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Abstract:   This paper analyzes spatial patterns of exploitation in the California sea urchin fishery using two different 
econometric approaches:  a Poisson/SUR model of monthly observations and a micro-level Nested Logit model of individual 
harvester daily decisions.  Each model is used to simulate the spatial distribution of fishing effort.  The models are compared 
using goodness of fit measures and implications for management are discussed. 
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I.   INTRODUCTION * 
 
In recent years, spatial policies such as rotating spatial 
closures and permanent marine reserves have gained 
support amongst commercial fishery managers around the 
world.  A spatial closure policy would shut down part of a 
commercial fishing ground either temporarily or 
permanently as a means to regenerate a fish stock or 
provide stock security.  Unfortunately, standard economic 
models of fishing behavior do not incorporate space; 
typical bioeconomic models, in fact, consider resources to 
be homogenous across space.  In contrast, ecologists 
argue that fishery management should consider a 
resource’s spatial particularities such as density-
dependent reproduction.  Many recent ecological studies 
adopt metapopulation models.1  In these models, marine 
resources are depicted as discrete and heterogenous 
patches of biomass that are linked through highly 
unpredictable oceanographic processes including 
upwelling, currents, wind, and advection.  Economists, as 
such, must model the spatial behavior of harvesters to 
understand how real economic agents would respond to 
spatial closures.  The essential empirical question is:  how 
do biological, economic, and oceanographic factors 
determine the spatial distribution of fishing effort?  This 
paper models the spatial distribution of fishing trips in the 
California sea urchin industry using two different 
empirical approaches:  one based on aggregate monthly 
data and the other based on individual harvester decision-
making.  The results of the two approaches are compared 

                                                        
* This research was partially funded by a grant from the 
National Sea Grant College Program, NOAA, U.S. 
Department of Commerce, under Grant No. NA66R 
G0477, Project No. R/F-169. 
 
1 See, for instance, Botsford, Louis W., James F. Quinn, 
Stephen R. Wing, and John G. Brittnacher (1993), Quinn, 
James F., Stephen R. Wing, and Louis W. Botsford 
(1993), and Morgan, Lance E., Stephen R. Wing, Louis 
W. Botsford, Carolyn Lundquist, and Jennifer M. Diehl 
(1999). 
 

using forecast evaluation methods, and the relative merits 
of each approach are discussed. 
   
Although several recent works have addressed spatial 
fisheries issues from a bioeconomic perspective and have 
highlighted the importance of space in fisheries 
management, little is known about how fishing effort will 
respond to a real spatial policy.  Sanchirico (1998) and 
Sanchirico and Wilen (1999) show how the traditional 
critiques of an open access institutional setting continue to 
be valid when the resource is spatially heterogeneous.  In 
their case, rents appear as spatial arbitrage opportunities 
that arise due to the spatial character of biological 
dynamics and are dissipated due to open access.  Holland 
and Brazee (1996) analyze conditions under which marine 
reserves are likely to succeed as a regulatory policy.  
Though the authors provide an interesting discussion of 
biological and economic issues, the results of the analysis 
are driven by an assumption that total fishery effort is 
fixed.  Moreover, the model only incorporates spatial 
heterogeneity as a difference between reserve and non-
reserve areas.  In my analysis, effort changes are not 
assumed but instead are outputs of the empirical model.  
Hannesson (1998) also analyzes marine reserves and 
compares pure open access and private ownership 
institutional settings.  Rents are generated by the marine 
reserve as fish disperse outside the reserve.  But, when 
there is open access outside the reserve, these rents are 
dissipated as in the standard case.  Sanchirico and Wilen 
(2000) incorporate more biological sophistication in their 
study of marine reserves and suggest specific biological 
characteristics that would likely lead to successful 
implementation of marine reserves.  Specifically, when 
patches are biologically linked (i.e. there is dispersal 
between patches), it is possible that reserve creation under 
open access can both increase aggregate harvests and 
aggregate biomass.  Though the existing papers on spatial 
management clarify the importance of space and the ways 
that space can affect traditional management, they are all 
theoretical and do not address the institutional details of 
any particular policy setting.  My paper builds empirical 
models that capture the institutional character of 
California’s red sea urchin fishery, which is neither pure 
open access nor pure private ownership. 
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The first approach is an econometric model of aggregate 
participation and harvest shares across space.  It is a 
behavioral model at the industry level.  A Poisson 
regression is used to estimate aggregate participation 
(measured in trips) as a function of open season days, 
weather conditions, mean revenues, and variance of 
revenues.  The Seemingly Unrelated Regression (SUR) 
model of location-specific shares posits that fishery 
spatial dynamics are a function of revenue differentials 
across space.   Predicted shares in each location, or patch, 
are multiplied by aggregate participation to arrive at 
spatially explicit predictions of fishing effort. 
 
The second approach is a micro-level behavioral model 
that treats individual harvester decisions as discrete 
choices among non-participation and participation in 
different spatial locations.  These choices are functions of 
weather, mean revenues, variance of revenues, and travel 
costs.  A random utility model (RUM) provides the 
motivation for a Nested Logit specification.  Predictions 
from the Nested Logit regression are aggregated across 
days and divers to arrive at monthly industry participation 
and location shares.   
 
