
AN ABSTRACT OF THE THESIS OF

Donald L. Stevens, Jr. for the degree of Doctor of Philosophy

in Statistics presented on March 8, 1979.

Title: SMALL SAMPLE PARAMETER ESTIMATION FOR FORCED DISCRETE LINEAR

DYNAMIC MODELS

Abstract approved:
Redacted for Privacy
3rofessir 147s Overton

The problem of estimating the parameters of a forced discrete

linear dynamic model is considered. The system model is conceptualized

to include the value of the initial state as a parameter. The forces

driving the system are partitioned into accessible and inaccessible

inputs. Accessible inputs are those that are measured; inaccessible

inputs are all others, including random disturbances.

Maximum likelihood and mean upper likelihood estimators are derived.

The mean upper likelihood estimator is a variant of the mean likelihood

estimator and apparently has more favorable small sample properties than

does the maximum likelihood estimator. A computational algorithm that

does not require the inversion or storage of large matrices is developed.

The estimators and the algorithm are derived for models having an

arbitrary number of inputs and a single output. The extension to a two

output system is illustrated; further extension to an arbitrary number



of outputs follows trivially.

The techniques were developed for the analysis of possibly unique

realizations of a process. The assumption that the inaccessible input

is a stationary process is necessary only over the period of observation.

Freedom from the more general usual assumptions was made possible by

treatment of the initial state as a parameter. The derived estimation

technique should be particularly suitable for the analysis of observa-

tional data.

Simulation studies are used to compare the estimators and assess

their properties. The mean upper likelihood estimator has consistently

smaller mean square error than does the maximum likelihood estimator.

An example application is presented, representing a unique realiza-

tion of a dynamic system. The problems associated with determination of

concurrence of a hypothetical "system change" with a temporally identi-

fied event are examined, and associated problems of inference of causality

based on observational data are discussed with respect to the example.
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SMALL SAMPLE PARAMETER ESTIMATION FOR FORCED
DISCRETE LINEAR DYNAMIC MODELS

I. INTRODUCTION

One of the first levels of sophistication in modeling a dynamic

system is the construction of a linear dynamic model. Such models have

found extensive application in such areas as ecosystem studies,

economics, radio-biology, pharmacokinetics, and engineering. The models

can be derived from often reasonable elementary assumptions, for

instance, the assumption that transfer rates are proportional to levels.

Even though it is becoming generally recognized that many interest-

ing systems exhibit non-linear behavior, the linear dynamic model is

nevertheless a useful tool for preliminary study of a system. The

behavioral properties of linear system models have been extensively

studied and are well characterized (De Russo, et al., 1965; Freeman,

1965; Meditch, 1969). The model may be an adequate first approximation,

and the attempt to fit the model to data can provide valuable insight.

Moreover, if a non-linear system is near equilibrium and remains so

during the period of observation, the linear system approximation may be

adequate. In addition, there are many instances in which a sub-process

can be represented by a linear model even if the entire system cannot.



2

The modeling process does not end with the selection of the

structural form of the model. Parameter values must be identified or

estimated. In some instances the parameters of a linear dynamic model

can be directly related to measurable physical quantities. Fluxes or

flow rates are often important system parameters, and in some instances

can be measured. Generally, such measurements are difficult or

impossible to make and the parameters of the dynamic linear model must

be estimated from observations of the inputs and outputs of the system,

or from the time-sampled observations of the state variables.

Given the wide range of application of linear dynamics models, it

is not surprisirig that the above problem has been addressed by several

distinct disciplines. Each discipline has developed its own peculiar

approach, emphasis, assumptions, model forms, and terminology. Four

main types or classifications of models can be distinguished. These

are signal flow models, econometric models, compartment models, and

time series models. Roughly these model types correspond to the disci-

plines of engineering, economics, the life sciences, and statistics.

Signal Flow Models

Linear systems arise naturally in many branches of engineering,

and particularly in electrical engineering. Much of the work on

characterizing linear system behavior has been done by electrical

engineers and has appeared first in the electrical engineering litera-

ture. A popular form is the 'signal flow system' leading to a specific

paradigm which has greatly influenced linear system theory. Signal
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flow graphs or diagrams provide a simple means of obtaining transfer

functions (briefly, a transfer function is the ratio of the Laplace

transforms of an output and an input). Corresponding to the represen-

tation of systems by transfer functions has been an emphasis in the

"engineering approach" on means of obtaining the transfer function.

Another characteristic of the engineering approach is the extensive

use of state variable models. Again the signal flow diagram provides a

vehicle for obtaining state equations. The state variable model is a

powerful tool for the investigation of the behavior of linear systems.

Econometric Models

Econometric models are often characterized by having few observa-

tions on many related variables measured with error. In addition many

economic systems are dynamic: their history influences their future.

This has long been recognized in models that include lagged values of

both exogeneous and endogenous variables. The "econometric approach"

to the estimation problem engendered by dynamic systems appears to have

evolved from the concern over correlation between variables used as

predictors and the error term. Such techniques as 'two-stage least

square' and 'instrumental variables', which were developed to handle

'error-in-variables bias', are applied to the estimation problem for

dynamic systems.
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Compartment Models

Another conceptualization that often leads to a linear representa-

tion is the compartment model. A compartment model is useful when

compartments or "pools" and some quantity that "flows" between the com-

partments can be identified. For instance an ecosystem might be modeled

by taking trophic levels as compartments and identifying the flow of

biomass between trophic levels.

The construction of a linear compartment model usually goes through

the following steps:

Identification of the compartments.

Identification of flow pathways (of material, energy, biomass,

etc.) between compartments.

Writing down difference (or differential) equations describing

the dynamics, which make the parameters explicit.

In many applications of compartment models the output is represent-

ed as a sum of exponential terms. Graphical methods and non-linear

regression have been used to estimate parameters.

These models also lead naturally to a state variable representation.

In a first order system the state variables represent the content of the

compartments. In a higher order discrete system other state variables

represent past values of compartment contents.

Time Series Models

The time series approach is generally used in situations where
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large amounts of data are available. Moreover the focus of the approach

is on the noise in the system; much of time series work is concerned

with methods for characterization of noise structure under the assump-

tion that deterministic structure is absent or can be easily removed.

The methods in use can be divided into two main areas: time domain

methods and frequency domain methods. The most popular time domain

methods involve the representation of a process as a mixed autoregressive

moving average (ARMA) model. The frequency domain methods are

essentially non-parametric. They can be thought of as means of obtain-

ing system transfer functions without estimating parameters.

In all of the approaches mentioned above, the underlying mathemat-

ical models are nearly identical, differing mostly in the specification

of noise structure. However, the essential similarity of the models is

often masked by the terminology used to describe them. The economist's

simultaneous equation model with lagged endogeneous variables is the

engineer's forced linear system model and the ecologist's driven com-

partment model. The ARMA model of time series is also a linear system

model, although a forcing or control function is usually not included.

Linear system terminology and state variable format will be used

in the following development. This format has a natural interpretation

for all of the approaches giving rise to these models. It is also a

form that is easily obtained from the differential or difference

equations that are often used to describe the dynamics of a linear

system. This is a common underlying general linear system structure.

The inLant behind this research was to develop an estimation pro-
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cedure as a part of a paradigm for modeling environmental systems. The

data are envisioned as being collected at discrete, regularly spaced time

intervals. Hence a development of the model in terms of difference

equations was natural. There is no real limitation, since a natural

correspondence exists between constant coefficient linear difference and

differential equations.

