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Likelihood Analysis of the Multivariate Ordinal Probit Model for Repeated and 
Spatial Ordered Categorical Responses

1. INTRODUCTION

This dissertation is about the likelihood analysis of the multivariate ordinal probit 

model for ordered categorical responses in a longitudinal study or a spatial study, 

meaning regression-like analysis when the response variable is categorical with 

ordered categories, and is measured repeatedly over time or space on the experimental 

or sampling units.  This is an important data structure in medical studies, for example, 

when patients receiving different treatments and with different covariate values are 

categorized according to ordered grades of health status or improvement at multiple 

points in time.  The following two examples indicate the types of data problems we 

have in mind.

Example 1: a Randomized Experiment on Anesthesia Recovery 

In a longitudinal study that compared the effects of varying dosages of an 

anesthetic on post-surgical recovery (Davis, 1991), 60 young children undergoing 

outpatient surgery were randomized to one of four dosages (15, 20, 25 and 30 mg/kg) 

of the anesthesia, with 15 children per dose group.  Recovery scores on a seven-point 

scale (0: least favorable; 6: most favorable) were assigned upon admission to the 

recovery room and at minutes 5, 15 and 30 following admission.  In addition to the 

dosage, other potential covariates were (a) time when the measurement was taken, (b) 
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age of the patient (in months), and (c) duration of the surgery (in minutes).  

Researchers wished to study the profile of the categorical response over time and how 

the response is associated with dose and other covariates.  Generalized estimating 

equations methods are available for this structure of repeated measures with an 

ordered categorical response.  Likelihood analysis, which had not previously been 

available for such an analysis because of computational obstacles, is a possible 

improvement due to greater efficiency and use of likelihood ratio inference tools.

Example 2: an Observational Study on Coho Density

With a spatial-temporal study, researchers wished to identify key habitat 

factors associated with the abundance and distribution of wild and hatchery coho 

salmon in streams.  

(http://oregonstate.edu/Dept/ODFW/spawn/pdf%20files/reports/05SSManual.pdf; 

http://oregonstate.edu/Dept/ODFW/freshwater/inventory/index.htm). Coho densities 

and habitat covariates data were collected from 206 distinct sites from 1998 to 2004.  

The actual density was estimated at each site, in units of coho salmon per linear stream 

mile. The density was categorized by fish biologists on a three-point scale (0 absent: 

density less than 4; 1 few or some: density greater than or equal to 4 and less than 40; 

2 full: density greater than or equal to 40).  The habit covariates included gradient, 

active channel width/depth, percent of pools in the reach, etc. 

In this case, a complicated spatial-temporal correlation structure can be 

modeled with a multivariate normal latent variable. There is no need that such a latent 

variable has any real meaning, nor is the assumption as strong as it might at first seem. 
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The model permits a correlation structure that is more realistic than alternative models. 

Likelihood analysis offers improved efficiency and the use of likelihood-based fitting 

criteria, such as AIC and BIC, for covariate selection. 

1.1 The Multivariate Ordinal Probit Model for Temporal/Spatial Ordinal Data

The primary model for this dissertation is the multivariate ordinal probit model (Fu et 

al., 2000) or the (multivariate) grouped continuous model (Anderson and Pemberton, 

1985).  The model can be derived from a latent variable approach.  In this approach, 

each ordinal response y is derived from a continuous latent variable z using a threshold 

concept.  Specifically, the ordinal variable y is thought of as providing incomplete 

information about the underlying z according to the measurement equation:

y g if 1g gz     for g = 1 to G

where G is the number of categories of ordinal responses and α’s are called thresholds

or cutpoints.  The extreme categories 1 and G are defined by open-ended intervals 

with 0    and G   .  The joint distribution of latent variables z’s is assumed to 

be multivariate normal (MVN).  Consequently, we will account for the 

temporal/spatial correlation of ordinal responses by modeling the variance-covariance 

matrix of the MVN distribution of the latent variables.

The latent (variable) distribution is similar to the notion of tolerance 

distribution in quantal bioassay, but we don’t require that such a latent variable exists.  

If there is no real latent variable, it may also be convenient to think of a fictitious 

latent variable as a “propensity to respond” or “degree of response”.  In example 1, for 
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example, a conclusion can be made about the effect of explanatory variables on the 

degree of recovery from anesthesia. 

The multivariate normal latent variable might not be as strong of an 

assumption as it first seems, though. For one thing, if there really is a latent variable 

(as there would be for categorizing the coho densities in example 2, for example), it is 

only necessary that some monotonic function of the latent variable is normally 

distributed.  Furthermore, the actual distribution of the latent variable might not matter 

much if the extreme response categories are not too strongly tied to the extreme tails 

of the latent variable distribution.

1.2 Contributions of the Dissertation

While the multivariate ordinal probit model is attractive for modeling the ordinal 

responses from longitudinal/spatial studies, its maximum likelihood (ML) analysis has

been slow to evolve because of computational difficulties in finding the MLE of 

parameters in the model.  As we will show, the direct ML approach requires an 

evaluation of integrals of multivariate normal density functions.  Until recently, this 

integration was impractical, especially if it involved more than two dimensions.  

Consequently, most previous applications of this model are limited to bivariate ordinal 

probit models (e.g., Kim, 1995).

In this dissertation, we propose an algorithm for maximum likelihood analysis 

of the multivariate ordinal probit model, which incorporates a numerical integration 

procedure within a numerical maximization procedure.  We believe this algorithm 
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avoids some of the practical problems of previous methods. It can make use of 

existing routines for optimization and for multivariate normal probabilities, available, 

for example, in the software package R.  The availability of this routine will permit 

studies of efficiency, accuracy of tests and confidence intervals, and robustness, which 

will help clarify the relative merits of likelihood analysis and GEE.  For example, in a 

longitudinal study, our simulations show that the maximum likelihood estimates can 

have substantially smaller variances than generalized estimating equations (GEE) 

estimates of regression coefficients.

A second contribution of this dissertation is a fully-likelihood analysis of a 

spatial-temporal ordinal data set of importance in environmental wildlife management.  

Using the latent error induced dependency among spatial-temporal ordinal responses, 

our approach avoids defining neighborhood for each site, which sometimes is not clear 

but is required for some existing approaches (e.g., the Markov Random Field), 

particularly on an irregular lattice.  More importantly, a fully likelihood analysis can 

be conducted in our approach without resorting to a composite (or pseudo) likelihood 

or GEE, which can be less efficient in parameter estimation.  Moreover, the familiar 

likelihood-based methods for testing fit, comparing models (with AIC and BIC, for 

example), making inference about parameters are available with our approach.

1.3 Organization of the Dissertation

The rest of this dissertation proceeds as follows.  In Chapter 2, particular attention is 

given to the multivariate ordinal probit regression model for a longitudinal study, in 
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which the correlation between ordered categorical responses on the same unit at 

different times is modeled with a latent variable that has a multivariate normal 

distribution.  An algorithm for maximum likelihood analysis of this model is proposed 

and the analysis is demonstrated on the anesthesia recovery example.  In addition, 

Chapter 2 documents a simulation study comparing likelihood analysis to generalized 

estimating equations.  Chapter 3 considers a similar model but in a spatial-temporal 

setting where the ordered categorical data are recorded over space and time.  

Likelihood analysis of the multivariate ordinal probit model for this type of data 

structure is provided.  The analysis is demonstrated on the coho study data to identify 

habitat variables associated with coho density.  The dissertation ends with a brief 

discussion of our conclusions and possible directions of future research in Chapter 4.
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2. Likelihood Analysis of the Multivariate Ordinal Probit Regression Model for 
Repeated Ordinal Responses

Yonghai Li* and Daniel W. Schafer**

Department of Statistics, Oregon State University, Corvallis, OR, 97331, U.S.A.
*email: yonghai@science.oregonstate.edu
**email: schafer@science.oregonstate.edu

2.1 Abstract

This paper is about the analysis of longitudinal ordinal data, meaning regression-like 

analysis when the response variable is categorical with ordered categories, and is 

measured repeatedly over time (or space) on the experimental or sampling units. 

Particular attention is given to the multivariate ordinal probit regression model, in 

which the correlation between ordered categorical responses on the same unit at 

different times (or locations) is modeled with a latent variable that has a multivariate 

normal distribution. An algorithm for maximum likelihood analysis of this model is 

proposed and the analysis is demonstrated on an example.  Simulations show that the 

maximum likelihood estimates can be substantially more efficient than generalized 

estimating equations (GEE) estimates of regression coefficients.
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2.2 Introduction

This paper is about the analysis of longitudinal ordinal data, meaning regression-like 

analysis when the response variable is categorical with ordered categories, and is 

measured repeatedly over time (or space) on the experimental or sampling units. This 

is an important data structure in medical studies, for example, when patients receiving 

different treatments and with different covariate values are categorized according to 

ordered grades of health status or improvement at multiple points in time.  The 

following two examples indicate the types of data problems we have in mind.

Example 1: a Randomized Experiment on Anesthesia Recovery 

In a longitudinal study that compared the effects of varying dosages of an 

anesthetic on post-surgical recovery (Davis, 1991), 60 young children undergoing 

outpatient surgery were randomized to one of four dosages (15, 20, 25 and 30 mg/kg) 

of the anesthesia, with 15 children per dose group.  Recovery scores on a seven-point 

scale (0: least favorable; 6: most favorable) were assigned upon admission to the 

recovery room and at minutes 5, 15 and 30 following admission.  In addition to the 

dosage, other potential covariates were (a) time when the measurement was taken, (b) 

age of the patient (in months), and (c) duration of the surgery (in minutes).  

Example 2: an Observational Study on Marijuana Use

The National Youth Survey (Elliot, Huizinga, and Menard, 1989; Lang, 

McDonald, and Smith, 1999) collected five annual waves (1976-80) data on 

‘marijuana use in the past year’ from the 237 respondents who were 13 years old in 

1976.  The data is on a trichotomous ordinal scale (1, never; 2, not more than once a 
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month; 3, more than once a month).  One of the objectives of the study is to model the 

probability of marijuana use status over time as a function of gender and time.

Although there are a variety of models and approaches (see Liu and Agresti, 

2005), we believe the currently most useful tool for this type of problem is generalized 

estimating equations (GEE). This uses a generalized linear model for relating the 

response means to the explanatory variables, and employs a working correlation 

structure to account for the non-independence of multiple responses on the same 

subject. The treatment of correlation is not thought to be realistic with this approach, 

but sufficient for obtaining estimates of the regression parameters of interest. GEE 

algorithms for regression models for ordered categorical responses are available (e.g., 

ordgee in package geepack from R, geeDesign and gee.fit in the correlatedData

library from S-PLUS, proc genmod with the independent working correlation from 

SAS). An important consideration is that these are easy to use (at least, relative to the 

alternatives) because of their similarity with more familiar methods for independent 

responses.

While there is a potentially useful full parametric marginal model for this 

structure—the multivariate ordinal probit model (Fu et al., 2000) or the (multivariate) 

grouped continuous model (Anderson and Pemberton, 1985) — maximum likelihood 

(ML) analysis has been slow to evolve because of computational difficulties in finding 

the MLE of parameters in the model.  As we will show, the direct ML approach 

requires an evaluation of integrals of multivariate normal density functions.  Until 

recently, this integration was impractical, especially if it involved more than two 
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dimensions.  Consequently, most previous applications of this model are limited to 

bivariate ordinal probit models (e.g., Kim, 1995).  McFadden (1989) and 

Hajivassiliou, McFadden, and Ruud (1996) used Monte Carlo techniques for the 

integral evaluation, but many researchers feel this approach is too computer intensive.  

Fu et al. (2000) proposed a limited information estimator for approximate likelihood 

analysis.

In this paper, we propose an algorithm for maximum likelihood analysis of the 

multivariate ordinal probit model, which incorporates a numerical integration 

procedure within a numerical maximization procedure.  We believe this algorithm 

avoids some of the practical problems of previous methods. It can make use of 

existing routines for optimization and for multivariate normal probabilities, available, 

for example, in the software package R.  The availability of this routine will permit 

studies of efficiency, accuracy of tests and confidence intervals, and robustness, which 

will help clarify the relative merits of likelihood analysis and GEE.

The rest of this paper is organized as follows.  Section 2.3 reviews GEE 

approaches for longitudinal ordinal responses.  Section 2.4 introduces the multivariate 

ordinal probit model and an algorithm for maximum likelihood analysis.  Section 2.5

shows an application to the anesthesia recovery example.  Section 2.6 documents a 

simulation study comparing likelihood analysis to generalized estimating equations, 

followed by a discussion in Section 2.7.
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2.3 GEE for Longitudinal Ordinal Data

A generalized estimating equations (GEE) approach for longitudinal ordinal data is a 

multivariate generalization of quasi-likelihood.  The original GEE methodology was 

proposed by Liang and Zeger (1986) for marginal models with univariate distributions 

such as binomial and Poisson generalized linear models.  It was extended to 

multinomial responses using the cumulative logit link and the cumulative probit link 

functions for longitudinal ordinal responses in the mid 1990’s.  Cumulative logit 

models have been studied by Kenward, Lesaffre, and Molenberghs (1994); Lipsitz, 

Kim, and Zhao (1994); Lumley (1996); Mark and Gail (1994); Qu, Piedmonte, and 

Medendrop (1995); and Williamson, Kim, and Lipsitz (1995).  Cumulative probit 

models can be found in Qu et al. (1995) and Toledano and Gatsonis (1996).  GEE 

inference for these models is based on a generalized linear model specification of the 

first two marginal moments of a subject’s response, and a “working correlation” 

structure to account for dependencies of responses from the same subject at different 

occasions.  

Suppose, in a longitudinal study, there are T occasions of measurement.  Let 

ity


 be a G-1 vector to represent an ordinal response variable with G categories and let 

itx


be a p-dimensional explanatory variable vector observed on subject i (i = 1, …, n) 

at time t ( TTt i  ,...,1 ).  Specifically, 1 2 , , 1( , ,..., ) 'it it it i t Gy y y y 


, where 1itgy  if 

subject i falls into response category g at time t, and 0itgy  otherwise, for g = 1,...,G.  

The responses for different subjects are independent, but the responses at different 
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occasions for a given subject are assumed to be correlated.  Let 

( ) ( | , ) Pr( 1| , )itg itg itg it itg itE y x y x       
    

 denote the probability of response g at 

time t, where 


is a parameter vector.  In addition, let 1 , , 1( ,..., ) 'it it i t G   


, 

' '
1( ,..., ) '

ii i iT  
  

, ' '
1( ,..., ) '

ii i iTy y y
  

, 1( ,..., ) '
ii i iTx x x

 
, and ( | )i i i iE y x  

 
.  The 

main models for itg  (for 1 Gg ) are the cumulative logit and the cumulative 

probit, obtained by letting 1 '

1

...
log

1 ( ... )
it itg

g it
it itg

x
 

 
 

  
  

      
 and 

1 '
1( ... )it itg g itx       

 
, respectively, where g and 


 are unknown 

parameters, and )(1   denotes the inverse of the standard normal cumulative 

distribution function.

The following description of GEE follows that given by Lipsitz et al. (1994). 

The GEE for estimating 


 takes the form 

'

1

1

( ) ( ) 0
n

i

i i i
i

U V y


 






 
    
 

 


, (2.1)

where iV , the working covariance matrix, is a function of 


 and other ‘nuisance’ 

parameters, 


, associated with the working correlation.  Let 

)]1(),...,1([ 1,,1,,11   GtiGtiititit diagA  , ],...,[ 1 iiTii AAdiagA  , 

'var( ) [ ]it it it it itV y diag     
  

.  Then, ( )iR 


, the working correlation matrix, can be 

expressed as 
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

























2/12/1
21

2
2/1

22
2/1

221

112
2/1

11
2/1

1

...

...

iiiii

i

i

iTiTiTiTiT

Tiiiii

Tiiiii

AVA

AVA

AVA










,

where 
21tit  for any 21 tt   is a function of the parameter vector 


 (see more details in 

Lipsitz et al., 1994); and the working variance-covariance matrix iV  has the form 

2/12/1 )( iii ARA  .

The GEE estimator,̂


, is the solution to the generalized estimating equation 

(2.1) above. A robust estimate of the variance-covariance matrix in the sampling 

distribution of ̂


 is 

1 1

' 1 ' 1 1 ' 1

1 1 1

ˆ( ) var( )
n n n

i i i i i i i i i i i
i i i

Var DV D DV y V D DV D
 

   

  

                
  

 
where i

iD










.

The variance is estimated by substituting ˆi


from the model fit and replacing 

var( )iy


by an empirical variance of iy


.

The GEE approach requires a working correlation structure, but its estimates 

are thought to be useful even if this structure is misspecified.  The parameter estimates 

from the GEE are consistent as long as the mean function is correctly specified 

(Lipsitz et al., 1994).

While the GEE approach is appealing because of the relative ease with which it 

can be used (especially given that the data structure is a rather complicated one), it has 

these potential drawbacks: (1) the robust standard errors tend to underestimate the true 

ones unless the sample size is quite large; (2) while the robust covariance matrix 
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estimate is consistent under certain conditions when the quasilikelihood model is 

correct, the estimate is often far more variable than the usual parametric variance 

estimate; (3) the familiar likelihood-based methods for testing fit, comparing models 

(with AIC and BIC, for example), and making inference about parameters are not 

available with this approach (Agresti, 2002, p. 468).

While ordinary GEE models (GEE1) regard the correlation structure within 

clusters as a nuisance, Heagerty and Zeger (1996) developed a GEE2 approach where 

the correlation structure in terms of global odds ratios is itself of interest and a set of 

estimating equations for the covariance parameter is built.  The estimates of 

parameters from this approach, however, are no longer consistent if one misspecifies 

the model for the correlation (Agresti and Natarajan, 2001).

2.4 Likelihood Analysis for the Multivariate Ordinal Probit Model

2.4.1 The Multivariate Ordinal Probit Model

Consider the model described in Section 2.3.  Let TTTT n  ...21  for 

convenience.  Suppose the ordinal response ity


 is generated from a latent (tolerance) 

variable itz  through a threshold concept. Specifically,

1itgy  (g = 1, 2, …, G) if and only if gitg z  1 , 

where   GG  1210 ...  are the thresholds for the continuous 

latent variable itz .  Assume '~ ( ,1)it itz N x 
 

 and 1( ,..., ) ' ~ ( , )i i iT T iz z z N x  
 

, where 

  is a positive definite variance-covariance matrix, which is assumed to be the same 



15

for all subjects.  It is important to note that the variance of itz  has been set to 1 for 

identifiability.  Hence,   is also a correlation matrix.  We will account for the 

correlation of ordinal responses of a given individual at different time points by 

modeling the within-subject correlation ( ) of the latent variable as a function of a 

vector or scalar parameter, 


. We make this dependence explicit with the symbol 


.  

Note in this setting that the probability of a response in ordered category g or 

less can be written as

'
1Pr{max( ,..., ) 1} Pr( ) ( )it itg it g g ity y z x       

 
,

where )( denotes the standard normal cumulative distribution function.

The latent (variable) distribution is similar to the notion of tolerance 

distribution in quantal bioassay, but we don’t require that such a latent variable exists.  

It is an abstraction, which can be used to motivate and use the multivariate probit 

model to investigate the relationship between the ordinal response and the covariates 

(see, for example, McCullagh, 1980, and Kim, 1995).  If there is no real latent 

variable, Long (1997, p.127) suggested (1) predicted probabilities of the observed 

outcomes be presented in tables or plots; (2) partial (for continuous covariates) and 

discrete (for factor covariates) change in probabilities be examined.  It may also be 

convenient to think of a fictitious latent variable as a “propensity to respond” or 

“degree of response.”  In example 1, for instance, a conclusion can be made about the 

effect of explanatory variables on the degree of recovery from anesthesia. 

The observed data log likelihood is 
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1 2

1 2

1 2
1

( , , ) log ( ; , )
i i iT

i i iT

b b bn

T i i i i iT
i a a a

l z x dz dz dz    


    


 
   

(2.2)

where 1 1( ,..., ) 'G   


, and )(  is a multivariate normal density,

1
/ 2 12

1
( ; , ) (2 ) | | exp ( ) ' ( )

2
T

T i i i i i iz x z x z x      
         

       
, (2.3)

and

1 gita  , gitb   if and only if 1itgy , for ni ,...,1  and Tt ,...,1 .