The two models are compared using goodness of fit 
measures from the aggregate model and from the discrete 
choice aggregated predictions.  In-sample, the 
Poisson/SUR model predicts spatially explicit 
participation somewhat better than the discrete choice 
model, but out-of-sample the discrete choice model 
actually performs better.  Although both approaches could 
be used to simulate spatial closures, each model has its 
advantages and disadvantages.  The Poisson/SUR model 
is easy to estimate, is suitable for analysis of season 
closures, and provides some insight on spatial closures.  
Nevertheless, the discrete choice model is more 
appropriate for analysis of spatial closures because it has 
a natural structure for eliminating one of the location 
choices, and it can also be used to analyze season 
closures. 
  
Because this paper attempts to provide a roadmap for 
fisheries managers as well as simulate spatially explicit 
effort for the California sea urchin fishery, the data 
requirements are discussed in section II.  Section III 
outlines the Poisson/SUR model.  The next section 
discusses estimation and results of the Poisson/SUR 
model.  Section V outlines the Nested Logit model.  
Section VI presents results from the discrete choice 
analysis.  Section VII compares the model using mean 
squared error, mean absolute error, and simple 
correlations.  Finally, section VIII discusses the 
usefulness of each empirical approach for simulating 
spatially explicit policies and concludes. 
 

II. DATA 
 
The fishery data, collected by the California Department 
of Fish and Game, include 257,000 observations on 
California urchin dives over the period 1988-1997. The 
estimation uses only data through 1996, reserving the 
1997 data for out-of-sample validation.2  Each 
observation combines geographically specific log book 
information about dive duration, depth, number of divers, 
and pounds caught with landings ticket information about 
price, quantity sold, landing site, and diver license.  Boat 
code and date are fields common to both data sets and 
allow one to link the information.   
 
The analysis in this paper focuses on Northern California.  
This section of the fishery is divided into eleven 
geographically distinct harvest zones that roughly 
correspond to proposed spatial management zones.  All 
zones are contiguous along the coast except zone 0, which 
is the Farallon Islands northwest of San Francisco.  Figure 
1 shows the spatial distribution of effort in north-central 
California.  Though there are six total ports in Northern 
California at which divers land urchin, the four ports 
depicted in Figure 1 account for more than 90% of 
Northern California catch.  
 
The fishery data is combined with geographically specific 
weather data from the National Buoy Data Center.  These 
data contain hourly observations on variables that affect 
diving conditions including wave height, wave period, 
and wind speed.  The hourly observations are aggregated 
into daily observations and linked to the urchin databases.  
For the SUR/Poisson model, the fishery data are 
aggregated into monthly observations, summing across all 
individuals on all days in each month.  Note that there are 
some months in which the entire fishery was closed, so 
there are no observations for these months.  There are 
other months in which the fishery was open but not all of 
the patches had participation.  For the discrete choice 
model, the data are left disaggregated such that there are 
daily observations on each urchin diver.  Since the data 
only include days on which divers actually participated, a 
complete set of choice occasions is constructed based on 
the season closure regulations and active divers.  The 
information from the original data set is added to the set 
of all choice occasions to create the final augmented data 
set. 
 
Although the empirical specifications below are particular 
to the urchin dive fishery, similar analyses could be done 
on other fisheries with only slight modifications.  The 
essential data requirements are covered if boat log books 
record catch, effort (fishing time), and location, and 

                                                        
2 The data set is currently being updated to include 1998 
through 1999. 
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landings tickets can be matched to boats and record 
prices.  The fishery manager can determine what outside 
data, such as weather, are relevant to the analysis.     
 
III. POISSON/SUR MODEL 
 
The Poisson/SUR model uses monthly data to describe 
participation and spatial dynamics.  The idea is to treat 
participation and location choices separately because the 
participation effects would otherwise swamp the spatial 
dynamics in the fairly short panels that are available.3  
This bifurcation also allows the analyst more flexibility in 
how to simulate spatial closures and the ability to 
simulate season closures.   
 
A Poisson regression estimates how a dependent variable 
(yt), which takes on only integer values, responds to a 
parameter (Ot) using a Poisson probability density.4  The 
parameter Ot, in turn, is a function of independent 
variables (xt) and parameters (EE�.  The likelihood function 
is: 
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I assume that the independent variables map into the 
Poisson parameter as follows: 
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In the participation regression, y is a count of fishing trips 
in month t (TRIPS), and x includes open season days 
(DAYS), weather conditions (WV15, WV30, and WV50), 
mean revenues (ER), and variance of revenues (VR).  ER 
and VR are computed using the averages of all 
observations in the month across all patches.  The weather 
variables are wave heights measured in number of days in 
the month on which average wave height exceeds 1.5 
meters, 3.0 meters, and 5.0 meters respectively.  Together 
they create a spline function in order to capture nonlinear 
participation responses to weather.  Ex ante, we expect 
the coefficients for DAYS and ER to be positive and the 
coefficients for WV15, WV30, and WV50 to be negative.  
More fishing opportunities and greater revenue potential 
generate more fishing effort.  Adverse weather conditions 
deter fishing effort.  If urchin divers are risk averse, then 
the coefficient on VR would be negative. 

                                                        
3 Clearly, the level of time aggregation drives the panel 
length.  Though daily information exists in the data set 
(and is used in the discrete choice model), one month is 
chosen so that the analysis is not plagued by missing 
observations on independent variables, numerous zeros in 
aggregate participation, and a predominance of zeros in 
patch participation shares. 
 
