave radiation as 
measured by the CNR4. 
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4.4.3 Relative humidity sensor comparison 

As with air temperature, and across all available data, the WSN-mounted SHT10 sensor 

generally recorded greater relative humidity when compared to the HMP155 sensor on the 

meteorological towers (RMSE = 7.08 %, bias = -1.93 %, b = 0.885; SE ±0.008, p <0.001; Table 

4.3). In contrast, however, local differences did not follow the same pattern with location 2 showing 

instead that the SHT10 measured generally lower relative humidity than the HMP155 (bias = 

4.58 %; Table 4.3) and locations 1 and 3 showing bias in the opposite direction (bias = -3.70 % and -

2.14 % respectively; Table 4.3). There is little noticeable influence on incoming solar radiation on the 

measurement of relative humidity by either sensor in any location (Figure 4.7).  However, there is a 

noticeable cluster of datapoints below the 1:1 line with high relative humidity measured by the 

SHT10 (>75 %) when lower values are recorded (<75 %) by the HMP155 at location 1 (Figure 4.7). 

Further exploration of the data in time series (not presented) indicates that these measurements took 

place over the course of 2 days, suggesting that a temporal cause such as the presence of liquid water 

in the sensor housing might be at fault. 

 

Table 4.3. statistical comparison between the SHT10 (x) and HMP155 (y) relative humidity measurements 
Location refers to meteorological tower number (see Figure 4.3); n the number of samples compared; RMSE 
the root mean standard error in ºC; Bias is in ºC; Estimate is the slope of the fitted linear regression line; Std. 
Error is the standard error in ºC; Adj. R-sq is the adjusted R-squared metric; df is the degrees of freedom. 

Location n RMSE Bias Estimate Std. Error Adj. R-sq P-value df 
All 1352 7.08 -1.93 0.885 0.008 0.90 0.000 2 
1 503 8.15 -3.70 0.901 0.016 0.86 0.000 2 
2 157 7.13 4.58 0.794 0.017 0.93 0.000 2 
3 688 6.16 -2.14 0.898 0.008 0.94 0.000 2 
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Figure 4.7. Comparison of the relative humidity sensor performance by location with the WSN-mounted 
SHT-10 on the x-axis and the meteorological tower-mounted HMP155 on the y-axis. Linear trend line shown 
in blue with shaded grey 95% confidence interval. Size of data-point indicates incoming shortwave radiation 
as measured by the CNR4. 

 

4.5 Discussion 

The WSN we present here was conceived as a low-cost solution to data-scarcity in high-

latitude or high-altitude environments with limited accessibility. Field testing revealed its design to 

have some promise in comparison to traditional and proprietary ‘research-grade’ equipment but also 

presented challenges unique to working with open-source hardware and software. Here we discuss 

the performance of the sensors we tested, weigh the benefits and limitations of our WSN and open-

source hardware and software generally, and present three deployment scenarios where our WSN 

would enhance snow-related research. 

 

4.5.1 Sensor comparisons 

Comparisons of the WSN-mounted MaxBotix and meteorological-tower-mounted SR50 

acoustic depth sensors showed remarkably close agreement with RMSEs of <0.03 m recorded for 

the aggregated data and at four of the five locations. Given that the MaxBotix has a manufacture 

tested accuracy of less than <1 %17 and the SR50 has a manufacture tested accuracy of ±1 cm or 

0.4%18, and that the typical distance during field testing was between 1 and 2.5 m, this error is not 

 

17 https://www.maxbotix.com/documents/HRXL-MaxSonar-WRS_Datasheet.pdf 
18 https://s.campbellsci.com/documents/us/product-brochures/b_sr50a-l.pdf 
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far beyond what could be reasonably expected given both the sensors’ known accuracy. At location 

5, an RMSE of 0.055 m was recorded yet bias remained negligible, suggesting that there were 

temporal differences in the evolution of SD between the surface detected by the MaxBotix and the 

surface detected by the SR50. Such spatial variability in SD at a meter scale is well-known in snow 

hydrology and is thought to be primarily caused by wind-redistribution processes working on the 

microtopography of the snow surface (Clark et al., 2011). 

