
Yimin Zeng for the degree of Master of Science in

Forest Products presented on May 3, 1991.

Title: Log Breakdown Using Dynamic Programming

and 3-D Log Shape

Abstract approved: -7

AN ABSTRACT OF THE THESIS OF

Dr. James W. unCk

A log breakdown model, SAW3D, was developed to

optimize lumber recovery from logs of any shape in 3-

dimensional space. The program uses a polygonal cross

section representation of logs; three nested dynamic

programming (DP) algorithms to optimize log breakdown,

flitch and cant edging, and trimming operations; and a

simple heuristic search method to find the best position

combinations.

After receiving the log scanning data, the program

mathematically rotates the log and skews it horizontally.

Then the log is sawn into slabs, flitches or cants using

the first level DP algorithm. For each piece cut from the

log, the program orients it and then edges it into

untrimmed lumber using the second level DP algorithm.

After that, the program trims all untrimmed lumber to

finished dimensions using the third level DP algorithm.

This process is repeated until all possible cutting

Signature redacted for privacy.

patterns are searched and all positions/orientations are

compared. Upon completion, the program outputs the optimum

value of the log; optimum value of each flitch/cant;

corresponding sawing, edging and trimming patterns; optimum

position of the log; and optimum position of each

flitch/cant.

Mathematically generated logs with ellipsoid, horn-

down, and 3-D, S-twisted shapes were sawn using SAW3D to

analyze how factors such as log, cant, and flitch

orientations; sawing intervals; scanning data density; and

log size and shape affect both the value and volume of

lumber recovered.

Log Breakdown Using Dynamic Programming
and 3-D Log Shape

by

Yimin Zeng

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed May 3, 1991

Commencement June 1991

APPROVED:

Associa e Professor of Forest oducts in charge of major

Head of DOrartment of Forest Products

Dean Graduat chool

Date thesis is presented May 3, 1991

Typed by Yimin Zeng for Yimin Zeng

Signature redacted for privacy.

Signature redacted for privacy.

Signature redacted for privacy.

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude and appreciation

to my major professor, Dr. James W. Funck, for his

guidance, encouragement and support throughout the course

of my graduate study. His tremendous patience and

judicious suggestions made possible the successful

completion of this thesis.

I wish to thank Dr. Charles C. Brunner and Dr. David

A. Butler for contributing their time and expertise while

serving on my graduate committee.

My special thanks go to my friends Mr. Johannes B.

Forrer for his valuable suggestions and help in many areas;

and Mr. Guangchao Zhang and Mr. Jeff Gaber for sharing

their computer programming experiences.

I am deeply indebted to my wife, Yuan Zhong, for her

love, understanding, encouragement and help in all aspects

of my daily life and graduate studies.

I am deeply indebted to my parents for their

encouragement and support for my continuous education.

Last, but not least, I would like to thank The

Research Institute of Wood Industry, Chinese Academy of

Forestry and Ministry of Forestry. Without their

agreement, I would not be able to stay in U.S.A. for my

continuous education.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

CHAPTER 2 OBJECTIVES OF THE PROJECT

CHAPTER 3 LITERATURE REVIEW 7
3.1 Simulation Models 8
3.2 Models Using Dynamic Programming 16
3.3 Models Developed by Industry 18

CHAPTER 4 MODEL DEVELOPMENT 30
4.1 Description of the System Procedure . 31

4.1.1 The Overall Procedure 31
4.1.2 Level 1: The Sawing Level 33
4.1.3 Level 2: The Edging Level 36
4.1.4 Level 3: The Trimming Level . . . 37

4.2 Log Modeling 37
4.2.1 Cylinder and Truncated-Cone Models 38
4.2.2 Cross-Section Models . . 38
4.2.3 Surface Fitting Models 39
4.2.4 Log Shape Model Used in This

Program 40
4.3 Sawing Pattern Optimization 42

4.3.1 Log Positioning 43
4.3.2 Description of the DP Algorithm 51
4.3.3 Mathematical Definition and

Formulation 59
4.4 Edging Pattern Optimization 61

4.4.1 Determining the Two Faces of a
Piece 61

4.4.2 Pitching the Piece 66
4.4.3 Mathematical Formulation for the

Edging Problem 69
4.5 Trimming Pattern Optimization . 71

4.5.1 Locating Trimming Zones 71
4.5.2 Mathematical Formulation for the

Trimming Problem 74
4.6 Software Implementation 76

4.6.1 Structure of the Program . 76
4.6.2 Required Information .. 79
4.6.3 Input and Output 82

CHAPTER 5 COMPUTATIONAL RESULTS 85
5.1 Effect of Log Rotation 88

5.1.1 General Observations On All Shapes,
Sizes, and Variables 88

5.1.2 Effect of Rotation Increment . 91
5.2 Effect of Log Rotation and Skew 93
5.3 Effect of Rotation and Pitch 94
5.4 Effect of Rotation, Skew, and Pitch . . 96
5.5 Effect of Positioning On Computing Time . 97
5.6 Effect of Scanning Data Density 99

5.6.1 Effect of Number of Scanning Points
At Every Cross Section 99

5.6.2 Effect of Interval Between Cross
Sections 99

5.7 SAW3D vs BOF 100
5.8 Effect of Sawing and Edging Increments 101

CHAPTER 6 CONCLUSIONS AND FURTHER IMPROVEMENTS . . . 105

Bibliography 108

Appendix A. The output from sawing a horn-down
shaped log 20 inches in diameter and 10
feet long 113

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

LIST OF FIGURES

Figure 3.1 Procedure followed to determine the
initial opening face and subsequent
trial opening faces for each log
diameter (Hallock et al., 1971). 14

Log and flitch orientation. 32

Flowchart of log sawing level. A and
A' are the links to Figure 4.3. . . 34

Flowchart of edging and trimming
levels. A and A' are the links to
Figure 4.2. 35

A cross section of the polygonal
cross-section model 41

A log represented by the polygonal
cross-section model. 42

Sawing level processes. 44

Projection of the log onto the X-Z
plane. 49

Determination of the skewing range . . . 49

Saw placements on cross sections of a
log as seen from one end of the log . . 52

A representation of potential sawing
decisions for nodes 0, 1, and 8 . . . 53

Optimum solution for an illustrative
example. 57

Figure 4.12. Flowchart of the edging level
procedure. 62

Figure 4.13. Intersection of a sawing plane with a
cross section. 63

Figure 4.14. Merging two faces into one for edging 65

Figure 4.15. Flowchart of the trimming procedure . 72

Figure 4.16. Locating trimming zones 73

Figure 4.17. Hierarchy chart of the program. . . 78

Figure 4.18. A plot of the optimum sawing sequence
for a horn-down shaped log 10 inches
in diameter and 10 feet long. 83

Figure 4.19. Plots of the optimum edging and
trimming patterns for the five
flitches sawn from the log in Figure
4.18. 84

Figure 5.1. Three log shapes tested 86

Figure 5.2. Volume and value effects of log
rotation angle on a 3-dimensional, S-
twisted shape log 10 inches in
diameter and 20 feet in length (s12). . 89

Figure 5.3. Effects of log rotation on value using
the percent increase from the average
value at all rotation angles to the
optimum value for 12 different logs . . 90

Figure 5.4. Effects of log rotation on value using
the percent increase from the minimum
value to the optimum value for 12
different logs. 91

Figure 5.5. Effects of rotation angle increment on
log s12 using rotation increments of
15 and 5 degrees. 92

Figure 5.6. Effects of log rotation angle
increment on log s12 using a rotation
increment of 24 degrees. 93

Figure 5.7. Value increases resulting from using
the log skewing operation in addition
to log rotation. 95

Figure 5.8. Value increases resulting from using
the cant/board orientation operation
(pitching) in addition to log
rotation. 96

Figure 5.9. Value increases resulting from using
both skewing and pitching operations
in addition to log rotation. . 97

Figure 5.10. Comparison of computing time consumed
by various positioning operations . . 98

Figure 5.11. Effects of the number of log scanning
points at each cross section on an S-
twisted log 20 inches in diameter and
10 feet long, using 24 and 72 points . 100

Figure 5.12.

Figure 5.13.

Figure 5.14.

A comparison of SAW3D and BOF (Best
Opening Face) results on four
horn-down shaped logs.

Value increases resulting from using a
0.025 inch sawing increment compared
to a 0.125 inch increment.

Value increases resulting from using a
0.025 inch edging increment compared
to a 0.125 inch increment.

102

103

104

LIST OF TABLES

Table 5.1. Various combinations of log shapes and
sizes used in this study 87

Table 5.2. The base data used to test the model. . . 88

LOG BREAKDOWN USING DYNAMIC PROGRAMMING AND 3-D LOG SHAPE

CHAPTER 1 INTRODUCTION

Improving lumber recovery and profitability have

always been of great interest to the lumber industry. It

is even more essential to use timber resources efficiently

in order to meet increasing demands for timber products

when those resources are limited. In sawmills, converting

logs into finished lumber involves several interrelated

operations with the main ones being scanning, transporting,

bucking, positioning, sawing, edging and trimming.

Improving any one of these can improve recovery. The three

portions with greatest potential for increase, however, are

in optimizing the sawing, edging, and trimming patterns.

The process of converting logs into lumber is

complicated by log geometry, log quality, saw kerf, sawing

variation, sawing method, edging method and the mix of

possible products. Efforts to improve lumber yield by

optimizing sawing patterns and edging methods have been

ongoing since the late 1960's. A variety of approaches,

which can be classified as computer simulation and

mathematical programming methods, have been applied in an

attempt to find optimum solutions.

Before the 1980's, the area was almost exclusively

dominated by computer simulation methods. During those

2

years the major achievement was BOF, short for the Best

Opening Face System. The program is perhaps the most

widely publicized and adopted simulation model. After

1980, some researchers realized that dynamic programming

(DP) would be worth exploring since it has some advantages

over simulation methods when considering multi-dimension

products. However, until recently only a few came up with

programs applying the dynamic programming method, but all

required greatly simplified log shape models.

The previous research indicates that lumber yield can

be increased significantly by choosing proper saw

placements and cutting patterns. Today, many computer

optimization programs are being successfully used in the

industry. However, there is still room to make

improvements. These include:

Real-shape log model. It is apparent that a

prerequisite for obtaining an optimum breakdown solution is

to model logs as close to their actual shapes as possible.

Up to now, however, most programs use cylinders or

truncated cones as log models because they are easy to

program and calculate. Unfortunately, the vast majority of

logs are not shaped like cylinders or truncated cones.

Many logs have eccentric cross sections and sweep or crook.

Therefore, any algorithm based on these simplified log

models is not able to find real optimum breakdown patterns.

Orientation of logs and pieces. If log geometry

3

and distribution of defects on logs are complex, to achieve

an optimum solution there should be a best orientation for

any log entering a headrig or any piece entering an edger

or trimmer. As some research results have revealed, both

grade and yield of lumber can be increased significantly by

proper orientation of logs with respect to defects before

the first cut is made. Thus, the optimum yield will only

be achieved when three-axis control is achieved. Most

existing programs, however, do not determine the optimum

position of logs or pieces. There are many reasons for

this. For any program based on the cylinder or truncated

cone log models, log rotation becomes unnecessary. Other

reasons include long computing time and the lack of high

recovery machinery being able to position logs precisely.

These can result in some recovery losses for those

irregularly-shaped logs.

3. 3-D cutting problem. Roughly speaking, when only

the sawing problem is considered, it is called a one-

dimensional cutting problem. Sawing and edging together

are called a 2-D cutting problem. Sawing, edging and

trimming together are called a 3-D cutting problem.

Decisions made in the sawing, edging and trimming

operations are interrelated. Any decision made in an upper

level determines dimensions of pieces in the lower level

and the decision made in the lower level determines the

value or volume returned to the upper level. Most existing

4

programs concentrate on one-D or 2-D cutting problems.

Among the computer simulation programs, some do include the

3-D cutting problem in their models, such as BOF, but with

very limited edging or trimming methods available. For the

models using DP, none is able to give an optimum solution

for the 3-D problem.

4. Defects in logs. Research results have shown that

the distribution of defects in logs has substantial effects

on both the grades and yields of lumber. Most existing

programs, however, give the optimum solution but with the

assumption of perfect logs or very simple defect patterns.

Therefore, the solution given will not be optimal when logs

are not perfect.

Many existing programs have to a limited extent solved

these four problems in one aspect or another. However, a

program that can solve all four problems without making

over simplified assumptions should be able to squeeze out

more value and/or volume from logs.

CHAPTER 2 OBJECTIVES OF THE PROJECT

Objectives of this project were to:

develop a computer program capable of obtaining

optimal sawing, edging, and trimming patterns

for logs with any shape in a three-dimensional

space.

analyze the effects of log profile data

selection and log, flitch and cant position on

value and volume yields.

The program needed to be capable of:

handling logs in the shape of a cylinder,

truncated cone, ellipsoid with or without taper,

and twisted solid;

positioning a log, flitch and cant in three

axes;

both live sawing and cant sawing breakdown of

logs;

considering such parameters as saw kerf, sawing

variation and wane allowance;

providing optimum log position and optimum

sawing patterns, ie., the positions of the first

cut and each successive cut;

providing optimum flitch or cant positions and

optimum edging patterns for every piece cut from

5

6

a log; and

7) providing optimum trimming patterns for every

piece cut from flitches or cants.

CHAPTER 3 LITERATURE REVIEW

As mentioned before, previous log breakdown research

can be classified into two categories: (1) models using

computer simulation techniques, and (2) models using

mathematical programming methods. Early work focused on

the use of computer simulation techniques to analyze

alternate sawing decisions. Computer simulation models

formulate log models using either mathematical descriptions

or from empirical data and simulate the sawing process

given sawing parameters and sawing methods. Unfortunately,

simulation methods do not necessarily locate the optimum.

Usually the operator has to inspect the results from

simulation runs to obtain a result that approaches optimum.

If the program seeks the optimum solution itself, it has

to exhaustively try all possibilities and compare all

results one by one, which can be very time consuming. If

the program wants to arrive at an optimum solution in a

reasonable period of time, it has to skip some

possibilities, thus risking missing a real optimum point.

This led some researchers to explore the application of

mathematical programming to the subject. Although many

operations research techniques such as linear programming,

integer programming, dynamic programming and network

techniques have been used for such related areas as log

bucking and board cutting, only dynamic programming has

7

8

been applied successfully to log sawing. This chapter will

trace and discuss literature on simulation models, models

using dynamic programming (DP), and proprietary models

developed by industry.

3.1 Simulation Models

Models that used the selected sawing procedures and/or

obtained the best sawing solution by simply comparing all

sawing solutions fall into this category. Compared to

other types of models, simulation models had two major

advantages: 1) the capabilities of a real sawing process

were considered so that the solutions were attainable, and

2) usually they were easier to implement. The

disadvantages included: 1) the sawing procedures were

limited, and 2) the solutions were usually suboptimum.