4 For further discussion of Poisson regression, see 
Cameron and Trivedi (1998). 
 

 
The Seemingly Unrelated Regression (SUR) component 
of the model captures spatial dynamics through a system 
of share equations.5  It operates like a demand system.  
All of the patch shares sum to one in each period.  Share 
in patch i (si) is a constant (Di) plus a linear combination 
of net revenue differentials between patch i and other 
pathes, denoted as j (Ji,j'NRi,,j = Ji,j[NRi – NRj]).  
Assuming an additive error (Hi) and M total patches, the 
system is: 
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When there are no revenue differentials, the share identity 
implies: 
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If we interpret the responses to net revenues as effort 
flows, as in Wilen and Sanchirico (1999), the J 
parameters are symmetric:   
Ji,j  Jj,i ,   i = 1, ... , M,     j = 1, ... , M,      and ji z . (5) 
As in a demand system, the fact that the shares sum to one 
combined with parameter restrictions lead to a singular 
covariance matrix.  In this case, the singularity arises 
from the restriction on the alphas and the symmetry 
restriction combined with the fact that 'NRi,,j = -'NRj,,i.  
Thus, one equation must be dropped from the estimation.  
The parameters from the dropped equation can then be 
recovered from the restrictions in the system. 
 
Actual implementation of the SUR share system for the 
sea urchin fishery presents challenges.  First, there are 
eleven patches in the Northern Californian fishery, based 
on possible spatial management zones.  With symmetry 
imposed, there are sixty-five parameters to estimate (121 
parameters without symmetry) in addition to parameters 
of the covariance matrix.  Even with the rich data set 
available on California sea urchins, monthly aggregation 
leaves just ninety-two observations for each patch.  My 
proposed solution is to use the contiguous patch revenue 
differentials only.  Thus, each share equation has two J 
parameters, one for the patch to the north and one for the 
patch to the south.  A second difficulty is that the model 
requires observations on net revenues, but only gross 

                                                        
5 Seemingly Unrelated Regression (SUR) is a technique 
that models a system of individual regression equations to 
allow for contemporaneous correlation in the individual 
regression error terms.  If there is a shock that affects all 
equations similarly but that is not controlled for in the 
explanatory variables, SUR is a more efficient method for 
dealing with the shock than estimating a series of 
individual regression equations.  See Greene (1993) or 
Judge, Hill, Griffiths, Lütkepohl, and Lee (1988) for good 
discussion of the technique. 
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revenues (Ri) are observed and can be used.  The 
empirical specification is thus: 
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This system is parsimonious enough to estimate but also 
maintains spatial interconnectedness; not all patches are 
directly linked but all are linked together through other 
patches.6  Use of gross revenues can be justified if they 
are perfectly correlated with net revenues across space or 
if decisions are made based on gross revenues.  In many 
fisheries, crews are paid on the share system such that 
crew members receive a share of the boat’s total revenue.  
Thus agent behavior often is driven by gross revenues.  
The assumption is also plausible because many spatial 
aspects of costs are approximately constant across time.  
For instance, transportation costs from patch i to patch j 
are roughly constant throughout the data because the 
distances (and hence time costs) are fixed and fuel prices 
do not vary much.   
 
IV.  POISSON/SUR ESTIMATION AND 
RESULTS 
 
Table 1 reports the Poisson regression results.  All 
coefficients are statistically significant and have the signs 
anticipated ex ante.  It appears that urchin divers in 
aggregate are also risk averse.7  The magnitude pattern of 
the weather coefficients suggests that participation is 
concave in bad weather.  This result can be interpreted as 
another manifestation of diver risk aversion; as conditions 
worsen (i.e. risk increases), the probability of taking a trip 
(i.e. willingness to accept the gamble) decreases at an 
increasing rate. Table 1 also includes results from a linear 
regression of log of trips on logs of the same independent 
variables.  The adjusted R2 in the linear model indicates 
that these variables explain much of the variation in 
aggregate participation.  Though the linear model gives 

                                                        
6 For the border patches (Farallon Islands and Patch 10), 
only one revenue differential parameter is estimated. 
 
7 The Poisson model was estimated using both SAS 
GENMOD and GAUSS MAXLIK.  The procedures 
produced identical estimates of the parameters and 
standard errors.  To achieve convergence, ER and VR 
were re-scaled so that they measure so that they are 
computed with hundreds of dollars rather than dollars. 
 

qualitatively similar results to the Poisson model, the 
Poisson has much lower standard errors.8 
 
Table 2 reports results of the spatial dynamics model.  
Estimation was performed using Iterated Seemingly 
Unrelated Regression.  As mentioned above, one equation 
was dropped for purposes of identification.  Here, the 
Patch 10 equation was dropped, and as a result, there is no 
standard error reported for the Patch 10 constant 
parameter.  Since the X variables are constants and 
revenue differences, we expect the coefficients all to be 
positive.   Indeed all of the intercept terms and most of the 
slope terms are positive.  The negative slope coefficients 
are not statistically significant, but all intercept terms and 
all but one positive slope coefficient are significant.  The 
low system weighted R2, however, suggests that the 
model does not explain much variation in patch shares 
across time. 
 
One possible future extension for the SUR model is to 
impose a spatial autocorrelation pattern in the covariance 
matrix.  Since the patches are arranged along a line (rather 
than in two-dimensional space), the simplest form would 
be a first-order autoregressive matrix.  As such, the 
covariance matrix 6 of the SUR estimation would be a 
function of only a single variance parameter, V,  and a 
single correlation term, U.   
 