The modeling effort is conceived of as taking place in a modified

"black box" environment, and as being a part of a paradigm for the

study of an environmental system. The effort is not merely to fit

equations to data; rather, the effort is to understand the phenomena

that are being modeled. The structure of the model is expected to mimic

the structure of the real system. The model is intended to be realistic

and not just an empirical representation of behavior. The model is

regarded as one step of an iterative process in which current knowledge

and theory is tied to data in order to both test the theory and give

direction to future data collection efforts.

It is not assumed that the system being modeled is fully under-

stood. Rather, the explicit assumption is made that the external qual-

ities of the system have been only partially identified. The system

may be driven by an input that has not been accounted for in the obser-

vation protocol that was used to collect the data. It may also be that

an input cannot be measured, even if one were clever enough to identify

it and acknowledge its importance. For instance the introduction of a

probe without destroying the system may not be technically feasible.

Inputs to the system that have been identified in the theory and are
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capable of being measured will be called accessible; all other inputs to

the system will be called inaccessible. Mote that inaccessible inputs

includes inputs that statisticians-would call the error term, and an

engineer would call noise. It may also include other inputs, the

discovery of which may well be an important research activity.

The state variable representation of a p
th

order discrete linear

system is

z(k +l) = Oz(k) + Bu(k) + 0w(k) . (1.1)

Here z(k) is the pxl state vector at time k, u(k) and w(k) are vectors

of inputs at time k, 4) is a pxp state transition matrix, B is a pxr

accessible input transition matrix, and 0 is a pxq inaccessible input

transition matrix. The vector u(k) is regarded as an accessible input

and w(k) as an inaccessible input.

o Approaches in the Literature

A variety of methods for estimating the parameters of (1.1) have

been proposed. Since much of the development of systems theory has

been carried out by electrical engineers, it is not surprising that

some implicit assumptions of the engineering approach to system identi-

fication are that the system is available for experimentation and that

data collection is easy and inexpensive. Thus, the outputs can be

observed for inputs that have been carefully chosen.

The easy and often very quick availability of data has made on-

line techniques attractive. A number of on-line methods have been pro-
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posed (Prasad and Sinha, 1977, Hsia, 1976, Desai and Oldenburger, 1969,

Steiglitz and McBride, 1965). The extended Kalman filter (Sage and

Melsa, 1971) is an on-line technique in which unknown parameters are

estimated as part of an augmented state variable.

Stochastic approximation is also essentially an on-line technique.

Saridis and Stein (1968a) consider several stochastic approximation

algorithms for identifying parameters. Briefly a stochastic approxi-

mation algorithm is based on expressing a parameter estimate as a

function of a previous estimate and additional data. The authors use a

model similar to (1.1), with (I) having the special form

0 I

where cp' = (4)1, . B is taken as a pxl matrix, 0 is assumed

to be known, and the noise properties are assumed to be known. In

addition it is assumed that both the input and output are observed with

error, so observation equations of the form

y(k) = (1,0,0,...,0)'z(k) + n(k)

m(k) = u(k) + v(k)

are included, where {n(k)} and {v(k)} are white noise.

The algorithms are based on minimizing the objective function

E[1(y(k+1) - el)1z(k) - B'u(k) - Ow(k))2] ,
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where EN is the expectation operator, which leads to an estimator of

the form

(i) = [E(YY.)] E[Yy]

where Y = (y(k), y(k+1),...,y(k+p-1), m(k),...,m(k+P-1))'

which can be written as

(1)
= + [E(YY')]-1 E[Yfl

where E, is a composite error term.

The authors note that the estimates that minimize the objective

function are biased, and they present several algorithms that correct

for bias. The first assumes all noise characteristics are known. Two

additional algorithms relax that assumption but require repeated runs

of the system's transient response. For each run 2p measurements of

the output and input are collected. The algorithms assume the initial

states to be drawn from an unknown but stationary probability distri-

bution.

Sairdis and Stein (1968b) present another stochastic approximation

algorithm that does not require knowledge of the noise statistics. In

this case the accessible input {u(k)} is assumed to be a sequence of

independent, zero mean random variables, and the system is assumed to

be in a stationary condition.

In each of the above algorithms convergence in mean square has been

obtained. In the procedures that do not require knowledge of the noise

covariance, no provision is made for estimating the covariance. Con-



10

vergence seems to be rather slow. An updated estimate of the parameter

vector is obtained once every p or 2p measurements, and in the examples

given, from 100 to 10000 updates were used.

Although the above techniques do not appear to be useful for the

problem at hand, they might be useful in updating estimates as addition-

al data are collected.

Kashyap (1970) has presented a derivation of the maximum likeli-

hood estimators of the parameters of a discrete stationary linear system.

The model is equivalent to (1.1), but stated in difference equation

format as

n n

Z(i) ;E: = 2] C.U(i-j) W(i) .

j=1 j=1

The characteristics of W are specified by the covariance matrices Fj,

j = 0,1,...,n where

E[W( ) W(i-j)'] , j = 0,1,...,n

F. =

to , j > n

A set of coefficient matrices B., j = 1,...,n are defined implicitly by

n-i

Fi = E R

j=0 (
Re Aj Ai+j)) = 0,

whereRe=Cov(Z(i)).EstimatesofA.J' and C.' j= 1,...,n are

obtained by minimizing

det(5: e(i) e' (i)/N)

i=1
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where N is the sample size and the e(i) are defined by

n

e(i) + E B. e(i-j) = Z(i) + LA. Z(i-j) - C. U(i-j)).
j=1 j=1

The result is essentially a large sample result, since some

expressions were replaced by limiting values. The method also is

computationally difficult, requiring the solution of a constrained

optimization problem.

Bellman et al. (1965) present a method for parameter identifica-

tion based on the numerical inversion of Laplace transforms. The

system is observed at time points that correspond to the ordinates of

numerical quadrature formulas. The sum of squared differences of

observation and model in the transformed domain is minimized. No

provision is made for the presence of noise in the system.

Stoica and SOderstrOm (1977) develop an iterative algorithm to

estimate the parameters of (1.1). At each stage of the iteration esti-

mates of (I) and B are obtained by least squares using observations that

have been whitened through filters obtained in the previous stages.

The filter for the j
th

stage is obtained by minimizing

2: (TH-eF)-1 d(i))2

where F is the forward shift operator defined by F(d(i)) = d(i +l),

th
and d.(i) = Z(i) - Z.(i) is the at the j

th
stage of the

iteration.
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The approaches in the econometric literature seem to place great

stress on the consistency of an estimator. Although consistency is

certainly a desirable property, it in itself is not a sufficient

criterion. For instance minimum mean square error might be a more

relevant criterion for the small samples that are common in econo-

metrics. However, the estimators of linear system parameters commonly

in use in econometrics have been shown simply to be consistent.

Griliches (1967) recommends two stage least squares for estimat-

ing the parameters of a model of the form

z
t

= az
t-1

+ Ru
t
+

t

when the {et} process is autocorrelated. In this estimation technique,

zt is regressed on ut, ut_1, ut_k, where k is chosen large

enough to obtain a "reasonable" estimator zt(u). Then a and R are

estimated using least squares and the model

A
z
t

= az
t-1

+ Ru
t

.

Johnston (1972, pp. 316-320) discusses the estimation problems

associated with dynamic linear models. He suggests use of a two stage

least squares procedure that is best explained by example. Let the

model be
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zt = + 3,Z +6 U + W
0 i t-1 '2 t t

where W
t

= pW
t-1

+ e
t'

and fc
t'

is a white noise sequence. Then

so that

PZ
t-1

= pf3
0

+
P 17t-2

+
" t-1

+ p
Wt-1

Z. = a0(1-p) + (si+p)zt_i sipzt_2 + a2ut

- (3

2
pU

t-1
+

t
.