The maximum likelihood estimates of parameters ( , ,  
  

) can be obtained by 

maximizing the log likelihood function in equation (2.2).  

2.4.2 An Algorithm for Computing the MLE

We express the log likelihood function as 

1

ˆ( , , ) log { ( , ), ( , ), , }
n

i i i i i
i

l P a y b y      


 
        

(2.4)

where 1( ,..., ) 'i i iTa a a


, 1( ,..., ) 'i i iTb b b


, and iP̂  is a numerical approximation to the 

integral 
1 2

1 2

1 2( ; , )
i i iT

i i iT

b b b

T i i i i iT

a a a

z x dz dz dz    


 
 

. This is, of course, an approximation to 

the probability that a multivariate normal random variable falls in a rectangular region. 

There are numerous routines available (such as the Genz method; see Genz 1992, 

1993).  In order to satisfy the constraint 121  G  , we reparameterize g  (g

= 2, …, G-1) in terms of 1 , 1d , …, and 2Gd  as follows.
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2
112 d , 2

2
2

113 dd  , …,  

 
2

1

2
11

G

g gG d ,

where 1d , 2d , …, and 2Gd are non-zero.

Therefore, the log likelihood in equation (2.4) can be written as 

1 1 2( , ,..., , , )Gl d d  
 

.  We use a stepwise ascent method (see, Gelman et al., 2004, p. 

312) to find the parameter values that maximize the log likelihood.  This iteratively 

maximizes with respect to one parameter at a time, with others fixed at their current 

estimates.  To find global maximizers, it may be necessary to run the stepwise ascent 

routine starting at different initial parameter values spread throughout the parameter 

space.

An algorithm for the MLE

Step 1:

(a) Obtain initial estimates )1(
2

)1(
1

)1(
1

ˆ,...,ˆ,ˆ Gdd  and (1)̂


 by maximizing the log 

likelihood with respect to 211 ,...,, Gdd , and 


, assuming an independence 

correlation structure ( TI 


, a TT  identity matrix).

(b) Obtain (1)̂


 by maximizing the log likelihood with respect to 


, with 

211 ,...,, Gdd and 


 fixed at )1(
2

)1(
1

)1(
1

ˆ,...,ˆ,ˆ Gdd  and (1)̂


.

Step k (k = 2, 3,…):

(a) Obtain )(
2

)(
1

)(
1

ˆ,...,ˆ,ˆ k
G

kk dd   and ( )ˆ k


by maximizing the log likelihood with 

respect to 211 ,...,, Gdd , and 


, with 


fixed at ( 1)ˆ k 


.
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(b) Obtain ( )k


by maximizing the log likelihood with respect to 


, leaving 

211 ,...,, Gdd and 


 fixed at )(
2

)(
1

)(
1

ˆ,...,ˆ,ˆ k
G

kk dd   and ( )ˆ k


.

Repeat the iteration process until convergence.

Note that step 1(a) can be achieved by fitting an ordered probit regression 

model to the nT  observations treated as independent.  Many statistical software 

packages now include this routine for ordered probit regression (PROC GENMOD 

with link = cprobit in SAS; polr with method = “probit” in S-PLUS or R).  

As for step 1(b), we will conditionally maximize the log likelihood with 

respect to 


.  If 


 is a vector, we can sequentially maximize its components.  If 


 is 

a scalar  , recall 11   , so we are required to search in the interval [-1, 1] for the 

conditional maximizer of the log likelihood.  An efficient approach uses a combination 

of golden section search and successive parabolic interpolation (see, Brent, 1973), 

which can be accomplished with the function optimize in R, for example.  

Step k(a) can be implemented with a Newton-type function (using nlm in R, 

for example). See Dennis and Schnabel (1983) and Schnabel, Koontz, and Weiss 

(1985) for details.  Step k(b) can be implemented using the same method as that in step 

1(b).

Computing the asymptotic standard errors

Let 1 1 2( , ,..., , ', ') 'Gd d   
  

 and ̂


 be the parameter vector and its MLE, 

respectively.  Theoretically, one can compute the asymptotic variance of ̂


 by 
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inverting the observed information matrix, ( )I 


, or the expected information matrix, 

(


), evaluated at the MLE ̂


.  If we use the latter, the standard errors of the MLE are 

equal to the square roots of the diagonal entries of -1(


), where 

(̂


) '
ˆ ˆ( ) ( )E l E ll
 

  
 

  , 
l

l










, and 
2

'

l
l

 



 



 

.  '
ˆ ( )E ll



  can be approximated using a 

Monte Carlo method.

If we use the observed information to calculate the asymptotic variance of the 

MLE, we have 
12

1

ˆ

ˆ( )
'

l
I

 


 







 
    

 


 

as the covariance matrix estimator, which can 

also be approximated using numerical derivatives.  Efron and Hinkley (1978) show the 

inverse of the observed information is superior to that of the expected information as 

an approximation to the true variance of the MLE in one-parameter families.  For 

multi-parameter families and other discussions, readers can refer to Skovgaard (1985), 

Pace and Salvan (1997, p. 92-93), and Lindsay and Li (1997).  In the anesthesia 

recovery example below, whenever we experienced computational difficulties of this 

second method, we resorted to the first method outlined above (i.e., we used the 

expected information rather than the observed information).

2.4.3 LR Test and LR Confidence Interval

Unlike the GEE, the likelihood approach permits the likelihood ratio (LR) test of 

parameters and a LR confidence interval through inversion of the LR test.  The LR test 
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statistic is obtained by evaluating the log likelihood function (2.4) at full and reduced 

models. 

2.5 Anesthesia Recovery Example

Our preceding method is demonstrated on a study of the effects of anesthesia dose on 

post-surgical recovery described in Section 2.2.  The data appear in Appendix II in 

Davis (1991).  Figures 2.1 and 2.2 give a rough indication of the relationship between 

the category of recovery (0 – 6) and the dose of anesthesia and time spent by the 

children in the recovery room.  Since 15 profiles on one plot in each dose group are 

too cluttered, only profiles of repeated measures of the first 4 children in each dose 

group are shown in Figure 2.1.  Figure 2.2 gives the average recovery profiles from 

the 15 children in each dose group.  Regression analysis of the ordered response was 

used to explore the effects of dose, time in recovery room, age of child, and duration 

of surgery. 

Statistically significant nonlinearities for the effects of dose, time in recovery 

room, interactions of dose and age, and interactions of time and duration make simple 

statements of conclusion infeasible, but a primary result of the analysis is 

demonstrated in Figure 2.3, where the estimated mean of the latent “recovery” 

(underlying the ordered categories of recovery) is plotted versus age of child for 

children in each of the four dose groups.  Several normal densities, corresponding to 0, 

5, 15, and 30 minutes after admission to the recovery room are sketched to emphasize 

the role of the latent variable in this demonstration.  The horizontal dotted lines 
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correspond to the estimated cutoffs for recovery categories.  The actually observed 

recovery categories for each child at each of the four observation times are plotted as 

well, using different symbols.  These plots are produced for a surgery time set to 70 

minutes. 

Notice that there are 15 children per dose group and that each child is 

measured for recovery at four time points, so that a column of points above a given 

age in the plots corresponds to the four readings for each child.  It is evident that there 

is a surprising interaction: that for all doses except the largest, older children tend to 

have lesser recovery scores for given values of the other covariates.  For the largest 

dose, this relationship is reversed (the p-value for interaction from a likelihood ratio 

test is 0.0029).  It is evident from the plots that the effects of child age and the 

interactive effect of age and dose are of the same order of magnitude as the dose 

effect.

Our details of fit are as follows.  According to our preliminary investigation 

and suggestions proposed by Tutz and Hennevogl (1996), the covariates in our model 

are dosage, time, age, duration, dosage*age and time*duration, where dosage and 

time are treated as factors through defining the indicator variables: D20 = I(dosage = 

20) , D25 = I(dosage = 25), D30 = I(dosage = 30), T5 = I(time = 5), T15 = I(time = 

15), and T30 = I(time = 30), where I( ) is an indicator function.  The following four 

different working correlation structures were considered. 
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Independent: 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



 
 
  
 
 
 



; AR(1): 

3 6

2 5

3 2 3

6 5 3

1

1

1

1



  
  
  
  

 
 
  
 
 
 



.

Exchangeable: 

1

1

1

1



  
  
  
  

 
 
  
 
 
 



; Unstructured: 

12 13 14

12 23 24

13 23 34

14 24 34

1

1

1

1



  
  
  
  

 
 
  
 
 
 



.

Treating the model with unstructured correlation as a full model and others as reduced 

models, our LR tests showed that AR(1) was adequate while independent and 

exchangeable were not.  The corresponding p-values were 0.37 (AR(1)), less than 

0.0001 (independent) and 0.0002 (exchangeable).

Table 2.1 lists the estimates and standard errors from our maximum likelihood 

approach along with those from the GEE approach.  Estimates in the GEE column are 

from the GEE method with an independence working correlation, a multinomial 

distribution, and a (cumulative) probit link function.  We used the S-PLUS (version 

6.2 and above) correlatedData library to obtain the GEE estimates.  As for the 

maximum likelihood approach, the standard errors in parentheses were calculated 

using the expected and/or observed information.  Specifically, the standard errors in 

the third column were calculated through both the observed and expected information, 

while those in other columns were based on the expected information only, due to 

computational difficulties in obtaining the observed information-based ones.

As we can see from Table 2.1, the coefficients of the covariates are quite 

insensitive to the different models we fitted.  However, maximum likelihood estimates 
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generally give smaller standard errors than the GEE does.  Furthermore, in this 

example, the standard errors based on the observed information and the expected 

information are very similar to each other in the maximum likelihood ignoring the 

correlation structure.

2.6 Simulation Study

This section compares the MLE and GEE estimators. The version of the GEE used 

here is the ordinary GEE estimate, sometimes referred to as GEE1 (Thompson, 2006, 

p. 219; and implemented with the function ordgee in the R package geepack).   We 

wished to see whether the maximum likelihood estimator of a regression coefficient 

has better operating characteristics than the corresponding GEE estimator in a setting 

for which maximum likelihood is expected to work well, meaning with data simulated 

from the model on which the maximum likelihood estimator is derived. Robustness is 

a separate question, but it seems appropriate to explore the possible efficiency gains 

from maximum likelihood first.

2.6.1 Model for Simulation

We based the simulation conditions on the estimated model for the “marijuana use” 

example described in Section 2.2 and presented in Table A1, (from Hauspie, Cameron, 

and Molinari, 2004, p. 375).  We simulated data from a multivariate ordinal probit 

regression model by generating a normally distributed latent variable with AR(1) 

correlation structure for repeated measures, with parameters roughly matching the 

estimated values from the real example, and identifying ordered response categories 
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according to the value of the latent variable relative to cutoffs roughly matching the 

estimated values from the real data. We also manipulated the number of ordinal 

categories, the number of repeated measures, and the degree of correlation of the 

within-subject observations.

Inferences from  GEE and ML estimators are justified by large n asymptotics, 

and one should be concerned about the operating characteristics for small and 

moderate sample sizes.  In this investigation, though, we compare the two approaches 

for fairly large samples only, as might be encountered in an important large-scale 

medical study, again to explore the possible efficiency gains from maximum 

likelihood in a nearly ideal situation.  In addition, we focus on moderate and high 

correlations of the within-subject responses.  If within-subject correlations are small, 

then GEE and ML estimates of regression parameters are unlikely to differ much from 

estimates that ignore the correlation structure.  

Our comparisons center on the gender effect (i.e., the coefficient 2 ).  

Appendices A1 and A2 outline the details of the multivariate ordinal probit model 

fitting and the simulation procedures, respectively.

2.6.2 Results

Figure 2.4 and Figure 2.5 show the Monte Carlo sampling distributions of GEE2̂  and 

MLE2̂  (sample size = 1000) for eight scenarios.  The vertical line indicates the true 
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value of 2  (0.38).  All the sampling distributions appear to be well approximated by 

normal distributions, as large-sample statistical theory predicts.

The mean and median values in the Monte Carlo distributions in Table 2.2 are 

all very close to the true value 0.38, but the MLE variance tends to be smaller than the 

GEE variance.  The superior efficiency of ML is largest with large G (number of 

response categories) , small T (number of repeated measures), and large 

(autocorrelation of lag 1) (see the bottom row in Table 2.2).  The greatest disparity 

occurred when there were 6 response categories observed and 3 repeated measures. 

The mean square error of the maximum likelihood estimator was only 17% of the 

mean square error of the GEE estimator in this case. For all scenarios with 6 response 

categories the MSE of the GEE estimator was more than twice that of the MLE.  

When there were only three response categories, the MSE of the MLE was 65% to 

89% of the MSE of the GEE estimator.

Besides MSE, Table 2.2 reports Monte Carlo SD (MCSD) and Averaged 

Reported SE (ARSE) from both methods.  Patterns of MCSD and ARSE with respect 

to changes in  , T and G are similar to those of MSE.  A detailed discussion can be 

found in appendix A3.  We also investigated the accuracy of tests based on SEs from 

the GEE and likelihood ratio tests, and found no conclusive results for the sample size 

we chose, though the likelihood ratio test tends to be more accurate in some scenarios 

(see appendix A4).
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2.7 Discussion

For estimating the various models in the anesthesia recovery example above, the 

number of iterations required for convergence was never more than 4.  Each iteration 

required about 2 minutes using an R routine on an Intel Pentium 1.60GHz PC.  We 

believe the algorithm is practicable for maximum likelihood estimation and likelihood 

ratio inference in data analysis of repeated ordinal responses, and for further studying 

the relative merits of likelihood and GEE analysis as we did in our simulation study.

The proposed method can be extended to fitting a model where (1) each 

response variable from the same subject has different covariates and/or different 

thresholds, or (2) thresholds vary across some groups of subjects.  It can also be 

extended to fit a model in which the correlation structure varies across subjects, as for 

example, when (1) the iT ’s differ or (2) part of the repeated response is missing 

completely at random (MCAR) or missing at random (MAR).  The method is also 

suitable for a spatial study in which data are collected from each unit nested within 

clusters.  Another modification makes the method suitable for a model with known 

thresholds.  In this case, the latent variable is modeled by ' 2
0~ ( , )it itz N x  

 
 and 

we need to estimate the intercept 0  and the variance 2 .  This would be appropriate 

for a response like body mass index category, where the categories are based on 

known cutoffs (i.e., actual body mass index).

In the anesthesia recovery example and the simulation study, the GEE and 

maximum likelihood estimates were very similar, but the standard errors were not.  

Our simulations show MLE is more efficient and less sensitive to changes of the 
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number of categories than GEE.  In terms of MSE, more improvement will be attained 

from using ML if the data has more categories and/or fewer repeated measures, though 

an increase of the degree of the within-subject correlation from a medium level to a 

high level gives mixed effects on the ML.  It is worth noting that there is no evidence 

for more improvement of MSE from ML when each subject has more repeated 

measures.  On the contrary, the simulations show less improvement in MSE due to a 

faster drop of MSE in GEE than in ML when the number of repeated measures 

increases.

While the maximum likelihood (ML) method based on the multivariate ordinal 

probit model has a few attractive features mentioned above, one may argue that the 

GEE has greater robustness.  The multivariate normal latent variable might not be as 

strong of an assumption as it first seems, though. For one thing, if there really is a 

latent variable (as there would be for categorizing hurricane strength from maximum 

wind speed, for example), it is only necessary that some monotonic function of the 

latent variable is normally distributed.  Furthermore, the actual distribution of the 

latent variable might not matter much if the extreme response categories are not too 

strongly tied to the extreme tails of the latent variable distribution. Future research 

would be needed, though, to evaluate the robustness of the ML method.
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Tables and Figures

Table 2.1
Estimation results for the anesthesia recovery example

_____________________________________________________________________
parameters GEE 

(independent)
MLE*
(independent)

MLE**
(AR1)

MLE**
(exchangeable)

MLE**
(unstructured)

1 -2.3618 (0.9404) -2.3624 
(0.6128, 0.6032)

-2.3650 
(0.8466)

-2.3624 (0.8803) -2.3624 
(0.8215)

2 -1.2278 (0.9469)

3 -0.9220 (0.9387)

4 -0.4576 (0.9267)

5 -0.1240 (0.9341)

6 0.2658 (0.9333)

1d 1.0649
(0.0635, 0.0650)

1.0292 (0.0671) 1.0649 (0.0679) 1.0648 
(0.0714)

2d 0.5530
(0.0586, 0.0589)

0.5449 (0.0595) 0.5530 (0.0612) 0.5532 
(0.0576)

3d 0.6815
(0.0569, 0.0556)

0.6869 (0.0572) 0.6813 (0.0557) 0.6816 
(0.0557)

4d 0.5776
(0.0583, 0.0578)

0.5711 (0.0594) 0.5775 (0.0588) 0.5777 
(0.0606)

5d 0.6243
(0.0599, 0.0610)

0.6394 (0.0601) 0.6243 (0.0634) 0.6244 
(0.0615)

D20 0.9431 (1.0351) 0.9430
(0.6291, 0.6412)

0.9502 (1.0044) 0.9429 (1.0298) 0.9431 
(0.9674)

D25 0.5180 (1.2348) 0.5180
(0.7173, 0.7283)

0.5170 (1.1377) 0.5180 (1.1788) 0.5180 
(1.1255)

D30 -2.1161 (1.0579) -2.1164
(0.5979, 0.5829)

-2.1224 
(0.9562)

-2.1165 (1.0109) -2.1163 
(0.9320)

T5 0.1642 (0.1990) 0.1641
(0.4691, 0.4559)

0.1662 (0.1861) 0.1642 (0.2685) 0.1643 
(0.2133)

T15 1.0479 (0.3077) 1.0478
(0.4749, 0.4672)

1.0477 (0.2892) 1.0478 (0.2838) 1.0481 
(0.3124)

T30 2.1177 (0.4311) 2.1176
(0.5017, 0.4808)

2.1209 (0.3849) 2.1176 (0.3213) 2.1177 
(0.3936)

Age -0.0167 (0.0178) -0.0168
(0.0116, 0.0116)

-0.0177 
(0.0182)

-0.0173 (0.0194) -0.0169 
(0.0176)

Duration -0.0066 (0.0035) -0.0067
(0.0039, 0.0038)

-0.0070 
(0.0039)

-0.0066 (0.0039) -0.0066 
(0.0040)

D20*Age -0.0378 (0.0227) -0.0378
(0.0162, 0.0164)

-0.0368 
(0.0260)

-0.0379 (0.0268) -0.0379 
(0.0254)

D25*Age -0.0200 (0.0263) -0.0200
(0.0167, 0.0168)

-0.0209 
(0.0267)

-0.0207 (0.0277) -0.0199 
(0.0266)

D30*Age 0.0386 (0.0215) 0.0386
(0.0135, 0.0132)

0.0377 (0.0217) 0.0384 (0.0231) 0.0385 
(0.0213)

T5*Duration 0.0042 (0.0027) 0.0042
(0.0054, 0.0053)

0.0046 (0.0021) 0.0045 (0.0031) 0.0043 
(0.0024)

T15*Duration -0.0007 (0.0035) -0.0007
(0.0054, 0.0053)

-0.0003 
(0.0031)

-0.0003 (0.0031) -0.0007 
(0.0033)

T30*Duration -0.0030 (0.0045) -0.0030
(0.0055, 0.0054)

-0.0021 
(0.0040)

-0.0022 (0.0031) -0.0022 
(0.0040)

 0.8863 (0.0243) 0.7316 (0.0523)
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(Continued)

12 0.8367 
(0.0476)

13 0.6191 
(0.0908)

14 0.4862 
(0.1254)

23 0.8062 
(0.0524)

24 0.5228 
(0.1176)

34 0.7634 
(0.0709)

log likelihood N.A. -375.8387 -309.2073 -318.4727 -306.5435
*: the first and second standard errors in each cell from this column are based on the observed 
information and the expected information, respectively. 
**: the standard errors are based on the expected information.