IV. DISCRETE CHOICE MODEL 
 
Urchin divers make a series of discrete decisions about 
fishing effort and location.  On each open season day, 
each diver chooses whether or not to participate based on 
prevailing weather conditions, expected prices, expected 
resource abundance, individual diver traits, and processor 
contractual arrangements with of the Tokyo wholesale 
market.  Among the individual traits are diver skill, 
attitudes towards risk, outside opportunities, and values of 
leisure time.  Divers who have chosen to participate then 
choose diving locations based on expectations about 
spatially varying resource abundance and travel costs.  
Thus, on any given open season day there are two 
decision nodes or nests. 
 
A Random Utility Model provides a useful motivation 
and framework for discrete daily participation and diving 
location decisions.  Index individuals by i, diving 
locations by j, and days by t.  Diver i’s utility from diving 
in harvest zone j on day t is: 
Uijt  = vijt  + Hijt  
      = f(Xit, Zi1t, Zi2t, ... , ZiMt ; TT) + Hijt  (7)
  

                                                        
8 A negative-binomial model was also estimated and 
produced qualitatively similar results. 
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where X includes diver-specific and time-specific 
characteristics that are constant across choices, Z denotes 
choice-specific characteristics such as travel costs and 
resource abundance, TT is a parameter vector, and Hijt  is a 
mean-zero random component that is unobservable by the 
analyst.  Given M possible diving locations, the Random 
Utility Model posits that a diver chooses location 1 if the 
utility of choice 1 is higher than that of the (M-1) other 
location choices as well as the choice of not to dive.  For 
example: 
Pr[i chooses 1 at t]  = Pr[Ui1t > Ui2t, Ui1t > Ui3t, ..., Ui1t > 
UiMt, Ui1t > Ui not t]. 
 
There are numerous discrete choice formulations that 
capture the essence of spatial decision-making and are 
consistent with the above Random Utility Model.  Many 
similar analyses that model participation and location 
choices have appeared in the literature on recreation 
demand.9  The general approaches fall into the following 
categories:  multinomial (and conditional) logit, discrete 
choice dynamic programming, random parameters logit, 
mulitnomial probit, and Nested Logit.  The basic 
multinomial (and conditional) logit is easy to estimate but 
inappropriate for spatial policy simulation because it 
imposes Independence of Irrelevant Alternatives (IIA); 
the relative choice probabilities are unchanged by a 
change in the choice set.  A spatial closure analysis with a 
model that imposes IIA would, in essence, assume the 
answer to the policy question.  Discrete choice dynamic 
programming is attractive to the analyst because it is an 
empirical model that is consistent with intertemporal 
optimizing behavior of individual agents and it avoids 
IIA.  In the context of most commercial fisheries, 
however, it is unnecessary.  The open access aspect of 
most fisheries truncates the time horizon from the 
individual fisher’s point of view.  Moreover, it is 
computationally burdensome.  The random parameters 
logit and multinomial probit models can allow for 
heterogeneity of individual responses to independent 
variables and do not suffer from IIA problem, but they are 
also computationally cumbersome.  The method used in 
this paper is Nested Logit.  Nested Logit does not impose 
IIA, is easy to estimate, and allows for different variances 
at different decision nodes.  So, Nested Logit is a 
structural model of the interdependent decisions of 
whether to go and where to go but is also quite flexible.10  
Moreover, in contrast to discrete choice dynamic 
programming, random parameters logit, and multinomial 

                                                        
9 See, for instance, Morey, Shaw, and Rowe (1991), 
Morey, Rowe, and Watson (1993), McConnell, Strand, 
and Blake-Hedges (1995), Morey and Waldman (1998), 
and Font (1999). 
 
10 For more discussion of Nested Logit and discrete 
choice models in general, see Maddala (1983). 
 

probit, the Nested Logit model is simple to use for policy 
simulation because it neither requires calculation of an 
individual agent’s entire optimal path nor integration over 
individual heterogeneity that is manifested in random 
parameters.   
 
McFadden (1978) showed that if Hijt  is independently and 
identically distributed Generalized Extreme Value, 
maximization of random utility gives rise to the Nested 
Logit model.11  If we assume further that indirect utility is 
linear in X and in Z, the following probabilistic model 
characterizes individual choices:  
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The i subscripts for individuals are suppressed because 
the form of the model is the same for each individual in 
the data set; only some X characteristics vary across 
individuals.  EE denotes the parameter vector for 
characteristics that vary across individuals and/or choice 
occasions but not across choices.  The parameter vector 
for characteristics that vary across choices is JJ.  The 
coefficient on the Nested Logit inclusive value is (1 - V).  
For identification, I have normalized the indirect utility 
not diving to zero.  Nevertheless, it is important to keep in 
mind that the indirect utility of not diving captures the 
value of leisure, work opportunities outside the fishery, 
and the value of not being exposed to unsafe diving 
conditions.   
 
For empirical analysis, X includes wave period (WP), 
wind speed (WS), wave height (WH), and day-of-week 
dummies (SUN, …, SAT).  Ex ante, there are strong 
expectations about parameter signs; we expect weather 
variables to have negative coefficients.  If the data were 
available, X would also include variables to control for 
individual diver heterogeneity such as demographic 
indicators.  For each location, Z contains patch-specific 
constants (D0, ..., D10), patch-specific expected revenues 
(ER), patch-specific variance of revenues (VR), travel 
distance from the diver’s home port (DISTANCE), and a 
                                                        
11 In the simpler model in which the H’s are independently 
and identically distributed Type I Extreme Value, utility 
maximization gives rise to the familiar conditional logit 
model (McFadden, 1974). 
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variable that interacts DISTANCE with number of divers 
on the boat (DIS*DIV).12  The strong ex ante sign 
expectations are positive for ER and negative for 
DISTANCE.  Furthermore, we expect VR to have a 
negative coefficient if divers are risk averse.  
 