The coefficients of the above equation are estimated using least

squares and an estimate of p is obtained from

2P

This estimate is used to compute

ti ti

Yt = Zt - pZt_i and Xt = Ut - pUt_i ,

and a
1

and s2 are estimated by least squares from

Yt
=

a0(1-0 B1Yt-1 132Xt ct

Fair (1970) develops a procedure that is a mixture of instrumental

variables and two stage least squares. The procedure requires a first
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stage regression to obtain an instrument for the second stage. The

second stage regression is repeated in either a grid search or an

iteration to locate a least squares estimate of the noise serial corre-

lation parameter. A similar method is given by Dhrymes et al. (1974).

In general the methods commonly used in econometrics to estimate

linear system parameters are limited to first order noise models and

do not appear to be conveniently extended. Also the parameters are

often estimated sequentially, not simultaneously. Even though such

estimates may be consistent, they in general will not be minimum

variance nor minimum mean square error.

Most of the techniques for parameter estimation that have appeared

in conjunction with the use of compartment models have been relatively

naive. Jacquez (1972) recommends several methods: (1) use smoothed

estimates of derivatives and least squares to fit differential or

difference equations directly, (2) integrate differential equations

using Simpson's rule and fit to data, (3) solve the differential

equations and fit using methods given in Berman (1962a, 1962b) for

fitting sums of exponentials, (4) numerically "deconvolve" the integral

equation

g(t) = f(T) h(t-T)dT

to obtain h(t), the system impulse response function, where f(t) is an

input and g(t) is the system output.

Rescigno and Segre (1962) suggest using the method given by

Levenstein (1960) or Prony's method (Weiss and McDonough, 1963, or
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Dudley, 1977). These methods involve using Z or Laplace transforms to

obtain algebraic equations in the unknown parameters and then using n

observations to estimate n parameters.

The standard parametric time series approaches to estimating the

parameters of an ARMA process assume that there is no forcing function

or a constant forcing function, and the approaches do not appear

to be easily adaptable to the present case. The most straight-forward

approach (Jenkins & Watts, 1968, p. 189-190) replaces unobserved

values by their unconditional expectations of zero. Then, an initial

guess is made of the parameters and estimates are derived by minimizing

the error sum of squares iteratively. This approach results in

conditional maximum likelihood estimates. With a large sample the

effect of conditioning should be slight.

Durbin (1960a,b) considers several similar models. Asymptotically

efficient estimators are developed for autoregressive models, forced

autoregressive models with uncorrelated noise, forced linear models

with autoregressive noise, moving average models, and autoregressive

models with moving-average noise. The model most similar to the one

treated here is the autoregressive model with moving average errors.

The efficient estimation algorithm that Durbin develops is an iterative

method in which the autoregressive and moving average parameters are

estimated alternately. The moving average estimator exploits the auto-

regressive representation of a moving average process. The estimates

used for autoregressive parameters are ordinary least squares estimates.
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An implicit assumption of Durbin's method is that sufficient data

are available so that the autoregressive approximation can be made as

accurate as desired. Thus, the method may not be suited to small

sample situations. Moreover, some simulation results in Durbin (1960b)

indicated that the moving average parameter estimates may be seriously

biased.

The approach of Box and Jenkins (1970) exploits the fact that an

unforced ARMA process can be described by either a forward or backward

equation with the same parameters, both leading to the same covariance

structure. The backward equation is used to obtain an approximate

conditional expectation of Z(0) by replacing Z(T+1) with its uncon-

ditional expectation 0 and propagating it back to time 0 by using the

observations and assumed values of parameters. The technique is

called "backforecasting." Again, parameter estimates are obtained

iteratively by minimizing the error sum of squares.

If a forcing function is present, however, these approaches are

not easy to apply. The unconditional estimate of the state at time 0

or T+1 is no longer zero. It depends on past values of the input and

the unknown parameters. The duality between the forward and backward

descriptions of the system required by the backforecasting technique

no longer exists. It is not evident how one would begin the recursion

to obtain parameter estimates.

An approach that has been used (McMichael and Hunter, 1972) is to

estimate the (I) and B of (1.1) as if 0 = I and w(k) were white noise.
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The residuals are then modeled by an appropriate order ARMA model.

This approach has the virtue of producing a small residual sum of

squares with a few parameters. However, the estimates for the determin-

istic portion are still unweighted least squares estimates, not maximum

likelihood estimates and not Gauss-Markov estimates. The approach

would probably be improved if it were expanded to iterative form. If

the model were given by

Z = xf3. + 6

where X consists of u and lagged values of Z, then the first estimate

of is

Ri (X'X)-1X'Z .

ti

The residuals Z
1
= Z - Z

1
are then modeled by an ARMA process which

provides an estimated covariance matrix r1. This in turn leads to a

new estimate of f2, given by

1'3'2

etc., until, hopefully, the solution converges.

A shortcoming of the above algorithm is the required inversion of

the r matrix. It is possible to write down an expression for the

elements yid of the matrix; however, no exact expression has been

obtained for the inverse of the covariance matrix of a general ARMA

process. Siddiqui (1958) has obtained an explicit form for the inverse

of a pure AR process, Shaman (1972) has given techniques for construct-
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ing the inverse for a pure MA process, and Shaman (1975) has provided

an approximate inverse for a general ARMA process.

The above estimation method indicate two reasons why maximum

likelihood estimates of the parameters of a forced dynamic linear model

are not in common use: starting values are not available and the

covariance matrix is difficult to invert. The current research has

been directed towards developing an estimation procedure that takes

explicit account of the starting values and avoids the need to compute

the inverse of a large matrix.

To place the proposed answer in the proper context, a digression

is in order. The situations where we envision the estimation scheme

being applied are modeling efforts aimed at understanding ecological

systems. Many such systems tend to have long memories. The interval

between successive observations is often months or years rather than

seconds. Moreover, the real system is almost surely non-linear so that

the constant coefficient linear model should, at the very least, be a

time varying linear model. Certainly a time invariant linear model is

not adequate over the range of behavior that the system can exhibit.

However, provided that the system is not too far from equilibrium, that

the time variation in the coefficients is not too great, and provided

that we do not attempt to use the model for too long a time, the time

invariant linear model can still provide valuable insight into the

structure of the real system.

Still the assumption of a stationary system over a long period of

time (long enough to acquire sufficient observations to make classical
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time series approaches feasible) is difficult to defend. Within the

narrow context required to define the systems in order to study them,

the systems are almost surely not sufficiently stationary over an

appreciable length of time.

Mdreover, the parameter estimates obtained from the observations

of a particular system at a particular time are, strictly speaking, not

portable to another system at another time unless the two systems are

regarded as different realizations of the same stochastic process. In

fact, this is seldom if ever true for the kinds of systems that we

intend to model. In the perspective of current ecosystem theory, the

observations are of essentially unique realizations.

But even if one treats the different realizations as deriving from

the same stochastic process, it is permissible to treat the initial

conditions for each realization as parameters of that realization. The

other parameters would then be constant for the process, and the initial

condition parameters would be variables among realizations of the pro-

cess. Whether or not the observations are considered a unique reali-

zation or a member of a family generated by a process, this orientation

is useful in addressing the parameter estimation question.

Therefore the approach taken here is to parameterize the initial

conditions, and to estimate them along with the other model parameters.