While selected models are discussed below, this is not a

complete literature review but rather an overview.

McAdoo (1969) developed a computer simulation program

to compare four small-log sawing methods which were

combinations of centered, offset, single taper, and double

taper sawing. Logs sawn by the program were represented by

truncated cones. Tsolakides (1969) developed a simulation

program to study the effects of three alternative sawing

methods on grade and volume yields. One of the sawing

methods allowed for turning of the log, while the other

methods were live and cant sawing. Logs with external and

9

internal defects were simulated using empirical data from

six red oak logs. Each log was sliced into disks and

information on the circumference, size and location of the

internal defects were recorded manually. The circumference

of each log was then rounded in the shape of a cylinder.

Reynolds et al. (1969, 1970) presented a computer program

(DEFECT) to simulate the log sawing process. Coordinates

of the log surface and internal defects were collected from

disks sliced from a sample of real logs, and then the log

model was represented by a cylinder enclosing the log.

Resulting boards, which included defect information on each

board for each sawing pattern, were ripped and trimmed by

another simulation program called YIELD (Wodzinski et al.,

1966).

Richards (1973) simulated log breakdown to study the

effects on hardwood lumber yield of such log factors as

diameter, length, and taper, and the effects of such sawing

factors as board thickness, kerf width, edging method, and

sawing method. Six sawing methods, which were combinations

of split-taper, full-taper, live, and cant sawing, were

used on truncated cone representations of logs. The study

indicated that kerf thickness, board thickness, and edging

method affected lumber yield significantly, while the

sawing method didn't have much effect.

A computer simulation model of log sawing was

developed by Airth and Calvert (1973) which simulated a

10

four-sided sawing method in which four slabs were removed

so that a rectangular shape remained. The authors used

concepts of solid geometry to generate 3-dimensional shapes

such as a cylinder, paraboloid, cone or neiloid, but the

cone was chosen as the most appropriate log form in their

simulation. The theoretical yield as determined by the

program for each log was compared with that obtained by

actually sawing the log. The results did not reveal

significant differences in lumber yield between the

computer and the sawyer's solutions.

Pnevmaticos et al. (1974, 1976) used computer graphics

techniques to simulate logs and the process of sawing them

into lumber. The log was simulated and displayed as a

cylinder or truncated cone by entering the two end

diameters and the length of the log. Log positioning

operations were not considered since the log representation

was simple. Defect locations and dimensions were generated

through a random process and displayed as rectangular

solids. The process of live sawing the log was also

simulated and the resulting boards and slabs displayed.

Wagner and Taylor (1975) developed a simulation

program to study the effect of two alternative sawing

patterns and log rotation with external and internal

defects on lumber value. Data collected from ten southern

pine logs were processed by the program, and the logs were

theoretically sawn using predetermined sawing patterns

11

simulating actual sawing planes produced by the saws of a

chipping headrig. They concluded that all logs were found

to have an optimum log rotation angle that produced the

highest value lumber.

Richards (1977) presented a simulation program in

which logs were simulated as truncated cones with a taper

of 0.3 inch and containing core defects and randomly

located knots. The resulting boards were graded and priced

by the computer. Both four-sided sawing and live sawing

methods with reripping of wide boards for grade and with

repeated sawing at 15 degree incremental log rotations were

compared in order to study the importance of sawing methods

and initial position on value yield. The results indicate

that the initial rotational position on the carriage is

very important in all sawing methods and that live sawing

generally equals or exceeds four-sided sawing in value

yield. Later, Richards et al. (1979, 1980) extended the

model by including quadrant sawing, cant sawing, decision

sawing, live sawing, and live sawing plus reripping for

grade at hardwood sawmills, as well as truncated cone logs

with a selection of tapers, diameters, core defect

diameters, and knot patterns. The results indicated that

quadrant, decision, and cant sawing gave similar lumber

values. Live sawing was generally better than the other

three sawing methods. Live sawing with reripping produced

the highest lumber values.

12

A computer simulation model for sawing hardwood logs

was presented by Pnevmaticos and Mouland (1978). The log

was simulated as a truncated cone with solid rectangular

defects either generated randomly or entered from real

data. The program was used to compare live, around, and

cant sawing employed when sawing sugar maple.

Allekson et al. (1980) discussed three general classes

of log models which included the binary array, cross-

section, and whole log models. In the binary array model,

a three-dimensional binary array is used to represent the

log. A particular location in space is represented by a

particular bit in memory. In the cross-section models, the

log is represented by a series of cross sections which may

be circles, ellipses, irregular polygons, or other types of

figures. The information is stored in memory as equations

or coordinates of polygon vertices. In the whole log model,

the surface of the log is represented by a series of points

in space, by a single equation or by combinations of

equations. The authors developed a computer program which

simulated a quad bandsaw operation to optimize the sawing

pattern. The program used the binary array model which can

closely model logs in any shape from commercial scanners

with the assumption that the cross sections are input in

terms of grid coordinates provided by either the scanning

computer or preprocessing. To compromise between computing

time and finding the optimum solution, the program assumed

13

that two scanners were used. The first one collected the

log data and then the optimum position was estimated. After

the log was in its stable position, the second scanner

recorded the new data which were then stored in the two-

dimensional binary array.

Anderson and Reynolds (1981) developed a computer

simulation program to calculate the yields that can be

obtained from sawing bolts into hardwood squares of various

sizes. By analyzing the results from the simulation runs,

the operator can determine the best combination of bolt and

square sizes for the given bolt diameter range and sawing

methods.

Priasulmana (1983) presented a computer program to

simulate live sawing of logs with sweep. Simulated conoid

shaped logs with sweep and no other defects were sawn into

boards of the same length, thickness, and integer width by

four methods of live sawing. The results were compared

with that obtained from live sawing of straight logs to

study the effects on lumber recovery.

Hallock and Lewis (1971,1973,1978,1985) presented a

computer simulation program, the Best Opening Face System

(B0F), which perhaps is the most widely publicized and

adopted simulation model of log sawing. As early as 1971,

Hallock and Lewis proposed the concept of the " Best

Opening Face ", which states that the first cut placed on

a log determines all successive cuts and, therefore, there

14

should be a first cut (opening face) which is the best in

obtaining an optimum yield. They then developed a computer

simulation program based on that concept. The first

version of the program could only handle cylindrical logs

and did not allow any wane on lumber. They kept improving

the program, making it more flexible by adding the

truncated cone log model, wane allowance, and the ability

to simulate most common types of sawmill equipment. Figure

3.1 (1971) gives a brief graphical description of the

procedure. In this figure, the narrowest acceptable width

of lumber is 4 inches and the opening face increment is 0.2

inch.

Successive openings of
4.2, 4.4, 4.6 inches etc.

Opening
face

Widest face examined
occurs in this area

Thickness of 1 piece of
dimension plus 1 kerf

Figure 3.1 Procedure followed to determine the initial
opening face and subsequent trial opening faces
for each log diameter (Hallock et al., 1971).

1

15

Despite the fact that the BOF system gives " the best

opening face ", there are two main reasons why there are

some opportunities for obtaining even more value or volume

from a given log than the solution achieved by the BOF

system. First, the final solution is selected from a

limited discrete solution set of enumerations. BOF searches

for the best opening face by enumerating all possible

cutting positions within a range. Obviously, making the

opening face increment smaller will increase the chance

that the true optimum result is in the solution set.

Using Figure 3.1 as an example, suppose the optimum yield

would be achieved if the opening face was located

somewhere between 4.2 and 4.4 inches. Unfortunately, the

procedure only searched for the best opening face among the

discrete points of 4.0, 4.2, 4.4, 4.6, etc. The opening

face resulting in the optimum yield was not in the solution

set, so " the best opening face " given by this procedure

was not " the best ". Since the possible number of opening

faces is infinite, and it is impossible to search for the

best solution over a infinite solution set, a compromise

between computing time and solution accuracy must be made

by the operator.

The other concern with the BOF model is one shared by

most of the other models and that is that the log models

are over simplified. The BOF system uses cylindrical and

truncated cone log models, yet the real shapes of most

16

logs are not cylindrical or truncated cone-like. In

addition, defects in the logs are also ignored by BOF.

While a publication was released describing a version of

the BOF system which allows logs with sweep and elliptical

cross sections to be modeled (Lewis, 1985), the model

itself was never completedl.

3.2 Models Using Dynamic Programming

Dynamic programming (DP) can be computationally more

efficient than the exhaustive searching method described in

the previous section on simulation models. It has been

successfully used for the optimization of log bucking

since the early 1970's (Pnevmaticos and Mann, 1972; Gluck

and Koch, 1973; Briggs, 1980; Rogler and Canham, 1986.).

However, in the area of log sawing optimization, only a few

models applying the DP algorithm have been developed and

all have used over-simplified log models.

Tejavibulya (1981) presented two dynamic programming

models for finding the optimum sawing solution in the live

sawing method and in a cant sawing method. These models

appear to be some of the earliest models using DP. The

major contribution of the study is that, for the first

time, the models allowed the flexibility of considering a

variety of board thicknesses while still guaranteeing the

1 Danielson, J. 1990. Personal communication.
Project Leader, USDA Forest Service, Madison, WI.

17

optimum yield pattern. Unfortunately, the models were

over-simplified by using a perfect cylinder as the log

model.

Geerts (1984) presented a mathematical solution for

optimizing the sawing pattern of a log with a defect core.

Both the log and defect core are assumed to be cylinders.

He used a two-level approach which consists of a similar

dynamic programming algorithm for each level. The first

level maximizes the breakdown of the log into flitches and

the second-level maximizes the breakdown of each flitch

into lumber. The maximum value of each flitch, which is

the output of the second level, was returned to the first

level. If the profile of log cross sections was available,

the algorithm would allow for dealing with an irregular

shape defined by polygons, but no taper was taken into

account. He developed a computer program in which both

logs and defect core were modeled as cylinders to implement

his algorithm. Excluding the 3-D cutting problem and

over-simplifying the log model are limitations to the

program.

Faaland and Briggs (1984) presented a DP formulation

that simultaneously optimizes bucking, live saws logs into

lumber, and edges lumber into finished dimensions. The

model integrates the bucking study of Briggs (1980), the DP

sawing study of Tejavibulya (1981), and a knapsack

formulation for edging. Logs with taper, sweep, crook and

18

defects are allowed by the model. Limitations to the log

model are that any cross section of the log must be

circular and variation along the length of the log should

be in a two-dimensional plane. The model bucks a log into

segments by using the DP bucking program developed by

Briggs (1980), then tries to seek a largest cylinder

inscribed inside each segment. Breakdown of the cylinder

found from each segment is performed by the DP sawing model

and the optimum value of each cylinder is returned to the

bucking model. The edging model edges each flitch cut out

of the cylinder and returns the optimum value of the flitch

to the sawing model. Transforming log irregularity into a

cylinder and then performing all operations on the cylinder

greatly simplified calculations and significantly reduced

computing time. However, these restrictions greatly

increase the chance of losing value or volume.

3.3 Models Developed by Industry

Research groups in industry have also developed

various computer optimized log bucking, log sawing, or

integrated bucking-sawing program packages and systems.

Brief reports and advertisements are available in public

media such as symposiums, magazines, advertising flyers and

research circular papers. However, because relatively

little explanation of the computational procedures or other

details are available, these models will be discussed in

19

this separate section. For the same reason, the following

discussion on features, advantages, and disadvantages of

models is incomplete.

Although the optimum bucking problem is not within the

scope of the project being reported in this thesis, it will

be discussed because most optimum bucking systems include

an optimum sawing solution in obtaining the value or volume

of bucked segments.

Advanced Control Technology, Inc.2 developed an ACT

" REAL TIME " LOG BREAKDOWN SYSTEM which is able to process

logs through a primary breakdown machine at speeds up to

300 lineal feet per minute. When a log enters the system,

log diameters and position are collected on a continuous

basis. Length, diameter and position information are

assigned to each respective 6 inches of log as it travels

through the system. Once the system has collected and built

a log model which reflects crook, sweep, ovality and

length, the optimization routine uses this information

along with lumber sizes, kerf sizes,and lumber values to

determine the cutting solution. If a radical log shape,

time constraints, or malfunctioning inputs prevent a "REAL

TIME" solution from being calculated, an alternate solution

will be determined from a predefined table of cutting

patterns. The breakdown solution is then presented to a PLC

2 Advanced Control Technology Inc. 1988. Company
brochure. Albany, Oregon.

20

machine controller which issues the machine settings. The

system uses a multiple processor VME system. The

application programs are written in PASCAL and are in

modular format to take advantage of up to three 68000

family CPU's in the VME system. The company claims that

this system is the first "real time", "real shape" system

capable of operating on close-coupled primary breakdown

lines like Chip-N-Saws. However, the real time also means

that longitudinal information such as sweep and crook is

limited because the cross sections of the log are only

cylindrical or elliptical. Another limitation is that the

system is not able to position the log in 3-dimensional

space.

Applied Theory3 (Sullivan, 1987) has developed the

"Maximizer" production line for bucking stations,

carriages, sharp chains, edgers, gang-saws, resaws and

trimmers to obtain the maximum recovery of lumber. The

Bucking Maximizer is equipped with curtain-type scanners

placed on the X and Y axes for diameter measurement. By

scanning on two axes and plotting the position of each

cross section in space, the system develops a picture of

the stem including sweep, crook, butt swell and the natural

elliptical shape. As the stem travels through the scanners,

the Maximizer determines the products that can be sawn,

3 Applied Theory, Forest Industries Division of U.S.
Natural Resources, Inc. 1991. Company brochure. Corvallis,
Oregon.

21

beginning with the first 8-foot segment passing through the

scanners. These products are assigned a priority value by

the mill and defined in terms of wane allowance and

downstream cutting capability. Up to 100 different boards

can be defined and loaded into a board-value table.

Whether this 8-foot segment has sweep or crook and is round

or elliptical, the Maximizer will fit defined boards from

the table into the shape. It moves them until it comes up

with the most valuable combination. The segment is then

assigned a price. The process is repeated for 10, 12, 14,
16, 18, and 20 feet segments. The Maximizer will then make

comparisons between the many combinations to obtain the

optimum value for each stem and calculate whether to buck

for maximum length, cut out sections with sweep, or to

divide a section with sweep into two segments with less

sweep. A company test showed a 7.46 percent average

increase in volume and 12.76 percent average increase in

value, for 16 stems bucked by the Bucking Maximizer when

compared to human operators. The other log breakdown

optimizers are also equipped with similar scanning systems.

Therefore, cross-sectional shape representations in all

systems are limited to circles or ovals.