The number of weather variables included in the discrete 
choice analysis is different the number in the 
Poisson/SUR model.  The Poisson model includes only a 
spline function of wave height.  The wave period and 
wind speed variables are dropped because the aggregated 
weather variables are highly correlated.  This correlation 
is expected, since it is a result of seasonal variation in 
weather patterns.  In the discrete choice model, weather 
variables are on a daily basis and include more 
idiosyncratic patterns.  For instance, there are some days 
with big waves and slow wind yet other days with big 
waves and high wind.  As such, effects of different 
weather characteristics can be resolved in the discrete 
choice model but not in the Poisson regression of 
aggregate participation. 
 
VI. DISCRETE CHOICE ESTIMATION 
 
Table 3 reports results from Nested Logit analysis on the 
27,822 observations.13 Except the interactive coefficient 
on divers and distance (DIS*DIV), all coefficients are 
statistically significant at the 10% level and most are 
highly significant.  Although the coefficients of Nested 
Logit are not the marginal effects (because the model is 
nonlinear), the coefficient signs are interpretable as in a 
linear model.  The negative coefficients on weather 
variables (WP, WS, and WV) all indicate that the 
probability of diving decreases when weather conditions 

                                                        
 
12 For the discrete choice model, expected revenues and 
variance of revenues were calculated by estimating 
gamma distributions for each patch.  A gamma density 
was chosen because revenues are always positive and 
appear to have a skewed distribution.  In each period, the 
previous six months of observations within a patch were 
used to estimate parameters of a gamma density, and the 
resulting parameters were used to calculate ER and VR.  
For further discussion, see Smith (2000). 
 
13 These observations constitute a random sample of thirty 
divers followed across the entire data set.  The data was 
sampled because the number of observations would 
otherwise be enormous and would require considerably 
more computing power and time given the highly 
nonlinear nature of Nested Logit.  Ways of estimating the 
model using all of the data, a larger sample, and/or 
multiple samples are currently being investigated.  The 
results in Table 3 were estimated using GAUSS 
MAXLIK. 
 

are unfavorable.  Wave period and height measure wave 
power, which increases the safety risk of diving, and wind 
speed is a general indicator of harsh weather.   
 
The day-of-week dummies demonstrate the importance of 
urchin roe market institutions.  The pattern of the effects 
is what is relevant as well as the coefficients being 
significantly different from each other.  Most California 
urchin roe processors are closed on Sundays, so there is 
less diving activity on weekends. Urchin landings on late 
Thursday or early Friday may be shipped to Japan Friday 
night and arrive in Japan Sunday.  Since the Tokyo 
wholesale market is closed on Sundays, this decreases 
fishing effort at the end of each week.  Thus, diver 
participation is greatest in mid-week.  
 
Patch-specific variables are also important explanatory 
variables.  The positive sign on ER suggests that divers 
are more likely to choose a location that has higher 
payoffs, while the negative coefficient on VR suggests 
that divers are less likely to choose a patch that has a high 
variance in payoffs.  These coefficients summarize the 
effects of biological and economic factors.  The 
abundance of urchin affects the quantity, which in turn 
affects revenues.  Roe quality and market conditions drive 
prices, which again affect revenues.  The negative sign on 
DISTANCE suggests that travel costs deter divers from 
venturing far from their ports.  Finally, a positive sign on 
DIS*DIV would have an interesting spatial economies of 
scale interpretation.  It would suggest that when there are 
multiple divers on a boat, the fixed costs of travel are 
spread over multiple individuals, which partly offsets the 
DISTANCE variable.14  However, the coefficient 
estimated here is negative and not statistically significant. 
 
An important aspect of Nested Logit is the way that the 
nests of the model are linked.  The probability of not 
participating is a function of the patch-specific variables 
and not just the weather and day-of-week dummies.  So, 
the signs on patch-specific variables also can be 
interpreted as increasing (for positive signs) or decreasing 
(for negative signs) the probability of participating.  For 
example, higher ER in a patch not only increases the 
probability of choosing that patch over other patches but 
also increases the probability of choosing to participate at 
all.  The coefficient on the inclusive value, however, 
mitigates some of this affect.  The coefficient is less than 
one, so a change in a Z variable has a smaller impact on 
the denominator of (9) than it would if the V were = 0. 
 

                                                        
14 A different justification, however, can be made for the 
interactive variable having the opposite sign.  Divers on 
multi-diver boats drive to a different port to reduce travel 
costs, since we expect that travel by boat is more costly 
and time-consuming than travel by car. 
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The model fits well overall, as the high pseudo-R2 value 
of .24 indicates.  Several tests were performed to evaluate 
the specification.  First, the Nested Logit model was 
tested against a model that restricts the inclusive value 
coefficient (1-V) to 1.  The test statistic, distributed 1����� 
with one degree of freedom, was 12.181.  Clearly, we 
reject this restriction in favor of the model in Table 3.  
The model was also tested against one in which the 
choice-specific constants are restricted to 0.  The test 
statistic, distributed F2 with nine degrees of freedom, was 
938.1.  Again we reject the restrictions in favor of the 
model in Table 3. 
 