The model and the estimation procedures will be developed in the next

chapter. Two sets of estimators are derived. The maximum likelihood

estimator (PILE) was first derived, along with an algorithm for obtain-

ing the estimate that was computationally feasible. However, examin-
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ation of the likelihood function indicated problems. Hence another

estimator, the mean upper likelihood estimator (MULE), similar to the

mean likelihood estimator (MELE) suggested by Barnard (1959), is also

developed.

Barnard's approach to inference is quite interesting. It is based

on the 'likelihood principle' advocated by Barnard (1949, 1962) and

Birnbaum (1962). A concise discussion of the likelihood principle and

the inferential-techniques based on it can be found in Jenkins and

Watts (1968). One of the precepts of 'likelihood inference'is that the

inference drawn from a sample should be a summarization of the entire

likelihood function. The maximum likelihood estimator is criticized in

this regard because it can be misleading, particularly for bounded

parameter spaces.

In the estimation problem being considered in the thesis, the

parameter space for the 0 and 0 parameters is bounded. Moreover, the

MLE's of the 0 parameters showed a distressing tendency to be near or

on the boundary of the parameter space. In these circumstances the

mean likelihood estimator should be superior to the MLE (Jenkins and

Watts, 1968).

The MLE's of the and B parameters appeared to be quite good,

provided the 0 parameters were estimated accurately. The MLE's of the

0 and B parameters are essentially weighted least squares estimators.

These estimators should have all the optimal properties of both MLE

and Gauss-Markov estimators, provided the weights (which are functions

of the 0 parameters) are reasonably accurate.
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II. FORCED ARMA MODEL

A. Derivation of State Equations

If (1.1) were treated in complete generality, then p(p + q + r)

parameters would be required. However, it is often possible to elimi-

nate some of these because of the model structure. For instance, the

cannonical form of the I. - matrix introduced below for a single out-

put system requires only p (as opposed to p
2
) parameters. Secondly

it may be known that some elements of the input transition matrices

are zero. Although such restrictions on the input transition matrices

are necessary during application of the algorithm, they needlessly

complicate the notation during the derivation and will be ignored.

The dimensions of the B and 0 matrices will be made conformal with the

(I) matrix by filling with zero's if necessary. To minimize notational

labor, the estimation algorithm will be developed for a single output,

single input p
th

order difference equation. The extension to a

multiple input system is easy, and a generalization to a multiple

output system will be developed in Chapter 6.

The forward shift operator F is defined by F z(k) = z(k +l). The

definition can be extended to operators of the form

where

Ip(F) = (p1FP-1 +
2Fp -2

+ + (pp

fp(F)z(k) = (plz(k+p-1) + (p2z(k+p-2) + + (ppz(k) .
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The difference equation form of the model is then

z(k+p) = (Dp(F)z(k) + Bp(F)u(k) + Op(F)w(k) . (2.1)

The inaccessible input w(k) will be modeled as an AR process of

the form

A (F)w(k) = a(k) , (2.2)

where a(k) is a zero mean Gaussian white noise process. By multiply-

ing both sides of (2.1) by A(F) and substituting (2.2), one gets

Ap(F)z(k+p) = Ap(F) (Dp(F)z(k) + Ap(F)Bp(F)u(k) + Op(F)a(k) .

Since the product of two difference operators, e.g., Ap(F) (Dp(F), is

just a higher order difference operator, e.g., A*
2p

(F), the last

equation can be written as

z(k+2p) = 02p(F)z(k) + B;p(F)u(k) + op(F)a(k) (2.3)

which has the same form as (2.1) except the noise process is now

uncorrelated.

By the foregoing argument, it is seen that the introduction of

the AR structure of the noise process w(k) increases the order of the

system model, but does not extend its generality. Hence, the model

will be

FPz(k) = (Dp(F)z(k) + Bp(F)u(k) + Op(F)a(k) . (2.4)
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Without loss of generality one can take el = 1 and a(k) = N(0,a2).

The coefficients of 0
p
(F) will be renumbered so that e

1
is the first

non-unitary coefficient.

When the parameters are referred to as groups, those in bp, Op,

and B will be termed autoregressive (AR), moving average (MA) and

regression parameters, respectively.

A set of cannonical state equations representing (2.4) is (Chan,

et al., 1972)

x (k+1); (I)

1
1 0 ... 6] x,(k)

.

(1)2
0 1

1

x (k+1) (I) 0
P 1

0 xp(k)

_J _

sl

p

7

u(k)

a(k) (2.5)

ep

or, in vector-matrix notation

X(k+1) = AX(k) + BU(k) + Ca(k)

and the observation equation

z(k) = xl(k) . (2.7)

The cannonical form given by (2.5) holds only if the roots of the

(2.6)
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fundamental equation

-1 + (piF + q)2F
2
+ + r

P

are distinct. It will henceforth be assumed that the roots are indeed

distinct. The following theorem implies that this assumption is not

a serious limitation.

Theorem 2.1: Let zk = aori
k
+ al(ri+c)

k
and wk = bar)

k
+ blkri

k

for k = 0,2,3,..., and suppose z0 = w0, z1 = w1. Then Rim
"

= wk,
e+0

k > 1.

Proof: From the initial conditions, it follows that b0 z0,
0'

bl = (z1-z0r1)r1 and a0 = z0 -al, al = (z1-z0ri)/E. Thus, al = (r1b1)/e

and a
0

= b
0
-(r

1

b
1

/e). Hence,

t im (zk-wk) = (a0rik + al(ri+e)
k

- borl
k

- bikr1
k

)

E e+0

k k k

+
rib, (, .6)

1
b
1
kr

1
e+0

= r
1

b
1

tim b
1

kr
1

k

e-0

dr
1

= r
1
b
1 dr

1

b
1
kr

1

k

k

= 0

Theorem 2.1 implies that the output of a system with repeated

roots in the fundamental eciation can be matched within arbitrary
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closeness by a system whose fundamental equation has distinct roots.

In the problem to be solved, there are available observations

z(1), z(2), z(T) and u(0), u(1); u(2), u(T-1). The

parameters (lir ..., (1)p; sl, ..., 2p; 81, Gp and a
2
are unknown

and to be estimated from the observations. Unfortunately, these

parameters and the observations that can be collected do not completely

describe the behavior of the system during the period of observation.

A description of the state of the system at the time observation began

is missing. This is clear from the convolution form of the solution to

the state equations:

k

X(k+1) = A
k+1

X(0) + 2: A
k-m

(BU(m) + Ca(m)).

m=0

(2.8)

In the next section a parametric representation of the initial conditions

will be provided.

B. Derivation of Likelihood Equation

A state variable representation of a system is not unique and the

'X' state variables introduced in Section IIA are not best suited for

use in estimating the state at time 0. An attempt to use the convolu-

tion in (2.8) for estimation results in a complicated non-linear esti-

mation problem. However, by examining the difference equation form of

the system model, it can be seen that z(k), k > p depends on output or

input prior to time 1 only through the values of z(i), i = 1,...,p.