Seen in the measurements for both the MaxBotix and SR50 is a spike in the distance 

measured during daylight hours (Figure 4.5 panel A). These daily spikes are seen across a range of air 

temperatures indicating that it isn’t solely due to the actual air temperature affecting the speed of the 

emitted and reflected ultrasonic pulse (Ryan et al., 2008). Likewise, both the MaxBotix and SR50 

sensors have facility to correct their recorded distances for the effect of temperature; in this study 

the MaxBotix did this by default via its internal thermometer whereas the SR50 was corrected by the 

temperature measured by the co-deployed HMP155. Interestingly, one would hence assume that 

there would be a difference between the two sensors given that the SR50’s temperature correction 

came from data measured within a passive radiation shield rather than an enclosed sensor, but that 

does not appear to be the case. Given the range of air temperatures where this phenomenon occurs, 

it is instead likely that the temperature used to correct the distance is overestimated due to 

shortwave radiation warming the temperature sensor - irrespective of whether it is situated internally 

or in a radiation shield. Further testing where the distance-correcting temperature sensor is housed 

in an aspirated radiation shield would help determine whether this is the case. 

Comparison of air temperature values recorded by the WSN-mounted SHT10 versus the 

meteorological tower-mounted HMP155 further illustrates the likely effect of shortwave radiation, 

especially in the case of the inadequately housed SHT10 (Table 4.2, Figure 4.6). At location 1, where 

little shortwave radiation penetrates the thick forest canopy the two sensors are well matched. 

Whereas at the open sites of locations 2 and 3 it is easy to see that SHT10 records higher 

temperatures during increased solar loading than the HMP155. An improvement to the housing of 

the SHT10 is the simplest solution to this bias; the open-source 3D printed radiation shield 

developed by the 3D PAWS (2020) project would be an appropriate choice. Malek (2019) found that 

an increase of 1000 lux in light intensity led to an increase of 0.1 to 0.18 ºC in measured air 

temperature by sensors in passive radiation shields versus aspirated radiation shields, although this 

bias was reduced with increasing wind speeds. Further work by Rupp et al. (2020), produced a 
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correction factor between paired non-aspirated and aspirated radiation shields based on light 

intensity – an approach that could be followed using the hardware we present here with the 

relatively simple addition of a low-cost light sensor. Aspirated radiation shields have both a greater 

financial and power cost, making them unsuitable for remote deployments of WSNs with multiple 

nodes. Hence, incorporating a low-cost light sensor into the WSN node design and performing 

calibration experiments in comparison to aspirated radiation shields would be worthwhile further 

research. Additionally accounting for the mitigating effect of increased wind speed on the 

temperature recorded in passive radiation shields would require either an anemometer as part of the 

WSN node design or post-processing of the data using wind-fields derived from climate re-analysis 

products, such as the Modern Era Retrospective analysis for Research and Applications, Version 2 

(MERRA-2, Bosilovich et al., 2016). 

The relative humidity measurements recorded by the SHT10 and HMP155 showed generally 

good agreement at locations 1 and 3 (bias less than ±4 %, b ~0.9) but a bias towards lower relative 

humidity recorded by the SHT10 at location 2, albeit with fewer data available, indicated 

inconsistency in the sensors (Figure 4.7, Table 4.3). It is likely that the SHT10 sensor is largely 

responsible for this inconsistency, as well as the high RMSE recorded across all locations, as its 

accuracy is relatively low (manufacture reported ±4.5 %) compared to the HMP155 (±1.0 + 0.008 * 

reading % at -20 to 40 ºC19). Alternative low-cost relative humidity sensors with greater accuracy are 

widely available and it is likely that an improved radiation shield, where the risk of the sensor being 

in close proximity or contact with liquid water is reduced, would improve results. 

 

4.5.2 Benefits of open-source hardware / software 

 The greatest advantage of open-source hardware and software is their significantly 

lower financial costs compared to traditional systems. For example, the sensors and all the other 

electrical components for one of the sensor nodes in the WSN we present here costs approximately 

$270. To add the RockBlock module is another 250 USD. In comparison, the unit price of one 

HMP155 is nearly $800, an SR50 is nearly $1600, and a typical Campbell Scientific datalogger used 

alongside these instruments costs around $1800. Even without adding the additional costs of 

 

19 https://www.campbellsci.com/hmp155a 
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telemetry modules equivalent to LoRa and Iridium, 14 WSN sensor nodes and 1 base station node 

could be purchased for the same price as these three components. As a result, a far greater spatial 

area can be monitored, reducing issues with measurement representativeness and capturing 

important environmental gradients, for the same economic outlay. 