VII. FORECASTING WITH THE POISSON/SUR 
AND NESTED LOGIT MODELS 
 
The SUR/Poisson approach makes separate forecasts of 
the participation and the spatial dynamics, and multiplies 
them to obtain forecasts of monthly fishing trips for each 
patch.  Participation simulation is quite simple.  The 
Poisson specification implies that: 

tx'
ttttt e]x|y[Var]x|y[E E
 O    (11) 

Predicted participation is simply a function of exogenous 

X variables and the parameter estimates, Ê .  From here, 
one can immediately forecast in-sample and out-of-
sample.  The in-sample period consists of ninety monthly 
observations from 1988 through 1996, deleting months 
during which the fishery was closed.  The out-of-sample 
period is eleven observations during 1997, since the 
fishery was closed during July.  The SUR model is used 
to predict mean shares for each month in each patch, both 
in-sample and out-of-sample.  These predictions are 
simply linear functions of the data and parameter 
estimates.  The predicted shares are multiplied by 
monthly trip predictions to obtain patch-specific monthly 
trip predictions.   
 
There are at least two ways to generate predictions about 
participation and location choices using the discrete 
choice model.  The easiest is simply to calculate the 
indirect utility of each choice (including the choice of not 
to dive) for each individual on each choice occasion.  The 
prediction is then the choice with the highest indirect 
utility.  This method ignores the probabilistic nature of a 
random utility framework but is the best if the analyst is 
truly interested in what a particular individual will do on a 
particular day.  In this paper, however, the interest lies in 
what the group of divers will do as a whole over some 
interval of time.  As such, a second, more useful way to 
generate predictions is to calculate the probabilities of 
each choice for each individual on each choice occasion.   
Then add up all of the probabilities over the relevant 
interval to arrive at the predictions.  This method is used 
to generate the Nested Logit predictions, which are the 
actual and predicted number of diving trips at each 
location in-sample and out-of-sample.   

 
Table 4 compares forecasts from the Poisson/SUR model 
and the Nested Logit model using mean squared error 
(MSE), mean absolute error (MAE), and correlation of 
actual and predicted values.15  In-sample, each model 
performs better than the other for some patches.  Nested 
Logit beats Poisson/SUR, for instance, on all three 
measures forecasting Patch 9, and Poisson/SUR out-
performs Nested Logit in-sample for Patch 5.  The 
average correlation of actuals and predicted values across 
all patches is slightly better for the Nested Logit in-
sample than for the Poisson/SUR model.  Nevertheless, 
the overall performance of Poission/SUR on both 
magnitude measures (MSE and MAE) is better than that 
of Nested Logit.  Out-of-sample, it appears that Nested 
Logit performs better than Poisson/SUR.  The system 
average of MSE and MAE are both lower for the Nested 
Logit model and the system average correlation is higher.  
Nonetheless, Poisson/SUR does perform better in Patch 2, 
Patch 4, and Patch 8. 
 
VIII. DISCUSSION 
 
Although superior out-of-sample performance is an 
argument for Nested Logit, it does not perform so well 
that one can be comfortable ruling out other models.  
Using MSE, MAE, and correlation, it is likely that a pure 
time series model would perform better than either of the 
models proposed in this paper.  However, a pure time 
series model would be unable to simulate policies such as 
spatial closures and marine reserves because these 
policies have not been implemented in the sample period 
and thus would constitute a nonstationarity out-of-sample.  
In contrast, the models proposed in this paper fully 
structural and capable of simulating a variety of policy 
scenarios.  Thus, an important criterion for empirical 
model selection is a model’s applicability to the policy 
situation.   
 
For use as a policy tool, each econometric approach has 
its advantages and its disadvantages.  One straightforward 
use of the Poisson/SUR model is to simulate partial 
season closures.  In this case, one could fix all of the 
regressors except open season days and reduce the 
number of open season days by the amount of the season 
closure.  The Poisson/SUR model is also easier to 
estimate and easier to use as a simulation tool than the 
Nested Logit model.  Moreover, Poisson/SUR does not 
require data on individual decision-makers but instead 
relies on a long panel of industry totals that are 
disaggregated only into spatial units.  In contrast, the 
Nested Logit model is more consistent with individual 

                                                        
 
15 Mean absolute percentage error (MAPE) was not used 
because many month/patch combinations have zero actual 
trips. 
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decision-making, requires fewer assumptions in 
simulations, and does not require a long time series.   
 
Although the Poission/SUR model is structural, spatial 
policy simulation would require many assumptions.  The 
assumptions begin with a need to simulate the effect of 
the policy on aggregate effort because there is no policy 
variability in the sample period.  In other words, spatial 
closures have never been tried as a management tool in 
the urchin fishery (and likely have never been tried in 
other fisheries considering them).  This means that there 
is no explicit independent variable on which to condition 
effort responses to closures.  The analyst must simulate 
spatial closures through a plausible proxy for the policy 
variable.  A sensible assumption might be to scale the 
open season days in the participation regression by the 
number of open patches.  For instance, suppose that there 
are ten patches and thirty open season days in a month.  
Then one might simulate a single patch closure by 
reducing the season days by 30/10 = 3 days.  To capture 
spatial dynamics, the analyst sets the closed patch shares 
to zero.  Unfortunately, further assumptions are required 
about how the share of the closed patch redistributes 
amongst the remaining open patches.  Setting closed 
patch revenues to zero will facilitate the redistribution, 
but there is no guarantee that remaining open patch shares 
will sum to one.  Thus, some other assumption is 
required. Admittedly, this approach is ad hoc, but it is 
more structural than what has been done in some of the 
theoretical research on spatial closures, and it is motivated 
by the spatial adjustment model of Sanchirico and Wilen 
(1999). 
 