This information contained in the prior values of the output and

accessible input can be embodied in the state at time 0 estimates. Thus,

one is led to seek a set of state variables that appear explicitly only
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in the first p expressions for z(). As the process evolves from time

1, the explicit presence of these state variables disappears. A

particular set that accomplishes this is the 'W' state variables defin-

ed implicitly by the following representation:

z(1) = (p1w1(0) + cp2w2(0) + (13,

P
w
P
(0)

+ 6
1

u(0) + a(0)

z(2) = chz(1) + 42w1(0) + + (i)pwp_1(0)

131u(1) 132u(0) a(1) ela(°)

z(p) = z(p-1) + (152 z(p-2) + + q)pwl(0)

+ al u(p-1) + a2u(p-2) + + Sp u(0)

+ a(p-1) + Ola(p-2) + + ep- ic`(-0)

z(p+1) = 4)1 z(p) + (1)2 z(p-1) + + z(1)

+ R1 u(P) + F.i2u(P-1) + +
RP

U(1)

a(p) ela(P1) ep a(0)

z(k) = cb1z(k-1) + cp2z(k-2) + + (ppz(k-p)

+ a1u(k-1) + a2u(k-2) + + Spu(k-p)

+ a(k-1) + e1a(k-2) + + epa(k-p-1), k > p.
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It can be shown that the vector W(k) is a linear transformation of the

vector X(k). The initial state W(0) will be termed a 'regression para-

meter' along with 6p. Note that by regarding the initial state as a

parameter, the z(k) process is regarded as a non-stationary stochastic

process. This turns out to have some significant advantages.

The transformation from X and W is a transformation of the state

variables, i.e., a transformation of the system model. It is also

convenient to make a transformation on the observations, i.e., a trans-

formation of the statistical model. The new variable Y is defined as

follows:

y(1) = z(1)

y(2) = z(2) - cp1z(1)

y(p) = z(p) - cpiz(p-1) - - op_lz(1)

y(k) = z(k) - 4iz(k-1) - - cbpz(k-p), k > p.

This transformation can be written as

Y = MZ . (2.9)

M is a TxT matrix with l's on the diagonal, -(01's on the first sub-

diagonal, -(02's on the second subdiagonal, etc.

The expected value of Y, say my, is given by



Py(1) 4'1141
thIpp + 81U(0)

/13/(2) 4)21"11
Blu(1) f32u(0)

1-Iy(p) = Opwl 13111(P-1) + + 8p_iu(1) + 8pu(0)

(k)
= 8

1
u(k-1) + + a u(k-p), k > p

The covariance matrix of Y, say
2
ET, can be written as

where

a2zT = a2R'R ,

R

1

0

28

(2.10)

and Jo is the TxT identity matrix, J1 is a TxT matrix with l's on the

first diagonal above the main diagonal, and = i > 1.

Since E
T
is the product of the two triangular matrices with ones on

the diagonal, IET1 = 1. Moreover, M is also a triangular matrix with

ones on the diagonal, so the covariance matrix of Z has unit determi-

nant.

An expression of the inverse of ET will be needed. It will suffice

to have an expression for R
-1

. It can be shown that

T-1

R-
1

= /2
t

J
t '

t=0



where the 7.'s are defined recursively by

7
0

= 1

= - E
t
Tr
k-t

, k = i > 1.

t=1

Then letting ET
-1

= (sij) it follows that

T-j

Slj ..=E 7 7 .

r r+J-1
r=0

29

(2.11)

for 1 < i < j < T, and sji = sij. It was earlier assumed that the

a(k) process was Gaussian white noise. It follows that both Y and Z

have Gaussian distributions, and that the likelihood function is

L(4), 0, w,0., a
2
/Z) = (27ra

2
)

-T/2
exp

(-(Z-11z)W2T1M(Z-uz))
(2.12)

2a
2
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III. DERIVATION OF PARAMETER ESTIMATORS

A. Discussion

The problem was first approached as one of obtaining MLE's for all

the parameters. As was noted in the introduction, the MLE's of the MA

parameters (the moving average parameters defined in Section II A) were

not well behaved for small samples. Hence a different estimator was

sought.

The MA parameters are not of particular interest. The AR (auto-

regressive) and regression parameters have an intrinsic interest; in

many cases they have an immediate physical interpretation. The MA

portion of the model must be included because "good" estimators of the

parameters of primary interest require good estimators of the covariance

structure of the observations. Further, reported experience indicates

that models with feedback in the variables of interest tend to have

feedback in the noise term and ARMA processes can accomodate a variety

of stationary stochastic processes.

An additional property that would be desirable in the MA estimators

is that they tend to stay away from boundaries. This reflects our bias

towards the view that values near the invertibility boundary are not

physically likely. Perhaps a Bayesian approach would prove to be

fruitful, but it was not investigated. Note, however, that the

approach that was adopted is equivalent to taking a uniform prior over

the parameter space.
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The mean likelihood estimator proposed by Barnard (1959) (and recom-

mended by Jenkins and Watts (1968)) is defined as

ai = L(XIX)&//71.(XiX)dA

A A

where A = (Al, A2, ..., AK) is a parameter vector, L(XIX) is the likeli-

hood function of A given X, and A is the joint parameter space.

Application of this estimator in the present case quickly runs into

difficulties. The integrals with respect to the AR and MA parameters

cannot be evaluated analytically. It would be possible to perform the

integration numerically, but relying on numerical integration for the

general case would be cumbersome. But there is another approach that

avoids numerical integration with respect to the AR parameters.

As will be shown below, the MLE of the AR, regression, and vari-

ance parameters can be readily computed as functions of the MA parameters.

The estimators can be expressed in the explicit functional form

and

= h
1
(e)

= h
2
(e)

2
a = h

3
(e) .

The joint likelihood function can be reduced to a function of only

the MA parameters by replacing the other parameters by their MLE's,

expressed in terms of the MA parameters. The resulting function will be

termed the upper likelihood function (ULF):
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ULF(8) = max L(4,8,,c).`(X) .

= L(hl(e),e,h2(e), h3(e)IX)

The mean upper likelihood estimator (MULE) is defined analogously to

the MELE:

ei = fe. ULF(e)de/OLF(0)de

where 0 is parameter space for 8. Once the estimate 6 of e is obtained

estimates of the other parameters are obtained by substituting 8 into

the functions hl, h2 and h3. If es' were an MLE, then 4, and c32

would also be MLE's. Generally the MULE should have the same asymptotic

behavior as the MLE, since large sample likelihood functions tend to be

symmetric, unimodal functions.



B. Estimators for AR and Regression Parameters

Except for additive constants, the log likelihood is given by

2,(,eS,w,0-1Z,U) = -T 2,n(a) - (Z-1.1
z
)1WE

T
1M(Z-1.1

z
)/2a

2
.

Maximizing with respect to (I), 0, B, and w is equivalent to mini-

mizing

(Z-pz)WE.1.1M(Z-pz) = (m
-1

(Y-1-iy)Im`E
-1

m(m
-1

(Y-Py))

(Y-uy)1z-r-1(Y-1.1y)

uY can be expressed algebraically as

uY = Gp ,

where

p G

(1)1 ... 1.)p U(1 ) 0. ... 0

q)2 :- 0 u(2) u(1) ... 0

.....
.

. . ..

(1).. 0... 0 u(p) u(p-1) ...'u(1)

0 ... 0 u(p+1) u(p) ... u(2)

33

(3.1)

(3.2)

0 ... 0 u(T) u(T -p +l)
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If tp and e are temporarily regarded as being fixed, the maximiz-

ing value of p is given by

P),e) = (G'ET-
1G)-1

(3.3)

If the expression for o(cp,9) is substituted back into (3.1) and

the expression is simplified, there results

where

min (Y IET
1

(Y-uy)
w,13,(1),(3

= min (Y -GP)14 (Y-GR))
(1),8

= min Y' E
T

1
(I-G(G'E

T

1

G)
-1

G'E
T

1
)Y

q,e

= min Y' pY ,

-1 -1 , -1 -1 , -1
= ET - ET G(G ET G) G ET

The following theorem explores the structure of the matrix

In particular it implies that ip is independent of the AR parameters.