Carrol-Hatch4 provides SAWSIM, a sawmill simulation

program originally developed by Leach in 1973 (Leach,

4 Carrol-Hatch (International) Ltd. 1991. Company
brochure. North Vancouver, B.C., Canada.

22

1973). SAWSIM can simulate straight logs with uniform

taper as well as logs with crook, sweep, and variable taper

and with circular or elliptical cross sections. It

simulates any system used for primary log breakdown, such

as bandsaw/carriage, multiple bandsaw and chipper canters.

The user can define sawing, edging, resawing and trimming

patterns, or select the optional patterns provided by the

program. Log rotation is allowed.

Coe5 provides optimizers for trimmer, edger, and

canter/gang systems. Recently the company developed a log

scanning system using a ranging-type laser scanner similar

to the system originally used for lumber profile scanning,

which is able to provide polygonal representations of log

cross sections. A log breakdown optimization system

equipped with the profile scanning system was recently

installed in a sawmill6. The benefits of this installation

are not yet available from the mill.

Denis Sawmill Equipment Inc.7 manufactures "Mega-

Vision", a bucking optimizer system. Stem diameter,

length, sweep, and taper are measured by a dual-axis

longitudinal or a transverse scanning system. The built-

5 Coe Manufacturing Company. 1991. Company brochure.
Tigard, Oregon.

6' A. Donald Moen, P.E.. Coe Manufacturing Company.
Personal communication. March, 1991.

7 Denis Sawmill Equipment Inc.. 1991. Company
brochure. Boisbriand, Quebec, Canada.

23

in, user-friendly software allows the user to edit sawing

patterns according to the actual production line. For each

log cut from the stem, the system evaluates lumber yield by

fitting the user-edited sawing pattern into the

circumference of each scanning cross section and then using

the full-taper, half-taper, or curve sawing method. Then

the bucking decision is optimized by comparing values or

volumes from different bucking decisions. This system is

not able to represent the real shape of log cross sections.

Lloyd Controls, (Thomlinson, 1987) developed an

optimum bucking system for optimizing tree-length logs

entering a sawmill. The overall system consists of a

scanner system, an on-line process control computer and

interface system, an off-line simulation computer, and a

manual back-up system. Information from the scanner system

is fed directly into the on-line process control computer

which then interpolates between data generated at the scan

locations to determine the diameters and positions of the

stem cross sections at the average of all possible bucking

locations relative to the end of the stem. The on-line

bucking optimization program then determines which

combination of permissible bucking and end-stop positions

will maximize the value of the stem. It does this by

determining the values of all combinations of bucked

lengths that could yield an acceptable optimum solution.

Values for logs that have crook or sweep are calculated

24

from values for straight logs that are determined to be of

equivalent value, with an adjustment for the value of any

additional yield in chips. Values for straight logs of

various small-end diameters, lengths and tapers, in excess

of their values as chips, are obtained from log price table

files pre-generated by the off-line simulation computer.

One of the limitations is that the solution is not optimum

because the value of a log is determined by approximating

a truncated cone rather than the real log shape.

Mel Cruickshank Equipment Ltd. (MCE) (Scaramella,

1987), an exclusive Canadian distributor for KEBA, AIT (two

Austrian companies) and LINCK, supplies a "Production

Optimizing System" for obtaining the optimum population of

logs cut from stems entering a sawmill. The three

component system includes a "Production Scheduling System",

a "Stem Optimizer", and scanners. The Production

Scheduling System (PSS) consists of a Production Scheduler

and a Production Optimizer. The Production Scheduler is

only good for sawmills that have log sorting and is used

to schedule the actual production to minimize work stoppage

and to tell the board sorters what material is coming and

to which customer the materials belongs. On the other

hand, the Production Optimizer can be used by any sawmill.

It incorporates both a linear program and a dynamic cutting

pattern optimizer. These programs interact dynamically to

calculate the most profitable way to break down logs, given

25

constraints on the log supply, the market demand for

lumber, and the existing sawmill equipment. The Stem

Optimizer is the second component of the Production

Optimizing System. It cuts logs based on the PSS

specifications. A curtain-type scanning system is used,

which takes snapshot images of a log starting from the

butt-end of the stem and at 10 centimeter increments to the

small-end and therefore, is able to measure sweep and crook

of the log. The values of the largest diameter cylinders

that fit inside the stem for all lengths in the order list

are calculated and loaded into the crook and sweep table.

When the log has been scanned, stem values are optimized

using the values from the crook and sweep table. One of

the limitations to the system is that the real shape of

cross sections of a log is not represented. Possible value

loss exists because only a cylinder shape is used to find

sawing pattern solutions.

North American Controls8 produces such sawmill

optimization systems as NAC Primary Log Breakdown Systems

and Trimmer Optimizer System. Recently the company

completed a project which was designed to profile scan

large grade logs or stems, up to 48 inches in diameter

(Rickford, 1989). Using six CCD solid-state area-array

imaging cameras and seven-HeNe 5mW spreadline laser

8 North American Controls Inc. 1991. Company
brochure. Portland Oregon.

26

scanning systems to capture an image of a log

circumference, the NAC Log Profiler is able to generate 360

degree contour profiles every 1 to 2 inches along the

length of the log, and create from this raw scanner data

cross-sectional multiple polygons comprising 36 surface

point coordinates at 10 degree intervals from the

calculated centroid of each cross section. However, the

installation of the log breakdown system using the log

profiler has not been reported.

Porter Engineering Ltd.9 developed "RT2 Software" to

optimize dollar or lumber recovery. The system uses

curtain scanners or cameras to obtain log diameter, length,

sweep and taper data in 1 or 2 axes and generates

elliptical slices of the log every 1 inch. The edger

optimizer cuts are approximated for a side lumber

projection. Three side boards on each side of a cant are

assumed and 29 allowed symmetrical and asymmetrical

horizontal cutting patterns are evaluated for each cant.

The system allows the user to enter either U.S., or metric

dimensions or a combination of the two at the same time.

The company claims that with dual axis scanning the system

can provide an increase in recovery of from 3 to 9 percent

over an existing single axis, look-up table system.

9 Porter Engineering Ltd. 1991. Company brochure.
Richmond, B.C., Canada.

27

Warren and Brewster Co.") presented a "Maxi Optimizer

System" which can generate real time optimal sawing

solutions based on actual log geometry from precise scan

data, sawing parameters (saw kerfs, target sizes, wane

allowances, etc.), and values for each combination of

length, dimension, grade, and species being processed. The

system offers a graphic illustration of all saw-lines and

the lumber it will produce. The optimizer uses a curtain-

type scanner to get log shape information, which includes

sweep and crook. Unfortunately, at best the curtain-type

scanner can only locate four circumferential points on a

cross section of the log, and thus can give only a circular

or elliptical cross-sectional representation of the real

log.

Weyerhaeuser Company (Cooney,1987) developed three

versions of an interactive training system, which includes

the VISION Cutting-for-Value System, MicroVISION, and

MicroVISION Instructional System, for improving tree-

bucking decisions. The VISION Cutting-for-Value System is

a package of software and graphics hardware that supports

3-D graphics and interactive database updating. Log values,

mill descriptions, type of cut (longitudinal or

transverse), stem descriptions, and other operation

specific data may be varied by the user. Sweep, crook,

knots, and other quality defects may be included in the

10 WB Company. 1991. Company brochure. Albany, Oregon.

28

stem description. After a set of stems has been selected

for analysis, VISION displays a three-dimensional image of

the stem which may be rotated or rolled (using a joy-stick)

to view the stem from any vantage point. The user then

moves a "saw" along the length of the stem, cutting it

where desired. The resulting breakdown and product values

are displayed. The system then calculates the optimal

decision and displays the result for comparison with the

user's decision. The other two versions do not permit the

user to change the database of stem descriptions, log

values, and other log allocation data. Limitations are that

the stems are displayed in a 2-D form and can not be

reoriented, and the model does not optimize the breakdown

process.

Today, various types of optimizing systems have been

used extensively in the lumber industry, and those systems

have already proven themselves to be great contributors to

improved lumber recovery. Most manufacturers of various

log breakdown optimizers claim that their equipment is

"real time" and "real shape". However, because of

processing time and scanning system limitations, most

current log breakdown optimization models only work on

greatly simplified log shape representations, and they

typically use heuristic search rather than mathematical

optimization techniques to increase recovery. The "real

shape" claimed by those companies actually means that such

29

longitudinal information as sweep and crook are measured,

but cross sections are still represented by a round or

elliptical shape. Among all companies cited above, only

Applied Theory, Coe, and North American Control developed

log scanning systems which are able to provide polygonal

shape representations of log cross sections, and only Coe

shipped one such system to a sawmill. To squeeze the

highest value from every log of any shape, optimization

models capable of considering log shapes in 3-dimensional

(3-D) space and log scanning systems capable of providing

those true shapes need to be developed. Log scanning

techniques are evolving from two-point, curtain-type

scanners to ones using more scanning points, with even more

advanced systems such as ones based on computer tomography

on the horizon (Funt et al.,1987). Therefore, this is the

appropriate time to undertake research on process control

software that will use 3-D log shape scanning information

to improve lumber recovery and provide basic analytical

data for further development of more sophisticated but

economical scanning systems.

CHAPTER 4 MODEL DEVELOPMENT

An ideal log breakdown model needs to contain at least

the following features:

utilize 3-dimensional log shape information;

conduct positioning operations on the log and

each cant,flitch, and board cut from the log in

order to find the optimum position for each one;

use mathematically-based algorithms to optimize

log breakdown, edging and trimming patterns;

allow multi-thickness sawing patterns;

allow any mix of any lumber dimensions (American

Lumber Standards or proprietary dimensions,

green or dry sizes, rough or finished

dimensions, etc.);

allow live, cant, round, full-taper, and split-

taper sawing;

include parameters such as saw kerfs, sawing

variations, and wane allowance;

run on a microcomputer;

consider internal defects;

consider annual ring orientation; and

provide real-time solutions.

As discussed in Chapter 3, all existing models are

limited in one way or another. The program described in

this thesis, called SAW3D, was developed as an initial step

30

31

towards reaching the "ideal" model. The current version of

SAW3D is an advancement in terms of combining 3-dimensional

log modeling, optimization/simulation options, positioning

operations, and its microcomputer-based environment.

4.1 Description of the System Procedure

This section introduces a general picture of the

procedures used in SAW3D; all processes will be discussed

in greater detail later.

4.1.1 The Overall Procedure

After receiving log profile data from a scanning

system, SAW3D mathematically rotates the log

counterclockwise and then skews it horizontally (Figure

4.1). Then the program breaks down the log into slabs,

flitches, or cants. For each piece cut from the log, the

program will mathematically pitch it vertically in the

coordinate system, which is equivalent to orienting it

horizontally on an edger, and then edge it into untrimmed

lumber. After that, the program will trim every untrimmed

piece into finished products. This process repeats until

all possible cutting patterns are searched and all rotation

and skewing positions are compared. The optimum value of

the log and optimum value of each slab/flitch/cant are

obtained. In addition, corresponding optimum log position,

all optimum slab/flitch/cant positions and all optimum

z.'
Rotation

Y

Skew.__,.

Figure 4.1. Log and flitch orientation.

Pitch

32

3 3

sawing line, edging line and trimming line positions are

provided. Figures 4.2 and 4.3 provide the overall

flowchart of the procedure.

The program consists of three interrelated levels.

The first level is the sawing level for the primary

breakdown of the log, the second level is the edging level

for edging a slab, flitch, or cant, and the third level is

the trimming level.

4.1.2 Level 1: The Sawing Level

Level I (Figure 4.2) is used to determine optimum

sawing patterns and optimum log positions. Input data

include log profile data, production parameters, a lumber

price table, and control options. The log is described by

a wire-frame model based on all scanning points around the

surface of the log. Any log shape can be handled. The

process starts by rotating the log. The log can be rotated

through the full 360 degrees at any rotating increment

angle entered by the operator. For logs in the shape of a

cylinder or truncated cone, the rotation operation is

skipped. Once a rotation position is determined and the

log is rotated to that position, the program will determine

a skew range. Skewing the log means to move it

horizontally in the coordinate system. The skewing angle

increment is also entered by the operator. As in rotation,

the skewing operation is skipped for cylinders. After the

C Start

Input:
Control options
Log scanning data
Production parameters
Product sizes
Price table

Rotate log

V

Skew log

V

Saw log

No

No

End

Output optimum:
Value of log
Value of each piece
Positions
Sawing pattern
Edging patterns
Trimming patterns

Yes

/<11 rotation
angles tried?

Yes

All skew
angles tried?

A')

34

Figure 4.2. Flowchart of log sawing level. A and A' are
the links to Figure 4.3.

Level 2:
Edging Level

I;
1

Level 3:
Trimming Level /-

No
-,,

'All trimming
-,

options tried? ,-----

--
----,..... ----.....

',...

35

Figure 4.3. Flowchart of edging and trimming levels. A
and A' are the links to Figure 4.2.

36

position of the log has been fixed, the program breaks it

down using a dynamic programming algorithm to find the

optimum sawing pattern. The monetary value of each trial

board or cant is obtained by the edging level. The optimum

sawing pattern, which provides the maximum total value or

volume of all slabs, flitches, and cants, is determined by

the dynamic programming algorithm. This total value or

volume is compared with that given by the previous log

position and the best one is saved along with all

corresponding optimum position information and the sawing

pattern. This repeats until all log rotation and skewing

positions are enumerated and the final optimum solution is

reached.

4.1.3 Level 2: The Edging Level

The edging level's function (Figure 4.3) is to obtain

the optimum value of a slab, flitch or cant. The sawing

line positions of the two faces of each piece are given by

the first level. The edging level first determines a

pitching range. Pitching a piece means to orient it

vertically in the coordinate system, and the pitching angle

increment is also entered by the operator. Once a pitching

position is chosen and the piece is pitched to that

position, the edging level will edge the piece using a

dynamic programming algorithm similar to that in the first

level. The value of each piece of untrimmed lumber edged

3 7

from the piece is obtained by the third level. The dynamic

programming algorithm determines the optimum edging pattern

yielding the optimum value or volume of the piece. Then

the value or volume is compared with that given by the

previous pitching position, and the best one is saved along

with all corresponding optimum position information and the

edging pattern. This repeats until all pitching positions

in the pitching range have been tried and the final optimum

solution is obtained. Then the final optimum value of the

piece is returned to the first level.

4.1.4 Level 3: The Trimming Level

The trimming level (Figure 4.3) is simpler than the

other two levels. The positioning operation is not

necessary any more since two edges of the untrimmed lumber

are now parallel. This level engages a dynamic programming

algorithm, which is similar to that in the other two

levels, to search for the trimming pattern yielding the

optimum value or volume, which is then returned to the

second level.