Table 2.2
Descriptive statistics of estimates of 2 (true value 0.38)

_____________________________________________________________________
G = 3 G = 6

T = 3 T = 7 T = 3 T = 7
ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8

GEE
mean 0.3852 0.4038 0.3810 0.3830 0.4257 0.4474 0.3910 0.3939
median 0.3898 0.3978 0.3806 0.3814 0.4035 0.4392 0.3840 0.3869
minimum 0.0252 -0.0407 0.1596 0.0519 -0.2251 -0.3413 0.1279 -0.0821
maximum 0.8244 0.8619 0.5588 0.6962 1.9613 1.5360 0.7476 0.8327
Monte Carlo SD 0.1091 0.1456 0.0668 0.0981 0.2296 0.2550 0.1037 0.1290
average reported 
SE

0.1076 0.1335 0.0663 0.0972 0.2120 0.2253 0.1017 0.1236

MSE 0.0119 0.0217 0.0045 0.0096 0.0548 0.0695 0.0109 0.0168

MLE
mean 0.3851 0.3965 0.3798 0.3802 0.3837 0.3974 0.3876 0.3844
median 0.3858 0.3948 0.3807 0.3808 0.3863 0.3981 0.3869 0.3844
minimum 0.0836 0.0407 0.1874 0.1072 0.0766 0.0655 0.1918 0.0498
maximum 0.7481 0.7542 0.5774 0.6723 0.7022 0.7871 0.6069 0.6646
Monte Carlo SD 0.0957 0.1179 0.0632 0.0827 0.0954 0.1075 0.0631 0.0866
average reported 
SE

0.0883 0.0986 0.0710 0.0868 0.0917 0.1023 0.0828 0.1057

MSE 0.0092 0.0142 0.0040 0.0068 0.0091 0.0118 0.0040 0.0075

MSE 
improvement 
(%)*

23.00 34.88 10.34 29.07 83.37 82.96 62.92 55.38

*: (MSE.gee - MSE.mle)/MSE.gee×100%
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DOSE = 15 mg/kg
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Figure 2.1 Profiles of repeated measures of the first 4 children in each dose group

Time in Recovery Room (Minutes)

A
ve

ra
ge

 R
ec

ov
er

y 
S

co
re

0 5 10 15 20 25 30

1
2

3
4

5 Dose = 15 mg/kg
Dose = 20 mg/kg
Dose = 25 mg/kg
Dose = 30 mg/kg

Figure 2.2 Average recovery profiles from 15 children in each dose group



34

DOSE = 15 mg/kg
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Figure 2.4 Histograms of GEE2̂  and MLE2̂  with G = 3, T = 3 or 7, ρ = 0.5 or 0.8
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3. Regression Analysis for Ordered Categorical Responses 
with Spatial-temporal Correlation

Yonghai Li* and Daniel W. Schafer**

Department of Statistics, Oregon State University, Corvallis, OR, 97331, U.S.A.
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**email: schafer@science.oregonstate.edu

3.1 Abstract

This paper is about the regression analysis for ordered categorical responses with 

spatial-temporal correlation.  Using the latent error induced dependency among 

spatial-temporal ordinal responses, we propose likelihood analysis for a regression 

model for spatial-temporal ordered categorical data.  This approach avoids defining a 

neighborhood for each site, which sometimes is not clear but is required for some 

existing approaches (e.g., the Markov Random Field), particularly on an irregular 

lattice.  Without resorting to a composite (or pseudo) likelihood or GEE or Bayesian 

approaches, the proposed approach is demonstrated on a coho study example, in which 

the coho density at each sample site from each spawning year is classified into 4 

categories.  
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3.2 Introduction

3.2.1 The Coho Data Example

Populations of coho salmon (Oncorhynchus Kisutch) that occur in Oregon coastal 

watersheds between Cape Blanco and the mouth of the Columbia River are being 

evaluated by the National Oceanic and Atmospheric Administration National Marine 

Fisheries Service (NOAA Fisheries) for listing under the federal Endangered Species 

Act (ESA).  In 1998, the Oregon Department of Fish and Wildlife (ODFW) and 

NOAA Fisheries initiated the Coastal Coho Project to address the conservation of 

coastal coho on the Oregon coast.  One of the primary objectives was to identify key 

habitat factors associated with the abundance and distribution of wild and hatchery 

coho spawning in streams to help better understand the conditions for conservation 

management.

Data for assessing this association are shown in Table A5 in the appendices.  

These come from two different sources.  Salmon densities at various stream sites come 

from the ODFW Costal Salmonid Inventory Project (Detailed survey procedures can 

be found at the following website: 

http://oregonstate.edu/Dept/ODFW/spawn/pdf%20files/reports/05SSManual.pdf.)  

Habitat data, on physical characteristics and conditions of the streams are from the 

Aquatic Inventories Project, a separate ODFW monitoring project (detailed 

information can be found at the following website: 

http://oregonstate.edu/Dept/ODFW/freshwater/inventory/index.htm.).  The rows in 

Table A5 correspond to stream sites at which both the salmon density and habitat 
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variables were available.  The first five columns show gene conservation group 

(GCG), strata (North Coast, Mid Coast, Mid-South Coast, South Coast, and Umpqua), 

sampling identification number, spawning year, and coho count per mile, respectively.  

Columns 6-16 are potential habitat covariates, with their meaning included in Table 

3.1.  The last two columns are the latitude and the longitude of the sampled sites.  

There are totally 206 distinct sites where 32 sites have repeated measures (see the 

repeated measure structure in Table 3.2).  The data consists of 58, 48, 51, 48, 45, 23 

and 22 observations in spawning years 1998, 1999, 2000, 2001, 2002, 2003 and 2004, 

respectively.

A specific goal is to identify habitat variables associated with salmon density. 

An actual density is estimated at each site, in units of coho salmon per linear stream 

mile. Fish biologists categorize density in the following way:

absent: density less than 4 adult coho per mile

few or some: density greater than or equal to 4 and less than 40 adult coho per 

mile (we used 12, the median of the observed data in the interval [4, 12), as an 

additional cutoff to distinguish between few and some) 

full: density greater than or equal to 40 adult coho per mile

This paper focuses on an analysis using this ordered categorical response 

variable for assessing the association of salmon density with the explanatory habitat 

variables. Given that the underlying numerical densities are available, it would also be 

possible to analyze the data with the uncategorized response (and report the resulting 

conclusions from that analysis in terms of the categorizations, if desired). However, 
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there are a few problems with the density as a response variable.  The distribution 

tends to be skewed, but since there are so many zeros a log transformation is out of the 

question.  A square root transformation might work, but its lack of interpretability is 

too much of a drawback.  One could try Poisson log-linear regression (with 

overdispersion) or Negative Binomial regression, but introducing the spatial/temporal 

correlation is not quite convenient, especially in the frequentist framework.  While the 

Generalized Estimating Equation (GEE) methods are available (e.g., Zeger (1988) for 

the temporal count data; McShane, Albert, and Palmatier (1997) for the spatial count 

data), most other studies employ Bayesian approaches (e.g., Best, Ickstadt, and 

Wolpert (2000) and Wakefield (2006) for spatial Poisson models; Alexander, Moyeed, 

and Stander (2000) for a spatial Negative Binomial model).  Wakefield (2006) notices 

there are currently no simple ways of fitting frequentist fixed effects, non-linear 

models with discrete response and spatially dependent residuals (except for the GEE).  

As for spatial-temporal count data, to our knowledge, the GEE method for this data 

structure has not been developed yet.

Our justification for the use of the categorical variable directly is that the 

analysis is based on weaker assumptions. The spatial/temporal correlation of response 

variables is addressed with a multivariate normal latent variable. It does not imply that 

the underlying densities are normal, only that some monotonic transformation of the 

densities is normally distributed. There is no requirement to specify the 

transformation.
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3.2.2 Literature Review for Spatial/Temporal Ordinal Data

While models for spatially-dependent binary data and non-ordered categorical data 

have been discussed in the literature for a long time (see Ising (1925) for a first-order 

auto-logistic model for binary data on a lattice; see Strauss (1977) for non-ordered 

categorical data), modeling ordered categorical spatial data has not received much 

attention until more recently.  Kutsyy (2001) views ordinal data as arising from a 

latent continuous-valued spatial process through a threshold concept.  Furthermore, a 

first-order Gaussian Markov random field is used to model the latent data which 

induces spatial dependence in the ordinal data.  Due to computational intractability of 

maximum likelihood estimator, Kutsyy (2001) considers alternative methods based on 

a pseudo-likelihood and two other approximations to the likelihood (MnE and MdE).  

Brewer et al. (2004) also assumes a continuous latent variable, but employs a mixed-

effects model, including an exchangeable spatial random effect and a neighborhood 

based spatial random effect.  Their model was estimated through a Bayesian approach 

for grazing impact data from two areas of Scotland.  When estimation of the covariate 

effect is of primary interest, Baeumler (1995) suggests GEE approaches developed in 

Miller, Davis, and Landis (1993) and Qu, Piedmonte, and Medendrop (1995). 

In contrast with the work on statistical modeling for the purely spatial 

binary/ordinal data, the literature dealing with the spatial-temporal binary/ordinal data 

is rather limited and more recent.  To name a few, Gumpertz, Wu and Pye (2000) 

show, in a quasi-likelihood approach, an application of a marginal logistic regression 

model with spatial and temporal autocorrelations to binary responses.  Peraza-Garay 
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(2004) uses partially ordered Markov models (Cressie and Davidson, 1988; Davidson, 

Cressie and Hua, 1999; Huang and Cressie, 2000) to handle both spatial and temporal 

dependencies.  Ramos-Quiroga and González-Farías (2005) give a spatial-temporal 

ordinal model through a pseudo-likelihood approach, where a Markov random field is 

defined over both the space and the time domains on a regular lattice.  Kneib and 

Fahrmeir (2006) propose a general class of structured additive regression models for 

categorical responses (including ordinal responses) from a Bayesian perspective.  The 

resulting empirical Bayes method is closely related to penalized likelihood estimation 

in a frequentist setting.  But none of all these methods adopt a fully likelihood 

approach.

In this paper we propose a likelihood analysis for a regression model for 

spatial-temporal ordered categorical data.  Using the latent error induced dependency 

among spatial-temporal ordinal responses, our approach avoids defining a 

neighborhood for each site, which sometimes is not clear but is required for some 

existing approaches (e.g., the Markov Random Field), particularly on an irregular 

lattice.  More importantly, a fully likelihood analysis can be conducted in our 

approach without resorting to a composite (or pseudo) likelihood or GEE or Bayesian 

approaches.

This paper proceeds as follows.  In the next section, our model for ordered 

categorical responses with spatial-temporal correlation is described.  Section 3.4 

contains an application to the coho study example.  The paper ends with a brief 

discussion of our method and possible directions of future research in Section 3.5.
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3.3 Model for Ordered Categorical Responses with Spatial-temporal Correlation

Following Cressie (1991) and Schabenberger and Gotway (2005), we have a spatial-

temporal process as follows,

{ ( , ) : ( ) , }qZ s t s D t t T   ,

where Z(s,t) denotes the response of the latent variable at time t, and location s, a 

( 1)q  vector of coordinates in the domain D; T is the time domain.  The observed 

ordinal responses ( , )y s t  are assumed to be generated from the realized ( , )z s t  through 

a threshold concept as follows.

( , )y s t g  (g = 1, 2, …, G) if and only if 1 ( , )g gz s t    , 

where   GG  1210 ...  are the thresholds for the latent 

variable ( , )z s t .  Let stx


 denote a p1  vector of covariates with a corresponding 

coefficients vector 


, assume ( , ) ~ ( ' ,1)st stZ Z s t N x 
 

, a normal distribution with 

mean 'stx 
 

 and variance 1.  Given the n observations, we further assume the joint 

distribution of the latent variables stZ  is an n-dimensional multivariate normal 

( , )nN X  


, where 
1 1

( ,..., ) '
n ns t s tX x x

 
and   is the covariance matrix, which is also a 

correlation matrix because the marginal variances are all 1.  We will account for the 

correlation of ordinal responses at different sites and time by modeling the correlation 

( ) of the latent variables as a function of some unknown parameters.  Many different 

forms of   are available and they can be either (time and space) separable or non-

separable.  One reasonable form of a separable covariance (correlation) function is 
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| |cov[ ( , ), ( , )] s ij t k lc h c t t
i k j lZ s t Z s t e   (3.1)

where ijh  is the Euclidean distance between is  and js ; sc  and tc are unknown 

parameters (e.g., Mitchell and Gumpertz, 2003).  While separable covariance models 

such as (3.1) do not incorporate space-time interactions in the covariance, non-

separable covariance models allow the interactions and therefore, seem more attractive 

if the interaction does exist.  Gneiting (2002) presented a flexible and elegant 

approach to construct non-separable covariance functions.  In the coho data example, 

noting coho salmon have a three-year cycle (i.e., fish that hatch one year come back 

from the ocean after three years to spawn), we expect temporal correlation at lag 3 but 

not lags 1 and 2.  Therefore, we use the following stationary non-separable covariance 

function,

(| | 3)cov[ ( , ), ( , )] s ij t k lc h c I t t
i k j lZ s t Z s t e   

with cov[ ( , ), ( , )] 0i k j lZ s t Z s t   if (i) i js s , k lt t , and | | 3k lt t   or (ii) i js s  and 

k lt t .  Specifically, the preceding covariance equals (1) 1 if i js s  and k lt t ; (2) 

tce if i js s  and | | 3k lt t  ; (3) 0 if i js s , k lt t , and | | 3k lt t  ; (4) s ijc he  if 

i js s  and k lt t ; (5) 0 if i js s  and k lt t .  It immediately follows that the 

temporal correlation is restricted to lag 3 within each site while the spatial correlation 

is restricted within each time (spawning year).  We make the dependence of   on 

( , ) 's tc c c


explicit with the symbol c

.

It is straightforward that the observed data log likelihood l can be written as:
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1 2

1 1 2 2

1 2

( , , ) log ( , , )
n

n n

n

bb b

n c s t s t s t

a a a
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

 
  

(3.2)

where 1 2 1( , ,..., ) 'G    


 and )(n  is an n-dimension multivariate normal density

1
/ 2 ' 12

1
( ; , ) (2 ) | | exp ( ) ( )

2
n

n c c cz X z X z X    
         

       
(3.3)

with 
1 1 2 2

( , ,..., ) '
n ns t s t s tz z z z


, and

1 gia  , gib   if and only if ( , )i i iy y s t g  , for ni ,...,1 .

Note the MLE of parameters ( , ,c 
 

) can be obtained through maximizing the log 

likelihood function in equation (3.2).  We use a steepest descent approach for 

maximizing the parameters, using Genz’s numerical approximation (Genz, 1992, 

1993) to the multivariate normal probability in the log likelihood.  Details of the 

optimization algorithm can be found in Li and Schafer (2006).  Basically, the 

algorithm maximizes the log likelihood function with respect to parameters 

sequentially and iteratively until convergence.  During the optimization, in order to 

satisfy the constraint 121  G  , we reparameterize g  (g = 2, …, G-1) in 

terms of 1 , 1d , …, and 2Gd  as follows.

2
112 d , 2

2
2

113 dd  , …,  

 
2

1

2
11

G

g gG d , (3.4)

where 1d , 2d , …, and 2Gd are non-zero.

Statistical inference about the parameters can be conducted through the Wald 

test and the likelihood ratio (LR) test, using the asymptotic theory of the maximum 

likelihood estimators in a spatial (-temporal) regression (see, for example, 
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Schabenberger and Gotway (2005), p. 343-346, for a discussion of the covariance 

parameters part).

3.4 Analysis of the Coho Data

Figure 3.1 shows scatterplots of the original data.  We can see the relationship 

between the uncategorized response and the habitat covariates is not quite clear except 

for a few covariates such as “number of pools deeper than 1.0 meter/kilometer of total 

stream length” and “pieces of large woody debris/100 meters of primary stream 

length.”  The figure also implies adding some quadratic terms of covariates might be 

helpful.  In order to avoid multicollinearity in our regression analysis, we investigate 

the correlation among all 11 habitat covariates (see Table 3.3).  It reveals covariates 

for pieces of large woody debris, volume of large woody debris, and number of key 

pieces of large wood (i.e., LWDPIECE1, LWDVOL1, and KEYLWD1) are highly 

correlated.  Consequently, our model excludes LWDVOL1 and KEYLWD1 in the 

following analysis. 

Besides the habitat covariates, our model also includes time (i.e., spawning 

years 1998-2004) as a fixed-effect factor with 7 levels.  Treating the fixed effect of 

spawning year 1998 as a reference level, we create yearly dummy variables D99, D00, 

D01, D02, D03, and D04 for spawning years 1999-2004, respectively.  For example, 

D99=1 if spawning year = 1999; D99=0 otherwise.  An important justification for 

introducing a fixed-effect of time is to take into account other time-varying covariates 

such as “ocean conditions,” which are not available in the data set.  Fish biologists 



47

believe a huge factor in the density of spawners is “ocean survival”, which is a yearly 

effect that integrates ocean conditions.

Recall that our goal is to identify habitat variables associated with salmon 

density.  Therefore, some variable selection procedures are necessary.  We start with a 

model including the first 9 habitat covariates in Table 3.1, their quadratic terms, and 

yearly dummy variables D99, D00, D01, D02, D03, and D04.  The fully likelihood 

approach in Section 3.3 allows us to choose BIC as a variable selection criterion.  One 

possibility is backward elimination in which one variable at a time is dropped -- based 

on decreasing BIC -- until BIC can't be decreased any more.  This backward 

elimination method leads to a model including the following explanatory variables: 

D99-D04, PCTPOOLS, (PCTPOOLS)2, PCTBEDROCK, POOL1P.KM, 

(POOL1P.KM)2, LWDPIECE1, (LWDPIECE1)2.  Table 3.4 shows how BIC changes 

in the backward elimination procedure.

Table 3.5 gives parameters estimates for the selected model.  The standard 

errors of the estimates are omitted since our purpose is to identify what habitat 

covariates are significantly associated with the coho density.  In addition, it would be 

difficult to make sense out of the standard errors and confidence intervals given the 

complicated sampling scheme used in this study.  However, p-values from the 

likelihood ratio test are reported in Table 3.6.  The table shows most of the selected 

habitat covariates are significant at the 0.05 significance level.  

The LR test can also be carried out to compare our spatial-temporal model with 

a model assuming spatial-temporal independence, since the latter is nested within the 
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former as sc   and tc  .  Note the parameters s tc c   lie on the boundary of 

the parameter space and we simply divide the p-value obtained from a 2 with 2 

degrees of freedom by 2 (Self and Liang, 1987; Schabenberger and Gotway, 2005, p. 

344).  The adjustment shrinks the p-value but it doesn’t alter our conclusion that the 

spatial-temporal model fits significantly better than a model assuming independence 

(adjusted p-value = 0.0014).  Similarly, the LR test can be used to test the purely 

temporal (or spatial) model since the spatial-temporal model reduces to the purely 

temporal (or spatial) model as sc   (or tc  ).  It turns out that there exists 

moderate evidence for the spatial correlation (p-value = 0.0241, Table 3.6).  In 

contrast, we found suggestive but inconclusive evidence for the temporal correlation 

(p-value = 0.0626, Table 3.6).

3.5 Discussion

Using the coho study example, we have shown spatial-temporal dependency of the 

ordinal responses can be simply incorporated in regression analysis through a 

multivariate normal distributed latent variable.  This approach avoids defining 

neighbors, and is a fully likelihood analysis.  Consequently, the familiar likelihood-

based methods for testing fit, comparing models (with AIC and BIC, for example), 

making inference about parameters are available with this approach.  In addition, 

given a correctly specified form of spatial - temporal correlation structure, our 

parameter estimates tend to be more efficient than those from treating each 

observation as uncorrelated or other non-fully-likelihood approaches mentioned in 
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Section 3.2.  An example is Ramos-Quiroga and González-Farías (2005).  While they 

claim their pseudo-likelihood approach is particularly useful for spatial-temporal 

problems, they are concerned about the loss of efficiency of their approach with 

respect to fully likelihood ones.  Consequently, from our point of view, for the data 

from a regular lattice, future research could be done to compare our method with 

others to evaluate the gain of efficiency of our method.