Theorem 3.1: Let E be a TxT covariance matrix and let

G

P ' U
1

0 U
2
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be an Tx2p matrix of full rank. Let P be a pxp non-singular matrix.

Let S = E
-1

and let S and E be partitioned in the same manner as is

G, i.e.,

S=
T-p

Then

P T-p p T-p

----y---;

S11 _is121
j) I'll E12

---- , -
ir 7

S
21 S 22i T-P 1.L21 -22

S[I-G(G'SG)-1G'S] =

0 0

0
a./

71rT u (ur111 )11' 711
-221-'-'22-22'22 -22J

The proof of the theorem is long, and is broken down into several

lemmas. The lemmas use the following notation.

(G'SG)-1 =

P'S
11

P P'silui P's12u2

U
1
S
11

P U
1
S
11

U
1
+ U

2
S
21

U
1

+U
2
S
21

P +U
1
S
12

U
2
+ U

2
S
22

U
2

r-
B11 B12

B21 B22

A
11

A
12

A
21

A
22

_ -1
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Lemma 3.1. Using the same notation as in Theorem 3.1

A11P'S11 + Al2U1S11 + Al2U2S21 = P-1

Since A
12

= -A
11

B
12

B
22'

it follows that

A
11

P'S
11

+ A
12

U
1
S
11

+ A
12

U
2
S
21

but

and

A11EPIS11

P'S
11

=

U
1
S
11

+ U
2
S
21

1(11'c

11
P
-1

= B
21

P
-1

)]
(3.4)

(3.5)

(3.6)

Substituting 3.5 and 3.6 into (3.4), there results

-1 -1 -1
A
11

[B
11

P - B
12

B
22

B
21

P

-1 -1 -1
= A

11
[B

11
- B

12
B
22

B
21

]P = P .

Lemma 3.2. Using same notation as in Theorem 3.1

A
21

P'S
11

+ A
22

U
1

S
11

+ A
22

U
2
S
21

= 0.

Since A
21

= -A
22

B
21

B
11

and B
11

= P
-1

S
11

(P')
-1



Then

A21 A22EU1S11P
U2S21PP- 1STI(P)-1

= -A
22

U
1
(P')

-1
- A

22
U2 S

21
S
11
(P)

-1

and

A
21

P'S
11

+ A
22

U
1
S
11

+ A
22

U
2
S
21

= - A22U1S11
A22U2S21 + A22U1S11 + A22U2S21

= 0 .

Lemma 3.3: Using the notation of Theorem 3.1

A P'S +AUS +AUS (U E U )

-1
U E

21 12 22 1 12 22 2 22 2 22 2 2 22

Using

1
A
21

= -A
22

B
21

B
11

= -A
22

B
21

P
-

S
11

(P')
-1

,

it follows that

A
21

P'S
12

+ A
22

U
1
S
12

+ A
22

U
2
S
22

= A
22

[-B
21

P
-1

S
11

S
12

+ U
1
S
12

+ U
2
S
22

]

= A
22

[-(U1 S
11
P+U2 S

21
P)P-

1
S
11 + U1S12 +U2 S22 ]

A22[ -U1S12 U2S21 c
'11, /2

U1S12 + U2S22]

(3.7)
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But

A
22

[
0 0-10 1-1

-B22 L'21"11u12'

[U1 S
11

U
1
+U2 S

21
U

1
+Li1c

12
U
2
+U2 SU

U
1
S
11

PP
-1

S
11

P
-1

PS
11

U
1

U
1
S
11

PP
-1

S
11

P
-1

PS
12

U
2

U
2
S
21

PP
-1

S
11

P
-1

PS
11

U
1

U
2
S
21

PP
-1

S
11

PP
-1

S
21

U
2
]
-1

[u2(S22 - S21S7I
1S12)U2]-1

r_u;Eilg23-1

By substituting this result in (3.7), the lemma is proved.

Lemma 3.4: Using the notation of Theorem 3.1,

P(A1ess12 Al2U1S12 Al2U2S22)

' 1

= S
11

S
12

[
I - U

2
(U

2
E
22

U
2

)

-1
U2E29] - UlfH1 1-1111-1

2`r22" v u2`722

Proof: Let C
2

= A
21

P'S
12 +

A22 U1 S, +A
22

A22U2S22 and let
12

C
1

= A
11

P'S
12

+ A
12

U
1
S
12

+ A
12

U
2
S
22. Then
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C1 - [A - A A1A ]PS
1 11 12 22 21 12

1
= C

1
- B

11
PA

12

1 -1
Cl - P S

11
S

By Lemma 3.3, C2
(U2

22U2)U2 and A22 = (U2 22U2), so that

' -1 -1 -1

C1
= A

12
U
2 22

+ P S
11

S
12

- 1 '

but A
12

= -B
11

B
21
A
22

=

l"p( ) l(p.silui
PIS12U2)A22

- 1 -1 -1
= -P U

1
- P S

11
S
12

U
2

Hence,

)-1u,1 turu 1-1 ur-1
PC1

Sl1S12[I - U(U E U
4 2-22 2' 2'22' 1' 2'22 2' '2'22

Proof of Theorem 3.1: It follows from Lemmas 3.1 - 3.4 that

G(G'SG)-1G'S

IP cc rr 111-1-1
L4 u2(jr272uH 2j

1

11 12
U
2 22

39



40

Hence

S[I - G(G'SG)-1G'S]
0 0

-1 ' -1 11
o E

22
[I - U

2
(U

2
E
22

U
2

)
-1

U
2
E
22

.1

Define the (T-p) x (T-p) matrix

2

1 1 )-1 .:-1

E22 E22 U2 2 22 2 2 22 '

where E
22

and U
2
are obtained by partitioning E

T
and U as

F l

U1

E
11

E
12

U = p rows T = p rows

U
2 _E21 : E22j

p cols.

The transformation that defines Y can be expressed in a manner that is

more convenient at this point: let

Y = MZ = Z - H(1) , (3.8)

where



H

Lz(T-1 z(T-2) z(T-p+1)

If Y and Z are partitioned as above, then it follows that

H1

min (Y-uy)'ET
-1

(Y-uy) = min

(1),e

(L2-H20)1Q(Z2-H2(0)
(3.9)

The minimizing value of 0 is given by

$(e) = (H210H2)-1W20Z2

41

(3.10)

C. Estimators of MA Parameters

The expression (3.10) could be substituted for in (3.9) to obtain

an expression that is a function of only 0, and the MLE could be obtain-

ed by minimization. However, that direct approach results in a compli-

cated function that makes minimization difficult.

A method that leads to an easier algorithm splits the parameters

into two sets: one set comprising the 6-parameters and the other the

p and parameters. A minimization is first performed with respect to
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p and cp with 0 held fixed. Then p and are held fixed at the minimiz-

ing values and the function is minimized with respect to 0. The process

is then repeated until convergence is reached.

The MULE is obtained by substituting the MLE estimators of (1), p,

and a into the likelihood equation (2.11), and performing a series of

numerical integrations. Gaussian quadrature (Acton, 1970) is used.