Spatial policy simulation with Nested Logit, in contrast, is 
quite straightforward and uses a more compelling 
behavioral model.  To simulate a patch closure, one sets 
the indirect utility of the closed patch to a very negative 
number and then proceeds to calculate the probabilities of 
all the choices.16  In theory there is still a positive 
probability of going to the closed patch using this method, 
but in practice this probability is zero out to many decimal 
places.  This method can be extended easily to model 
multiple patch closures by substituting very negative 
numbers into the corresponding indirect utilities and 
performing the same calculations above. 
 
The Nested Logit model is more structural than the 
Poisson/SUR model.  Independent variables map into 
diver utility, which in turn drives choices.  Even though 

                                                        
 
16 The choice of the indirect utility for the patch closure 
only must be small enough to drive the probability close 
enough to zero.  But, if one chooses a number that is more 
negative than necessary, it does not matter because the 
functional form of logit always exponentiates this 
number, which, in turn, zeroes out the effect. 

there is no spatial policy variation in the sample period, 
all of the factors that determine choice are identified by 
the model, allowing the analyst to simulate the spatial 
closure.  Thus, the analyst does not need to identify an ad 
hoc proxy for the policy variable.  The reason for this is 
that choice occasions in the sample for which a patch is 
highly unattractive to a diver (or divers) mimics a patch 
closure.  As a patch becomes more unattractive, its 
indirect utility (relative to the indirect utilities of other 
choices) decreases.   From the analyst’s perspective, the 
corresponding probability of going to the unattractive 
patch is driven towards zero.  Thus, the utility-theoretic 
basis of the Nested Logit model provides a motivation for 
the spatial closure simulation method suggested above.    
 
As more fisheries managers around the world consider 
spatial closure policies, the need for spatially explicit and 
empirical bioeconomic models grows.  Both models in 
this paper are capable of simulating spatial closures using 
only standard data collected by fishery managers 
augmented with publicly available weather data.  The 
Poisson/SUR model performs better in-sample than the 
Nested Logit, but the Nested Logit does relatively better 
out-of-sample.  Since there is no clear overall winner 
based on goodness of fit measures, model selection can 
proceed based on policy applicability and theoretical 
consistency.  On these criteria, the Nested Logit is a 
superior choice; it has a utility-theoretic foundation and a 
natural structure for simulating spatial closures without 
the need for numerous ad hoc assumptions. 
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Table 1 

Participation Regression Results

Poisson Regression

Variable Coefficient Standard  Error Z - statistic

CONSTANT 6.6354 0.0323 205.4303
DAYS 0.0141 0.0008 17.1750
WV15 -0.0152 0.0007 -22.1050
WV30 -0.0170 0.0009 -18.2810
WV50 -0.0449 0.0050 -8.9880
ER 0.0617 0.0040 15.5110
VR -0.0020 0.0002 -8.7480

observations 92
Log-likelihood -4022.001

Linear Regression

Variable Coefficient Standard  Error Z - statistic

CONSTANT 6.4470 0.3639 17.7200
DAYS 0.0144 0.0088 1.6400
WV15 -0.0130 0.0077 -1.6900
WV30 -0.0239 0.0089 -2.6800
WV50 -0.0395 0.0415 -0.9500
ER 0.0761 0.0395 1.9300
VR -0.0023 0.0024 -0.9800

observations 92

Adjusted R2 0.39  
 
 
 

 Table 4 
Comparison of Forecasts
In-Sample (90 Observations)

Poisson/SUR Nested Logit Poisson/SUR Nested Logit Poisson/SUR Nested Logit
Farallon Islands 18,622.35     22,212.12         8.94 10.96 0.34 0.24
Patch 1 17,397.09     22,051.58         10.01 8.76 0.11 0.28
Patch 2 17,300.99     51,365.48         9.49 19.02 0.43 0.49
Patch 3 131,248.59   306,241.37       28.43 44.27 0.46 0.70
Patch 4 43,792.58     222,832.65       16.67 40.53 0.44 0.44
Patch 5 491,027.54   992,649.14       55.38 79.50 0.48 0.37
Patch 6 64,664.91     113,968.74       20.78 27.97 0.47 0.54
Patch 7 552,486.05   848,504.22       61.75 77.61 0.34 0.66
Patch 8 228,209.05   483,648.90       43.61 58.55 0.50 0.72
Patch 9 87,380.35     79,511.23         22.25 19.90 0.40 0.48
Patch 10 7,592.42       11,568.76         5.54 5.85 0.48 0.35

System Average 150,883.81   286,777.65       25.71 35.72 0.41 0.48

Out-of-Sample (11 Observations)

Poisson/SUR Nested Logit Poisson/SUR Nested Logit Poisson/SUR Nested Logit
Farallon Islands 609.77           458.53              7.23 5.41 0.16 -0.16
Patch 1 505.42           292.68              5.05 3.85 -0.52 -0.17
Patch 2 538.99           986.82              6.02 8.71 0.56 0.38
Patch 3 10,160.02     7,688.84           22.62 18.13 0.07 0.49
Patch 4 1,946.05       2,625.65           11.40 13.86 0.31 0.02
Patch 5 26,867.42     8,685.76           37.38 24.22 0.29 0.54
Patch 6 9,420.28       3,093.58           25.63 14.42 0.34 0.56
Patch 7 51,205.23     58,811.67         57.32 65.94 0.10 0.39
Patch 8 18,573.86     24,068.50         36.70 41.57 0.34 0.20
Patch 9 3,924.17       1,823.25           16.87 11.73 0.58 0.19
Patch 10 333.44           176.05              4.64 2.87 0.28 0.77