4.2 Log Modeling

How the log shape is described is one of the critical

aspects in obtaining an optimum breakdown solution. No

matter what kind of optimum searching algorithm is engaged,

the final optimum solution is obtained by operating on that

38

log model. Obviously, the closer to the real log shape the

log model is, the better the solution will be.

There are several log modeling methods and each has

its own advantages and disadvantages. This section briefly

introduces the existing log modeling methods and then

focuses on the polygonal cross-section model, which is used

in this thesis.

4.2.1 Cylinder and Truncated-Cone Models

The cylinder model is the simplest log shape model.

Given a diameter and length, the log is represented by the

equation for a cylinder. Because taper is not considered,

no log is really correctly described by this model. The

truncated-cone model is better than the cylinder model

since taper is included. Given the small-end diameter,

taper, and length, the log can be represented by a

truncated cone. These two models are easily formulated by

mathematical equations and are very easy to solve with any

optimum searching algorithm. As a result, most existing

programs use either cylinder or truncated-cone log models.

4.2.2 Cross-Section Models

Cross-section models use a series of cross sections at

intervals along the length of the log to represent the log.

The log surface is represented by straight lines connecting

each pair of intervals and each pair of cross sections.

39

Since data at each cross section can be different, some

irregularity such as crook and sweep can be included in the

model. The cross-section models can be in one of three

categories according to the shape of the cross sections.

Circular cross-section model. In this model, all

the cross sections are circular. By giving different

diameters to each cross section, the irregularity along the

length of the log can be represented to some extent.

Elliptical cross-section model. In this model, all

the cross sections are elliptical. The long axes and the

short axes of all the cross sections are not necessarily

parallel. Since this model contains more information on

the cross sections, it is closer to the real shape of logs

than the circular cross-section model.

Polygonal cross-section model. In this model, all

the cross sections are represented by polygons. This model

is much closer to a real log shape since the irregularities

on the cross sections are also included in the model. The

program described in this thesis uses the polygonal cross-

section model, so it will be discussed in greater detail

later.

4.2.3 Surface Fitting Models

In cross-section models, the log surface is

represented by straight lines between each pair of cross

sections. Therefore, some information about the real shape

40

of the log between the cross sections is lost. Surface

fitting models pick up some of that information by using

curve or surface fitting equations instead of straight

lines. There are many curve or surface fitting techniques

available, such as cubic spline interpolation, B-spline

methods and Bezier methods.

4.2.4 Log Shape Model Used in This Program

When choosing a log modeling method, two aspects

deserve very careful attention, reality and complexity. If

a model more closely describes the real shape of the log

than other models, it will contain more information on the

log. Therefore, the final solution could be better when

given the same optimum searching algorithm, but the

computing time is also increased. Among all the modeling

techniques, the cylinder and truncated cone are very easy

to handle, since the log can be described by simple

mathematical equations, resulting in shorter computing

time. The cross-section models are better models of a real

log, but need longer computing times. The surface fitting

models are even better, but require the greatest computing

times. As a compromise between reality and complexity,

the polygonal cross-section model was chosen for use in

this program.

In the program discussed in this thesis, the log is

represented by a series of polygonal cross sections at

41

selected intervals along the length of the log. Scanning

points representing vertices of polygonal cross sections

can be provided by some of the latest log scanning systems,

such as the system supplied by Coe". The appropriate

number of scanning points (vertices) required for every

cross section as well as the distance between two cross

sections can be analyzed by executing this sawing program

since both are variables entered by the operator. The

surface of the log between two adjacent cross sections is

described by straight lines connecting corresponding

vertices on the two cross sections. Figure 4.4 shows one

cross section of the log model, while Figure 4.5 shows the

whole log modeled by this method.

/ Scanning point

X

Figure 4.4. A cross section of the polygonal cross-
section model.

Coe Manufacturing Company. 1991. Company brochure.
Tigard, Oregon.

Bird's-eye view direction

Skew

Z '--)Rotation

X

Pitch

42

Figure 4.5. A log represented by the polygonal cross-
section model.

4.3 Sawing Pattern Optimization

To optimize the value or volume yield of a log, the

log breakdown program must be able to mathematically search

43

for the log's optimum position and determine the optimum

sawing pattern for that optimum position. The log

positioning operation includes two movements: rotating the

log through 360 degrees and skewing the log horizontally

through a specified range. Skewing the log vertically is

not necessary, since all cutting planes are vertical.

The sawing program first mathematically orients the

log in a certain position, and then saws it using a dynamic

programming algorithm. The solution is compared with that

found in the previous position and the better solution is

saved. This process repeats until all positions have been

searched. Figure 4.6 illustrates the process of the sawing

level in greater detail than Figure 4.2. To concentrate on

this level, the relationship between this level and the

edging level is not shown in Figure 4.6.

4.3.1 Log Positioning

As previously mentioned, log positioning includes

rotating and skewing the log to find the best position. To

do this, the program mathematically rotates the log around

the Z axis first and then skews it around the Y axis.

After rotation and skewing, the dynamic programming sawing

algorithm is performed on the log in that position. While

this process is repeated until all positions are tried, in

fact there are an infinite number of possible log

positions. To solve the problem in a reasonable amount of

C Start

V

/ Input/

Rotate log

V

Determine
skewing range

Solution better?

Save the solution

No

No

Yes

Figure 4.6. Sawing level processes.

(l End)
A

/Output

Yes

All rotation
angles tried?

Yes

All skewing
positions tried?

No

Yes

44

45

time, position searching ranges and position changing

increments must be chosen. Therefore, there are two steps

involved in carrying out the positioning operations: (1)

determining the positioning range and (2) positioning the

log through that range.

There are two methods of positioning the log. One is

to transform the coordinates for all the scanning points,

while the other is to transform cutting planes instead of

the whole log. The later approach seems to need less

transformation operations. Unfortunately, it may not

necessarily be efficient when considering the whole

program. Determining the intersections of cutting planes

with the log is very easy if the cutting planes are

perpendicular to the X axis, which is the case when the log

is transformed. If the cutting planes are not

perpendicular to the X axis, which is the case when the

cutting planes are transformed, more operations will be

required to find intersection planes. Therefore, this

program transforms the whole log instead of cutting planes.

4.3.1.1 Rotating the Log

Mathematically rotating the log is very

straightforward. The rotation range from 0 to 360 degrees

and the rotation angle increment are allowed to be entered

by the user. Obviously, the smaller the increment, the

better the chance that the optimum solution will be found.

46

However, longer computing times will also be required.

Therefore, a compromise should be made by the operator.

The log rotation is mathematically performed using the

following assignments written in the "C" programming

language:

sine=sin(RotAngle);

cosine=cos(RotAngle);

for (1=0; i<NoCrossSec; i=i+1) (

for(j=0; j<NoScanPts; j=j+1) (

RXY.X[i] [j]=XY.X[i] [j] *cosine - XY.Y[i] [j] *sine;

RXY.Y[i] [j]=XY.X[i] [j] *sine + XY.Y[i] [j] *cosine;

RXY.Z[i][j]=XY.Z[i][j];

Where:

RotAngle rotation angle;

sine sine of rotation angle;

cosine cosine of rotation angle;

NoCrossSec number of cross sections;

NoScanPts = number of scanning points on each

cross section;

XY.X[i][j] = X coordinate of scanning point j on

cross section i before any

positioning;

47

XY.Y[i][j] = Y coordinate of scanning point j on

cross section i before any

positioning;

XY.Z[i][j] = Z coordinate of scanning point j on

cross section i before any

positioning;

X coordinate of scanning point j on

cross section i after rotation;

Y coordinate of scanning point j on

cross section i after rotation;

Z coordinate of scanning point j on

cross section i after rotation.

4.3.1.2. Skewing the Log

After the log is mathematically rotated to a position,

the program skews it horizontally. The first step is to

determine the skewing range, which is defined by the

maximum angle and minimum angle through which the log is to

be skewed. The procedure for determining the skewing range

is:

Find the left and right edges of the log's X-Z

projection. These edges correspond to the maximum and

minimum X coordinates for each cross section. Figure 4.7

shows the projection of the log onto the X-Z plane as seen

from the bird's-eye view.

Select a group of points on one edge of the log,

RXY.X[i][j] =

RXY.Y[i][j] =

RXY.Z[i][j] =

48

i.e., determine how many cross sections are to be included

in the group. The number of points selected depends upon

the interval between cross sections and the shortest lumber

length allowed. The distance between the first and the

last points in the group should be greater than or equal to

the shortest lumber length. For example, if the interval

between cross sections is two feet, and the shortest lumber

length is eight feet, then there should be five points

selected (Figure 4.8).

Find a straight line fitting this group of

points, and then find the slope of this straight line.

Shift the group of selected points one cross

section forward, i.e., drop the first point in the group

and add another point adjacent to the last point in the

group. Repeat steps (3) and (4) until the remaining

portion is shorter then the shortest lumber length allowed.

Repeat steps (2), (3) and (4) for the other edge.

Find the maximum slope and the minimum slope from

all slopes obtained in the previous steps.

Once the skewing range is determined, the program

mathematically skews the log to a position in that skewing

range. Since any position in the range could be chosen,

there is an infinite number of possible positions.

Therefore, a subset of positions in the range must be

specified by the operator. If the operator entered two,

for instance, the skewing angle increment would be:

X

A line parallel to the fitting line With the maximum slope

3kevving range

A line parallel to the t,e I LI the mimmum c-;1,Dr2H

Figure 4.8. Determination of the skewing range.

Figure 4.7. Projection of the log onto the X-Z plane.

The first fitting line
The third fitting line

The second fitting line

49

(maximum skewing angle - minimum skewing angle)/2.

Then the program starts with the minimum skewing angle and

repeats for each skewing increment until the maximum

skewing angle is reached. Note that a very small skew angle

can result in a significant log movement at the far end of

long logs.

Skewing the log is implemented by the following

assignments written in the "C" programming language:

sine=sine(SkewAngle);

cosine=cos(SkewAngle);

for (i=0; i<NoCrossSec; i=i+1) {

for(j=0; j<NoScanPts; j=j+1) {

SXY.X[i][j]=RXY.X[i][j]*cosine - RXY.Z[i][j]*sine;

SXY.Z[i][j]=RXY.X[i][j]*sine + RXY.Z[i][j]*cosine;

SXY.Y[i][j]=RXY.Y[i][j];

)

)

Where:

SkewAngle . skewing angle;

sine = sine of skewing angle;

cosine = cosine of skewing angle;

NoCrossSec = number of cross sections;

NoScanPts = number of scanning points on each

cross section;

50

51

X coordinate of scanning point j on

cross section i after rotation;

Y coordinate of scanning point j on

cross section i after rotation;

Z coordinate of scanning point j on

cross section i after rotation;

X coordinate of scanning point j on

cross section i after skewing;

Y coordinate of scanning point j on

cross section i after skewing;

Z coordinate of scanning point j on

cross section i after skewing.

4.3.2 Description of the DP Algorithm

Dynamic programming is an optimization procedure that

is particularly useful for problems requiring a sequence of

interrelated decisions. A sequence of decisions, which in

turn results in a sequence of situations, is performed by

recursive calculations to maximize overall effectiveness.

By proper formulation, the optimization problem of log

breakdown can be defined as a dynamic programming problem,

and a recursive equation can be established to find the

optimum value or volume of the log.

Figure 4.9 shows cross sections as seen from one end

of the log. Suppose that points X1, X2, X3, . . Xn on

RXY.X[i][j] =

RXY.Y[i][j] =

RXY.Z[i][j] =

SXY.X[i][j] =

SXY.Y[i][j] =

SXY.Z[i][j] =

minimum xx1x2x3x4 maximum x

X

52

Figure 4.9. Saw placements on cross sections of a log as
seen from one end of the log.

the X axis are possible saw placements. In fact, any place

on the X axis could be a possible saw placement so there

can be an infinite number of possible saw placements.

Unfortunately, no dynamic programming algorithm is able to

search for the optimum solution from an infinite number of

saw placements. To make the problem solvable, a set of

discrete points must be chosen from the infinite number of

saw placements. To establish the DP recursive formulation,

the interval between possible saw placements must be a

common denominator of the combined thicknesses of the

slabs, flitches, cants, saw kerf, sawing variation, planing

allowance, and shrinkage. A smaller interval results in

more points in the set, and the better the chance will be

53

of finding the optimum solution. However, the computing

time will be much longer.

To illustrate how the dynamic programming algorithm

works, a network representation of sawing decisions is

shown in Figure 4.10. Each node corresponds to a possible

saw placement and each arc corresponds to a possible

decision made with the left end node of the arc

representing one saw placement and the other saw placement

being represented by the right end node of the arc.

Suppose lumber thicknesses of 1, 2, and 3 inches are

allowed. Also, assume that the saw kerf is 1/8 inch and no

other production parameters are considered. The number of

possible saw placements depends on the distance between

maximum X and minimum X and the interval between nodes.

For instance, if the distance between maximum X and minimum

X in Figure 4.10 is 20 inches and the interval between

Figure 4.10. A representation of potential sawing
decisions for nodes 0, 1, and 8.

minimum X xl x2 x3 maximum X

54

possible saw placement points is 1/8 inch, then the number

of possible saw placements will be:

20 (1/8) + 1 = 161.
At each possible saw placement, the next saw placement

will be chosen from one of ten possible saw placements in

a decision set. The ten possible saw placements are

calculated as the following:

If the next saw placement does not make an

acceptable board, it must be shifted forward. The possible

shifts are 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, or 7/8 inch. In

total, there are seven possible placements which do not

make any acceptable piece (narrowest acceptable thickness

divided by saw kerf and then minus one).

If the next saw placement produces an acceptable

slab, flitch or cant, then the number of possible saw

placements making an acceptable piece is equal to the

number of thicknesses of finished lumber allowed plus the

possible number of cant thicknesses. In this example there

are three thicknesses and cant sawing is not considered.

Therefore, the total number of possible decisions in the

decision set is the sum of all possible placements, which

equals ten.

If the value of each arc represents the value of the

piece between the two nodes connected by the arc, then the

problem of log breakdown optimization can be viewed as a

longest path problem. If the distance between the two

55

nodes is less than the narrowest acceptable piece, the

value of the piece is zero. Otherwise, the value of the

piece is determined by an algorithm similar to one that

will be discussed at the edging level. The objective is to

find the path representing the largest value from the left-

most node (minimum X) to the right-most node (maximum X) by

going through some of the nodes between minimum X and

maximum X. There are several methods that can be applied

to solve the problem. One way is to use an exhaustive

enumeration method. This is used by most existing programs

using the simulation technique, such as BOF. One

shortcoming of such a technique is that the computing time

is extremely long since there are huge numbers of possible

paths that need to be compared. Therefore, in order to

reduce computing time, the thickness assortments and sawing

patterns are limited and the saw placement shifting is not

allowed in those programs. One other way is to use network

techniques. There is no general algorithm to solve the

longest path problem in a network. When a network is

acyclic (no cycles in the network), the longest path

problem happens to possess the same properties as an

acyclic network, so the problem can be simply solved by

reordering the sequence of the nodes and then performing

calculations recursively. Since this concept is the

central idea of dynamic programming, the most efficient

way to solve the longest path problem of an acyclic network

56

is to use dynamic programming.