A second benefit of our approach is that it could be easily extended to a linear 

mixed-effects model with correlated errors for the latent variable for ordinal responses 

data.  As a matter of fact, a linear mixed-effects model with i.i.d. errors for the latent 

variable for ordinal responses in a longitudinal or spatial study is not uncommon (see, 

e.g., Hedeker and Gibbons, 1994; Crouchley, 1995; Brewer et al., 2004).  In most 

cases, random effects are introduced to account for 1) the correlation among repeated 

measures from a subject in a longitudinal context; 2) the correlation among the 

responses from different sites in a spatial context.  As far as the error terms themselves 

are concerned, there are few exceptions, for example, Girard and Parent (2001), which 

considered an AR(1) for temporal dependence in analyzing on-line quality data.  But 

these exceptions studied fixed effects of covariates only.  Consequently, future studies 

can focus on a linear mixed-effects model along with correlated errors in a spatial-

temporal setting.  This type of models can be attractive in some cases.  For example, in 

the coho example, if the spawning years in the sample had been randomly selected, we 

could have treated the time effects as random, and a linear mixed-effects model with 

correlated errors would have been necessary.
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Tables and Figures

Table 3.1
Potential covariates for the coho study example

_______________________________________________________________

GRADIENT gradient
ACW active channel width
ACH active channel height
PCTPOOLS (%) percent of pools in the reach
PCTSWPOOL (%) percent of slackwater pools in the reach
PCTGRAVEL (%) percent of gravel substrates in reach
PCTBEDROCK (%) percent of bedrock substrate in the reach
POOL1P.KM number of pools deeper than 1.0 meter/kilometer of total stream 

length
LWDPIECE1 pieces of large woody debris/100 meters of primary stream length
LWDVOL1 volume of large woody debris/100 meters of primary stream length
KEYLWD1 number of key pieces of large wood (> 0.59 in diameter and > 10 

meters in length)/100 meters of primary stream length
_______________________________________________________________

Table 3.2
Repeated measurement structure for 32 sites

_____________________________________________________________________
spawning years

site ID
1998 1999 2000 2001 2002 2003 2004

8056 x x x
4006 x x x x x
5323 x x x x x
2237 x x
2556 x x x x x
1844, 1196, 530, 608, 1984, 2278, 5165 x x
978, 1735, 663, 256, 2989, 3231, 2089, 2492, 5338, 5465, 
8930

x x x

130, 545, 715, 3336, 5638, 4794, 7285, 7999, 9218 x x x x x x
‘x’ indicates measurements were taken for the coho density and the habitat covariates at the site in the spawning year.

Table 3.3
Correlation matrix of all covariates

_____________________________________________________________________
covariates 1 2 3 4 5 6 7 8 9 10 11
1. GRADIENT 1 -0.30 -0.16 -0.50 -0.13 -0.14 -0.11 -0.28 0.25 0.19 0.09
2. ACW 1 0.69 0.24 -0.06 -0.20 0.16 0.57 -0.20 -0.10 -0.05
3. ACH 1 0.18 -0.05 -0.16 0.03 0.46 -0.22 -0.17 -0.13
4. PCTPOOLS 1 0.47 0.02 0.19 0.42 -0.14 -0.15 -0.10
5. PCTSWPOOL 1 -0.09 -0.10 0.14 0.07 0.04 0.04
6. PCTGRAVEL 1 -0.41 -0.04 0.01 0.01 0.01
7. PCTBEDROCK 1 -0.03 -0.31 -0.25 -0.18
8. POOL1P.KM 1 -0.13 -0.08 -0.02
9. LWDPIECE1 1 0.83 0.65
10. LWDVOL1 1 0.91
11. KEYLWD1 1
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Table 3.4
Variable selection using BIC

_____________________________________________________________________
step variable removed BIC
0 (initial model) 818.52
1 PCTGRAVEL2 811.18
2 PCTGRAVEL 807.29
3 GRADIENT2 801.62
4 GRADIENT 796.17
5 ACW2 793.31
6 ACW 788.07
7 ACH2 783.79
8 ACH 779.59
9 PCTBEDROCK2 775.71
10 PCTSWPOOL2 772.71
11 PCTSWPOOL 768.89

Table 3.5
Parameter estimates

______________________
parameters estimates
α1 1.6051
d1 0.7433
d2 0.8596
D99 0.5258
D00 0.4082
D01 1.0615
D02 1.3933
D03 1.5613
D04 0.9542
PCTPOOLS 0.0247
PCTPOOLS2 -0.0002
PCTBEDROCK 0.0120
POOL1P.KM 0.1247
POOL1P.KM2 -0.0243
LWDPIECE1 0.0461
LWDPIECE12 -0.0010
cs 35.8897
ct 1.1682

log likelihood -333.2609



55

Table 3.6
p-values from the LR test

___________________________________________________________________

Hypothesis (H0) log likelihood (under H0) p-value

D99-D04 -352.6399 < 0.0001
PCTPOOLS2 -335.4921    0.0346
PCTPOOLS, PCTPOOLS2 -336.1342    0.0565
PCTBEDROCK -336.3133    0.0135
POOL1P.KM2 -335.5858    0.0311
POOL1P.KM, POOL1P.KM2 -336.0950    0.0588
LWDPIECE12 -335.7939    0.0244
LWDPIECE1, LWDPIECE12 -336.0371    0.0623
cs = +∞ -335.8059    0.0241
ct = +∞ -334.9942    0.0626
cs = +∞, ct = +∞ -339.1447    0.0014

___________________________________________________________________
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Figure 3.1 Scatterplots of coho density vs. habitat variables at 206 sites (totally 295 
observations) (horizontal lines from top to bottom on each graph represent density 40, 

12, and 4, respectively)
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4. CONCLUSIONS

This dissertation considers the multivariate ordinal probit model for both repeated and 

spatial ordered categorical data.  This model has been largely impractical due to the 

computational issues in the past.  As a result, alternative models and approaches have 

been proposed for this type of data structure.  For example, Agresti and Natarajan 

(2001) and Liu and Agresti (2005) survey various strategies for modeling ordered 

categorical data, particularly in a longitudinal study with repeated measures.  Among 

all those alternatives, GEE is currently the most useful tool because it is easy to use (at 

least, relative to the other alternatives) due to its similarity with more familiar methods 

for independent responses.  As far as the spatial categorical ordinal data are concerned, 

both GEE and the pseudo-likelihood approaches based on Markov random fields are 

equally popular (see, Kutsyy, 2001; Baeumler, 1995).  But the latter is more important 

in modeling spatial-temporal ordinal data (see, for example, Ramos-Quiroga and 

González-Farías, 2005).

While most alternatives can be classified as quasi-likelihood and pseudo-

likelihood approaches, fully-likelihood permit sensible models for the correlation 

structure, are potentially more efficient, permit familiar likelihood ratio inferences, 

and permit likelihood-based fitting criteria, such as AIC and BIC, for model selection.  

Potential efficiency gains are supported by our results from chapter 2 for the 

longitudinal ordinal data.  Specifically, our simulations show MLE is more efficient 

and less sensitive to changes of the number of categories than GEE.  In terms of MSE, 
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more improvement will be attained from using ML if the data has more categories 

and/or fewer repeated measures, though an increase of the degree of the within-subject 

correlation from a medium level to a high level gives mixed effects on the ML.  It is 

worth noting that there is no evidence for more improvement of MSE from ML when 

each subject has more repeated measures.  On the contrary, the simulations show less 

improvement in MSE due to a faster drop of MSE in GEE than in ML when the 

number of repeated measures increases.  We also investigated the accuracy of tests 

based on SEs from the GEE and likelihood ratio tests, and found no conclusive results 

for the sample size we chose, though the likelihood ratio test tends to be more accurate 

in some scenarios.

The simulation study in chapter 2 was accomplished by our algorithm for 

estimating the multivariate ordinal probit model.  Our experiences show the algorithm 

is practicable for maximum likelihood estimation and likelihood ratio inference in data 

analysis of repeated/spatial ordinal responses, and for further studying the relative 

merits of likelihood and GEE analysis as we did in our simulation study.

While chapter 2 focuses on the repeated ordered categorical data in the time 

domain, chapter 3 extends the model to the spatial-temporal data in both the time and 

space domains, and its application to spatial data analysis.  Using the coho study 

example, we have shown spatial-temporal dependency of the ordinal responses can be 

simply incorporated in regression analysis through a multivariate normal distributed 

latent variable.  This approach avoids defining neighbors, and is a fully likelihood 

analysis.  Consequently, the familiar likelihood-based methods for testing fit, 
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comparing models (with AIC and BIC, for example), making inference about 

parameters are available with this approach.

Further research on the likelihood analysis of multivariate ordinal probit model 

for repeated/spatial ordinal categorical data can be continued in the following ways.

Evaluation of the Robustness of the Model

While the maximum likelihood (ML) method based on the multivariate ordinal 

probit model has a few attractive features mentioned in the previous two chapters, one 

may suspect its robustness.  As we pointed out before, the multivariate normal latent 

variable might not be as strong of an assumption as it first seems.  If there really is a 

latent variable (as there would be for categorizing hurricane strength from maximum 

wind speed, for example), it is only necessary that some monotonic function of the 

latent variable is normally distributed.  Furthermore, the actual distribution of the 

latent variable might not matter much if the extreme response categories are not too 

strongly tied to the extreme tails of the latent variable distribution.  Future research 

would be needed, though, to evaluate the robustness of the ML method.

Comparing the ML approach and the Pseudo-likelihood Approaches for the 
Spatial/Temporal Data from a Regular Lattice

Our current study focuses on comparing the GEE and the ML method in the 

repeated measurement setting.  We have not explored the relative performance of the 

ML method with respect to the Pseudo-likelihood approaches in the spatial/temporal 

setting.  Given ordinal responses from a regular lattice, the pseudo-likelihood 

approaches based on Markov random fields are particularly useful and popular 
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(Ramos-Quiroga and González-Farías, 2005).  But the loss of efficiency of the 

pseudo-likelihood approaches with respect to fully likelihood ones may be an issue.  

Future research could be done to clarify this unresolved question.

Extending the Model to a Linear Mixed-effects One with Correlated Errors for the 
Latent Variable

The model we proposed contains the fixed-effects of covariates only.  But 

sometimes a mixed-effects model along with correlated errors might be desired.  For 

example, in the coho example, if the spawning years in the sample had been randomly 

selected, we could have treated the time effects as random, and a linear mixed-effects 

model with correlated errors would have been necessary.  Therefore, we suggest future 

studies can focus on this type of model in a spatial-temporal setting.
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A1. Model Fitting for the Marijuana Use Example

Let ity denote the response variable of subject i at time t (i = 1,…, 237; t = 1,…, 5), 

where t = 1,…, 5 correspond to year 1976,…, 1980, respectively.  The latent variable 

approach of ML makes use of a (possibly fictitious) multivariate normally distributed 

latent variable 5~ ( , )iz N X  
 

for subject i, where X is a design matrix containing all 

covariates time and gender.  It may include an interaction term gendertime  and 

polynomial terms such as 2time .  


 is an unknown parameter vector and   is an 

unknown correlation matrix for the latent variables from repeated measures taken in 

different years.  Given the thresholds  3210  , the latent variable 

approach assumes gyit   (g = 1, 2, 3) if and only if gitg z  1 .  It is convenient 

to reparameterize the unknown thresholds 1  and 2 , to 1 and 12
2  d .

Using the AR(1) correlation structure, a LR test comparing a full model, which 

includes time (treated as a factor), gender, and their interaction terms, with a reduced 

model, which includes time (treated as a continuous covariate), gender and 2time , 

revealed that the reduced one is adequate (p-value = 0.94).  Particularly, when we 

treated time as a continuous covariate, the interaction effect of gendertime  was not 

significant.  The ML estimates from the reduced model with AR(1) correlation 

structure are:  2077.2ˆ1  , 8262.2ˆ2   ( 7864.0ˆ d ), 6597.01̂  (time), 

3797.0ˆ
2  (gender), 0603.0ˆ

3  ( 2time ), and 8017.0ˆ   (a correlation matrix 

parameter).  More estimates can be found in Table A2, where the expected 
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information-based standard errors and the robust standard errors are reported in 

parentheses for the ML and the GEE, respectively.  Compared with the ML estimates, 

the GEE approach gave similar estimates of thresholds and covariates coefficients.

A2. Simulation Details

Using the given  (0.5 or 0.8), G (3 or 6), and T (3 or 7), we generated the latent 

variable ),(~ 2
321  iiiTi timegendertimeNz   for i = 1, …, n (n = 500; 250 

females and 250 males), where 66.01  , 38.02  , 06.03  , 






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
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T

T

T


.  The cutoff points for the ordinal responses were set as 

follows.

G = 3:  3210 83.221.2  ;

G = 6: 

0 1 2 3 4 5 62.21 2.83 3.00 3.25 3.50 .                    

Note the parameters are 321121 ,,,,...,,  G  and  .  Suppose we are interested in 

estimating and testing the gender effect (i.e., the slope parameter 2 ) only.  As far as 

the testing is concerned, a null hypothesis could be 0,220 :  H , where 0,2  (= 0.38) 

is the true value of the parameter for our simulation.  An alternative hypothesis could 

be 0,22:  aH  or 0,22:  aH  or 0,22:  aH .  We investigated whether the true 

error rates for falsely rejecting the null hypothesis are 0.05 when (i) a Wald test is 
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applied in the GEE method and (ii) a LR test is applied in the ML method.  Note the 

one-sided signed version (Z) of the usual likelihood ratio test statistic W is defined as 

WZ )ˆsgn( 0,22    (Pace and Salvan, 1997, p. 92).

A3. Simulation Results on the Monte Carlo SD and the Averaged Reported SE

Patterns of MCSD and ARSE with respect to changes in  , T and G are similar to 

those of MSE.  In other words, for both GEE and MLE, MCSD and ARSE increase if 

  increases from a medium level to a high level, or if T decreases.  In contrast, GEE 

and MLE behavior differently when G changes.  With an increase of G, MCSD and 

ARSE from GEE increase while those (esp. MCSD) from MLE are quite stable.  For 

example, a change from G = 3 to 6 brings an increase of GEE MCSD from 0.1091 to 

0.2296 for the case T = 3 and  =0.5, but the corresponding change of MLE MCSD is 

from 0.0957 to 0.0954.  Moreover, the MCSD from MLE is smaller than that from 

GEE, which is also reflected in Figure 2.4 and Figure 2.5 (i.e., a narrower spread of 

the sampling distribution of MLE).  This is generally true for the ARSE as well.  

Hence, in this sense, MLE is more efficient and less sensitive to changes of the 

number of categories than GEE.

While MLE outperforms GEE in getting a more accurate estimate, GEE does a 

better job of reporting the standard error of the estimate.  Recall in our simulation, the 

SE for the GEE is the sandwich estimator, and the SE for the MLE is based on the 

expected information.  Using the MCSD as a proxy for the SD of the sampling 

distribution of the estimate in Table 2.2, one can find the ARSE deviates from the SD 
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from -11.65% to -0.75% in GEE, and from -16.37% to 31.22% in MLE.  Less accurate 

estimates of the SD of the sampling distribution of the estimate in MLE could be due 

to some computational errors from our numerical approximation of the derivatives in 

calculating the expected information.

A4. Simulation Results on Error Rates for Hypothesis Testing

Table A3 summarizes the actual error rates for falsely rejecting the null hypothesis 

0,220 :  H , where 0,2  (= 0.38) is the true value of the parameter in our 

simulation.  It shows the true error rates of the LR tests from ML tend to be closer to 

the nominal level 0.05 than those of the Wald tests from GEE.  As rows “Either too 

large or too small” from Table A3 indicate, the 95% confidence interval of the true 

error rate of the LR test in the ML method contains the nominal level 0.05 in each of 

eight simulation scenarios.  However, the 95% confidence interval of the true error 

rate of the Wald test in the GEE method excludes the nominal level 0.05 in two 

scenarios (G = 3, T = 3, 0.8  ; G = 6, T = 3, 0.5  ).

The preceding error rate is calculated as the chance that the test statistic is 

either too large or too small.  While we reported this overall error rate in Table A3, we 

also kept track of the error rate due to a too small or a too large test statistic.  Table A4 

lists the exact p-values of testing whether the error rates in both directions are equal or 

not (see appendix A5 for the details of the calculation).  It suggests both methods have 

a few occasions where the error rates in two directions are significantly different.  It’s 

not clear to us which one is better.
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As far as the sensitivity of the true error rate to the changes in G, T and   is 

concerned, the GEE tends to be more sensitive than the ML due to the two extreme 

values (0.0840 and 0.0330) in the GEE method (see Table A3).

In addition to the two-sided true error rate, we also examined the one-sided 

rate.  For the alternative hypothesis 0,22:  aH , the true error rate of falsely 

rejecting the null hypothesis 0,220 :  H  is more likely to be close to the nominal 

level 0.05 in ML than in GEE.  Table A3 shows there are four scenarios of the GEE 

where the 95% confidence interval of the error rate doesn’t include the nominal level 

0.05, compared with the two scenarios of the MLE.  On the other hand, for the 

alternative hypothesis 0,22:  aH , all the eight confidence intervals of the error rate 

from the GEE include 0.05, while one confidence interval of the error rate from the 

MLE excludes 0.05.  Therefore, the simulation results for the one-sided test error rate 

seem inconclusive.

A5. Calculation of the Exact p-values in Table A4

Take G = 3, T = 3, 0.5   as an example.  In the 1000 iterations of the simulation, 

there are 26 (28) iterations where the test statistic is too large (small).  Conditional on 

these total 54 (=26+28) iterations, the number of iterations with a too large test 

statistic follows a Binomial distribution with 54 trials and an unknown probability of 

“success” p.  Therefore, testing whether the error rates in both directions are equal or 
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not is equivalent to testing p = 0.5.  The exact p-values were obtained from function 

binom.test in S-PLUS.

A6. R Code for Likelihood Analysis of the Anesthesia Recovery Example with 
AR-1/Exchangeable Correlation Structure

# Anesthesia recovery study [source: Davis (1991)]
# Treat ‘dosage’ and ‘time’ as factors
# i.e., create indicator variables for Dosage and Time.
# include dosage*age and duration*time as interaction terms
# Davis (1991) includes only main effects of covariates. Tutz et 
al.(1996) point out interaction effects can not be neglected.

# response in a multivariate form
y0 <-  c(3,3,1,1,5,3,6,1,1,2,1,3,1,1,0,1,1,2,1,5,
         1,6,4,1,1,6,0,3,1,2,1,3,2,1,2,6,3,2,1,0,
         0,1,1,1,0,4,2,4,1,2,3,0,0,0,1,0,1,1,3,0) # at time 0
y5 <-  c(5,4,1,3,6,3,6,1,1,2,3,3,1,3,2,1,1,3,1,6,
         1,6,4,4,2,6,0,6,1,2,1,6,3,1,3,6,5,3,1,2,
         0,1,2,1,3,6,4,5,1,3,4,5,0,0,1,0,1,1,5,1) # at time 5
y15 <- c(6,6,1,3,6,6,6,1,4,2,3,5,1,5,2,1,1,3,2,6,
         2,6,6,5,2,6,0,6,5,3,0,6,4,5,6,6,6,3,1,6,
         0,1,6,1,5,6,6,5,1,3,4,5,0,0,1,4,4,4,5,1) # at time15
y30 <- c(6,6,4,5,6,6,6,6,6,2,5,6,4,5,3,6,6,6,3,6,
         4,6,6,5,5,6,4,6,6,5,3,6,4,6,6,6,6,6,3,6,
         0,4,6,1,6,6,6,6,1,5,6,5,4,0,4,6,6,6,6,3) # at time 30
y <- cbind(y0,y5,y15,y30)
y <- y+1 # ordinal response: 1,2,...,7 rather than 0,1,...,6.