IV. PROPERTIES OF THE ALGORITHM

A. Discussion

43

The general approach of the algorithm to maximizing the likelihood

function is to divide the parameters into two sets. The likelihood

function is then maximized with respect to the first set while the

second is held fixed, and then maximized with respect to the second

while the first is held fixed. The above process is repeated until

the likelihood function attains its maximum. The rationale for using

this approach is that the maximum of the likelihood function with

respect to c and p, given 0, is relatively easy to obtain. The maxi-

mizing values of and p are obtained as the solution of a set of

linear equations. Similarly, the solution of the likelihood equations

for 0 given 0 and p is comparitively easy. The equations are not

linear, but the first and second partial derivatives can be

computed easily and without a great expense in computer time. The

algorithm for computation of a2/aek and a2z/aekaej is given in the

following paragraph.

Let V
0
= (Y - E[Y])/a. Then the minus log likelihood function

given 0, p, a and Z is, except for additive terms constant in e,

- z(elo,p,a,z) = Vo ET' V0/2 .

Let QQ' = ET
1
and define = WVi. The minus log likelihood function is

1

V, ET
I

Vo Vi Q Q' Vo V V1/2 .

-2,01(0,P,a,Z) v
2 2



It follows that

But

so that

aQ

aek

as aQ1
a8

k
0 aek VO

-R-1 J
k

R-1 = -Q Jk Q
ae

k

-Q

= - V10 Q Q Jk Q' Vo =

Similarly, it follows that

- V2 Q Jk V1 .

2

V' J Jj V + 2V3 ' J V
aek 38

j
2 k 2 k+j 1

.

The V.'s can be computed recursively as follows:

Vi+1 = Q' Vi = (R-1)' Vi

(4.1)
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so that R' Vi+1 = Vi. This implies the following relationship between

the two vectors:

Vi_0(1) = Vi(1)

V.0.1(2) = Vi(2) eivi+1(1)

vi_0(3) = vi(3) eivi_0(2) - e2vi+1(1)



45

and in general, for k > p,

Vii.1(k) = Vi(k) 0.0 epVii.1(k..3)

Given that derivatives are easy to obtain, there are several efficient

numerical maximization algorithms. Newton-Raphson was selected simply

because it was easy to program.

B. Convergence

Algorithms of this general type have been discussed by Oberhofer

and Kmenta (1974). They prove the following convergence theorem:

Theorem 4.1: Let f(a) be a function which is to be maximized

with respect to a, and aeU. Let a be partitioned as a = (al a2) with

ale Ul c:R
n
and a

2
c U

2
c:R

m
. Let f(a) have the following properties:

(i) There exists an s such that the set

S = {alac U1xU2, f(a) > s}

is non-empty and bounded,

(ii) f(a) is continuous in S; and

(iii) the parameter space is closed, or U2 is closed and U1 = Rn.

Define the following iteration:

(i) Let a
1

0
be a vector of initial values of a

1
such that a

1
0c U

1

and such that there exists an a
2
cU

2
such that f(a

1

0

'

a
2

) t.

(ii) Maximize f(a
1

0

'

a
2

) in U2, say the maximum is reached at

0

a2
a2c U2.
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(iii) Suppose inductively that (a13, a23) have been obtained for

all 0 5 j 5 k. Maximize f(alk, a2) in U2. The maximum will

be reached at a
2

= a
2

k+1
Then maximize f(a

l'
a
2

k+1
) in U

1.

The maximum will be attained at al = al
k+1

Then

(1) The sequence {a
k
} has at least one accumulation point a* in S.

(ii) If a* and a+ are two accumulation points of the sequence,

then f(e) = f(a+).

(iii) For every accumulation point a* = (a
1
*, a

2
*),

max f(al,a2*) = max f(a1 *,a2) = f(0,1*, a2*) = f(a*).

alcUl a2cU2

This theorem is proved in Oberhofer and Kmenta (1974, p. 579-590).

In the case at hand, the properties (i), (ii) and (iii) hold (2, is

bounded and continuous, e is constrained to lie in a compact set), so

that the theorem applies. Since 2 is not in general convex, convergence

to the global maximum is not guaranteed. However, in all the cases

that have been examined, the algorithm encountered convergence

problems only when the MA parameter was near or on the invertability

boundary. Bounding the step size somewhat alleviated the problem;

however, the final solution was to set the MA parameters to an arbi-

trary value near the boundary (e.g., lel = .99 for case p = 1).

C. Asymptotic Variance of Parameter Estimates

An estimate of the covariance matrix of the parameter estimates can

be obtained through maximum likelihood theory (Wilks, 1962). If B is

taken to represent the vector of all the parameters, then asymptotically
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32, 32,11
Cov(a) =

A submatrix of the inverse covariance matrix will be termed an 'infor-

mation matrix'. Selected terms of the inverse covariance matrix are

evaluated below. Sufficient terms are evaluated to allow the inverse

covariance matrix to be computed. The following lemma will be needed.

Lemma 4.1: Let D be a TxT matrix such that

T-1
= E ,

i=0
TiJi

where Jo = I, Jl is a matrix with ones on the first superdiagonal and

zeros elsewhere, and Ji = JI, for i = 2, ..., T-1. Let V = (v1,

v
2' ... '

VT) be a random T-vector distributed as MVN(0,I). Then for

1 < r < T-1,

T-r T

V'D JV = 2: 22 v. T.
v

j=1 i=r+j J -r-j1
i

and for k > 0,

T-r-k-1
E[V'D Jr VV'DJr+ky] = 2: (T-r-k-j) T. T

+
.

J1(j=0

Proof: It follows from the definitions of B and J
r

that

T-1

V'D J
r
V = 1,0(E T

i
J )J

r
V

i=0

T-r-1
T. V'J

i+r
V

i=0
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T -r -1 T-i-r

= E
i=0 1 j=1

v v.

1+r+j

and the result is obtained by re-ordering the summation. Substituting

this result into the expectation, there results

E[V'DJI,VV'DJr+kV]

T-r T T-r-k T
T. T E[v.vj v
1-r -j m-r-k-t t

v
mJ

1 .

j=1 i=r+j mt=1 =r+k+t

But the expectation vanishes unless (a) i = j, Q = m, or (b) i = Q,

j = m, or (c) i = m, j = Q. However, cases (a) and (b) are impossible,

since r > 0. Thus, the sum reduces to

T -r -k

. .

j=1 i=r+j+k
T

1r-J
T

1-r-J-k

The result is obtained by a change of variable in the summation.

C.1 Information for p.

The log likelihood can be taken as

Q = - (Y - Gp)' E.I.1 (V - Gp)/2a2

Thus,

ap
= G' E1 (Y - Gp)/a

2

Recall that V
1
was defined as Q'(Y - Gp)/a, and V

1
is distributed as

MVN(0,I). Thus,



aQ G'Q
ap a 1

and the information matrix of Ps is

G'QV V Q G
E[ ] = E(

1 1
)

Q

= (G
'

T

1
G)/a

2

C.2 Information of e and (6,

From (4.1)

ak _ 'Q J
aek

vi

Applying Lemma 4.1, it follows that

T-K T

aek 2]
V. T. . V.

J=1 i=;<-4-j
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(4.2)

(4.3)

(4.4)

where Tr
t'

0 < t < T-1, is defined by (2.10). The lemma also implies

that

.

T-k -m-1
EEMk

33(+M
2 (T-k-M-j) 7J UJ

+1

A A
From (4.2) and (4.4), the information for p and e can be obtained:

GIQV, T-k T

msv wEap)(aek)] E[ 2: vi .
v. ITi)]

j=1 i=k+j
-k-j
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But since i > j, the expectation vanishes.

C.3 Information for p.

From (3.2),

E[Y] = Gp = G(Wa) = [(1) U] (Wa) .