Dynamic programming (DP) can provide the optimum

solution with much less effort than an exhaustive search.

Dynamic programming divides the original problem into small

portions, called stages in DP terminology, with a number of

conditions, called states, and with a policy decision to be

made at each stage. Dynamic programming finds the optimum

solution by making a sequence of interrelated decisions.

For the longest path problem, each node is a stage. There

is only one state at each stage which is the remaining

distance from the node to either minimum X or maximum X,

depending upon whether the process is moving "forward" or

"backward". At each stage, the decision to be made is to

choose an optimum arc which links the node to an optimum

path from the starting node to that node.

The decision making process is based on the principle

of optimality. For the longest path problem, the principle

of optimality can be stated as follows:

The best path from the minimum X to the maximum

X has the property that, for any node between

maximum X and minimum X, whatever the decisions

made to get to that node, the remaining path to

the maximum X, starting at the node, must be the

best path from that node to the maximum X.

For example, if the optimum path from point X6 to

destination maximum X has been decided, whatever the path

57

from minimum X to X6 is, the path from X6 to maximum X will

always be optimum. It is this principle that enables

dynamic programming to solve the problem more efficiently.

Dynamic programming starts from the first stage (or last

stage) and makes a decision resulting in the optimum

solution for that stage. It then precedes forwards (or

backwards) to the next stage, making the current optimum

solution from the preceding one, until the entire problem

is solved.

The optimum sawing pattern is obtained when the

longest path is known. For example, suppose the dynamic

programming algorithm came up with the longest path of

minimum X -> X32 -> X40 -> X56 -> X80 -> X82 -> X98 -> X114

-> X130 -> maximum X. This yields six pieces in the

optimum sawing pattern, which are 1, 2, 3, 2, 2, and 2

inches in thickness. The piece between X82 and X98 is

shifted 2/8 inch towards the right rather than being

immediately adjacent to the piece X56 -> X80. The opening

face is at X32 and the right-most face is at X130.

Figure 4.11 shows the optimum solution.

2 2" 2'
/N.

Figure 4.11. Optimum solution for an illustrative
example.

2" 3" 2/8'

£66
411)

minimum x f1141.1fRIIRI

58

In the previous example, the starting point minimum X

is at one end of the cross sections and the destination

point maximum X is at the other end. In fact, these two

boundary points can be in the positions where the narrowest

and the shortest acceptable lumber faces are yielded,

instead of the two ends. In that case, the sawing range is

reduced and the computing time is significantly saved. If

the log is a cylinder or truncated cone, the positions can

be located easily. However, if the log is S-shaped or any

other irregular shape, locating the two points can be very

time consuming. Therefore, the program uses the maximum

and minimum X coordinates of all cross sections as the two

end points.

If there are N stages (nodes) and M decisions (arrival

arcs) to be made at each stage, the dynamic programming

algorithm must search N*M combinations to find the optimum

solution, which is much more efficient than an exhaustive

search. However, if N is large, such as when the log size

is large or the interval between stages is small, the

dynamic programming algorithm can be very time consuming.

One way to reduce computing time is to reduce M. For

example, in Figure 4.10 all possible sawing placement

shifts, which are arcs less than one inch thickness, were

given. In fact, only the 1/8-inch shift is necessary. If

two interval shifts are included in an optimum path, like

the 2/8-inch shift in Figure 4.11, the algorithm will

59

guarantee two adjacent 1/8-inch shifts will be in the

optimum solution, which is the same as one 2/8-inch shift.

Therefore, for the example in Figure 4.10, the number of

decisions to be made at each stage can be reduced from 10

to 4, resulting in a 60% reduction in computing time.

4.3.3 Mathematical Definition and Formulation

The following definitions are used to formulate the

log breakdown problem as a forward dynamic programming

problem.

Let:

stage variable of the DP problem, which is

the sequential number of saw placements 0,

1, 2, 3, ..., N, starting from the minimum

X coordinate of all cross sections;

number of stages, which is obtained by

converting (maximum X - minimumX)/k to the

nearest integer; where maximum X is the

maximum X coordinate of all cross sections

and minimum X is the minimum X coordinate

of all cross sections;

interval between saw placements (interval

between stages), which must be a common

denominator of saw kerf and thickness

assortments;

60

n x k, the portion of the log available for

sawing at a stage, which is the state

variable of the DP problem and is equal to

the distance between stage n and stage 0;

A the set of total sawing position variables

at all stages, which includes all thickness

assortments, cant thickness assortments,

intervals and its 2, 3, ..., (thinnest

lumber thickness)/k - 1 times;

an the decision taken at stage n;

Rn(an) = the value obtained if decision an is taken

at stage n; it is the immediate value of

the piece cut from the portion of the log

between stage n and decision an. This

value is the output of the edging level.

Fn(S) = the optimum overall value obtained from the

portion between stage 0 and stage n at

state S. Actually, for this problem there

is only one state at each stage.

Then a forward recursive relationship can be set up as:

F0(0) = 0;

a
Fn(n-lc) MAX {Rn(an) + Fan ((n-1))

anEA
n=1, . . .,N

61

4.4 Edging Pattern Optimization

Level 1 of the program, the log breakdown level, gives

X coordinates for the sawing planes creating the left and

right faces of the piece being edged. The next step, level

2 or the edging level, determines the optimum edging

pattern and the optimum value of the piece. It does this by

first finding the two faces of the piece, merging the two

faces together, determining the pitching range, pitching

the piece, and finally using a dynamic programming

algorithm similar to that in the first level to obtain the

optimum solution. The optimum value is returned to the

first level and the optimum edging pattern is stored.

Figure 4.12 shows the detailed flow chart of the edging

level, but the relationship between this level and the

trimming level is not shown.

4.4.1 Determining the Two Faces of a Piece

A face of the piece is formed by the intersection of

the sawing plane found in Level 1 at a given X coordinate

for all cross sections. The procedure used to find

intersection points of the sawing plane with all cross

sections involves five steps. These steps will be

explained in terms of the example cross section shown in

Figure 4.13.

Step 1: If the sawing plane passes through a scanning

point, the upper (or lower, depending upon whether or not

Find left face
of the piece

Find right face
of the piece

Merge two faces

Determine pitching
range

Pitch the piece

V

Edge the piece

No
V

--, Yes
No All pitching

angles tried?Solution better?

Yes

Save the solution

)From the sawing level

To the sawing level

(

A

Figure 4.12. Flowchart of the edging level procedure.

62

Sawing palne

Upper intersection point
between two verticesz

Lower intersection point
passing through a vertex

L

63

Figure 4.13. Intersection of a sawing plane with a cross
section.

an intersection point has been found before) intersection

point is equal to the first scanning point. If this is

the lower intersection point, go to Step 5. Otherwise, set

a flag indicating the upper intersection point has been

found.

Step 2: If the sawing plane falls in the gap between

two scanning points, the upper or lower intersection point

is on the straight line connecting the two scanning points,

depending upon whether or not an intersection point has

been found before. If this is the lower intersection

point, go to Step 5. Otherwise, set a flag indicating the

upper intersection point has been found.

64

Step 3: If neither of the previous two situations

happens, do nothing. Examples of logs in which this might

occur include ones with significant amounts of taper,

sweep, or crook. In these cases, a sawing plane might only

intersect a subset of all cross sections.

Step 4: Repeat Step 1 to Step 3 until all scanning

points on the cross section have been tried. If no

intersection point is found, set a special number such as

-9999 indicating no intersection point. If there is only

one intersection point, let the upper and the lower ones be

the same.

Step 5: Repeat Step 1 to Step 4 until all cross

sections have been tried.

To simplify the successive calculations and reduce the

time required for data transformation, the two faces are

merged into one. When merging the two faces together, wane

allowances on both width and thickness are taken into

account. In the version of SAW3D used in this thesis, all

lumber sizes use only wane allowances based on the

narrowest (4 inches) and thinnest (1 inch) lumber sizes

typically allowed in the industry. Merging the two faces

into one involves five steps. They are explained using the

example shown in Figure 4.14.

Step 1: If any one of the four potential intersection

points is not on the cross section, i.e., it is not an

intersection point, eliminate the segment between this

65

cross section and the immediately previous cross section by

not adding the interval between the two cross sections to

the length of the piece. Then go to Step 5.

Step 2: Find the merged upper and lower points, which

make: a) both 6Xu and 6X1 less than or equal to the wane

allowance on thickness, and b) the sum of (SYu and 6Y1 less

than or equal to the wane allowance on width.

Step 3: If the distance between the merged upper and

lower points is greater than or equal to the narrowest

acceptable lumber width, add the interval between cross

sections to the length of the piece. Otherwise, go to Step

5 if the previous length is greater than or equal to the

5Xu

MUpper left point?erged upper poin

Lower left point Merged lower point

OYI

ox'

Upper right point

Lower right point

Figure 4.14. Merging two faces into one for edging.

66

shortest acceptable lumber length, or initialize the length

(let it be zero) and go to Step 4 if the previous length is

less than the shortest acceptable length.

Step 4: Repeat Step 1 to Step 3 until all cross

sections have been tried.

Step 5: End the procedure.

4.4.2 Pitching the Piece

Pitch refers to orienting the piece so that the edging

plane is at an angle to the center line of the piece.

There are two steps involved in pitching the piece. The

first step is to find the pitching range, and the second

step is to pitch the piece.

4.4.2.1 Determining The Pitching Range

For a cylinder, the edging lines are all parallel to

the central axis of the piece. For an irregular shaped

piece, however, there could be an infinite number of

possible edging positions. Since pitching a piece means

tilting the piece vertically into a certain edging

position, it is necessary to find a pitching range and then

choose a finite number of pitching angles for an irregular

shaped piece.

The procedure used to determine the pitching range is

similar to that used to determine the skewing range (Figure

4.8). A group of points is taken on an edge of the merged

67

piece, and then a straight line equation is determined

using simple linear regression. The number of points in

the group depends on the interval between cross sections

and the shortest acceptable lumber length. The distance

between the first point and the last point should be

greater than or equal to the shortest acceptable lumber

length. A set of straight lines is obtained in this way by

taking a series of groups of points, with each group of

points containing the same number of points but shifted one

point towards the other end of the piece until the number

of remaining points is less than that needed to make a

group. The same procedure is used to find straight lines

on the opposite edge. Next, the pitching range is

determined by choosing the maximum and minimum slopes among

all those straight lines.

4.4.2.2 Pitching The Piece

There is an infinite number of possible pitching

positions between the maximum and minimum pitching angles

obtained in the previous sections. Realistically, the

program can only use some discrete positions from the

pitching range. While a greater number of pitching

positions increases the chances of obtaining the optimum

solution, the computing time will be longer. Therefore, a

pitching angle increment is entered by the operator. Given

a pitching angle, the piece is mathematically pitched by

68

the following assignments written in the "C" programming

language:

sine = sin(angle);

cosine = cos(angle);

for(i=1; i<=intsecnp.NoZ; i=i+1) (

intsec.Zu[i]=intsecnp.Zu[i]*cosine

intsec.Zl[i]=intsecnp.Zl[i]*cosine

intsec.Yu[i]=intsecnp.Zu[i]*sine +

intsec.Yl[i]=intsecnp.Zl[i]*sine +

Where:

angle

sine

cosine

intsecnp.NoZ

pitching angle;

sine of the pitching angle;

cosine of the pitching angle;

number of points on one edge of the

piece;

= Z coordinate of the ith point on the

upper edge of the piece before pitching;

of the ith point on the

the piece before pitching;

of the ith point on the

the piece before pitching;

of the ith point on the

the piece before pitching;

intsecnp.Zu[i]

intsecnp.Zl[i] = Z coordinate

lower edge of

intsecnp.Yu[i] = Y coordinate

upper edge of

intsecnp.Yl[i] = Y coordinate

lower edge of

intsecnp.Yu[i]*sine;

intsecnp.Yl[i]*sine;

intsecnp.Yu[i]*cosine;

intsecnp.Yl[i]*cosine;

69

intsec.Zu[i] = Z coordinate of the ith point on the

upper edge of the piece after pitching;

intsec.Zl[i] = Z coordinate of the ith point on the

lower edge of the piece after pitching;

intsec.Yu[i] = Y coordinate of the ith point on the

upper edge of the piece after pitching;

intsec.Yl[i] = Y coordinate of the ith point on the

lower edge of the piece after pitching.

4.4.3 Mathematical Formulation for the Edging Problem

After the position of the piece has been decided, a

dynamic programming algorithm similar to that used to

optimize the sawing pattern is used to optimize the edging

pattern. To make it easier to compare with the DP

formulation of the first level, the same notations are

adopted here, but their definitions are modified to reflect

the edging operations.

Let:

n = stage variable of the DP formulation, which

is the sequential number of edging saw

placements 0, 1, 2, 3, . . ., N, starting

from the minimum Y coordinate on the piece;

N = number of stages, which is obtained by

converting (maximum Y - minimum Y)/k to the

nearest integer; where maximum Y is the

maximum Y coordinate on the piece and

70

minimum Y is the minimum Y coordinate on the

piece;

k = interval between edging saw placements

(interval between stages), which must be a

common dominator of edging saw kerf and

width assortments (and thickness assortments

for cant sawing);

S = state variable of the DP formulation, which

is the portion of the piece being analyzed

for edging, equal to n x k, which is the

distance between stage n and stage 0;

A = a set of total edging saw position variables

at all stages, which includes all width

assortments, intervals between stages, and

its 2, 3, 4, . . ., (smallest lumber

width)/k - 1 multiplier (and thickness

assortments for cant sawing);

a = decision taken at stage n;

Rn (an) = the value obtained if decision an is taken at

stage n and is the immediate value of the

untrimmed lumber cut off the portion of the

piece between stage n and decision an; this

value is determined in the trimming level;

Fn(S) = the optimum overall value obtained from the

portion between stage 0 and stage n at state

S; for the edging problem, there is only one

71

state at each stage for the edging problem.

Then the recursive relationship is:

F0(0) = 0;

a
Fn(n-k) . MAX { R(a) + F a ((n-1) k) 1 n=1, . ,N

anEA 12- c

4.5 Trimming Pattern Optimization

Given the geometric profile formed by the merging of

the two faces of the piece and the upper and lower edging

lines which are the edging decisions made at the edging

level, the trimming level determines the optimum lumber

value by determining the optimum trimming pattern. There

are two steps involved. The first step is to locate

trimming zones, which means to find all possible rectangles

containing acceptable lumber. The second step is then to

trim those rectangles into finished lumber using a dynamic

programming algorithm similar to those used in the log

breakdown and edging levels. Figure 4.15 gives the flow

chart of the trimming level.