 Supporting the cost effectiveness for multiple measurement locations is the order of 

magnitude lower weight and size of the WSN components relative to traditional products. A major 

challenge in setting-up remote monitoring stations is the costs and logistics involved in the 

transportation of heavy equipment to them. As a consequence of their small size and weight the 

WSN components require less substantial fittings and support structures. As such, multiple nodes 

can be easily born by a single person with a ~60L volume hiking backpack. 

 

4.5.3 Challenges with open-source hardware / software 

 Whilst highly accessible in terms of financial cost, working with open-source 

hardware and software, via the Arduino platform or otherwise, requires the user to go on a learning 

curve that combines basic electrical engineering, software programming and environmental 

monitoring. This is also the case for many proprietary systems but there exists a difference in the 

level of ‘plug-and-play’ functionality of open-source sensors and other hardware compared to off-

the-shelf solutions. Likewise, the degree of technical support available is limited compared to 

traditional products. Additionally, there exists few ready-made enclosures and mounting solutions 

for open-source designs, necessitating creativity in adapting suitable products already on the market, 

e.g. weatherproof junction boxes, or the exploration of custom 3D printed options. In total, greater 

time is required by novice and even experienced users in the development and assembly of open-

source solutions relative to traditional systems. However, increasingly there are fully tested and 

instructed open-source systems published, such as the WSN described here, which we hope will 

reduce the learning curve required to implement them. 

 Especially important to projects looking to deploy in environments similar to that 

described in this study, is the physical robustness of low-cost hardware for long-term environmental 

monitoring. The quality of materials is often sacrificed when reducing cost, for example the 

MaxBotix’s plastic casing versus the SR50’s stainless steel, and in contrast to proprietary and 

traditional hardware the emphasis is on the user rather than the supplier to field-test products as 
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they are more-likely to be designed for general applications. The additional time needed for field 

testing open-source components is hence a further consideration if users are looking to develop 

solutions from scratch. Yet, wider dissemination of successful projects gives greater confidence that 

certain components are capable of performing in extreme environments over extended periods. For 

example, Cryologger, an Arduino based project using the same microcontrollers as the WSN 

described here, has, at the time of this writing, been uninterruptedly tracking ice-berg movement in 

the Canadian Arctic for over one and a half years20. 

 Data quantity and quality are important to any scientific endeavour. The 

performance of open-source hardware in respect to the former is constrained in both similar and 

contrasting ways to traditional systems. Power requirements and availability are the biggest 

determinants of how often and for how long measurements can be taken. The power needs of open-

source systems are typically less as their microcontrollers are simpler and require a lower voltage for 

operation (3 to 5 V versus 10 to 18 V), their sensors similarly. However, power demands for any 

sampling rate and duration in both open-source and traditional systems can be overcome using 

batteries, solar, or other sources. Instead, a limiting factor in measurement frequency for open-

source systems using the Arduino platform or similar is the relatively limited clock-speed of its 

microprocessor and whether it can take samples from multiple sensors simultaneously. Small-scale, 

low-cost microcontrollers often can only run one program at one time as they lack operating system 

software. Low-cost, open-source systems are hence less suitable for settings requiring high 

frequency, e.g. greater than 1 Hz, and exactly timed coincidental data. 

 Similar to this study, data quality of open-source systems has been compared to 

traditional applications in a variety of settings, e.g. Varhola et al., (2010), Pohl et al., (2014), Castell et 

al., (2017), and Strigaro et al., (2019). The excitement driving the widespread development and 

adoption of environmental monitoring WSNs, deployed as part of the Internet of Things (IoT) or 

otherwise, is that their reduced burden of cost stands to democratize data (Mao et al., 2019). Yet 

data quality needs to be tested in these systems for them to truly help the environmental problems 

they seek to answer. It is critical to test and calibrate open-source systems, in and out of the field and 

against established hardware, and especially if the intent is to publish them for wider adoption. 

 

20 https://cryologger.org 
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 A further consideration when using open-source equipment is the relatively limited 

availability of particular instruments. While this is changing as the technology is adopted and creative 

solutions are disseminated, in the context of snow research instruments found on many traditional 

meteorological stations do not yet have low-cost equivalents. The measurement of SWE via a snow 

pillow is an example (Kinar and Pomeroy, 2015). In respect of data transmission there too exists 

comparative limitations in satellite services available for open-source systems; hardware utilising the 

Iridium constellation, as used here, is accessible but two other similar platforms, the Geostationary 

Operational Environmental Satellite21 (GOES) and the Argos system22, do not yet have readily 

available modules for Arduino-like projects. It is worth noting though that GOES does not offer 

coverage in high latitudes and the maximum message length for Argos is 32 bytes versus Iridium’s 

340 bytes23. 