# covariates (D20 D25 D30 T5 T15 T30 Age Duration D20Age D25Age 
D30Age T5Dur T15Dur T30Dur)
v1 <- c(0,0,0,0,0,0,36,128,0,0,0,0,0,0)
v2 <- c(0,0,0,1,0,0,36,128,0,0,0,128,0,0)
v3 <- c(0,0,0,0,1,0,36,128,0,0,0,0,128,0)
v4 <- c(0,0,0,0,0,1,36,128,0,0,0,0,0,128)
x1 <- c(v1,v2,v3,v4)

v1 <- c(0,0,0,0,0,0,35,70,0,0,0,0,0,0)
v2 <- c(0,0,0,1,0,0,35,70,0,0,0,70,0,0)
v3 <- c(0,0,0,0,1,0,35,70,0,0,0,0,70,0)
v4 <- c(0,0,0,0,0,1,35,70,0,0,0,0,0,70)
x2 <- c(v1,v2,v3,v4)

v1 <- c(0,0,0,0,0,0,54,138,0,0,0,0,0,0)
v2 <- c(0,0,0,1,0,0,54,138,0,0,0,138,0,0)
v3 <- c(0,0,0,0,1,0,54,138,0,0,0,0,138,0)
v4 <- c(0,0,0,0,0,1,54,138,0,0,0,0,0,138)
x3 <- c(v1,v2,v3,v4)
.
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.

. # (x4,…,and x59 are omitted here)

v1 <- c(0,0,1,0,0,0,56,106,0,0,56,0,0,0)
v2 <- c(0,0,1,1,0,0,56,106,0,0,56,106,0,0)
v3 <- c(0,0,1,0,1,0,56,106,0,0,56,0,106,0)
v4 <- c(0,0,1,0,0,1,56,106,0,0,56,0,0,106)
x60 <- c(v1,v2,v3,v4)

x <- rbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
     x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,

           x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,
     x31,x32,x33,x34,x35,x36,x37,x38,x39,x40,

           x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,
           x51,x52,x53,x54,x55,x56,x57,x58,x59,x60)

n <- 60
num <- 4 # four repeated measures for each patient

# define negative log likelihood function assuming the independence 
correlation structure
negloglik <- function(theta) {

alpha1 <- theta[1]
d1 <- theta[2]
d2 <- theta[3]
d3 <- theta[4]
d4 <- theta[5]
d5 <- theta[6]
beta <- theta[7:20]
a <- matrix(rep(0,n*num),n,num)
b <- matrix(rep(0,n*num),n,num)
for (i in 1:n) {

for (t in 1:num) {
if (y[i,t]==1) {

a[i,t] <- -Inf
b[i,t] <- alpha1
}

if (y[i,t]==2) {
a[i,t] <- alpha1
b[i,t] <- alpha1+d1^2
}

if (y[i,t]==3) {
a[i,t] <- alpha1+d1^2
b[i,t] <- alpha1+d1^2+d2^2
}

if (y[i,t]==4) {
a[i,t] <- alpha1+d1^2+d2^2
b[i,t] <- alpha1+d1^2+d2^2+d3^2
}

if (y[i,t]==5) {
a[i,t] <- alpha1+d1^2+d2^2+d3^2
b[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2
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}
if (y[i,t]==6) {

a[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2
b[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2+d5^2
}

if (y[i,t]==7) {
a[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2+d5^2
b[i,t] <- Inf
}

} 
}

value <- 0
for (i in 1:n) {

for (t in 1:num) {
value <- value + log( pnorm(b[i,t],t(x[i,(14*(t-

1)+1):(14*t)])%*%beta,1) - pnorm(a[i,t],t(x[i,(14*(t-
1)+1):(14*t)])%*%beta,1))

}
}
-value

}

# 1)use the GEE estimate (with indep. corr) as starting values
#alph1 <- -2.3618380
#alph2 <- -1.2278329
#alph3 <- -0.9220309
#alph4 <- -0.4575931
#alph5 <- -0.1240333
#alph6 <- 0.2657522
#d1 <- sqrt(alph2-alph1)
#d2 <- sqrt(alph3-alph2)
#d3 <- sqrt(alph4-alph3)
#d4 <- sqrt(alph5-alph4)
#d5 <- sqrt(alph6-alph5)
#result <- nlm(negloglik,c(alph1,d1,d2,d3,d4,d5,0.9431258,0.5180239,-
2.1161054,0.1641910,1.0478657,2.1176630,
# -0.0167498,-0.0066485,-0.0378423,-
0.0200183,0.0386126,0.0042385,-0.0006770,-0.0029664),iterlim=500)

#negloglik(c(alph1,d1,d2,d3,d4,d5,0.9431258,0.5180239,-
2.1161054,0.1641910,1.0478657,2.1176630,
# -0.0167498,-0.0066485,-0.0378423,-
0.0200183,0.0386126,0.0042385,-0.0006770,-0.0029664))

# 2) or we could use the MLE from an ordered probit model ignoring 
the correlation structure
# could use ‘polr’ or ‘nlm’ (we used the latter in the following)
result <-
nlm(negloglik,c(0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),iterlim=500)
#result$estimate
if (result$code==4) {print("ITERATION LIMIT EXCEEDED--NOT 
CONVERGE!!!!")}
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alpha1.1 <- result$estimate[1]
d1.1 <- result$estimate[2]
d2.1 <- result$estimate[3]
d3.1 <- result$estimate[4]
d4.1 <- result$estimate[5]
d5.1 <- result$estimate[6]
beta.1 <- result$estimate[7:20]

alpha2.1 <- alpha1.1+d1.1^2
alpha3.1 <- alpha2.1+d2.1^2
alpha4.1 <- alpha3.1+d3.1^2
alpha5.1 <- alpha4.1+d4.1^2
alpha6.1 <- alpha5.1+d5.1^2

D20.1 <- result$estimate[7]
D25.1 <- result$estimate[8]
D30.1 <- result$estimate[9]
T5.1 <- result$estimate[10]
T15.1 <- result$estimate[11]
T30.1 <- result$estimate[12]
Age.1 <- result$estimate[13]
Duration.1 <- result$estimate[14]
D20Age.1 <- result$estimate[15]
D25Age.1 <- result$estimate[16]
D30Age.1 <- result$estimate[17]
T5Dur.1 <- result$estimate[18]
T15Dur.1 <- result$estimate[19]
T30Dur.1 <- result$estimate[20]

# AR(1) Correlation Structure
# note time=0, 5, 15, 30 minutes (unequal spaced) 
sigma <- function(rho) {

mat <- matrix(rep(0,num*num),num,num)
mat[1,1] <- 1
mat[1,2] <- rho
mat[1,3] <- rho^3
mat[1,4] <- rho^6
mat[2,1] <- mat[1,2]
mat[2,2] <- 1
mat[2,3] <- rho^2
mat[2,4] <- rho^5
mat[3,1] <- mat[1,3]
mat[3,2] <- mat[2,3]
mat[3,3] <- 1
mat[3,4] <- rho^3
mat[4,1] <- mat[1,4]
mat[4,2] <- mat[2,4]
mat[4,3] <- mat[3,4]
mat[4,4] <- 1
mat

}

# Exchangeable working Correlation Structure
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sigma <- function(rho) {
mat <- matrix(rep(0,num*num),num,num)
for (i in 1:num) {

for (j in 1:num) {
if (i==j) {mat[i,j] <- 1 }
else {mat[i,j] <- rho}

}
}
mat

}

# Full log likelihood function
loglik.full <- function(thetarho) {

alpha1 <- thetarho[1]
d1 <- thetarho[2]
d2 <- thetarho[3]
d3 <- thetarho[4]
d4 <- thetarho[5]
d5 <- thetarho[6]

beta <- thetarho[7:20]
rho <- thetarho[21]
a <- matrix(rep(0,n*num),n,num)
b <- matrix(rep(0,n*num),n,num)
for (i in 1:n) {

for (t in 1:num) {
if (y[i,t]==1) {

a[i,t] <- -Inf
b[i,t] <- alpha1
}

if (y[i,t]==2) {
a[i,t] <- alpha1
b[i,t] <- alpha1+d1^2
}

if (y[i,t]==3) {
a[i,t] <- alpha1+d1^2
b[i,t] <- alpha1+d1^2+d2^2
}

if (y[i,t]==4) {
a[i,t] <- alpha1+d1^2+d2^2
b[i,t] <- alpha1+d1^2+d2^2+d3^2
}

if (y[i,t]==5) {
a[i,t] <- alpha1+d1^2+d2^2+d3^2
b[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2
}

if (y[i,t]==6) {
a[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2
b[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2+d5^2
}

if (y[i,t]==7) {
a[i,t] <- alpha1+d1^2+d2^2+d3^2+d4^2+d5^2
b[i,t] <- Inf



77

}
} 

}

value <- 0
for (i in 1:n) {

xi <- x[i,]
xinew <- rbind(xi[1:14],xi[15:28],xi[29:42],xi[43:56])
value <-

value+log(pmvnorm(a[i,],b[i,],as.vector(xinew%*%beta),sigma(rho)))
}

value
}

# use optimize to get rho
# define a log likelihood function where alpha1=alpha1.1, d's=d.1's, 
beta=beta.1
logl <- function(rho) {

loglik.full(c(alpha1.1,d1.1,d2.1,d3.1,d4.1,d5.1,beta.1,rho))
}

rho.1 <- optimize(logl,c(-1,1),maximum=TRUE)$maximum
rho.1

###############################
convergence.criterion <- 0.0001
iter <- 2 # iteration number
maxdif <- 1 # initial setting for max abs. value
alpha1.old <- alpha1.1 # starting value of alpha1
d1.old <- d1.1 # starting value of d1
d2.old <- d2.1
d3.old <- d3.1
d4.old <- d4.1
d5.old <- d5.1
beta.old <- beta.1 # starting value of the slopes
rho.old <- rho.1 # starting value of rho

alpha1.iter <- alpha1.old 
                # keep track of the estimate of alpha1 during 
iteration
d1.iter <- d1.old # keep track of the estimate of d1 during iteration
d2.iter <- d2.old # keep track of the estimate of d2 during iteration
d3.iter <- d3.old # keep track of the estimate of d3 during iteration
d4.iter <- d4.old # keep track of the estimate of d4 during iteration
d5.iter <- d5.old # keep track of the estimate of d5 during iteration
beta1.iter <- beta.old[1]
                # keep track of the estimate of beta during iteration
beta2.iter <- beta.old[2]
beta3.iter <- beta.old[3]
beta4.iter <- beta.old[4]
beta5.iter <- beta.old[5]
beta6.iter <- beta.old[6]
beta7.iter <- beta.old[7]
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beta8.iter <- beta.old[8]
beta9.iter <- beta.old[9]
beta10.iter <- beta.old[10]
beta11.iter <- beta.old[11]
beta12.iter <- beta.old[12]
beta13.iter <- beta.old[13]
beta14.iter <- beta.old[14]
rho.iter <- rho.old 
code <- result$code
     # keep track of the occasions when the iteration limit is 
exceeded 

print(c("iteration", "alpha1", "d1", 
"d2","d3","d4","d5","D20","D25","D30","T5","T15","T30","Age","Duratio
n","D20Age","D25Age","D30Age","T5Dur","T15Dur","T30Dur","rho", "log 
likelihood","code"),sep="\t")
print(c(round(1,1),round(alpha1.old,4),round(d1.old,4),round(d2.old,4
), round(d3.old,4), round(d4.old,4), round(d5.old,4),

round(beta.old,4),round(rho.old,4),
round(loglik.full(c(alpha1.old,d1.old,d2.old,d3.old,d4.old,d5.o

ld,beta.old,rho.old)),5), round(code,1)),sep="\t")
val.old <-
loglik.full(c(alpha1.old,d1.old,d2.old,d3.old,d4.old,d5.old,beta.old,
rho.old))

##############################
while (maxdif>convergence.criterion)  {

# update alpha1, d's, and beta
f <- function(theta) {

-loglik.full(c(theta,rho.old))
}

theta.old <- c(alpha1.old, d1.old, d2.old, d3.old, d4.old, 
d5.old, beta.old)

out <- nlm(f,theta.old,iterlim=500)
alpha1.new <- out$estimate[1]
d1.new <- out$estimate[2]
d2.new <- out$estimate[3]
d3.new <- out$estimate[4]
d4.new <- out$estimate[5]
d5.new <- out$estimate[6]
beta.new <- out$estimate[7:20]
code <- out$code

# update rho
loglikelihood <- function(rho) {

loglik.full(c(alpha1.new, d1.new, d2.new, d3.new, d4.new, 
d5.new, beta.new, rho))

}
rho.new <- optimize(loglikelihood,c(-1,1),maximum=TRUE)$maximum
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val.new <-
loglik.full(c(alpha1.new,d1.new,d2.new,d3.new,d4.new,d5.new,beta.new,
rho.new))

# print current estimate
print(c(round(iter,1),round(alpha1.new,4),round(d1.new,4),round

(d2.new,4), round(d3.new,4), round(d4.new,4), round(d5.new,4),
round(beta.new,4),round(rho.new,4),
round(loglik.full(c(alpha1.new,d1.new,d2.new,d3.new,d4.new,d5.n

ew,beta.new,rho.new)),4), round(code,1)),sep="\t")

# keep track of the estimates
alpha1.iter <- c(alpha1.iter,alpha1.new)
d1.iter <- c(d1.iter, d1.new)
d2.iter <- c(d2.iter, d2.new)
d3.iter <- c(d3.iter, d3.new)
d4.iter <- c(d4.iter, d4.new)
d5.iter <- c(d5.iter, d5.new)
beta1.iter <- c(beta1.iter,beta.new[1])
beta2.iter <- c(beta2.iter,beta.new[2])
beta3.iter <- c(beta3.iter,beta.new[3])
beta4.iter <- c(beta4.iter,beta.new[4])
beta5.iter <- c(beta5.iter,beta.new[5])
beta6.iter <- c(beta6.iter,beta.new[6])
beta7.iter <- c(beta7.iter,beta.new[7])
beta8.iter <- c(beta8.iter,beta.new[8])
beta9.iter <- c(beta9.iter,beta.new[9])
beta10.iter <- c(beta10.iter,beta.new[10])
beta11.iter <- c(beta11.iter,beta.new[11])
beta12.iter <- c(beta12.iter,beta.new[12])
beta13.iter <- c(beta13.iter,beta.new[13])
beta14.iter <- c(beta14.iter,beta.new[14])

rho.iter <- c(rho.iter, rho.new)

# check convergence
maxdif <- abs(val.new/val.old -1)

iter <- iter+1
alpha1.old <- alpha1.new
d1.old <- d1.new
d2.old <- d2.new
d3.old <- d3.new
d4.old <- d4.new
d5.old <- d5.new
beta.old <- beta.new
rho.old <- rho.new
val.old <- val.new

}

par(mfrow=c(3,2))
plot(1:length(alpha1.iter),alpha1.iter,xlab="iteration",ylab="Alpha1"
,type="l",xlim=c(0,40))
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title (main="Alpha1")
plot(1:length(d1.iter),d1.iter,xlab="iteration",ylab="d1",type="l",xl
im=c(0,40))
title (main="d1")
plot(1:length(d2.iter),d2.iter,xlab="iteration",ylab="d2",type="l",xl
im=c(0,40))
title (main="d2")
plot(1:length(d3.iter),d3.iter,xlab="iteration",ylab="d3",type="l",xl
im=c(0,40))
title (main="d3")
plot(1:length(d4.iter),d4.iter,xlab="iteration",ylab="d4",type="l",xl
im=c(0,40))
title (main="d4")
plot(1:length(d5.iter),d5.iter,xlab="iteration",ylab="d5",type="l",xl
im=c(0,40))
title (main="d5")

par(mfrow=c(3,3))
plot(1:length(beta1.iter),beta1.iter,xlab="iteration",ylab="D20",type
="l",xlim=c(0,40))
title (main="D20")
plot(1:length(beta2.iter),beta2.iter,xlab="iteration",ylab="D25",type
="l",xlim=c(0,40))
title (main="D25")
plot(1:length(beta3.iter),beta3.iter,xlab="iteration",ylab="D30",type
="l",xlim=c(0,40))
title (main="D30")
plot(1:length(beta4.iter),beta4.iter,xlab="iteration",ylab="T5",type=
"l",xlim=c(0,40))
title (main="T5")
plot(1:length(beta5.iter),beta5.iter,xlab="iteration",ylab="T15",type
="l",xlim=c(0,40))
title (main="T15")
plot(1:length(beta6.iter),beta6.iter,xlab="iteration",ylab="T30",type
="l",xlim=c(0,40))
title (main="T30")
plot(1:length(beta7.iter),beta7.iter,xlab="iteration",ylab="Age",type
="l",xlim=c(0,40))
title (main="Age")
plot(1:length(beta8.iter),beta8.iter,xlab="iteration",ylab="Duration"
,type="l",xlim=c(0,40))
title (main="Duration")
plot(1:length(beta9.iter),beta9.iter,xlab="iteration",ylab="D20Age",t
ype="l",xlim=c(0,40))
title (main="D20Age")

par(mfrow=c(3,3))
plot(1:length(beta10.iter),beta10.iter,xlab="iteration",ylab="D25Age"
,type="l",xlim=c(0,40))
title (main="D25Age")
plot(1:length(beta11.iter),beta11.iter,xlab="iteration",ylab="D30Age"
,type="l",xlim=c(0,40))
title (main="D30Age")
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plot(1:length(beta12.iter),beta12.iter,xlab="iteration",ylab="T5Dur",
type="l",xlim=c(0,40))
title (main="T5Dur")
plot(1:length(beta13.iter),beta13.iter,xlab="iteration",ylab="T15Dur"
,type="l",xlim=c(0,40))
title (main="T15Dur")
plot(1:length(beta14.iter),beta14.iter,xlab="iteration",ylab="T30Dur"
,type="l",xlim=c(0,40))
title (main="T30Dur")
plot(1:length(rho.iter),rho.iter,xlab="iteration",ylab="Rho",type="l"
,xlim=c(0,40))
title (main="Rho")

#################### compute standard errors ########################

### Expected (Fisher) Information Approach ###
alpha1hat <- alpha1.new
d1hat <- d1.new
d2hat <- d2.new
d3hat <- d3.new
d4hat <- d4.new
d5hat <- d5.new
alpha2hat <- alpha1hat+d1hat^2
alpha3hat <- alpha2hat+d2hat^2
alpha4hat <- alpha3hat+d3hat^2
alpha5hat <- alpha4hat+d4hat^2
alpha6hat <- alpha5hat+d5hat^2
betahat <- beta.new 
rhohat <- rho.new

M <- 1000 # the larger the better. But it takes more time for a large 
M
set.seed(1)
term <- 0
for (m in 1:M) {

print(m)
# simulate the latent responses so that we could simulate the 

observed y
z <- c() # null 
for (i in 1:n) {

xi <- x[i,]
xinew <- rbind(xi[1:14],xi[15:28],xi[29:42],xi[43:56])
zi <- rmvnorm(1,as.vector(xinew%*%betahat),sigma(rhohat))
z <- rbind(z,zi)
}

h <- function(alpha1,d1,d2,d3,d4,d5,beta,rho) {
lower <- matrix(rep(0,n*num),n,num)
upper <- matrix(rep(0,n*num),n,num)
for (i in 1:n) {

for (t in 1:num) {
if (z[i,t]<= alpha1hat) {

lower[i,t] <- -Inf
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upper[i,t] <- alpha1
}

if (z[i,t]> alpha1hat & z[i,t]<= alpha2hat) {
lower[i,t] <- alpha1
upper[i,t] <- alpha1+d1^2
}

if (z[i,t]> alpha2hat & z[i,t]<= alpha3hat) {
lower[i,t] <- alpha1+d1^2
upper[i,t] <- alpha1+d1^2+d2^2
}

if (z[i,t]> alpha3hat & z[i,t]<= alpha4hat) {
lower[i,t] <- alpha1+d1^2+d2^2
upper[i,t] <- alpha1+d1^2+d2^2+d3^2
}

if (z[i,t]> alpha4hat & z[i,t]<= alpha5hat) {
lower[i,t] <- alpha1+d1^2+d2^2+d3^2
upper[i,t] <-

alpha1+d1^2+d2^2+d3^2+d4^2
}

if (z[i,t]> alpha5hat & z[i,t]<= alpha6hat) {
lower[i,t] <-

alpha1+d1^2+d2^2+d3^2+d4^2
upper[i,t] <-

alpha1+d1^2+d2^2+d3^2+d4^2+d5^2
}

if (z[i,t] > alpha6hat){
lower[i,t] <-

alpha1+d1^2+d2^2+d3^2+d4^2+d5^2
upper[i,t] <- Inf
}

} 
}

value <- 0
for (i in 1:n) {

xi <- x[i,]
xinew <-

rbind(xi[1:14],xi[15:28],xi[29:42],xi[43:56])
value <-

value+log(pmvnorm(lower[i,],upper[i,],as.vector(xinew%*%beta),sigma(r
ho)))