4.5.1 Locating Trimming Zones

To reduce both the computing time and memory space

required by the dynamic programming algorithm, any portions

From the edging level

Find trimming zones

Determine optimum
trimming pattern
in a trimming zone

Add value of the trimming
zone to the total value
of the piece

ziiiT All trimming zones tried?

Yes

Return to the edging level

No

Figure 4.15. Flowchart of the trimming procedure.

72

73

of the piece which are less than the shortest lumber

allowed should be eliminated before starting DP iterations.

This is done by determining acceptable trimming zones

(Figure 4.16).

The idea of locating trimming zones is

straightforward, although its implementation in code may

not be so simple. The idea is to locate one or more

rectangles greater than or equal to the shortest acceptable

lumber length within the piece profile. The width of a

rectangle is the distance between two edging lines, while

its length is the distance between two boundaries of the

trimming zone. The following is a three-step outline of

the procedure used for locating trimming zones.

(1) Find intersection points of the upper edging line

with the piece profile. If a segment between two

intersection points is within the piece profile, it is

Intersection of edging line with real edge

Acceptable segment

Figure 4.16. Locating trimming zones.

Lower edging line
Unacceptable segment

Cross section nodes
Upper edging line

\z/

74

kept; otherwise, it is eliminated. Acceptable segments are

called upper segments.

Find the intersection points of the lower edging

line with the piece profile. If a segment between two

intersection points is within the piece profile, it is

kept; otherwise, it is eliminated. Acceptable segments are

called lower segments.

Find where the upper and lower segments overlay.

If an overlay is greater than or equal to the shortest

acceptable lumber length, this overlay is a trimming zone;

otherwise it should be eliminated. If there are more than

one acceptable overlays, then there is more than one

trimming zone. Keep all of them, and assign sequential

numbers to these trimming zones.

4.5.2 Mathematical Formulation for the Trimming Problem

For each rectangle identified as a possible trimming

zone, a dynamic programming algorithm similar to the

previous two DPs is applied to find the rectangle yielding

the optimum value. The following definitions are used in

the mathematical formulation. Note that the number of

stages could be too large since the length of the untrimmed

lumber is very long compared with the tenth inch

increments, resulting in extremely long iteration times.

To reduce the number of stages, the trimming saw kerf is

assumed to be zero. Under this assumption, the number of

75

stages can be reduced dramatically by using two feet as the

interval between stages.

Let:

n = stage variable, which is the sequential

number of trimming saw placements 0, 1, 2,

3,
'

., N, starting from the minimum Z

coordinate on the piece;

N = number of stages, which is obtained by

converting (maximum Z - minimum Z)/k to the

nearest integer; where maximum Z is the

maximum Z coordinate on the piece and

minimum Z is the minimum Z coordinate on the

piece;

k = interval between trimming saw placements

(interval between stages), which is 24

inches;

S = state variable, which is the portion of the

piece being analyzed for trimming, and is

equal to n x k, which is the distance

between stage n and stage 0;

A = a set of total trimming saw position

variables at all stages, which includes all

lumber length assortments, intervals between

stages, and its 2, 3, . . ., (shortest

lumber length)/24 - 1 multipliers;

an = decision taken at stage n;

76

Rn(a)= the value obtained if decision an is taken at

stage n and is the immediate value of the

lumber cut from the portion of the untrimmed

lumber between stage n and decision an;

Fn(S) = the optimum overall value obtained from the

portion between stage 0 and stage n at state

S; for the trimming problem, there is only

one state at each stage.

Then the recursive relationship is:

F0(0) = 0;

a'Fn(r2.k) MAX {Rn(an) + F a ((n-) k) n=1, . . . ,N
anGA n-1(

4.6 Software Implementation

A computer program, called SAW3D, was written using

the "C" programming language. It implements all algorithms

and methods described in the previous chapters, and runs

under an MS-DOS operating system. The current version is

not menu-driven since the primary task was to implement the

algorithms for research purposes rather than commercial

use.

4.6.1 Structure of the Program

The program is constructed in a modular fashion to

77

make modifications and maintenance easier. Each

independent module accomplishes its own task and is linked

to related modules by transferring arguments and/or global

variables. Figure 4.17 shows the hierarchy chart of the

program which executes from top to bottom and left to

right.

The construction of the program follows the flow

charts described in previous chapters. One important thing

which has not been discussed before is how to obtain output

coordinates of optimum cutting patterns. The dynamic

programming algorithms determine optimum values in the

sawing, edging, and trimming operations. A trace-back

process is needed to find the optimum cutting pattern. To

trace back the cutting patterns resulting in the optimum

value, the program has to keep all decisions in memory.

There is an extremely high number of combinations of

positioning, sawing, edging and trimming outputs that need

to be searched to find the final solution. It is

impossible to keep all those decisions in memory. However,

if only those cutting patterns yielding the optimum value

at each level under each position are stored in memory, the

program has to refresh its memory whenever a greater value

is found. This still takes a considerable amount of memory

as well as too much time.

For these reasons, the program does not keep any

decision made at the edging or trimming levels. After the

Input data

Rotate log

Control
module

Rotate and
process log

Determine
log skewing

range

Skew log
and get
optimum
sawing
Pattern

Compare and
store

better
result

value of
every

flitch and
cant

Get
trimming

zone

Get optimum
value of

every board

Get optimum
trimming
pattern

level 0: main level

level 2: Edging level

Level 3: trimming level

Figure 4.17. Hierarchy chart of the program.

78

Compare and
Find sawing Get optimum store

Skew log zone sawing
pattern

better
result

Get optimum

Get Pitch and
intersections Merge two Get get optimum
of sawing faces into pitching edging

lines one range Pattern

Compare and
Pitch Get edging Get optimum store

flitch/cant zone edging
Pattern

better
result

level 1: Sawing levelOutput

79

program starts, it will keep only rotation, skewing, and

pitching positions as well as sawing decisions yielding the

best value returned so far, but not any edging and trimming

decisions until all rotation, skewing and pitching

positions are searched. When the final optimum value is

obtained, the program can trace back the optimum sawing

pattern and print coordinates of the optimum sawing pattern

to an output file very quickly since all the sawing

decisions are kept in memory. For each optimum sawing

decision which yields two faces of a piece cut from the

log, the program transfers the piece to the optimum

pitching position stored in memory and goes through the

edging operation once again to find the optimum edging

pattern. This time, all edging decisions are kept in

memory. Once the optimum edging value is obtained, the

program traces back the optimum edging pattern and prints

the coordinates of the optimum edging pattern to the output

file. For the trimming level, the process is the same as

in the edging level. All trimming decisions are kept in

memory now, and the program traces back and prints

coordinates of the optimum trimming pattern immediately

after it is obtained.

4.6.2 Required Information

4.6.2.1 Log Profile Data

Log profile data provided by most scanning systems for

80

logs of any shape can be handled by the program.

Acceptable shapes include a cylinder, truncated cone,

ellipsoid with or without taper, logs with crook and sweep,

2-dimensional S-shaped logs with any cross-sectional shape,

and twisted 3-dimensional S-shaped logs with any cross-

sectional shape. There are no limits on diameter and length

of logs imposed by the program itself, but RAM availability

on the computer running the program may create limits due

to memory overflow for very complicated, large, and long

logs.

4.6.2.2 Log and Piece Positioning

The program allows the user to control positioning

operations. If the user decides that a positioning

operation is not necessary, it can be turned off. For

example, a cylinder does not need to be rotated or skewed

during log breakdown nor do pieces cut from the cylinder

need to be pitched. In this case, the operator would turn

off the rotating, skewing and pitching operations. For a

log that needs to be rotated, the program allows the user

to determine the rotation range and rotation angle

increment. For the skewing and pitching operations,

however, the positioning ranges will be determined by the

program but increments of positioning should be given by

the user. There are no limits on log rotation, skewing

angle, or pitching angle.

81

4.6.2.3 Sawing Methods

The following are sawing options provided by the

program:

live sawing or cant sawing;

full-taper or split-taper sawing;

single lumber thickness only or multiple lumber

thicknesses;

only 1 inch or 2 inches jacket board, 2 inches

lumber thickness elsewhere;

any thickness jacket board.

The user provides control option data to tell the program

what method(s) to use.

4.6.2.4 Production Parameters

Wane allowance on lumber thicknesses and widths should

be given by the operator. Sawing variations for the

headrig saw and edger saws are taken into account by the

program, so they also need to be entered by the user.

Dressing allowance and shrinkage do not need to be entered

separately by the user since green target sizes of lumber

are used by the program.

4.6.2.5 Lumber Sizes

Any sort of lumber size can be handled by the program.

Sizes must be green target sizes. A complete size listing,

including thickness, width and length of all products,

needs to be entered.

4.6.2.6 Optimum Solution Searching Increments

The interval between stages in the DP formulation is

very important. It should be a common denominator of all

sizes handled. For example, at the sawing level it should

be a common denominator of all thicknesses, saw kerf and

sawing variation. At the edging level it should be a

common denominator of all widths, edging saw kerf, and

edging sawing variation. The smaller the increment is, the

more reliable the solution will be, but at the expense of

longer computing times and more memory space.

4.6.2.7 Lumber Price Table

Prices of all lumber sizes are entered in dollars per

thousand board feet (MBF). If a size is not to be produced

but has to appear in the price table, the user can assign

a very small value to that size so that it is not very

likely that the optimum solution will contain lumber in

that size.

4.6.3 Input and Output

At present, there is no interactive interface for the

program. Scanning data are written in one file and the

rest of the input data are written in a separate file.

Those two files are the input of the program.

82

83

There are two output options, a short form and a long

form. The short form contains the optimum values of the

log, each flitch and each cant; the corresponding sawing,

edging and trimming patterns; the optimum position of the

log; and the optimum orientation of each log and cant.

Appendix A gives the output from sawing a horn-down shaped

log 20 inches in diameter and 10 feet long. The long form

output contains all the information provided in the short

form, plus profile data of the log and each piece cut from

the log. The profile data allow the user to draw graphics

of the output. Figures 4.18 and 4.19 show the output

pictures of the horn-down shaped log.

Figure 4.18. A plot of the optimum sawing sequence for a
horn-down shaped log 10 inches in diameter
and 10 feet long. The optimum rotation
angle was 30 degrees from the horn-down
position.

...............imwmoolMmOsiiii...mi

,....-..r.......IMMI.....,"'- 1......m...,
...............

_
2x4x8

x4x10

2x6x10

84

Figure 4.19. Plots of the optimum edging and trimming
patterns for the five flitches sawn from the
log in Figure 4.18.

CHAPTER 5 COMPUTATIONAL RESULTS

The program was tested to (1) verify that the program

works properly, (2) find primary effects of different input

data, and (3) provide guidelines for more extensive tests

in the near future to draw more reliable and practical

rules-of-thumb.

When this sawing model was first developed, the only

scanning systems available to provide the required detail

in log shape were used in precision X-Y lathe chargers.

This meant that only eight feet long logs could be

analyzed. Therefore, twelve logs were theoretically

generated to provide a representative group of log shapes

and sizes. Three log shapes were chosen: ellipsoid, horn-

down shaped, and 3-dimensional S-twisted shaped (Figure

5.1). Four logs of each shape were generated to provide

combinations of log shapes and sizes as shown in Table 5.1.

All logs have 2 inches of taper per 8 feet of length. Horn-

down shaped logs have 4 inches of sweep centered on the

log. All S-twisted shaped logs have 4 inches of crook at a

point 1/4 along the length and 4 inches of crook at a point

3/4 of the length in the opposite direction to the first

crook, and both crooks are not in the same plane so that a

S-twisted shape is formed.

85

The Ellipsoid_ Log

F-":1Zt

-

,QFY

The 3D S Twisted Log

Figure 5.1. Three log shapes tested.

86

87

Table 5.1. Various combinations of log shapes and sizes
used in this study.

To analyze the questions proposed in the objectives of

this thesis, logs in different sizes and shapes should be

tested using different scanning data, program process

control options, sawing methods, and production parameters.

An exhaustive test concerning all possible combinations of

those issues would be nearly impossible because of time

limitations. Therefore, a subset of all variables was

chosen. Base data for scanning data density, production

parameters and sawing method are given in Table 5.2. When

testing effects of a specific variable, that variable in

the base was changed to evaluate effects on value and

volume recovered. American Lumber Standard sizes were used

for all tests. Green target sizes are also shown in Table

5.2. Lumber prices were obtained from RANDOM LENGTHS (July

21, 1989) and are for DOUGLAS FIR, GREEN, in the Portland

Legend Shape Small-end
diameter
(inches)

Length
(feet)

Ell ellipsoid 10 10
E12 ellipsoid 10 20
E21 ellipsoid 20 10
E22 ellipsoid 20 20
Hll horn-down 10 10
H12 horn-down 10 20
H21 horn-down 20 10
H22 horn-down 20 20
Sll 3-D, S-twisted 10 10
S12 3-D, S-twisted 10 20
S21 3-D, S-twisted 20 10
S22 3-D, S-twisted 20 20

area.

Table 5.2. The base data used to test the model.

Cross Section Interval: 2 feet

Scanning Points
On Each Cross Section: 24 (360/15)

Sawing Increment: 0.125 inch
Edging Increment: 0.125 inch

Saw kerf(all saws): 0.125 inch
Saw Variation(all saws): 0.125 inch

Rotation Increment: 15 degree
Skewing Positions: min., mid., max.
Pitching Positions: min., mid., max.

Sawing Method: live saw and cant saw

Nominal ALS size (inches):
1 2 4 6 8 10 12

Wane Allowance: 25% on 1" thickness and 4" width

88

5.1 Effect of Log Rotation

5.1.1 General Observations On All Shapes, Sizes, and

Variables

There were significant value differences between

different rotation positions. Figure 5.2 gives the optimum

value and volume at different rotation positions for a 3-

dimensional, S-twisted shape log 10 inches in diameter and

Final Green Size (inches):
1 1.75 3.75 5.75 7.625 9.625 11.625

49

48

47

46

45 I
I 100013 4 6 7 911111112 2 2 2 2 2 3 3 3 3

5 0 5 0 5 0 0 2 3 5 6 8 9 1 2 4 5 7 8 0 1 3 4
5 0 505050505050505

Log Rotation Angle

Value --411-- Volume

Figure 5.2. Volume and value effects of log rotation angle
on a 3-dimensional, S-twisted shape log 10
inches in diameter and 20 feet in length
(s12).