 

4.5.4 Potential deployments 

 The WSN we present here lends itself to research and/or monitoring projects where 

high frequency data isn’t needed and there is no communications infrastructure in place. Much of 

the Arctic Boreal region has few in situ measurements of snow and meteorological variables 

available, yet snow cover in this vast area has a vitally important role in regional ecosystems, local 

economies and global climate (Bokhorst et al., 2016). To overcome the lack of in situ measurements 

an approach often taken is to downscale broad-scale, climate reanalysis products, e.g. MERRA-2 

(Bosilovich et al., 2016), to force spatially-distributed, physically-based snow evolution models with, 

e.g. SnowModel (Liston and Elder, 2006). However, without in situ data to calibrate and validate to 

there exists uncertainty in the accuracy of the modelled variables. To improve modelled data, field 

campaigns to manually take snow measurements are necessary but due to the difficulty and expense 

of accessing remote areas they are often restricted in time and space, or the study area is selectively 

chosen to ensure access, which then leads to the clusters of data near easily-accessed sites that may 

not be representative. If a traditional AWS exists already in the field site, e.g. a SNOTEL station, or 

is established for the research project, it may not be representative of the study area’s heterogeneity 

 

21 https://www.goes.noaa.gov 
22 https://www.argos-system.org 
23 https://library.wmo.int/pmb_ged/dbcp-td_44_en/doc/satellite-systems-buyers.pdf 
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in landcover, elevation and aspect (Molotch and Bales, 2005; Gleason et al., 2017). Further, many 

AWSs do not have functionality to transmit data from remote locations, inhibiting the progress of 

model calibration and other research until data is manually collected, which in the case of some very 

inaccessible sites might only be on an annual basis. The WSN we present here hence solves issues of 

spatial and temporal representation and the timely availability of data for research that requires in situ 

measurements to improve snow modelling. 

 The timing, duration, and qualities, e.g. depth and density, of seasonal snow cover 

has significant impacts on wildlife (Pomeroy and Brun, 2001) whether it be through restricting their 

movement or access to forage (Johnson et al., 2002), providing a protective winter den (Domine et 

al., 2018), or providing camouflage to seasonal changes in pelt or plumage colour (Zimova et al., 

2014). Recently there has been great advancement of animal-borne tracking devices and sensors, 

allowing researchers to study how wildlife responds to its environment in ever greater detail 

(Wilmers et al., 2015). However, there is a recognised lack of snow data that matches the resolution 

and range needed to adequately study animal behaviour at the scales offered by these sensors 

(Boelman et al., 2018). For populations of animals whose habitat extent could reasonably be 

covered, the WSN we present here could provide wildlife ecologists snow and climate data in near-

real time just as animal-borne GPS collars reporting location and movement metrics do. This has 

advantages over using remotely sensed datasets of snow properties that might be lacking in useful 

information, e.g. SD, or gridded data such as Snow Data Assimilation System (SNODAS; National 

Operational Hydrologic Remote Sensing Center, 2004) that is limited in spatial coverage and has 

been shown to be inaccurate in heterogeneous terrain (Sirén et al., 2018).  

 A third application for the WSN could be as a warning system for rain-on-snow 

flooding. Severe and expensive damage can occur when warm storm systems cause heavy rain to fall 

on snow cover as the additional water from snowmelt can produce a substantial pulse in runoff 

(Musselman et al., 2018). This pulse can be challenging to predict and mitigate as it requires 

knowledge of how much precipitation is likely to fall, the SWE of the snowpack over a large area, 

and the elevation of the rain-to-snow transition or freezing level (McCabe et al., 2007). Taking the 

Western United States as an example it is known that the spatial distribution of monitoring sites is 

both limited and non-representative (Molotch and Bales, 2005). A WSN of the type we describe here 

could therefore ‘fill in the gaps’ of established monitoring networks and be located in representative 

locations of different landcovers and across elevation gradients (Gleason et al., 2017). While SWE is 
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not measured by the WSN it can be inferred with reasonable accuracy using known empirical 

equations for density evolution based on SD, the day of the year (DOY), and climatological normal 

values for precipitation and temperature at the location (Hill et al., 2019). An additional feature of 

the data transmission technology of the WSN that isn’t covered in detail here is that it allows two-

way communication. Hence, adaptive monitoring is possible where the network could be instructed 

to sample and transmit data at a higher-frequency ahead of and during potentially hazardous storms 

but otherwise remain in a low-power, low-frequency state (Blaen et al., 2016). 