}
value

}

# numerical derivative
smidge <- 0.01/2
#smidge2 <- 0.0001/2
#alpha1,d1,d2,d3,d4,d5,beta,rho
score1 <- ( 

h(alpha1hat+smidge,d1hat,d2hat,d3hat,d4hat,d5hat,betahat,rhohat) 
- h(alpha1hat-

smidge,d1hat,d2hat,d3hat,d4hat,d5hat,betahat,rhohat) )/(2*smidge)
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score2 <- ( 
h(alpha1hat,d1hat+smidge,d2hat,d3hat,d4hat,d5hat,betahat,rhohat)

- h(alpha1hat,d1hat-
smidge,d2hat,d3hat,d4hat,d5hat,betahat,rhohat) )/(2*smidge)

score3 <- ( 
h(alpha1hat,d1hat,d2hat+smidge,d3hat,d4hat,d5hat,betahat,rhohat) 

- h(alpha1hat,d1hat,d2hat-
smidge,d3hat,d4hat,d5hat,betahat,rhohat) )/(2*smidge)

score4 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat+smidge,d4hat,d5hat,betahat,rhohat) 

- h(alpha1hat,d1hat,d2hat,d3hat-
smidge,d4hat,d5hat,betahat,rhohat) )/(2*smidge)

score5 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat+smidge,d5hat,betahat,rhohat) 

- h(alpha1hat,d1hat,d2hat,d3hat,d4hat-
smidge,d5hat,betahat,rhohat) )/(2*smidge)

score6 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat+smidge,betahat,rhohat) 

- h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat-
smidge,betahat,rhohat) )/(2*smidge)

score7 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(smidge,0,0,0,0,0,
0,0,0,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(smidge,0,0,0,0,0,0,0,0,0,0,0,0,0),rhohat) )/(2*smidge)

score8 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,smidge,0,0,0,0,
0,0,0,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,smidge,0,0,0,0,0,0,0,0,0,0,0,0),rhohat) )/(2*smidge)

score9 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,smidge,0,0,0,
0,0,0,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,smidge,0,0,0,0,0,0,0,0,0,0,0),rhohat) )/(2*smidge)

score10 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,smidge,0,0,
0,0,0,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,smidge,0,0,0,0,0,0,0,0,0,0),rhohat) )/(2*smidge)

score11 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,smidge,0,
0,0,0,0,0,0,0,0),rhohat) 
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-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,smidge,0,0,0,0,0,0,0,0,0),rhohat) )/(2*smidge)

score12 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,smidge,
0,0,0,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,smidge,0,0,0,0,0,0,0,0),rhohat) )/(2*smidge)

score13 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,smidg
e,0,0,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,smidge,0,0,0,0,0,0,0),rhohat) )/(2*smidge)

score14 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,0,smi
dge,0,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,0,smidge,0,0,0,0,0,0),rhohat) )/(2*smidge)

score15 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,0,0,s
midge,0,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,0,0,smidge,0,0,0,0,0),rhohat) )/(2*smidge)

score16 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,0,0,0
,smidge,0,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,0,0,0,smidge,0,0,0,0),rhohat) )/(2*smidge)

score17 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,0,0,0
,0,smidge,0,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,0,0,0,0,smidge,0,0,0),rhohat) )/(2*smidge)

score18 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,0,0,0
,0,0,smidge,0,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,0,0,0,0,0,smidge,0,0),rhohat) )/(2*smidge)

score19 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,0,0,0
,0,0,0,smidge,0),rhohat) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,0,0,0,0,0,0,smidge,0),rhohat) )/(2*smidge)

score20 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat+c(0,0,0,0,0,0,0,0,0
,0,0,0,0,smidge),rhohat) 
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-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat-
c(0,0,0,0,0,0,0,0,0,0,0,0,0,smidge),rhohat) )/(2*smidge)

score21 <- ( 
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat,rhohat+smidge) 

-
h(alpha1hat,d1hat,d2hat,d3hat,d4hat,d5hat,betahat,rhohat-smidge) 
)/(2*smidge)

score <- c( score1, score2, score3, score4, score5, 
score6, score7, score8, score9, score10, 
score11, score12, score13, score14, score15,
score16, score17, score18, score19, score20, 

score21 )

# term score%*%t(score)
term <- term + score%*%t(score) 

}

Info <- term/M # Fisher information
stderror <- sqrt(diag(solve(Info)))
stderror

### Observed Information Approach ###
theta.hat <- c(alpha1hat, d1hat, d2hat, d3hat, d4hat, d5hat, betahat, 
rhohat) 
p <- length(theta.hat)
mat <- matrix(rep(0,p*p),p,p)
for (i in 1:p) {

for (j in i:p) {
delta <- 0.006 # 
I <- diag(1,p,p)
ei <- I[,i]
ej <- I[,j]
term1 <- loglik.full(theta.hat+delta*ei+delta*ej)
term2 <- loglik.full(theta.hat-delta*ei+delta*ej)
term3 <- loglik.full(theta.hat+delta*ei-delta*ej)
term4 <- loglik.full(theta.hat-delta*ei-delta*ej)
mat[i,j] <- (term1-term2-term3+term4)/(4*delta^2)
mat[j,i] <- mat[i,j]

}
}
obsInf <- -1*mat
stderror <- sqrt(diag(solve(obsInf)))
stderror
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Tables in the Appendices

Table A1
Data on marijuana use in the past year and gender, taken from five yearly waves of 

the National Youth Survey

Gendera  1976b  1977  1978  1979  1980  Frequency   Gender  1976  1977  1978  1979  1980  Frequency
    0            1           1        1        1        1        63                  1            1        1        1         3       1        1
    0            1           1        1        1        2        10                  1            1        1        1         3       3        1
    0            1           1        1        1        3          3                  1            1        1        2         1       3        1
    0            1           1        1        2        1          4                  1            1        1        2         2       1        2
    0            1           1        1        2        2          2                  1            1        1        2         2       2        2
    0            1           1        1        3        1          1                  1            1        1        2         2       3        1
    0            1           1        1        3        2          1                  1            1        1        2         3       3        5
    0            1           1        1        3        3          3                  1            1        1        3         1       2        1
    0            1           1        2        1        1          2                  1            1        1        3         2       2        1
    0            1           1        2        1        2          2                  1            1        1        3         3       3        3
    0            1           1        2        2        1          3                  1            1        2        1         1       2        1
    0            1           1        2        2        2          7                  1            1        2        1         2       1        1
    0            1           1        2        2        3          1                  1            1        2        2         1       1        2
    0            1           1        2        3        3          1                  1            1        2        2         2       1        1
    0            1           2        1        1        1          1                  1            1        2        2         1       3        1
    0            1           2        1        1        2          2                  1            1        2        2         3       3        1
    0            1           2        2        1        2          1                  1            1        2        3         2       2        1
    0            1           2        2        2        1          1                  1            1        2        3         2       3        1
    0            1           2        2        3        3          2                  1            1        2        3         3       2        1
    0            1           2        3        1        2          1                  1            1        2        3         3       3        4
    0            1           2        3        3        2          1                  1            1        3        1         3       3        1
    0            1           2        3        3        3          1                  1            1        3        2         2       2        1
    0            1           3        3        2        2          1                  1            1        3        3         3       3        2
    0            2           1        1        3        3          1                  1            1        3        3         2       2        1
    0            2           1        2        2        2          1                  1            2        1        1         1       1        3
    0            2           1        3        3        3          1                  1            2        2        2         2       2        1
    0            2           3        3        3        3          1                  1            2        2        3         3       3        1
    0            2           3        3        3        2          1                  1            2        3        2         1       1        1
    0            3           3        3        2        3          1                  1            2        3        2         3       3        1
    1            1           1        1        1        1        48                  1            2        3        3         3       3        2
    1            1           1        1        1        2          8                  1            3        1        1         1       1        1
    1            1           1        1        1        3          4                  1            3        2        3         3       3        1
    1            1           1        1        2        1          2                  1            3        3        3         3       1        1
    1            1           1        1        2        2          4                  1            3        3        3         3       3        1
    1            1           1        1        2        3          1
——————————————————————————————————
a 0, female; 1, male.
b 1, never; 2, not more than once a month; 3, more than once a month
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Table A2
GEE and ML estimates for the marijuana use data

_____________________________________________________________________
GEE* 
independent

GEE*  
exchangeable

GEE*
AR-1

ML
Independent

ML
Exchangeable

ML
AR-1

α1
2.2775
(0.2558)

2.3032
(0.2519)

2.3134
(0.2599)

2.2075
(0.2256)

2.2084
(0.1594)

2.2077
(0.1436)

α2
2.8969
(0.2683)

2.9126
(0.2604)

2.9230
(0.2688)

d
0.7865
(0.0268)

0.7865
(0.0306)

0.7864
(0.0302)

time
0.6798
(0.1434)

0.6517
(0.1288)

0.6590
(0.1311)

0.6591
(0.1572)

0.6602
(0.0976)

0.6597
(0.0910)

gender
0.4418
(0.1427)

0.5513
(0.1807)

0.5425
(0.1768)

0.3797
(0.0807)

0.3806
(0.1193)

0.3797
(0.1096)

time2 -0.0638
(0.0204)

-0.0602
(0.0186)

-0.0609
(0.0185)

-0.0604
(0.0247)

-0.0612
(0.0151)

-0.0603
(0.0142)

ρ ** **
0.7055
(0.0371)

0.8017
(0.0266)

log 
likelihood

N.A. N.A. N.A. -833.3125 -680.6168 -661.3866

* Estimates were obtained from using the ordgee function from the geepack library in R.
** Association among repeated measures was modeled through global odds ratio (see the details in R
documentation).
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Table A3
True error rate for testing 0,220 :  H  at level 0.05

_____________________________________________________________________
G = 3 G = 6

T = 3 T = 7 T = 3 T = 7
ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8

GEE (Wald test)
(1)

0,22:  aH
Test stat. is too 

large
0.0260

(0.0161, 
0.0359)*

0.0570
(0.0426, 
0.0714)

0.0320
(0.0211, 
0.0429)

0.0340
(0.0228, 
0.0452)

0.0100
(0.0038, 
0.0162)

0.0310
(0.0203, 
0.0417)

0.0330
(0.0219, 
0.0441)

0.0350
(0.0236, 
0.0464)

Test stat. is too 
small

0.0280
(0.0178, 
0.0382)

0.0270
(0.0170, 
0.0370)

0.0200
(0.0113, 
0.0287)

0.0250
(0.0153, 
0.0347)

0.0230
(0.0137, 
0.0323)

0.0290
(0.0186, 
0.0394)

0.0220
(0.0129, 
0.0311)

0.0210
(0.0121, 
0.0299)

Either too large or 
too small

0.0540
(0.0400, 
0.0680)

0.0840
(0.0668, 
0.1012)

0.0520
(0.0382, 
0.0658)

0.0590
(0.0444, 
0.0736)

0.0330
(0.0219, 
0.0441)

0.0600
(0.0453, 
0.0747)

0.0550
(0.0409, 
0.0691)

0.0560
(0.0417, 
0.0703)

(2)
0,22:  aH 0.0520

(0.0382, 
0.0658)

0.0950
(0.0768, 
0.1132)

0.0540
(0.0400, 
0.0680)

0.0560
(0.0417, 
0.0703)

0.0360
(0.0245, 
0.0475)

0.0720
(0.0560, 
0.0880)

0.0580
(0.0435, 
0.0725)

0.0680
(0.0524 
0.0836)

(3)
0,22:  aH 0.0480

(0.0348, 
0.0612)

0.0450
(0.0322, 
0.0578)

0.0450
(0.0322, 
0.0578)

0.0470
(0.0339, 
0.0601)

0.0460
(0.0330, 
0.0590)

0.0510
(0.0374, 
0.0646)

0.0420
(0.0296, 
0.0544)

0.0420
(0.0296, 
0.0544)

ML (LR test)
(1)

0,22:  aH
Test stat. is too 

large
0.0310

(0.0203, 
0.0417)

0.0380
(0.0261, 
0.0499)

0.0200
(0.0113, 
0.0287)

0.0210
(0.0121, 
0.0299)

0.0270
(0.0170, 
0.0370)

0.0340
(0.0228, 
0.0452)

0.0360
(0.0245, 
0.0475)

0.0300
(0.0194, 
0.0406)

Test stat. is too 
small

0.0310
(0.0203, 
0.0417)

0.0240
(0.0145, 
0.0335)

0.0280
(0.0178, 
0.0382)

0.0240
(0.0145, 
0.0335)

0.0270
(0.0170, 
0.0370)

0.0200
(0.0113, 
0.0287)

0.0200
(0.0113, 
0.0287)

0.0220
(0.0129, 
0.0311)

Either too large or 
too small

0.0620
(0.0471, 
0.0769)

0.0620
(0.0471, 
0.0769)

0.0480
(0.0348, 
0.0612)

0.0450
(0.0322, 
0.0578)

0.0540
(0.0400, 
0.0680)

0.0540
(0.0400, 
0.0680)

0.0560
(0.0417, 
0.0703)

0.0520
(0.0382, 
0.0658)

(2)
0,22:  aH 0.0540

(0.0400, 
0.0680)

0.0810
(0.0641, 
0.0979)

0.0490
(0.0356, 
0.0624)

0.0490
(0.0356, 
0.0624)

0.0520
(0.0382, 
0.0658)

0.0580
(0.0435, 
0.0725)

0.0700
(0.0542, 
0.0858)

0.0650
(0.0497, 
0.0803)

(3)
0,22:  aH 0.0550

(0.0409, 
0.0691)

0.0420
(0.0296, 
0.0544)

0.0540
(0.0400, 
0.0680)

0.0480
(0.0348, 
0.0612)

0.0540
(0.0400, 
0.0680)

0.0370
(0.0253, 
0.0487)

0.0460
(0.0330, 
0.0590)

0.0460
(0.0330, 
0.0590)

*: numbers in parentheses are 95% confidence intervals.

Table A4
Exact p-values for testing equal chances of rejection in both directions

_____________________________________________________________________
G = 3 G = 6

T = 3 T = 7 T = 3 T = 7
ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8 ρ = 0.5 ρ = 0.8

GEE 
(Wald test)

0.8919 0.0014 0.1263 0.2976 0.0351 0.8974 0.1770 0.0814

MLE (LR test) 1.0000 0.0980 0.3123 0.7660 1.0000 0.0759 0.0440 0.3317
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Table A5
The coho study data