20 feet long (s12). The same pattern holds true for all

other logs tested. Figures 5.3 and 5.4 show the percentage

difference between the optimum value and the average value

of all positions, and between the optimum value and the

minimum value for all logs tested. The effects were more

significant on the smaller, shorter, and more eccentric

logs. While there were significant differences between

angles, the optimum rotation angle may not be unique.

Figure 5.2 shows that there are two optimum rotation

angles, one at 135 degrees and another at 315 degrees. It

is also interesting to note that the maximum value

rotations were not the same as the maximum volume

rotations.

89

Value ($) Volume (BF)
188

178

168

150

140

130

120

110

optimum value increase over average

90

hll h12 h21 h22 sll s12 s21 s22 ell e12 e21 e22

logs

Figure 5.3. Effects of log rotation on value using the
percent increase from the average value at all
rotation angles to the optimum value for 12
different logs.

optimum value increase over minimum

MI value increase

8.6Z

'5.1z

2.9/

91

h1.1 h12 h21 1122 Si' s12 s21 s22 ell e12 e21 e22

logs

Figure 5.4. Effects of log rotation on value using the
percent increase from the minimum value to the
optimum value for 12 different logs. The
differences were greater for the smaller,
shorter logs.

5.1.2 Effect of Rotation Increment

Intuitively, using a smaller rotation increment

increases the chance of finding a better value, but the

computing time will be longer. To analyze the effect of

rotation increment, rotation increments of 5 degrees, 15

degrees and 24 degrees were used to break down horn-down

shaped logs and S-twisted shaped logs. These increments

correspond to 72,24,and 15 scanning points around the log's

circumference, respectively.

Figures 5.5 and 5.6 show the results of sawing an S-

twisted shape log 10 inches in diameter and 20 feet long

(s12), using 5, 15 and 24 degrees of rotation angle

92

increment. The variation of values at different positions

was more drastic when the rotation increment was smaller,

but the trend was approximately the same (Figure 5.5). The

smaller rotation increment had more chances to find a

better value where the two increments had a common

denominator.

Ualue($) Uolum(RF)
$50 170

$49 , 160
.

....r.'
)11" ' - ':'" .,....

$48 150

Rotation Angle

Value(RI=15) Volum(RI=15))IE Value (RI=5) --E1- Volum (RI=5)

Figure 5.5. Effects of rotation angle increment on log s12
using rotation increments of 15 and 5 degrees.

When using different rotation increments which have no

common denominator, such as 15 and 24 degrees, the larger

increment also had a chance to find a greater optimum value

than when using a smaller increment since they picked up

different rotation positions. In most cases, the maximum,

minimum, and average value differences resulting from using

$47 140

$46 130

$45 120

$44 110013 4 6 7 9 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3
5 0 5 0 5 0 0 2 3 5 6 8 9 1 2 4 5 7 8 0 1 3 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

93

different increments were around one percent. This implies

that the rotation increment has only a minimal effect on

either volume or value recovery.

Ualue(S) Uolum(RF)

$53 180

$51 160

349 140

$47 120

$45 100
la 2 4 7 9 1 1 1 1 2 2 2 2 3 3

4 8 2 6 2 4 6 9 1 4 6 8 1 3
0 4 8 2 6 0 4 8 2 6

Rotation Angle

---.'-- Value (RI=24) --1-- Volum (RI=24)

Figure 5.6. Effects of log rotation angle increment on log
s12 using a rotation increment of 24 degrees.

5.2 Effect of Log Rotation and Skew

When testing the effect of log skew, logs were rotated

to an angle and then were skewed. Comparisons were made

between rotation only and rotation-skew operations. To

save computing time, however, the rotation range was only

from 0 to 90 degrees.

When doing log rotation and skewing operations

combined, in most cases the resulting value was larger than

when doing log rotation alone, especially for the maximum

values (Figure 5.7). For some logs, sll for instance, both

355 200

94

maximum and average value yields of the log were increased

when using rotation-skew operations compared to using the

rotation only operation. For some other logs, s21 for

instance, the average value was increased but the maximum

value did not change at all. This case occurred when

values at some rotation angles were increased, but none of

them was larger than the maximum value when using only the

rotation operation.

5.3 Effect of Rotation and Pitch

To test the effect of pitching, every piece cut from

the log was pitched to find an optimum pitching position.

As was the case in skewing, the rotation range was only

from 0 to 90 degrees. The log skewing operation was not

used here. Figure 5.8 shows the value increases when doing

rotation-pitch operations for all logs tested. It can be

seen that value yields of some logs were significantly

increased, while others did not change at all.

Value increase
3.5Z -'

hll h12

1.2Z

h21 /122 sll
logs

Figure 5.7. Value increases resulting from using the log
skewing operation in addition to log rotation.
"Average" signifies the percent increase in
the average value for all rotation angles when
doing both rotation and skew compared to the
average value when doing rotation only.
"Maximum" signifies the percent increase in
the maximum value when doing both rotation and
skew compared to the maximum value when doing
rotation only.

3z

s12

MI average
ma maximum

s21 s22

95

Value increase

hll

5.3%

6.1Y.

h12

1.9%

h22 s12

2.4%.

ME average
I= maximum

96

Figure 5.8. Value increases resulting from using the
cant/board orientation operation (pitching) in
addition to log rotation. "Average" and
"maximum" have the same meanings as given in
Figure 5.7. In many cases, the pitching
operation increased value recovery, and
usually to a greater degree than the log
skewing results shown in Figure 5.7.

5.4 Effect of Rotation, Skew, and Pitch

When doing all three positioning operations, i.e.,

rotation-skew-pitch, there will be more chances to achieve

a better value, but the computing time will be much longer.

Horn-down shaped logs were tested using all three

positioning operations. To shorten the processing time,

the rotation range was still from 0 to 90 degrees. The

results showed that in all cases average and maximum values

were larger than when only the rotation operation was

allowed (Figure 5.9). Doing all positioning operations

0.30.2Z

s22

Oz Oz

s21

97

also resulted in the best value yields when compared to the

rotation-skew and rotation-pitch operations (Figures 5.7

and 5.8). The results in Figure 5.9 also show that the

combined effects of rotation, skewing, and pitching are not

simply additive.

hll h12

6.1%

1121 h22 sll
Logs

Figure 5.9. Value increases resulting from using both
skewing and pitching operations in addition to
log rotation. When compared to Figures 5.7 and
5.8, these values show the combined effects of
the skewing and pitching operations are not
merely additive.

5.5 Effect of Positioning On Computing Time

SAW3D was developed as a research tool rather than an

on-line optimizer. Therefore, only relative times are

presented in Figure 5.10. On a 386 20MHZ IBM compatible

NM over average
r:72 over maximum

s12

0.5z

s21

0.60.6%

s22

98

computer, logs tested so far have execution times ranging

from tens of seconds to several hours, depending upon log

size and shape as well as positioning operation options.

A number of techniques that promise to increase the

processing speed will be presented in Chapter 6.

When more positioning operations are used, there is a

greater chance of getting a better value because more

positions are searched. However, more positioning

operations definitely result in longer computing times.

Figure 5.10 compares time differences when using different

positioning operations.

relative time

h12 h21 h22

logs

R EM3R-S R-P R-S-P

Figure 5.10. Comparison of computing time consumed by
various positioning operations. R means
rotation only, R-S means rotation and
skewing, R-P means rotation and pitching, and
R-S-P means all three operations combined.

99

5.6 Effect of Scanning Data Density

Scanning data density is determined by the number of

scanning points around the circumference of the log at

every cross section as well as the interval between cross

sections. Obviously, the wire-frame model used in the

program is closer to the real geometry of the log if more

scanning data are obtained regarding the surface of the

log.

5.6.1 Effect of Number of Scanning Points At Every Cross

Section

Figure 5.11 shows the results of sawing log s21 using

both 24 points (every 15 degrees) and 72 points (every 5

degrees) at every cross section. It indicates that there

were significant value increases when more scanning data at

each cross section were used. This is true for all other

logs tested except till, especially for larger, longer logs.

5.6.2 Effect of Interval Between Cross Sections

Intervals of one and two feet were used to compare

data density differences along the length of the log. The

results showed that, in most cases, the larger cross-

section interval causes the optimum value to be

overestimated, especially for smaller and shorter logs.

$74

$73

$72

$71

$70

$69

Rotation Angle

--..-- Value(24 pts) 4-- Volum(24 pts)
---A Value(72 pts) -41- Volum(72 pts)

Figure 5.11. Effects of the number of log scanning points
at each cross section on an S-twisted log 20
inches in diameter and 10 feet long, using 24
and 72 points.

5.7 SAW3D vs BOF

Compared with most existing programs, such as BOF, one

of the unique features of SAW3D is its ability to handle

logs in any shape in 3-dimensional space. To analyze the

importance of this feature, four horn-down shaped logs were

sawn using both BOF and SAW3D (Figure 5.12). First, the

horn-down shaped logs were simplified to truncated cone

shaped logs and then were sawn using BOF (BOF can only

handle perfect truncated cones). The BOF solutions were

then applied to the horn-down shaped logs with the same

260

250

240

230

220

210
0 1

5
3
0

4
5

6
0

7
5

9
0

1
0
5

1
2
0

1
3
5

1
5
0

1
6
5

1
8
0

1
9
5

2
1
0

2
2
5

2
4
0

2
5
5

2
7
0

2
8
5

3
0
0

3
1
5

3
3
0

3
4
5

100

Value(S) Uolum(BF)

101

diameter, length and taper as the truncated cones but with

sweep of 4 inches. Since the logs were not perfect

truncated cones, the values obtained when the BOF solutions

were applied to real shapes were significantly

overestimated. When sawing the log using the SAW3D

algorithm without doing any positioning operations, the

values were higher than when using BOF's sawing pattern;

that is to say, SAW3D gives better solutions for the real

log shape. When using SAW3D's algorithm and allowing all

positioning operations, the values were even higher (Figure

5.12).

5.8 Effect of Sawing and Edging Increments

Sawing and edging increments, which are the intervals

between stages of the dynamic programming algorithms, are

the most important factors affecting computing time. Using

horn-down shaped logs to test the effect, it was found that

the smaller increments gave more chances to find better

solutions, but the computing times were much longer,

especially for large logs. Values, however, did not

increase as radically as the computing time (Figures 5.13

and 5.14).

$194.86 2.32
S199.13 4.5E

102

Log Size

$16.85
$10.43

4.3
11.4%

3.8%
8.49%

BOF-PROJECTED VALUE
111010

h1020

NMI $12.03 15.3%

$12.77 22.4 %
BOF-ACTUAL VALUE

I$62.98
SAW3D-NO POSITIONING

ISSN SAW3D-FULL OPT.
$49.75
$51.64

$217.42

$55.42

$77.08
$62.58

IIIIIIIIIIIIIII1i $64.98
$67.89

h2010

h2020 $190.45

$e $50 $11:19 $150 $200 $2513

Ualue

Figure 5.12. A comparison of SAW3D and BOF (Best Opening
Face) results on four horn-down shaped logs.
First, the logs were treated as truncated
cones and sawn using BOF. Then those BOF
sawing solutions were analyzed using the real
shape. Since the logs were not perfect
truncated cones, the values were
significantly less than those originally
predicted by BOF. Next, the logs were sawn
using SAW3D, but no positioning operations
were allowed. Finally, SAW3D was allowed to
fully optimize all positioning operations.

value increase (si=0.825")

A.77z

M average
EZI optimum

8.251.

az

103

hll h12 h21 h22

logs

Figure 5.13. Value increases resulting from using a 0.025
inch sawing increment compared to a 0.125
inch increment. "Average" signifies the
percent increase in the average value for all
rotation angles when doing rotation only.
"Optimum" signifies the percent increase in
the optimum value when doing rotation only.

value increase (ei=0. 025")

1.06%.

hll

O.4

h12

1.05Y.

logs

Figure 5.14. Value increases resulting from using a 0.025
inch edging increment compared to a 0.125
inch increment. "Average" signifies the
percent increase in the average value for all
rotation angles when doing rotation only.
"Optimum" signifies the percent increase in
the optimum value when doing rotation only.

13.87Z

h21

average

EMI optimum

-0. 3.644

h22

0.26%

104

CHAPTER 6 CONCLUSIONS AND FURTHER IMPROVEMENTS

The capability of handling logs in any shape in 3-D

space and doing positioning operations on the log and every

piece cut from the log are appealing features in a log

breakdown program. In addition, the three levels of nested

dynamic programming algorithms used in SAW3D are more

efficient than the exhaustive searching methods used in

most existing simulation programs, and they provide optimum

sawing, edging and trimming patterns. The capability of

providing either a simulation or optimization approach

makes it a flexible analytical tool to determine the

effects of such factors as scanning data density, sawing

methods, log shapes, and log/cant/flitch orientations on

lumber recovery both in terms of value and volume. It can

be used to evaluate the existing log breakdown process and

to explore some practical rules-of-thumb regarding sawing

methods and log orientations for different categories of

log shapes and sizes.

However, like any other existing optimization program,

there is room for improvement. Presently, this program can

not consider internal defects or annual ring orientation

nor can it be used to do on-line optimization. On a 386

20MHZ IBM compatible computer, logs tested so far have

execution times ranging from tens of seconds to several

hours, depending upon log size and shape as well as

105

106

positioning operation options. There are several avenues

for increasing the speed of the program, including:

Using more efficient algorithms. For example, a

revised dynamic programming algorithm, such as the one by

Gilmore and Gomory (1966), could be used in the trimming

level. The Gilmore and Gomory algorithm accelerates the

searching process by eliminating some of the arcs from the

network of the longest path problem.

Using information generated by the current version

of SAW3D. For example, now SAW3D locates the best

positions of a log and each piece by a simple exhaustive

search. If some rules-of-thumb can be found for different

categories of log shapes and sizes using the current

version of SAW3D, then those rules can be used as

guidelines to reduce the search range.

Using multiprocessors. The dynamic programming

algorithm and the positioning operations lend themselves

well to parallel processing.

Using better scanning data. If a log profile

scanning system is developed that is able to provide a

series of direct measurements at each of the opening face

widths, then all operations of finding widths of opening

faces in SAW3D could be eliminated. This would greatly

speed up SAW3D.

As log scanning technology advances and log breakdown

programs approach the ideal model, significant value and

107

volume recovery gains will be realized. So far, SAW3D has

provided advanced capability in terms of the combination of

3-dimensional log shape, both simulation and optimization

options, positioning operations, and microcomputer

compatibility.

Bibliography

Adkins, W.K., D.B. Richards, D.W. Lewis, and E.H.
Bulgrin. 1980. Programs for computer simulation of
hardwood log sawing. USDA Forest Service Res. Paper
FPL-357. Forest Products Laboratory, Madison, WI.