 

4.6 Conclusions 

 We present here a working prototype for a low-cost, open-source WSN suitable for 

high-latitude and high-altitude environments and demonstrate that its sensors have good agreement 

with traditional research-grade equivalents. As described in the discussion, it could have varied 

deployment in snow-related research and certain applications would greatly benefit from the 

improved spatial distribution it offers, as well as its data transmission possibilities. In other contexts, 

where high frequency and high accuracy data are required, different equipment is needed. Among 

the advantages of the technology we describe here is that it allows near-real time data dissemination 

to anyone who has a link to a Google Sheet. An extension of this could include data visualisation 

and download via web-maps or updates via social media platforms, further increasing the ease of 

stakeholder involvement (Mao et al., 2019). We also contemplate that it might have impact in 

developing nations, such as those of high-mountain Asia, where communications infrastructure and 

data-coverage is relatively limited, and budgets for environmental monitoring are smaller (J. A. Klein 

et al., 2019; Mao et al., 2019). For such applications to be fully realised, further work is needed on; 

the sustainability of the WSN components for multi-year deployments, assessing the appropriateness 

of alternative and additional sensors (e.g. anemometers, pyranometers, barometric pressure gauges), 

and the performance of the LoRa radio in different topographies and vegetation, as well as in a 

mesh topology. 
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Chapter 5 Summary of findings, perceived impacts and opportunities for 

further work 

 

5.1 Chapter summaries 

5.1.1 A personal reflection on the motivation of this dissertation 

Wildlife endemic to the high-latitude, and indeed high-altitude, regions of the Earth, are on 

the frontlines of climate change as their habitats shift to new states due to the effects of 

anthropogenically-driven global heating. From the plucky rodents, such as the collared pika (Ochotona 

collari), to the big iconic beasts of population imagination, like the polar bear (Ursus maritimus), all are 

threatened by the avarice of people many miles away. Beyond their cultural importance to 

indigenous peoples of the circumpolar north, Arctic-boreal wildlife today are among the canaries in 

our global coalmine – if they continue to exist and function as they have done for centuries, we will 

have done good, if they are lost or are further maligned, we will have altered the Nature of our entire 

planet irrevocably. In perhaps just the latest example of human swindle, many northern species are 

now yoked with the latest in animal-borne sensors and laboured with carrying the messages of their 

own struggle to survive (Davidson et al., 2020). Nonetheless, these sacrificial lambs bear data that 

can provide ever more detailed insights into the ecological state of their habitats and advance the 

cause for their protection. There is much we do not know about their ecology and its responses to 

climate change, particularly so in the winter months when their landscapes are bedecked by snow 

and are at their most inaccessible.  

These ‘snowscapes’ are as vulnerable to climate change as the wildlife that have long adapted 

to the challenges and assistances they offer. The sedimentary matrix of ice crystals that we term 

snow is highly sensitive to warming temperatures. If you heat it up enough, it turns to water. Today, 

it is clear from a wide range of data that snow cover in Arctic-boreal regions is changing rapidly in 

response to an amplified warming effect at high-latitudes. This change has profound consequences 

for the ecology of the region, and observations of its acute effects on wildlife are increasing. Mass-

mortality of grazing ungulates due to ice-layers caused by mid-winter rain events have been 

witnessed in both North America and Eurasia, with cascading effects on the trophic systems where 

they occurred (Mallory and Boyce, 2017; Sokolov et al., 2016). Other species have found themselves 
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wearing a white coat when the snow has already gone for the winter, leaving them a conspicuous 

choice for predation (Zimova et al., 2014). However, given the Arctic-boreal region’s vastness and 

inaccessibility, we only have limited useful snow data to compare to both long-term observations of 

wildlife demographics and modern GPS-collar datasets detailing their movements.  

The research presented here attempts to address this and is ultimately motivated by a sense 

of wonder to the region it concerns. I grew up in Dorset on the southern coast of the United 

Kingdom, a region firmly within the ‘ephemeral’ snow classification zone. Through great luck my 

academic and personal journey took me to the higher latitudes in winter and I quickly fell in love 

with their beauty and spirit. This dissertation in hence my humble offering to their continued 

conservation in the face of great imperilment. It takes the welfare of animals as its focus - a life-long 

concern of mine. 