GCG STRATA ID_NUM SPAWNINGYE COHOAUC_MI GRADIENT ACW ACH PCTPOOLS PCTSWPOOL PCTGRAVEL PCTBEDROCK POOL1P_KM LWDPIECE1 LWDVOL1
1-NC NorthCoast 1832 2001 52.5 8.5 8.8 0.7 11.3 0.4 26.00 9.00 0.90 23.6 31.8
1-NC NorthCoast 1833 1999 1.9 2.7 8.6 0.5 15.1 2.4 23.00 3.00 2.40 30.8 48.0
1-NC NorthCoast 1844 1999 12.6 0.9 18.0 0.8 30.6 1.3 14.00 14.00 3.00 4.7 8.8
1-NC NorthCoast 1844 2002 7.2 1.7 17.6 0.7 39.1 0.0 41.00 6.00 4.00 2.8 5.8
1-NC NorthCoast 1846 2000 1.4 4.9 5.0 0.6 17.0 0.1 33.00 4.00 0.00 17.0 7.2
1-NC NorthCoast 1877 2002 44.7 1.8 3.9 0.4 40.2 0.0 55.00 0.00 0.00 10.6 8.6
1-NC NorthCoast 1884 2000 13.2 1.0 11.9 0.7 77.4 0.3 34.00 10.00 2.60 11.0 12.8
1-NC NorthCoast 1896 1999 8.5 1.0 8.9 0.4 26.2 1.5 37.00 0.00 2.50 10.8 15.4
1-NC NorthCoast 902 1998 0.0 4.9 4.5 0.4 13.0 0.0 21.00 0.00 0.00 50.0 165.0
1-NC NorthCoast 922 1998 0.0 2.1 6.5 0.4 29.7 1.7 26.00 1.00 0.00 9.6 6.7
1-NC NorthCoast 978 1998 0.0 3.4 5.9 0.6 19.6 1.6 15.00 4.00 1.90 20.9 39.6
1-NC NorthCoast 978 2001 0.0 4.2 6.0 0.6 19.0 0.0 45.00 4.00 0.00 15.3 19.5
1-NC NorthCoast 978 2004 0.0 3.2 4.9 0.3 14.0 0.0 39.51 1.73 0.00 23.4 24.6
1-NC NorthCoast 996 2002 10.4 3.7 8.1 0.4 20.4 0.3 43.00 10.00 0.00 7.0 12.8
1-NC NorthCoast 1041 2003 30.6 1.5 7.2 0.6 61.2 3.1 50.61 0.08 0.96 15.9 8.5
1-NC NorthCoast 1045 2001 0.0 2.2 8.2 0.6 48.5 0.7 46.00 0.00 0.00 13.6 9.7
1-NC NorthCoast 1075 2001 4.5 3.0 11.3 0.9 28.8 1.0 20.00 29.00 0.80 13.6 19.4
1-NC NorthCoast 1092 2001 0.0 4.2 11.6 0.9 33.4 0.6 35.00 15.00 0.00 13.9 18.8
1-NC NorthCoast 1123 1999 4.0 1.6 13.3 0.5 36.1 2.1 39.00 4.00 1.90 36.7 99.4
1-NC NorthCoast 1151 1998 0.0 0.6 21.3 0.8 56.3 1.7 23.00 4.00 4.60 23.0 15.6
1-NC NorthCoast 1166 2002 58.5 0.8 11.8 0.5 54.6 0.2 30.00 13.00 1.70 8.6 7.4
1-NC NorthCoast 1196 1999 6.7 6.1 6.8 0.4 11.9 0.0 18.00 19.00 1.50 21.6 7.2
1-NC NorthCoast 1196 2002 44.5 5.1 7.7 0.4 14.0 0.0 24.00 21.00 1.70 35.3 37.6
1-NC NorthCoast 1221 2001 2.6 0.7 4.6 0.7 93.8 72.5 50.00 1.00 7.90 10.6 8.5
1-NC NorthCoast 1226 1998 9.4 0.9 13.0 0.7 74.1 0.4 22.00 2.00 6.70 27.8 37.4
1-NC NorthCoast 1241 2002 0.0 4.5 10.7 0.3 34.3 28.3 35.00 11.00 0.00 23.8 28.0
1-NC NorthCoast 1279 1998 0.0 4.7 5.2 0.6 3.3 0.4 9.00 11.00 0.80 13.6 45.5
1-NC NorthCoast 1337 2000 0.0 2.2 5.1 0.6 77.1 67.8 11.00 0.00 1.10 17.0 17.8
1-NC NorthCoast 1371 2003 79.0 4.5 7.2 0.4 21.8 2.5 21.20 26.96 0.00 18.1 37.1
1-NC NorthCoast 1401 1999 0.0 4.1 9.1 0.4 67.8 67.8 13.00 0.00 1.60 51.2 132.9
1-NC NorthCoast 1468 1999 3.0 0.8 9.3 0.5 45.2 1.0 41.00 3.00 1.80 15.8 18.0
1-NC NorthCoast 1470 2000 11.3 2.6 10.2 0.6 44.6 19.0 37.00 9.00 2.00 15.7 6.6
1-NC NorthCoast 1504 2001 35.6 2.4 5.2 0.6 46.5 0.3 39.00 4.00 0.00 17.9 16.4
1-NC NorthCoast 1517 1998 3.9 1.9 6.5 0.5 43.7 0.3 10.00 6.00 2.30 19.7 14.3
1-NC NorthCoast 1535 2001 15.2 3.9 3.8 0.5 81.8 75.6 39.00 2.00 0.00 30.0 26.7
1-NC NorthCoast 1555 1998 6.2 1.9 5.1 0.5 36.2 0.1 38.00 5.00 0.00 15.0 17.9
1-NC NorthCoast 1569 2002 31.8 1.7 22.4 0.7 21.6 20.7 31.00 33.00 3.60 5.2 14.6
1-NC NorthCoast 1598 2003 177.6 2.5 10.7 0.6 27.9 0.2 39.33 4.39 0.60 14.1 17.0
1-NC NorthCoast 1606 2001 78.0 2.5 8.1 0.6 40.0 0.8 40.00 20.00 0.00 9.5 46.3
1-NC NorthCoast 1640 2000 79.6 0.5 6.8 0.6 84.5 43.0 26.00 4.00 1.90 15.2 6.6
1-NC NorthCoast 1648 1998 1.0 1.6 5.5 0.5 40.2 0.2 22.00 1.00 0.00 89.7 139.5
1-NC NorthCoast 1652 1999 3.2 0.4 13.0 0.5 75.6 6.5 30.00 7.00 7.70 14.1 9.4
1-NC NorthCoast 1677 2000 111.4 0.5 5.7 0.6 82.9 0.6 52.00 5.00 4.00 12.2 4.9
1-NC NorthCoast 1709 2003 71.7 0.9 7.3 0.4 94.8 87.2 15.38 0.00 0.00 19.7 16.6
1-NC NorthCoast 1735 1998 3.0 1.1 15.0 0.8 58.5 2.4 17.00 17.00 3.70 12.6 20.8
1-NC NorthCoast 1735 2001 17.0 1.5 14.4 0.7 68.3 2.0 25.00 22.00 1.60 20.9 14.3
1-NC NorthCoast 1735 2004 70.0 0.9 12.8 0.5 46.4 0.2 27.30 29.66 0.93 8.8 5.2
1-NC NorthCoast 107 2001 1.1 1.4 5.9 0.5 31.2 14.7 47.00 0.00 2.70 0.8 0.7
1-NC NorthCoast 130 1998 0.0 4.3 5.1 0.2 30.7 0.0 42.00 3.00 0.00 6.3 12.1
1-NC NorthCoast 130 1999 4.0 3.1 4.4 0.3 16.6 1.0 23.00 0.00 0.00 6.5 9.5
1-NC NorthCoast 130 2000 0.0 5.4 3.2 0.3 13.6 0.5 23.00 7.00 0.00 7.9 9.0
1-NC NorthCoast 130 2001 4.0 4.9 4.6 0.3 20.1 0.0 43.00 5.00 2.20 4.2 19.1
1-NC NorthCoast 130 2002 0.0 5.6 4.4 0.4 9.0 0.0 43.00 12.00 0.00 7.1 9.1
1-NC NorthCoast 130 2004 0.0 5.4 4.0 0.4 3.9 0.0 26.56 5.16 0.00 7.8 13.8
1-NC NorthCoast 133 2001 2.6 0.5 2.6 0.7 61.1 30.0 38.00 0.00 0.00 0.0 0.0
1-NC NorthCoast 179 1998 0.0 0.5 17.0 0.3 79.6 0.3 47.00 6.00 2.90 19.4 26.1
1-NC NorthCoast 210 2000 2.5 3.8 6.2 0.3 36.0 17.4 41.00 15.00 9.00 32.0 46.8
1-NC NorthCoast 214 2000 0.0 1.9 2.7 0.2 4.2 0.0 65.00 0.00 0.00 2.9 2.7
1-NC NorthCoast 252 2000 0.0 3.7 5.3 0.4 3.3 0.0 22.00 2.00 0.00 15.0 46.3
1-NC NorthCoast 256 1998 0.0 1.0 15.9 0.5 61.7 0.7 42.00 4.00 10.60 7.5 10.9
1-NC NorthCoast 256 2001 1.2 0.7 22.0 1.4 58.7 0.4 49.00 6.00 10.00 3.5 9.4
1-NC NorthCoast 256 2004 1.2 0.5 18.4 1.0 60.1 0.0 30.62 6.79 8.09 3.7 2.3
1-NC NorthCoast 276 2001 8.4 2.5 15.9 0.8 23.3 1.0 36.00 7.00 1.60 7.6 31.6
1-NC NorthCoast 284 1999 1.5 1.0 16.8 0.8 29.7 2.1 27.00 19.00 3.00 0.9 1.3
1-NC NorthCoast 363 2001 14.7 5.8 21.1 0.9 4.5 0.3 26.00 1.00 0.00 12.1 20.3
1-NC NorthCoast 378 1999 140.7 2.1 13.7 0.7 13.8 1.3 15.00 2.00 2.00 22.3 28.5
1-NC NorthCoast 403 2002 0.0 3.6 2.7 0.6 4.4 0.5 73.00 5.00 0.00 7.0 5.1
1-NC NorthCoast 425 2000 0.0 4.6 5.5 0.6 18.2 0.1 29.00 0.00 1.10 28.8 15.0
1-NC NorthCoast 476 2000 6.0 3.4 8.6 0.6 18.5 0.1 42.00 1.00 0.00 15.1 7.2
1-NC NorthCoast 518 2000 1.4 12.8 4.2 0.4 5.4 0.1 46.00 12.00 0.00 17.1 24.9
1-NC NorthCoast 530 1999 4.2 5.3 14.5 0.9 8.9 1.6 8.00 9.00 0.00 12.1 11.5
1-NC NorthCoast 530 2002 3.2 6.1 8.0 0.4 5.8 0.0 21.00 4.00 0.00 19.0 53.5
1-NC NorthCoast 545 1998 10.9 2.4 10.3 0.5 30.4 0.2 34.00 4.00 1.80 40.8 46.1
1-NC NorthCoast 545 1999 10.9 1.6 9.2 0.5 34.9 0.6 22.00 2.00 6.10 16.1 10.5
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1-NC NorthCoast 545 2000 0.0 1.9 8.2 0.6 30.2 0.5 22.00 3.00 5.90 40.4 36.9
1-NC NorthCoast 545 2001 0.0 1.9 9.9 0.5 33.7 0.0 42.00 5.00 3.00 15.0 31.5
1-NC NorthCoast 545 2002 15.6 2.4 9.2 0.6 32.0 0.2 55.00 1.00 3.70 13.4 25.7
1-NC NorthCoast 545 2004 12.5 2.1 7.1 0.4 28.5 0.3 52.19 2.96 3.66 17.4 15.2
1-NC NorthCoast 588 1998 0.0 5.5 6.1 0.4 26.3 0.2 25.00 8.00 0.00 35.8 58.2
1-NC NorthCoast 608 1999 0.0 1.8 20.4 0.9 44.0 0.0 8.00 17.00 7.90 5.3 8.2
1-NC NorthCoast 608 2002 46.4 2.2 10.3 0.7 38.8 0.0 40.00 5.00 7.50 4.4 6.5
1-NC NorthCoast 624 2002 148.2 4.5 6.4 0.5 9.0 1.1 38.00 26.00 0.00 17.5 12.9
1-NC NorthCoast 663 1998 0.0 3.0 10.5 0.6 36.0 0.0 21.00 12.00 6.20 11.0 21.3
1-NC NorthCoast 663 2001 0.0 3.0 13.2 0.8 26.3 0.0 19.00 19.00 5.00 11.8 26.8
1-NC NorthCoast 663 2004 0.0 3.0 10.8 0.6 17.5 0.1 18.54 19.22 1.80 7.4 10.7
1-NC NorthCoast 683 1998 0.0 3.1 9.4 0.4 28.0 0.0 30.00 1.00 2.90 59.0 103.3
1-NC NorthCoast 694 2003 150.0 2.7 26.1 1.1 24.6 0.0 20.17 3.49 5.01 8.5 10.7
1-NC NorthCoast 699 2003 16.5 2.7 21.0 1.0 12.1 0.0 17.50 2.17 1.46 7.8 6.8
1-NC NorthCoast 715 1998 0.0 3.5 9.9 0.4 28.4 0.0 30.00 2.00 0.90 25.5 30.1
1-NC NorthCoast 715 1999 16.7 2.1 11.9 0.5 19.9 1.0 8.00 0.00 1.00 13.3 19.3
1-NC NorthCoast 715 2000 26.2 3.4 11.0 0.5 24.0 1.3 32.00 2.00 0.00 26.4 25.1
1-NC NorthCoast 715 2001 2.4 3.2 11.3 0.8 30.5 0.3 34.00 1.00 1.00 23.1 34.0
1-NC NorthCoast 715 2002 42.9 4.0 10.1 0.6 17.6 3.0 44.00 1.00 0.00 30.8 50.3
1-NC NorthCoast 715 2004 9.5 4.3 9.2 0.4 21.2 0.3 32.69 2.52 0.00 22.7 30.1
1-NC NorthCoast 718 1998 0.0 3.1 12.1 0.6 37.1 0.0 18.00 11.00 9.60 2.4 9.1
1-NC NorthCoast 752 2000 0.0 1.2 19.2 0.5 95.2 94.8 13.00 0.00 5.90 18.8 17.3
1-NC NorthCoast 807 2003 15.8 1.4 19.6 0.9 38.7 0.0 32.33 0.43 1.92 7.2 12.2
1-NC NorthCoast 827 2000 20.0 2.1 16.3 0.7 25.0 0.5 24.00 14.00 3.10 9.5 11.9
1-NC NorthCoast 854 1998 0.0 2.3 6.1 0.3 31.6 0.0 51.00 0.00 0.00 9.7 9.0
1-NC NorthCoast 856 1999 0.0 2.2 8.9 0.4 21.3 0.5 19.00 0.00 0.00 4.5 3.5
1-NC NorthCoast 874 1999 5.6 0.7 20.7 0.6 54.2 9.6 36.00 0.00 7.90 45.3 125.6
1-NC NorthCoast 881 2003 4.0 4.4 13.5 0.5 6.9 0.0 27.29 1.82 0.00 7.4 8.8
2-MC Mid-Coast 2949 2001 2.0 5.4 6.2 0.6 18.1 0.0 28.00 6.00 0.00 14.3 19.8
2-MC Mid-Coast 2989 1998 0.0 0.8 7.1 0.4 77.0 1.5 24.00 32.00 2.80 5.4 2.9
2-MC Mid-Coast 2989 2001 2.5 0.5 8.8 0.5 75.5 0.6 32.00 30.00 0.90 9.6 7.2
2-MC Mid-Coast 2989 2004 0.0 0.5 7.8 0.4 69.4 10.7 36.62 25.44 1.61 6.7 2.8
2-MC Mid-Coast 3067 1999 14.1 0.7 11.8 0.6 72.2 1.8 33.00 2.00 4.40 8.5 12.0
2-MC Mid-Coast 3130 2001 8.7 2.3 10.0 0.6 17.1 0.0 17.00 14.00 0.00 1.8 3.5
2-MC Mid-Coast 3231 1998 19.4 2.5 6.6 0.5 25.7 0.1 24.00 14.00 0.90 11.5 10.2
2-MC Mid-Coast 3231 2001 74.5 2.3 8.0 0.6 25.4 0.0 15.00 26.00 0.90 11.0 19.1
2-MC Mid-Coast 3231 2004 141.8 3.0 7.7 0.4 18.5 0.2 22.29 18.92 0.87 15.9 15.1
2-MC Mid-Coast 2860 2000 0.0 1.9 5.2 0.4 32.3 0.0 49.00 0.00 1.00 8.7 11.9
2-MC Mid-Coast 2737 2002 4.0 0.9 21.4 0.9 45.6 4.3 42.00 1.00 6.70 26.4 29.6
2-MC Mid-Coast 2740 2000 0.0 8.1 6.8 0.4 11.0 0.9 31.00 2.00 1.00 22.2 44.4
2-MC Mid-Coast 2800 2002 0.0 2.0 17.0 0.6 36.0 0.0 27.00 2.00 3.80 19.4 44.9
2-MC Mid-Coast 3794 1998 7.1 2.6 6.3 0.5 13.8 2.9 53.00 4.00 1.70 6.2 4.6
2-MC Mid-Coast 3823 1999 6.1 0.8 23.9 0.6 56.5 3.3 50.00 5.00 2.00 14.3 63.1
2-MC Mid-Coast 3830 2002 60.0 2.1 18.3 0.6 35.8 4.0 27.00 10.00 2.80 28.8 30.5
2-MC Mid-Coast 3544 1998 0.0 1.1 6.4 0.3 75.2 16.1 31.00 30.00 0.80 9.8 9.1
2-MC Mid-Coast 3574 2000 46.6 1.8 8.2 0.4 54.1 0.0 31.00 35.00 1.60 6.4 3.8
2-MC Mid-Coast 3587 1999 2.6 0.6 8.0 1.4 70.2 0.0 48.00 23.00 0.00 8.4 6.7
2-MC Mid-Coast 3616 1998 1.4 3.4 12.4 0.5 30.6 0.1 21.00 14.00 2.40 17.1 20.9
2-MC Mid-Coast 3724 1998 2.9 3.0 8.7 0.5 27.7 3.6 32.00 15.00 0.90 12.0 21.5
2-MC Mid-Coast 1981 1999 27.0 1.3 6.7 0.5 42.8 0.0 25.00 23.00 0.90 4.9 6.8
2-MC Mid-Coast 1984 1999 4.5 1.6 8.8 0.5 37.1 0.0 31.00 14.00 0.00 7.2 20.0
2-MC Mid-Coast 1984 2002 61.7 2.8 8.4 0.4 25.1 0.0 31.00 21.00 2.00 10.0 12.2
2-MC Mid-Coast 2008 1998 1.1 1.6 8.1 0.5 53.2 0.6 34.00 3.00 3.20 19.8 14.0
2-MC Mid-Coast 2089 1998 7.2 2.0 8.3 0.5 62.6 2.4 65.00 1.00 2.70 13.7 12.9
2-MC Mid-Coast 2089 2001 21.6 2.1 5.2 0.4 56.9 0.2 30.00 3.00 0.00 15.0 12.7
2-MC Mid-Coast 2089 2004 3.6 2.0 3.2 0.3 52.4 4.3 36.70 2.44 0.90 16.9 22.3
2-MC Mid-Coast 2117 2000 9.7 3.7 7.6 0.5 14.4 0.5 47.00 20.00 0.00 19.3 77.6
2-MC Mid-Coast 2120 1999 0.0 12.6 3.6 0.4 14.5 0.0 11.00 15.00 0.00 8.8 5.2
2-MC Mid-Coast 2127 2002 2.6 2.6 5.8 0.5 21.4 1.0 27.00 2.00 0.00 11.7 9.1
2-MC Mid-Coast 2130 1999 0.0 5.1 6.1 0.4 27.4 1.2 23.00 1.00 0.00 17.2 15.0
2-MC Mid-Coast 2167 2000 18.5 1.8 7.1 0.5 49.9 14.7 60.00 5.00 0.90 12.4 17.1
2-MC Mid-Coast 2172 2003 166.7 1.5 5.8 0.3 34.8 0.0 38.01 1.12 0.00 12.5 14.3
2-MC Mid-Coast 2183 2002 66.7 0.8 13.7 0.6 68.3 0.1 36.00 16.00 1.90 5.7 4.8
2-MC Mid-Coast 2193 2000 11.8 5.0 2.4 0.3 18.3 0.0 37.00 1.00 0.00 16.5 39.8
2-MC Mid-Coast 2237 1998 0.0 1.5 7.7 0.5 59.5 10.8 55.00 4.00 3.90 14.0 10.6
2-MC Mid-Coast 2237 2001 41.3 1.3 5.9 0.4 60.5 0.0 56.00 7.00 3.10 10.5 32.0
2-MC Mid-Coast 2259 2000 2.8 1.9 6.8 0.4 41.7 3.5 40.00 1.00 1.00 8.1 13.6
2-MC Mid-Coast 2265 2002 39.2 1.4 6.4 0.4 35.5 1.1 26.00 7.00 1.00 9.9 19.1
2-MC Mid-Coast 2278 1999 0.0 3.7 5.2 0.4 45.9 0.0 26.00 4.00 0.00 42.9 83.2
2-MC Mid-Coast 2278 2002 85.1 3.4 4.9 0.4 17.3 3.0 40.00 2.00 0.00 38.2 48.3
2-MC Mid-Coast 2319 2000 0.0 5.6 4.4 0.4 17.2 1.5 36.00 0.00 0.00 15.0 18.2
2-MC Mid-Coast 2344 2003 41.7 1.0 7.9 0.4 32.3 0.0 16.78 28.57 0.00 6.0 8.7
2-MC Mid-Coast 2432 2002 12.0 0.8 4.7 0.6 65.0 43.8 10.00 1.00 5.50 14.2 7.2
2-MC Mid-Coast 2438 1998 0.0 0.9 6.3 0.6 45.8 6.2 31.00 5.00 0.00 17.2 13.1
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2-MC Mid-Coast 2451 1998 1.1 1.8 12.5 0.5 26.8 0.2 18.00 20.00 0.00 13.8 10.5
2-MC Mid-Coast 2492 1998 0.0 1.7 13.2 0.6 15.0 0.1 16.00 48.00 1.00 1.2 1.7
2-MC Mid-Coast 2492 2001 1.3 2.0 11.7 0.7 14.4 0.3 8.00 50.00 2.00 4.9 7.1
2-MC Mid-Coast 2492 2004 1.3 1.2 11.5 0.6 44.7 0.2 15.04 37.59 0.00 7.5 4.8
2-MC Mid-Coast 2514 1999 0.0 0.4 13.2 0.7 70.1 8.7 33.00 15.00 2.90 7.2 23.7
2-MC Mid-Coast 2556 1999 0.9 1.5 5.7 0.4 51.1 0.1 27.00 35.00 0.00 6.5 12.2
2-MC Mid-Coast 2556 2000 6.1 1.8 6.3 0.5 37.4 1.9 44.00 31.00 0.00 7.8 11.3
2-MC Mid-Coast 2556 2001 13.0 1.8 6.5 0.6 37.0 1.2 26.00 32.00 0.00 10.1 15.9
2-MC Mid-Coast 2556 2002 46.1 2.3 5.7 0.5 38.9 6.2 29.00 29.00 0.00 9.3 10.0
2-MC Mid-Coast 2556 2004 10.4 1.2 4.1 0.3 39.2 0.0 44.95 23.20 0.90 4.0 6.7
2-MC Mid-Coast 2580 2000 3.9 1.1 5.9 0.6 72.0 6.0 40.00 20.00 0.00 11.5 16.3
2-MC Mid-Coast 2597 1998 2.4 1.3 4.5 0.5 63.1 0.9 59.00 15.00 0.00 16.0 23.0
2-MC Mid-Coast 2627 2001 12.0 1.1 5.0 0.5 72.7 30.5 33.00 7.00 1.00 14.7 13.9
2-MC Mid-Coast 2651 2003 0.0 1.9 4.4 0.6 60.8 29.8 23.20 0.03 0.81 23.5 39.6
2-MC Mid-Coast 2839 2000 4.8 2.2 8.7 0.5 51.6 25.9 27.00 20.00 2.00 3.8 7.6
2-MC Mid-Coast 3262 2002 18.3 1.4 4.1 0.5 33.1 17.1 5.00 0.00 1.00 12.9 13.4
2-MC Mid-Coast 3276 2002 1.0 0.6 3.9 0.3 91.8 91.0 25.00 0.00 0.90 20.2 31.0
2-MC Mid-Coast 3280 1999 43.6 2.4 2.6 0.3 41.0 0.0 42.00 2.00 0.00 1.6 1.7
2-MC Mid-Coast 3289 1999 8.6 0.6 10.4 0.7 60.5 2.8 66.00 0.00 6.80 5.4 7.5
2-MC Mid-Coast 3300 2001 23.2 0.8 7.9 0.5 38.5 0.0 17.00 29.00 0.00 9.3 12.3
2-MC Mid-Coast 3311 2000 2.6 1.9 6.7 0.5 38.8 2.8 31.00 4.00 0.00 4.5 15.6
2-MC Mid-Coast 3317 2002 301.0 2.8 6.0 0.6 36.8 32.9 39.00 23.00 2.00 4.2 3.1
2-MC Mid-Coast 3336 1998 7.9 1.5 9.0 0.4 59.4 0.0 15.00 53.00 0.00 3.5 2.9
2-MC Mid-Coast 3336 1999 27.2 1.2 8.8 0.6 65.2 0.0 9.00 76.00 0.90 3.0 4.3
2-MC Mid-Coast 3336 2000 21.9 1.5 8.5 0.4 65.7 0.0 8.00 62.00 0.90 2.8 2.8
2-MC Mid-Coast 3336 2001 54.4 1.6 10.5 0.6 66.3 1.0 12.00 50.00 0.80 4.7 5.5
2-MC Mid-Coast 3336 2002 43.9 2.4 10.7 0.5 38.0 2.6 10.00 63.00 1.00 1.8 1.9
2-MC Mid-Coast 3336 2004 45.6 1.4 10.4 0.4 65.4 0.0 9.52 54.93 0.00 3.8 1.9
2-MC Mid-Coast 3382 2003 52.5 2.3 1.8 0.3 52.9 19.2 24.82 4.61 0.82 7.2 10.8
2-MC Mid-Coast 3402 2003 149.5 2.3 3.0 0.3 33.3 0.2 35.35 22.03 0.00 5.1 8.1
3-MS Mid-SouthCoast 5274 1998 17.7 0.6 4.2 0.5 75.2 12.0 27.00 0.00 4.90 1.7 0.3
3-MS Mid-SouthCoast 5323 1998 57.1 4.6 4.7 0.4 38.0 2.1 32.00 12.00 0.00 26.3 11.4
3-MS Mid-SouthCoast 5323 1999 14.3 2.7 4.2 0.3 45.8 2.2 57.00 4.00 0.90 16.7 27.0
3-MS Mid-SouthCoast 5323 2000 29.9 4.8 5.3 0.4 26.8 0.0 53.00 8.00 0.00 34.6 56.2
3-MS Mid-SouthCoast 5323 2002 39.5 2.7 4.5 0.3 44.5 1.7 34.00 4.00 0.00 18.9 17.7
3-MS Mid-SouthCoast 5323 2004 100.7 1.9 4.9 0.4 35.5 1.3 49.36 0.93 0.00 10.7 10.8
3-MS Mid-SouthCoast 5334 1999 7.9 1.6 4.1 0.5 26.8 9.9 39.00 0.00 0.00 4.5 11.2
3-MS Mid-SouthCoast 5338 1998 1.6 6.2 3.0 0.3 29.1 0.5 41.00 23.00 0.00 18.7 21.6
3-MS Mid-SouthCoast 5338 2001 32.7 4.9 3.7 0.4 17.0 0.0 21.00 16.00 0.00 16.6 31.2
3-MS Mid-SouthCoast 5338 2004 12.5 5.7 3.6 0.4 9.3 0.0 19.86 27.33 0.00 16.1 15.2
3-MS Mid-SouthCoast 5342 2000 2.8 8.1 4.8 0.4 5.0 0.0 26.00 14.00 0.00 30.0 31.1
3-MS Mid-SouthCoast 5348 2003 60.0 6.4 4.7 0.4 14.6 0.4 28.14 8.65 0.00 18.7 18.6
3-MS Mid-SouthCoast 5370 2001 8.8 5.2 3.7 0.5 12.6 0.0 55.00 1.00 1.00 22.8 15.9
3-MS Mid-SouthCoast 5389 2001 25.0 0.6 15.4 0.8 85.5 0.1 20.00 3.00 4.10 5.6 10.2
3-MS Mid-SouthCoast 5405 1998 2.0 0.6 20.2 1.1 81.3 13.8 25.00 24.00 5.30 14.8 9.1
3-MS Mid-SouthCoast 5465 1998 0.0 15.8 4.5 0.7 1.2 0.0 22.00 35.00 0.00 12.8 25.4
3-MS Mid-SouthCoast 5465 2001 4.5 9.5 2.8 0.6 0.0 0.0 9.00 12.00 0.00 2.1 2.8
3-MS Mid-SouthCoast 5465 2004 2.3 15.3 6.2 0.5 0.9 0.0 14.36 27.18 0.00 11.3 13.8
3-MS Mid-SouthCoast 5480 2003 84.0 0.4 16.0 0.6 77.4 1.4 21.32 51.45 5.31 9.8 12.5
3-MS Mid-SouthCoast 5552 2003 0.0 3.0 4.9 0.5 36.2 1.2 18.47 9.50 0.00 32.1 53.4
3-MS Mid-SouthCoast 5620 2003 33.3 1.1 24.4 0.9 31.8 0.4 18.34 27.07 4.89 3.8 2.6
3-MS Mid-SouthCoast 5638 1998 16.5 1.3 17.1 0.7 47.5 2.0 21.00 38.00 5.10 3.9 4.7
3-MS Mid-SouthCoast 5638 1999 11.3 1.4 15.2 1.0 59.4 0.1 15.00 49.00 5.50 3.0 8.2
3-MS Mid-SouthCoast 5638 2000 24.7 1.2 13.9 0.5 50.5 0.0 13.00 54.00 3.70 4.5 7.0
3-MS Mid-SouthCoast 5638 2001 202.1 0.8 16.1 0.7 73.6 0.5 17.00 47.00 1.80 2.2 2.8
3-MS Mid-SouthCoast 5638 2002 86.6 1.2 15.3 0.6 60.6 0.0 12.00 49.00 3.70 5.1 3.9
3-MS Mid-SouthCoast 5638 2004 183.5 0.9 20.1 1.1 53.5 0.6 13.35 38.66 2.75 4.7 3.7
3-MS Mid-SouthCoast 5645 1998 13.7 1.5 22.2 0.8 26.5 0.6 18.00 22.00 2.70 4.9 4.1
3-MS Mid-SouthCoast 5652 2002 118.9 37.8 5.2 0.4 11.2 0.0 8.00 14.00 0.00 32.5 28.9
3-MS Mid-SouthCoast 5655 2001 82.1 2.8 10.7 0.8 43.6 0.0 36.00 1.00 4.40 9.5 14.1
3-MS Mid-SouthCoast 5731 1998 2.2 2.3 11.1 0.6 63.2 13.1 11.00 54.00 4.50 7.4 2.5
3-MS Mid-SouthCoast 5737 2003 12.9 0.7 8.0 0.5 69.3 6.1 39.25 14.30 2.81 8.3 7.2
3-MS Mid-SouthCoast 5806 1998 21.9 2.3 7.7 0.5 28.9 1.4 36.00 9.00 0.00 9.9 12.9
3-MS Mid-SouthCoast 4356 2002 35.7 1.8 3.5 0.4 23.5 0.0 41.00 9.00 1.00 17.5 14.0
3-MS Mid-SouthCoast 4459 2002 28.2 16.1 2.5 0.4 9.7 0.0 23.00 1.00 0.00 24.9 54.6
3-MS Mid-SouthCoast 4525 2002 9.1 3.2 3.8 0.3 49.9 0.8 47.00 2.00 2.00 14.1 15.0
3-MS Mid-SouthCoast 4539 2001 70.0 0.2 10.0 0.2 83.7 1.2 26.00 30.00 2.10 2.4 0.7
3-MS Mid-SouthCoast 4669 2000 0.0 1.3 6.0 0.4 38.4 0.0 51.00 15.00 0.00 22.6 34.6
3-MS Mid-SouthCoast 4739 1999 0.0 2.6 16.7 0.8 52.5 0.3 37.00 2.00 13.10 4.2 9.8
3-MS Mid-SouthCoast 4757 2002 4.3 4.3 18.4 0.8 34.8 3.3 28.00 2.00 6.60 13.7 26.0
3-MS Mid-SouthCoast 4794 1998 13.8 6.9 4.7 0.5 37.7 0.1 40.00 5.00 0.00 14.4 11.5
3-MS Mid-SouthCoast 4794 1999 0.0 6.2 4.6 0.4 43.7 0.9 33.00 7.00 0.00 14.2 29.5
3-MS Mid-SouthCoast 4794 2000 4.6 3.1 5.0 0.5 21.2 0.0 32.00 1.00 0.00 19.4 13.5
3-MS Mid-SouthCoast 4794 2001 25.3 2.6 4.8 0.6 30.2 0.0 43.00 2.00 0.00 10.2 6.1