Airth, J.M., and W.W. Calvert. 1973. Adapting computer
simulation techniques to the sawmill. Canadian Forest
Industries 93(9):48-52.

Airth,J.M., and W.W. Calvert. 1973. Computer
simulation of log sawing. Info. Rept. OP-X-66.
Forintek Canada Corp., Vancouver, B.C. Canada.

Alleckson, T.D., H.B. Sanders, A.J. Koivo, and T.J.
Williams. 1980. Studies on the optimum production of
lumber by computer positioning of logs in sawmills.
Purdue Lab. for Applied Industrial Control Rept. No.
79. Purdue University, West Lafayette, IN.

Anderson, R.B., and H.W. Reynolds. 1981. Simulated
sawing of squares: a tool to improve wood utilization.
USDA Forest Service Research Paper NE-473.
Northeastern Experiment Station, Upper Darby, PA.

Aune, J.E. 1982. Application and benefits of
simulation models in the sawmilling industry. Pages
9-18 in Proceeding of the Process Control In The
Forest Products Industry Symposium. Society of Wood
Science and Technology, Madison, WI.

Bricka, V. 1990. Growth ring pattern consideration
in computer sawing simulation. Unpublished M.S.
thesis. Oregon State University, Corvallis, OR.

Briggs, D.G., 1980. A dynamic programming approach to
optimizing stem conversion. Unpublished Ph.D.
dissertation. Univ. of Washington, Seattle, WA.

Burger, P., and D. Gillies. 1989. Interactive
computer graphics. Addison-Wesley Publishing Company,
Inc, Reading, MA.

Chang, S.J. 1989. Economic feasibility analysis of
the NMR fast imaging scanner. Pages VII-1 to VII-6 in
Proceedings of the Third International Conference On
Scanning Technology In Sawmilling. Miller-Freeman
Publications, San Francisco, CA.

Chassen, L.H. 1987. Application of "snapshot"

108

109

scanning and optimization to log bucking. Pages 39-47
in Proceedings of the Log Bucking Technology
Symposium. Special Publication No. SP-29. Forintek
Canada Corp., Vancouver, B.C., Canada.

Cooney, T. 1987. Bucking decisions: computer programs
help loggers increase revenues. Journal of Forestry
85(1):13-14.

Cummins, L.K., and D.D. Culbertson. 1972. Sawmill
simulation model for maximizing log yield values.
Forest Products Journal 22(10):34-40.

Faaland, B., and D. Briggs. 1984. Log bucking and
lumber manufacturing using dynamic programming.
Management Science 30(2):245-257.

Funt, B.V., and E.C. Bryan. 1987. Detection of
internal log defects by automatic interpretation of
computer tomography images. Forest Products Journal
37(1):56-62.

Geerts, J.M. 1984. Mathematical solution for
optimising the sawing pattern of a log given its
dimensions and its defect core. New Zealand Journal
of Forestry Science 14(1):124-34.

Gilmore, P.C., and R.E. Gomory. 1966. The theory and
computation of knapsack functions. Operations
Research 14(6):1045-1074.

Gluck, P., and W. Kock. 1973. Die Optimale
Rohholzaustormung. Centralblatt fur des gesampte
forstwesen 90(4): 193-228.

Hallock, H., and D.W. Lewis. 1971. Increasing
softwood dimension yield from small logs -- best
opening face. USDA Forest Service Res. Paper FPL-166.
Forest Products Laboratory, Madison, WI.

Hallock, H., A.R. Stern, and D.W. Lewis. 1976. Is
there a "best" sawing method? USDA Forest Service
Res. Paper FPL-280. Forest Products Laboratory,
Madison, WI.

Leach, H.A. 1973. Computer program for log bucking
and sawing, user's manual. Unpublished manual.
Carrol-Hatch Ltd., Vancouver, B.C., Canada.

Leach, H.A. 1979. SAWSIM: sawmill simulation
program. H.A. Leach & Co., Ltd. Vancouver, B.C.,
Canada.

110

Leban, J.M., F. Colin, and F. Houllier. 1990. SIMQUA
- a wood quality simulation software program. SIMQUA
user's manual. French Wood Product Quality Station
(INRA). Champenoux, France.

Lewis, D.W. 1985. Sawmill simulation and the best
opening face system: a user's guide. USDA Forest
Service Gen. Tech. Report FPL-48. Forest Products
Laboratory, Madison, WI.

Lewis, D.W. 1985. Best opening face system for
sweepy, eccentric logs: a user's guide. USDA Forest
Service Gen. Tech. Report FPL-49. Forest Products
Lab., Madison, WI.

Lewis, D.W., and H. Hallock. 1974. Best opening face
programme. Australian Forest Industries Journal
11:21-30.

McAdoo, J.C. 1969. Computer simulation of small-log
mill processing. Forest Products Journal 19(4) :34-35.

Nakata, K. 1986. Simulation of softwood-log sawing.
Journal of The Hokkaido Forest Products Research
Institute 410(3):15-22.

Occena, L.G., and J.M.A. Tanchoco. 1988. Computer
graphics simulation of hardwood log sawing. Forest
Products Journal 38(10):72-76.

Peter, R.K. 1967. Influence of sawing methods on
lumber grade yield from yellow-poplar. Forest
Products Journal 17(11):19-24.

Peter, R., and J.H. Bamping. 1962. Theoretical
sawing of pine logs. Forest Products Journal
12(11):549-557.

Pnevmaticos, S. M., and S. H. Mann. 1972. Dynamic
programming in tree bucking. Forest Products Journal
22(2):26-30.

Pnevmaticos, S.M., P.E. Dress, and F.R. Stocker.
1974. Log and sawing simulation through computer
graphics. Forest Products Journal 24(3):53-55.

Pnevmaticos, S.M., H.G. Lama, and M. R. Milot. 1976.
Application of computer graphics in simulating
sawmilling operations. Pages 1-13 in Proceedings of
9th Annual Simulation Symposium. IEEE, Tampa, FL.

Pnevmaticos, S.M., and P. Mouland. 1978. Hardwood

40. Richards, D.B. 1977.
hardwood log sawing.
27(12):47-50.

111

sawing simulation techniques. Forest Products Journal
28(4):51-55.

Priasukmana, S. 1984. Sawing of sweepy logs using a
live-sawing simulation model. Unpublished M. S. thesis.
Univ. of Washington, Seattle, WA.

Reynolds, H.W., and C.J. Gatchell. 1969. Sawmill
simulation: concepts and computer use. USDA Forest
Service Res. Note NE-100. Northeastern Forest
Experiment Station, Upper Darby, PA.

Reynolds, H.W. 1970. Sawmill simulation: data
instructions and computer programs. USDA Forest
Service Res. Paper NE-152. Northeastern Forest Exp.
Station, Upper Darby, PA.

Richards, D.B. 1973. Hardwood lumber yield by
various simulated sawing methods. Forest Products
Journal 23(10):50-58.

Value yield from simulated
Forest Products Journal

Richards, D.B., W.K. Adkins, H. Hallock, and E.H.
Bulgrin. 1979. Simulation of hardwood log sawing.
USDA Forest Service Res. Paper FPL-355. Forest
Products Laboratory, Madison, WI.

Richards, D.B., W.K. Adkins, H. Hallock, and E.H.
Bulgrin. 1980. Lumber values from computerized
simulation of hardwood log sawing. USDA Forest
Service Res. Paper FPL-356. Forest Products
Laboratory, Madison, WI.

Rickford, E.N. 1989. Scanning for true shape. Pages
II-1 to 11-40 in Third International Conference on
Scanning Technology in Sawmilling. Miller Freeman
Publications, San Francisco, CA.

Rogler, R. K., and H. 0. Canham. 1986. An optimal log
bucking program for microcomputers. The Compiler
4(2):27-30.

Rogers, D.F., and J.A. Adams. 1990. Mathematical
elements for computer graphics, 2/ed. McGraw-Hill
Publishing Company, New York, NY.

Scaramella, G. 1987. Stem optimizing: a critical
link in sawmill production control. Pages 49-63 in
Proceedings of the Log Bucking Technology Symposium.

112

Special Publication No. SP-29. Forintek Canada Corp.,
Vancouver, B.C., Canada.

Sullivan, P. 1987. Bucking optimization with "real
shape" scanning. Pages 64-75 in Proceedings of the
Log Bucking Technology Symposium. Special Publication
No. SP-29. Forintek Canada Corp., Vancouver, B.C.,
Canada.

Tejavibulya, S. 1981. Dynamic programming sawing
models for optimizing lumber recovery. Unpublished
Ph.D. Dissertation. University of Washington,
Seattle, WA.

Tochigi, T., K. Onose, H. Satoh, and K. Sakatsume.
1983. A computer simulation of grain patterns on sawn
surfaces. Mokuzai Gakkaishi 29(12):845-852.

Todoroki, C.L. 1988. Seesaw: a visual sawing
simulator, as developed in version 3.0. New Zealand
Journal of Forestry Science 18(1):116-123.

Thomlinson, W.W. 1987. True-shape scanning: Lloyd
Controls' optimum log value system. Pages 5-15 in
Proceedings of the Log Bucking Technology Symposium.
Special Publication No. SP-29. Forintek Canada Corp.,
Vancouver, B.C., Canada.

Tsolakides, J.A. 1969. A simulation model for log
yield study. Forest Products Journal 19(7):21-26.

Wagner, F.G., and F.W. Taylor. 1975. Simulated
sawing with a chipping headrig. Forest Products
Journal 25(10):24-28.

Wagner, F.G., F.W. Taylor, P. Steele, and P.E.G.
Harless. 1989. Benefit of internal log scanning.
Pages V-1 to V-17 j, of the Third
International Conference On Scanning Technology In
Sawmilling. Miller-Freeman Publications, San
Francisco, CA.

Williston, E.M. 1981. Small log sawmills.
Miller-Freeman Publications, San Francisco, CA.

Wodzinski, C., and E. Hahn. 1966. A computer program
to determine yields of lumber. USDA Forest Service
Misc. Pub. Forest Products Lab., Madison, Wis..

Zheng, Y., F.G. Wagner, P.H. Steele, and Z. Ji. 1989.
Two-dimensional geometric theory for maximizing lumber
yield from logs. Wood and Fiber Science 21(1) :91-100.

APPENDIX

113

Appendix A. The output from sawing a horn-down shaped log
20 inches in diameter and 10 feet long.

log scanning data file: h21.dat
sawkerf = 0.125000 in
edging kerf = 0.125000 in
interval between sawing stages = 0.125000
interval between edging stages = 0.125000

Optimum rotation angle = 90.00
Optimum skew angle = -2.15
pitching angle increment = pitch-range/2.000000

saw placement position
16.884132 (6 in)10.884132 don't cut !

saw placement position :

10.884132 (1 in)9.634132 don't cut !

saw placement position :

9.259132 (1 in)8.009132
optimum pitching angle = 0.000000 (degree)

edging positions:
11.518715 { 10 in)1.643715
don't cut
edging positions:
1.643715 (4 in)-2.356285
trimming positions:
0.300342 (10ft) 119.699661
edging positions:
2.356285 (8 in)-10.231285
don't cut
edging value = $0.81

saw placement position :

8.009132 (2 in)6.009132
optimum pitching angle = 0.000000 (degree)

edging positions:
12.061402 (6 in)6.061402
don't cut
edging positions:
5.936402 (12 in)-5.938598
trimming positions:
0.225342 (10ft) 119.774658
edging positions:
5.938598 (6 in)-11.938598

don't cut
edging value = $6.70

saw placement position :

6.009132 (2 in)4.009132
optimum pitching angle = -0.000000 (degree)

edging positions:
12.369861 (4 in)8.369861
don't cut
edging positions:
7.869861 (12 in)-4.005139
trimming positions:

0.150342 (10ft) 119.849655
edging positions:
4.005139 (4 in)-8.005139

trimming positions:
0.150343 (10ft) 119.849655

edging positions:
8.005139 (4 in)-12.005139

don't cut
edging value = $8.53

saw placement position :

4.009132 (2 in)2.009132
optimum pitching angle = 0.000000 (degree)

edging positions:
8.732307 (12 in)-3.142693
trimming positions:

0.075342 (10ft) 119.924660
edging positions:

3.142693 (6 in)-9.142693
trimming positions:

0.075342 (10ft) 119.924660
edging value = $9.30

saw placement position :

2.009132 (2 in)0.009132
optimum pitching angle = 0.000000 (degree)

edging positions:
9.723623 (12 in)-2.151377
trimming positions:

0.000342 (10ft) 119.999657
edging positions:

2.151377 (4 in)-6.151377
trimming positions:

0.000342 (10ft) 119.999657
edging positions:
6.151377 (4 in)-10.151377

trimming positions:
18.806078 (8ft) 114.806076
edging value = $9.89

114

saw placement position :

0.009132 (2 in)-1.990868
optimum pitching angle = 0.000000 (degree)

edging positions:
9.515594 (12 in)-2.359406
trimming positions:
0.074658 (10ft) 120.074661
edging positions:
2.359406 (4 in)-6.359406

trimming positions:
0.074658 (10ft) 120.074661
edging positions:
6.359406 (4 in)-10.359406

trimming positions:
22.295547 (8ft) 118.295547
edging value = $9.89

saw placement position :

1.990868 (2 in)-3.990868
optimum pitching angle = 0.000000 (degree)

edging positions:
8.699958 (12 in)-3.175042
trimming positions:
0.149658 (10ft) 120.149658
edging positions:
3.175042 (6 in)-9.175042

trimming positions:
0.149658 (10ft) 120.149658
edging value = $9.30

saw placement position :

3.990868 (2 in)-5.990868
optimum pitching angle = 0.000000 (degree)

edging positions:
6.918109 (10 in)-2.956891
trimming positions:
0.224658 (10ft) 120.224655
edging positions:
2.956891 (4 in)-6.956891

trimming positions:
0.224658 (10ft) 120.224655
edging value = $6.83

saw placement position
5.990868 (2 in)-7.990868

optimum pitching angle = 0.000000 (degree)

edging positions:
5.540544 (12 in)-6.334456

115

trimming positions:
2.518005 (8ft) 98.518005
edging value = $5.36

saw placement position :

7.990868 (1 in)-9.240868
optimum pitching angle = 0.246111 (degree)

edging positions:
8.698943 (4 in)4.698943
don't cut
edging positions:
3.823943 (8 in)-4.051057
trimming positions:
0.363937 (8ft) 96.363937
edging positions:
-4.051057 (4 in)-8.051057
don't cut
edging value = $1.26

saw placement position
9.240868 (2 in)-11.240868don't cut !

saw placement position
11.240868(1 in)-12.490868don't cut !

sawing sequence = 1 2 2 2 2 2 2 2 2 1
optimum value of the log = $67.89
lumber tally = 218.666673

116