 

5.1.2 Chapter 2 summary, key findings, and anticipated impacts 

Chapter 2 combines field measurements obtained by traditional sampling methods, such as 

excavating snowpits and walking snow-depth transects, and less-traditional methods, like the use of 

time-lapse hunting cameras, with a spatially-distributed snow evolution model to better simulate 

snow properties over a 37-year period for a mountainous area in the Wrangell St Elias National 

Park, Alaska. The use of in situ measurements to constrain model outputs is critical in regions where 

the absence of local meteorological data requires the use of climate reanalysis products to force the 

model. As the reanalysis products are themselves reconstructed from scarce data, biases occur, for 

snow-modelling this is especially important in the case of the volume of precipitation. Local snow 

water equivalent measurements, like we obtained via bulk density measurements of snow pits, can be 

assimilated into a model to correct the precipitation fields, which is the primary cause of inaccuracies 

in model output. Spatially distributed datasets of SWE, but also snow depth, which can be measured 

at greater frequency per unit time and converted to SWE using density observations, can then be 

operationalized to better parameterize the model to replicate the observed pattern of snow 

redistribution by wind. In the methods we present, the model can be further examined and tweaked 

for accuracy by comparison to a distributed set of snow depth measurements, as obtained by remote 

cameras deployed across gradients of aspect, elevation, vegetation, and slope. Utilizing this 

approach, we were able to produce detailed, accurate daily maps of snow properties in highly 

heterogenous topography from 1980 to 2017. These maps are publicly available for use in other 
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research, be it within wildlife ecology or other sciences, and we additionally used them to reveal an 

important response of Dall’s sheep to the seasonality of snow cover in the study area. 

Previous research utilizing remotely-sensed snow-covered area data had proposed that Dall’s 

sheep productivity, as indicated by the number of lambs per ewe observed during summer surveys, 

was reduced by the extended presence of spring snow cover (Kerk et al., 2018; Rattenbury et al., 

2018). Dall’s sheep give birth between April and May, and it was hence thought that spring snow 

inhibited the ewe’s ability to find sufficient nutrition to adequately nurse their young, as well as their 

facility to protect them from predation. Our dataset, which elucidated the evolution of the vertical 

properties of the snowpack from its inception in early fall, told a different story. Instead, we revealed 

that the establishment of a deep snow cover in fall, alongside colder fall temperatures, had greater 

ability to predict Dall’s sheep productivity than spring snow depth. This finding points towards an 

accumulative effect of persistent forage-and-movement inhibiting snow conditions on pregnant 

ewes, leaving them in poor physical condition come the spring and hence decreasing the survival 

rate of their lambs.  

The snow-covered area remote sensing product used in the earlier research of the same 

sheep population cannot accurately determine interannual variability in snow depth. Instead, it only 

can infer snow depth from snow duration, which is subject to uncertainty as thin layers of snow can 

persist if temperatures are low enough. Discovering a greater sensitivity of Dall’s sheep to enduring 

snow conditions than previously thought will inform research into other large Arctic-boreal 

ungulates. It also gives managers a chance to preserve populations by limiting harvest opportunities 

when there are sequences of challenging snow years. Our results highlight the power of a snow 

modelling approach in wildlife-ecology when used in combination with ground-observations and 

long-term observation datasets of wildlife demography.  

 

5.1.3 Chapter 3 summary, key findings, and anticipated impacts 

Chapter 3 assesses a passive microwave (PM) algorithm to detect layers of high-density snow 

and ice. Extending previous work that developed the approach and showed promise in identifying 

potentially lethal snow conditions to grazing ungulates, we applied the algorithm across a diverse 

Arctic-boreal region and examined the frequency of detections between areas of variable 

topographic complexity and land cover. In a further development of previous studies, we used an 
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enhanced resolution dataset, extending from 1988 to 2019, and compared the sensitivity between 

two microwave frequencies, 19 GHz and 37 GHz, available in grids of 6.25 km and 3.125 km 

respectively. We also compared the meteorological conditions of when a high-density layer occurred, 

persisted, and disappeared in the record by using in situ observations recorded by two climate station 

networks. Finally, we compared snow pit derived metrics of layer density to the PM data across 84 

locations to establish the algorithm’s sensitivity to known properties of the snowpack. 