92

(Continued)

GCG STRATA ID_NUM SPAWNINGYE COHOAUC_MI GRADIENT ACW ACH PCTPOOLS PCTSWPOOL PCTGRAVEL PCTBEDROCK POOL1P_KM LWDPIECE1 LWDVOL1
3-MS Mid-SouthCoast 4794 2002 6.9 6.0 4.8 0.3 25.9 1.5 15.00 6.00 0.00 17.3 14.7
3-MS Mid-SouthCoast 4794 2004 80.5 4.6 5.9 0.5 18.0 0.6 33.25 4.22 0.00 12.3 7.8
3-MS Mid-SouthCoast 4811 1999 0.0 0.8 9.6 0.4 67.9 9.0 37.00 38.00 4.80 3.0 2.5
3-MS Mid-SouthCoast 4828 1998 21.3 2.3 8.2 0.5 51.3 0.7 26.00 3.00 3.60 17.7 18.5
3-MS Mid-SouthCoast 4901 1999 0.0 2.5 1.9 0.4 34.7 0.7 52.00 0.00 0.00 8.9 27.5
3-MS Mid-SouthCoast 5003 1998 0.0 4.9 5.9 0.5 27.4 1.1 23.00 3.00 0.00 16.6 23.0
3-MS Mid-SouthCoast 5008 2000 1.2 4.6 7.4 0.5 11.5 0.0 31.00 0.00 0.00 29.7 18.7
3-MS Mid-SouthCoast 5165 1999 49.2 1.4 9.9 0.6 58.1 0.5 57.00 0.00 3.70 7.5 15.8
3-MS Mid-SouthCoast 5165 2002 30.5 2.4 10.2 0.4 27.9 25.9 54.00 1.00 4.40 16.3 30.7
3-MS Mid-SouthCoast 4075 1999 5.6 1.2 2.9 0.3 15.5 0.3 58.00 0.00 0.00 8.3 6.0
3-MS Mid-SouthCoast 4006 1998 0.0 0.6 30.4 2.1 78.8 1.4 21.00 5.00 7.90 1.5 1.4
3-MS Mid-SouthCoast 4006 1999 0.0 0.9 21.5 1.3 73.7 0.1 0.70 7.00 5.30 0.7 2.5
3-MS Mid-SouthCoast 4006 2000 2.9 0.7 25.9 1.0 84.9 0.0 45.00 6.00 7.00 1.4 0.9
3-MS Mid-SouthCoast 4006 2001 0.0 0.6 22.8 1.1 79.3 0.1 41.00 2.00 8.10 0.2 0.2
3-MS Mid-SouthCoast 4006 2002 0.0 1.0 22.1 0.8 74.9 1.5 26.00 6.00 8.30 2.1 1.4

4-UMP Umpqua 6465 2002 0.0 0.6 5.0 0.5 64.6 0.0 49.00 0.00 1.80 0.9 0.9
4-UMP Umpqua 6469 2002 18.5 3.2 6.4 0.4 14.9 0.0 45.00 0.00 0.00 14.2 11.5
4-UMP Umpqua 6506 1999 29.5 0.7 14.7 0.7 60.5 2.2 22.00 43.00 0.00 7.8 16.9
4-UMP Umpqua 6628 2000 50.0 1.5 10.7 0.4 40.3 0.0 11.00 64.00 1.00 2.7 3.8
4-UMP Umpqua 6639 1998 5.2 1.0 4.6 0.5 47.2 0.0 43.00 41.00 0.00 11.6 7.6
4-UMP Umpqua 6757 1998 2.4 0.8 10.9 0.8 56.5 11.7 24.00 39.00 3.80 4.3 4.5
4-UMP Umpqua 6841 2000 7.9 2.3 16.3 0.7 37.0 5.9 30.00 9.00 6.70 3.4 1.4
4-UMP Umpqua 6894 2000 1.2 1.7 10.1 0.4 48.4 0.4 14.00 40.00 0.00 4.9 7.2
4-UMP Umpqua 6912 2000 3.8 1.4 10.1 0.5 71.7 1.7 27.00 50.00 0.00 10.9 10.9
4-UMP Umpqua 6929 2001 0.0 1.4 7.7 0.3 49.2 0.0 19.00 41.00 1.90 4.7 12.0
4-UMP Umpqua 6160 2003 5.0 5.0 3.6 0.4 17.8 0.0 32.37 5.92 0.00 23.1 25.9
4-UMP Umpqua 6963 2003 5.0 0.2 14.8 0.6 66.7 0.2 34.31 7.80 1.82 6.1 6.2
4-UMP Umpqua 6986 1998 2.1 0.6 12.7 0.6 24.9 0.0 10.00 51.00 1.00 3.2 2.2
4-UMP Umpqua 7202 2000 13.3 0.8 4.9 0.5 96.4 88.0 15.00 0.00 7.50 7.5 7.8
4-UMP Umpqua 7251 2001 29.9 2.1 8.5 0.5 33.9 0.0 16.00 58.00 1.00 2.6 1.6
4-UMP Umpqua 7258 1998 4.7 1.0 12.1 0.5 55.1 1.8 20.00 25.00 0.00 11.6 12.5
4-UMP Umpqua 7285 1998 0.0 1.1 12.2 0.5 72.8 29.2 17.00 25.00 2.80 8.7 6.1
4-UMP Umpqua 7285 1999 0.0 0.5 14.9 0.7 83.9 40.6 22.00 33.00 3.60 2.6 5.1
4-UMP Umpqua 7285 2000 3.9 2.0 12.2 0.6 56.3 50.4 21.00 30.00 2.00 3.9 6.0
4-UMP Umpqua 7285 2001 9.7 0.9 10.6 0.5 79.5 52.8 23.00 25.00 3.70 3.1 3.3
4-UMP Umpqua 7285 2002 16.5 0.9 13.7 0.5 75.4 30.7 16.00 35.00 4.60 5.8 3.8
4-UMP Umpqua 7285 2004 6.8 0.8 10.8 0.6 72.0 0.0 19.22 34.08 4.70 6.9 4.7
4-UMP Umpqua 7431 1999 3.5 1.5 13.7 0.7 28.2 0.2 13.00 8.00 2.80 1.9 3.7
4-UMP Umpqua 7543 1998 0.0 1.1 15.3 0.7 34.8 1.3 20.00 9.00 2.80 1.1 0.2
4-UMP Umpqua 7699 2002 9.7 1.1 7.3 0.5 46.2 0.7 21.00 30.00 3.80 3.4 3.8
4-UMP Umpqua 7725 2001 7.2 0.5 8.6 0.3 79.2 0.2 48.00 21.00 0.00 1.6 0.9
4-UMP Umpqua 7778 1998 4.2 1.7 8.3 0.5 27.1 10.9 29.00 0.00 2.00 10.1 3.7
4-UMP Umpqua 7960 2001 0.0 4.6 1.9 0.4 2.3 0.0 28.00 9.00 0.00 3.8 0.7
4-UMP Umpqua 7976 2003 1.0 4.0 4.4 0.4 36.6 1.9 37.25 23.26 0.95 9.6 3.6
4-UMP Umpqua 7999 1998 1.0 2.9 8.2 0.8 43.7 25.8 28.00 4.00 1.60 9.5 12.0
4-UMP Umpqua 7999 1999 3.9 2.7 6.8 0.7 29.1 2.9 25.00 4.00 1.50 7.3 7.4
4-UMP Umpqua 7999 2000 3.9 2.8 5.4 0.5 28.7 2.3 30.00 9.00 0.00 10.6 10.2
4-UMP Umpqua 7999 2001 56.3 2.6 4.9 0.5 32.6 0.0 45.00 9.00 0.00 6.2 9.9
4-UMP Umpqua 7999 2002 11.7 2.3 5.1 0.4 22.4 0.0 38.00 6.00 0.00 8.0 10.6
4-UMP Umpqua 7999 2004 29.1 2.1 4.8 0.6 23.2 0.0 33.10 6.98 0.00 6.4 2.5
4-UMP Umpqua 8037 2000 3.3 3.5 8.8 0.6 6.4 0.2 25.00 1.00 0.00 1.8 1.4
4-UMP Umpqua 8056 1998 38.0 2.2 3.8 0.6 41.0 0.0 35.00 2.00 1.00 4.7 1.0
4-UMP Umpqua 8056 1999 5.1 2.4 3.9 0.7 50.5 11.4 47.00 3.00 1.70 0.8 0.1
4-UMP Umpqua 8056 2000 12.7 1.8 3.2 0.6 37.6 2.8 34.00 0.00 0.00 1.5 0.2
4-UMP Umpqua 8071 2000 0.0 2.4 6.5 0.6 24.9 1.9 23.00 11.00 0.00 7.1 15.7
4-UMP Umpqua 8149 1999 0.0 0.7 10.1 0.6 65.1 11.8 80.00 4.00 1.00 3.7 1.2
5-SC SouthCoast 8850 2000 0.0 6.0 12.8 1.2 22.1 0.5 15.00 20.00 5.90 5.7 4.2
5-SC SouthCoast 8930 1998 3.9 8.5 6.2 0.7 4.7 0.0 22.00 0.00 0.00 4.2 22.6
5-SC SouthCoast 8930 2001 70.2 7.1 5.7 0.6 5.6 0.1 23.00 1.00 0.00 8.6 10.3
5-SC SouthCoast 8930 2004 9.8 7.8 5.9 0.4 13.4 2.4 28.90 0.23 0.00 6.8 18.9
5-SC SouthCoast 9111 2000 0.0 6.6 8.2 0.7 13.1 0.0 17.00 10.00 1.00 13.3 10.1
5-SC SouthCoast 9218 1998 0.0 1.4 22.8 0.8 20.5 0.5 47.00 10.00 3.00 0.5 0.0
5-SC SouthCoast 9218 1999 0.0 1.2 21.8 0.8 37.1 0.4 35.00 16.00 2.50 0.6 0.3
5-SC SouthCoast 9218 2000 0.0 0.9 28.4 1.2 15.4 0.0 35.00 19.00 1.00 1.3 0.3
5-SC SouthCoast 9218 2001 0.0 0.6 12.3 0.3 3.4 0.0 33.00 18.00 0.60 0.3 0.1
5-SC SouthCoast 9218 2002 0.0 0.7 18.8 0.7 37.5 1.9 27.00 18.00 0.90 0.2 0.1
5-SC SouthCoast 9218 2004 2.6 0.8 15.6 0.6 38.9 5.7 33.77 16.33 3.49 0.1 0.0
5-SC SouthCoast 9346 2003 0.0 1.8 7.0 0.5 2.5 0.0 36.15 3.85 0.00 0.7 0.3
5-SC SouthCoast 9425 1999 0.0 3.1 6.8 0.5 24.6 7.7 36.00 4.00 0.00 3.4 1.8
5-SC SouthCoast 9587 2003 3.4 2.2 7.2 0.4 33.4 17.6 30.43 5.27 2.94 5.3 0.8
5-SC SouthCoast 9698 2001 24.3 1.9 17.0 0.5 12.3 0.5 38.00 1.00 6.00 7.5 4.1
5-SC SouthCoast 9769 2000 1.1 2.0 7.9 0.5 47.4 0.0 17.00 14.00 2.90 7.5 5.1
5-SC SouthCoast 9863 2002 37.1 3.4 11.4 0.8 26.3 0.0 11.00 3.00 2.30 11.9 14.4