System Average 11,280.42     9,882.85           20.99 19.16 0.23 0.29

Mean Squared Error Mean Absolute Error Correlation

Mean Squared Error Mean Absolute Error Correlation

 
 
 
 
 
 
 

Table 3 
N e ste d  L ogi t E s tim ate s

N o t L o ca t io n -Sp ec if ic
V a riab le C o eff ic ien t S ta n d a rd   E r ro r Z  -  sta t ist ic
W P -0.14 3 2 0 .0 21 9 -6.53
W S -0.08 3 9 0 .0 12 3 -6.80
W H -0.64 8 6 0 .0 44 6 -14 .5 3
S U N 1 .7 22 7 0 .3 17 6 5 .4 2
M O N 2 .4 62 9 0 .3 08 2 7 .9 9
T U E 2 .5 71 8 0 .3 08 8 8 .3 3
W E D 2 .4 85 4 0 .3 08 2 8 .0 7
T H U 2 .3 73 5 0 .3 10 2 7 .6 5
F R I 1 .8 47 8 0 .3 15 7 5 .8 5
S A T 1 .7 93 0 .3 14 9 5 .6 9

L o ca tion -Sp ec if ic
V a r i ab le C o eff i cien t Sta n d a rd   E r ro r Z  -  sta t i sti c
D IS TA N C -11 .9 8 29 0 .7 34 6 -16 .3 1
D IS *D IV -0.05 8 3 0 .2 12 1 -0.28
E R 0 .0 45 9 0 .0 23 5 1 .9 5
V R -0.03 1 8 0 .0 18 -1.76
D 0 1 .6 79 5 0 .4 49 5 3 .7 4
D 1 1 .3 42 0 .6 10 4 2 .2 0
D 2 -3.82 8 8 0 .5 05 2 -7.58
D 3 -2.09 8 6 0 .4 86 1 -4.32
D 4 -2.05 0 4 0 .4 49 1 -4.57
D 5 -3.13 8 5 0 .4 75 5 -6.60
D 6 -4.04 0 5 0 .4 84 1 -8.35
D 7 -5.02 1 5 0 .5 27 7 -9.52
D 8 -6.84 4 9 0 .5 82 5 -11 .7 5
D 9 -4.43 6 5 0 .5 18 7 -8.55
D 1 0 0 - restr ic ted  for  id en tif ica tio n  -
sigm a 0 .5 97 2 0 .0 49 1 2.18 1

L og - lik e lih oo d -10 2 93
O b serva tion s 2 78 2 2
P seud o  R -sq u are 0 .2 35 5 4

T he P seu do  R -squ ared is b ased  o n  th e  lo g- lik e lih o od  in  a  C o nd ition a l
L og it M o d e l w ith  ch o ice-spec i fic  co n stan ts .  

Table 2 
SUR Results for Spatial Dynamics

Parameter Variable Coefficient Standard Error t Statistic

D� Farallon Intercept 0.011515 0.002 4.65
D� Patch 1 Intercept 0.019126 0.003 7.37

D� Patch 2 Intercept 0.022343 0.003 8.04

D� Patch 3 Intercept 0.079158 0.005 14.74

D� Patch 4 Intercept 0.046607 0.004 11.26
D� Patch 5 Intercept 0.213346 0.014 14.89
D� Patch 6 Intercept 0.088105 0.006 14.49
D� Patch 7 Intercept 0.28932 0.013 23.06
D� Patch 8 Intercept 0.170614 0.010 17.00
D� Patch 9 Intercept 0.048293 0.005 8.83
D�� Patch 10 Intercept 0.011573 Recovered from restrictions. 

J��� 'R0,1 6.73E-06 0.0000016 4.31
J��� 'R1,0 6.73E-06 0.0000016 4.31
J��� 'R1,2 6.03E-07 0.0000019 0.32
J��� 'R2,1 6.03E-07 0.0000019 0.32
J��� 'R2,3 1.26E-05 0.0000032 3.92

J��� 'R3,2 1.26E-05 0.0000032 3.92

J��� 'R3,4 -8.25E-06 0.0000053 -1.57

J��� 'R4,3 -8.25E-06 0.0000053 -1.57
J��� 'R4,5 1.52E-05 0.0000084 1.81
J��� 'R5,4 1.52E-05 0.0000084 1.81
J��� 'R5,6 -8.53E-06 0.0000111 -0.77
J��� 'R6,5 -8.53E-06 0.0000111 -0.77
J��� 'R6,7 -2.02E-06 0.0000189 -0.11
J��� 'R7,6 -2.02E-06 0.0000189 -0.11

J��� 'R7,8 -1.90E-05 0.0000336 -0.57

J��� 'R8,7 -1.90E-05 0.0000336 -0.57

J��� 'R8,9 3.27E-05 0.0000166 1.97
J��� 'R9,8 3.27E-05 0.0000166 1.97
J���� 'R9,10 9.67E-06 0.0000020 4.82
J���� 'R10,9 9.67E-06 0.0000020 4.82

System Weighted R2       0.0752
Total Observations   990  
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