Our findings showed that the algorithm has potential application in areas of low topography 

and vegetation – a result consistent with known issues when using PM data to derive snow 

properties. The 19 GHz channel showed greater sensitivity, evidenced by its higher frequency of 

detections, which we believe to be a product of its lower density threshold in the algorithm. As the 

19 GHz channel is of a coarser resolution than the 37 GHz, this could mean that the application in 

studies of wildlife movements is limited. However, it is nonetheless an improvement on the 25 km 

resolution demonstrated in earlier work. Data derived from both channels has potential to inform 

each other when used together. The meteorological conditions observed prior to the occurrence, 

persistence, and disappearance of a detected high-density snow layer corresponded to well-known 

processes governing the stratigraphy of the snowpack, which, while falling short of a rigorous 

validation, gives us optimism that the algorithm detects what it was designed to. Balancing this 

optimism is the inconclusive results from the snowpit data, where no relationship was found 

between the metrics of snow density and the PM data. 

As a novel study across a diverse and large spatial domain, further research is required to 

validate the PM algorithms detections in the different environments it was applied. While advocating 

restraint in lieu of the study’s limitations we outline in chapter 3’s discussion, we believe that we 

have already produced an exciting and useful dataset. Taken alone, the annual maps of detected 

layers of high-density snow or ice describe great inter-annual variability in the properties of Alaska’s 

snow cover. As increased snow density leads to an increased thermal conductivity of snow, years and 

regions where we detect wide and persistent expanses of high-density layers will not only impact 

supra- and sub-niveal fauna but also permafrost dynamics and soil biogeochemical cycles. When 

combined with observations of wildlife, like movement data recently collated in the Arctic Animal 

Movement Archive (AAMA; Davidson et al., 2020), we believe the maps have power to reveal the 

causes of range-shifts, demographic variation, and trophic cascades, such is the importance of snow 

density and icing to some Arctic species. 
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5.1.4 Chapter 4 summary, key findings, and anticipated impacts 

Chapter 4 details the development of an open-source, low-cost wireless sensor network for 

snow-based research and its strong performance in relation to traditional sensors. Of all the chapters 

it perhaps the greatest range of application outside snow-wildlife studies. For instance, within the 

realms of scientific research it could be ably employed to inform avalanche hazard forecasting (e.g. 

Brun et al., 1992) and water resource modelling (Liston and Elder, 2006), but it also has value 

outside of the academy should it be used to provide easily accessible, near real-time climate data to 

help recreators and land-managers make informed decisions about back-country access. We are 

particularly pleased by its low-cost and weight, and anticipate that both of these criteria will 

accelerate its adoption by remote communities in high-latitude and high-altitude regions.  

 

5.2 Future work using data-model fusion 

During and after any major project, hindsight gives us the ability, and tendency in my case, 

to go over all the things that we would have done differently if we had the chance to start again. 

While mistakes and dead ends of enquiry are always part of the fun and learning, one naively hopes 

that setting out again with hard-earned wisdom prevents their reoccurrence. So, what would I do 

differently if I embarked upon this dissertation today? 

Due to my love for being out in Arctic-boreal landscapes, I would first wholeheartedly grasp 

any opportunity to return to magnificent Wrangell St-Elias National Park where the fieldwork for 

chapter 2 took place on six occasions in the first 2 years of my PhD. I’d do anything I could to stay 

longer up there too! But more seriously speaking, given the same opportunity I would seek to 

develop and more effectively combine the approaches I describe in preceding chapters to better 

answer the essential motivation of the work outlined in chapter 1 – to improve the mapping of 

wildlife-relevant snow properties and to characterise how they are being impacted by a warming 

climate. This ‘data-model fusion’, as prospected by Boelman et al. (2018) for snow-ecology studies, 

but used widely in other snow-related fields, combines ground-observations, remote-sensing, and 

snow modelling to overcome the limitations of each. To hopefully guide my own and other’s future 

endeavours, I therefore briefly propose the following application and extension of this dissertation’s 

work in the same field site. 
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The open-source weather stations in chapter 4 are incomplete in respect to the range of 

sensors, relevant to the measurement of snow properties, available to them. Without much effort, 

up and down facing pyranometers, such as the Apogee SP 21224, and a soil-moisture probe, such as 

the METER group’s TEROS 1025 could be integrated into them. The pyranometers would offer 

insight into the albedo of snow and soil surface near each station, a parameter that is infrequently or 

poorly parameterized in snow-evolution models, and also indicate when snow cover occurs and 

disappears in conjunction to the existing acoustic depth sensor, which would struggle to capture the 

precise timing of phenomena otherwise. The soil-moisture probe, in periods without snow cover, 

would indicate rainfall events, which could then lead assessment of the accuracy of the precipitation 

fields in reanalysis products, such as we used to force the snow model employed in chapter 2. In 

periods with snow cover, it could potentially both detect the severity of rain-on-snow and melt 

events as well as the onset of spring melt – further providing data to better constrain a snow model, 

but also enabling near real-time reporting of potentially hazardous conditions for wildlife.  

Given that the weather stations can be used in a spatially extensive wireless sensor network 

(WSN) they could be deployed in much the same pattern as the remote cameras described in chapter 

2, or even alongside the cameras. Such an addition would aid the simulation of accurate 

meteorological-forcing data in a snow model as in situ measurements across elevation, vegetation, 

and topographic gradients of important variables, e.g. air temperature and relative humidity, are of 

greater accuracy than downscaled reanalysis data. As the stations do not yet include anemometers to 

measure wind-speed and direction, sensors that are anyway subject to riming events in the deep-cold 

of high-altitude Alaska, wind-fields from gridded climate data would still need to be used. However, 

in contrast to retrospectively retrieving model-constraining snow depth data from the cameras nearly 

a year later, the WSN’s near real-time data transmission capabilities advance the pace of model 

calibration by providing data immediately after deployment. Instead, the bottleneck in terms of 

progress would come from the availability of the reanalysis forcing data – in the case of MERRA-2, 

the reanalysis which we use in chapter 2, aggregated monthly data is released between the 15th and 

20th of each month26, so there would be a maximum post-deployment period of ~6 weeks before a 

 

24 https://www.apogeeinstruments.com/sp-212-ss-amplified-0-2-5-volt-pyranometer/ 
25 https://www.metergroup.com/environment/products/teros-10/ 
26 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/FAQ/ 
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model calibration effort can be started, and further calibrations can be run on a monthly basis 

thereafter. 

The availability of in situ data from the WSN wouldn’t mean that snow surveys are 

redundant. Rather, they could be better planned to focus on areas in the study domain already 

identified by early model calibrations as being subject to greater uncertainty. The efficiencies of this 

pre-planning could also be leveraged to instead dedicate more time to appropriately sample, via 

snowpit excavation, stratigraphic properties of the snow in pre-identified pixels of the PM product 

described in chapter 3. These pixels could span gradients of elevation, vegetation and topographic 

complexity, the snowpits within them hence can provide more representative data and at a greater 

vertical detail than that used in chapter 3. The latest developments in spatially distributed snow 

models, such as that shown by Weiss, Nolin and Liston (in progress), include the accurate simulation 

of the stratigraphy of snow properties important to the remote-sensing of PM, such as grain size, 

correlation length, and surface specific area (Foster et al., 1984). If time and funding allowed, these 

properties could be additionally measured in each snow pit using a variety of techniques, such as 

near-infrared photography or high-resolution penetrometers (Matzl and Schneebeli, 2006; 

Schneebeli et al., 1999). 

The detailed pit data can then be used to further calibrate the spatially distributed snow 

model so that it produces accurate simulations of snow stratigraphy across the study domain’s 

varying topography and vegetation. In turn, this model-derived snow stratigraphy data can be 

ingested into a snow microwave radiative transfer model, such as the Snow Microwave Radiative 

Transfer model (SMRT; Picard et al., 2018), which can then simulate the expected PM signal from 

each pixel at different frequencies and polarizations. This simulated PM data can then be used to 

identify more precise polarization ratio thresholds that correspond to the presence of high-density 

and ice layers in pixels of differing vegetation and topographic complexity. Hence, via use of the PM 

data product described in chapter 3, a confident longitudinal study of the occurrence of layers of 

high-density snow and ice can be made for the study domain, but also other similar Arctic-boreal 

regions. In the latter case without needing to undertake the ground-observation and modelling steps. 

The sketch of the study above lacks detail but is eminently achievable. It need not be 

conducted in the WRST, but given the inaccuracies of PM remote-sensing of snow water equivalent 

in mountain regions, and these region’s importance as water-towers for much of the world’s 

population, selecting a field site that does have gradients of elevation, topographic complexity, and 
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vegetation would broaden its impact. Its design, I believe, leverages the advantages and reduces the 

disadvantages of each of three types of observation; in situ measurements are highly accurate but 

limited in time and space; snow models provide a wealth of detail but without accurate forcing and 

calibration data are subject to uncertainty, and their use over wide spatial extents at high-resolution 

is limited by computational demands; PM remote-sensing observations have a long-term record at a 

hemispherical scale, but haven’t yet been adequately exploited to provide accurate maps of wildlife-

relevant snow properties. 
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