The product 4441 can also be written F (p, where

and

F

W W2
2

WP

0, W.
i

W2 ... W
, P-1

. . .
. .

.

*0

0 6

(01' 62' .[))

Except for constants, the log likelihood function is

= (MZ - M(F U)C9
)

ET
a

1 (MZ - M(F U)C9 )
2a

Letting F(t) represent the tth column of F, then

Z'JtQl/1 P(t)Q1/1

a4)t a
a



But,
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Z'

"1

(-1),
Q'

so that

1

32,/4 V
1

R(M -1)1 Jt QV
1

-a-+ ( uz - FI(0)QV1

But R, (M
-1

)', J
t
and Q all commute, so

32/DOt = VI(M-1)1JtVi + (gz1Jt F'(t))QV1 (4.5)

It follows that

E[(a214t)(a2. aps)] =

' -1 N1
E[V (M )
"
JtViVi (M

-1
) Jsilj

+ E[V1 (M
-1

)
'

I

(Jsuz - F(s))]/a

'
+ E[Vi (M

-1
) JsViViQ (Jtuz - F(t))] /a

+ E[(.1Jt - F (0)QVily (Jspz - F(s))j/a2 (4.6)

The two middle terms of (4.5) have the form E[(V1 AV1)V1b], where A is

a TxT matrix and b is a Txl vector. But this expectation vanishes,

since Vi is distributed MVN(0,I). Since E[V1V1] = I, the fourth

term of (4.6) is equal to

z
Jt - F (0) E

T
1

(J
s

p
z

- F(s))/a
2



The first term of (4.5) can be evaluated by noting that

1 ' T-1

(M-1) = 1] ji

i=0

where the Al's are defined by

A
0

= 1

k

A.
cot

k-t
, k = min(i,p), i > 1 .

t=1

(4.7)

Lemma 4.1 can be applied to complete the evaluation of (4.6).

Thus, for t > s ,

E (3 it, / D(pt ) ( 3ft/ 30 s)]

T-t -1

= 2] (T-t-j) A. x.
J4-t-sj=0

-

(11z jt Fl(t)) ET
1

(jsljz 7(5))/62

From (4.2) and (4.5),

E[(3Z/3p)(32,/40

E [71 VII (M-1)I JtVi]

G QV,

+ E V1 Q(Jt pz - F(t))]

-
G

'

E
T

(J
t

'z - F(t))/a
2

(4.8)

( 4 . 9 )

52
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From (4.1) and (4.5) ,

E[(at/aek)(at/acpt)

- E[V1 Q JK V1V1 (M
-1

)
'

Jt Vi]

- E[V1 QJK V1V1 Q(J:. uz - F(t))]

The second term above vanishes, and the first term can be shown to be

and

T-k-1
- 2: (T k-i)

7
, k > t

j Xj+k-t
j=0

T-t-1

2: (T-t-j) A
j

7
j+t-k '

j=0
t>k (4.10)

Using the equations above, all the elements of the inverse covariance

matrix of the parameter estimates can be evaluated. Since the MULE

should converge to the MLE, the same large sample covariance matrix can

be used for both estimators.

D. Computational Aspects

The computations can be arranged to avoid well known numerical

pitfalls. Only two matrix inversions are required: the inversion of a

(2p) x (2p) matrix to obtain p, and the inversion of a p x p

matrix to obtain cp.
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It is also possible to do the computations in an order that avoids

large memory requirements. All of the sample cases have been run on

a PDP-11/70 mini-computer in a 27K partition. A series of more than

200 observations can be processed in this size partition. For comparison

on other computers, the PDP-11/70 uses double words for floating point

numbers, so the effective partition size is somewhat less than 27K.

The computations exploit the factorization ET
1

= QQ' (given in

(2.9)). In the following, a *-matrix will represent a matrix pre-

multiplied by Q', e.g., A* = Q'A, for any T x k matrix A.

From (3.1) the sum of squares in the likelihood function can be

written

so that

It follows that

(Y - Gp)' ET1 (Y - Gp)

= (Q'Y QIGP)' (Q'Y Q'Gp)

= (Y* - G*Q)1 (Y* G *p)

p = (G*'G*)-1 G*' Y* . (4.11)

(Y* - PPP (Y* - G *p)

= Y*(I - G*(G*'G*)
-1
G*)Y*

= Y*'TY*

Theorem 3.1 implies that T is independent of the AR parameters.

From (3.8)

Y* = Q'Z - Q'H(1)

= Z* - H*(1)



so that

YlesTY* = (z* - H*WT(Z* H*0

and

55

= (H*1TH*)-1H*1TZ* . (4.12)

Thus, the sum of squares as a function of the MA parameters is

S(e) = (1* - H*4)1T(Z* - H*;) . (4.13)

The maximum likelihood estimate of a2 is given by

2
a = s(e)/T . (4.14)

If (4.13) and (4.14) are substituted into the likelihood (2.11) we

obtain the ULF(e):

T/2
ULF(e) = (s-e-T) (4.15)

For moderate to large sample sizes, T /S(e) should be scaled so the

maximum is near one to avoid over- or under-flow.

Because many of the calculations required to find the MLE and

the MULE are identical, it is efficient to use a single computer

program to evaluate both estimates. Calculation of the MULE does not

require iteration; hence, the MULE was computed first and used as a

starting value in the iterative MLE calculation.

E. Backwards System Process

In the estimation procedures that have been developed the initial

state of the system is estimated along with other parameters. There are

instances in which an estimate of the system's state at some other time

would conceptually be a more useful parameter. An attempt was made to
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reparameterize the estimation procedure so that the state of the system

at time T+1 was used as a parameter.

The attempt was not entirely successful. The model equations can

be written so that the estimation procedures can be applied by reversing

the data, so that z1 zt, z2 zt_1,..., zT zt etc. The MA parameters

of the backwards system remain the same, because of the duality noted

earlier. The AR and the regression parameters, however, are not in-

variant. This is not a difficulty for the regression parameters, but

because the duality between the forward and backward system does not

hold for the AR parameters of a forced system, the backwards represen-

tation is a non-stable system.

Several attempts were made to estimate the parameters using the

backwards representation from sample data generated by a stable forward

process. The resulting estimates were highly variable, and tended to be

values giving a stable backward process. For example, if the data were

generated using a forward process with an AR parameter of cpf = 0.5, then

the backwards process AR parameter should be cpb = 2.0. But the esti-

mates were generally such that Icpb1 < 1.

After the fact the observed behavior is not surprising. For the

sample input sequence the backwards system is almost surely explosively

unstable. But the observed sample record is well-behaved, which is an

unlikely behavior for an explosive system. Hence one should not expect

estimates based on the likelihood function to lead to an unstable

system. What remains is a perplexing problem. It would be useful to

examine the system in the backward form. Direct inversion leads to an
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intractable model. Is there another inversion which will meaningfully

provide the analysis sought?
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V. SIMULATION RESULTS AND EXAMPLE

A. Design of Simulation Studies

The simulation studies were intended to examine and compare the

behavior of the NLE and the MULE. The first study was designed to

investigate the small sample behavior of the two estimators, the

second to examine the effect of sample size.

The studies were conducted on a DEC PDP 11-70, using the random

number generator supplied by the manufacturer. The generator is based

on the linear congruential algorithm

xi+1 = (ax4 + c) mod m .

In particular the generator uses the constants

a = 2
16

+ 3

c = 0

m = 2
32

The generator was recently tested by Nicholson, et al. (1978).

The period, length, and frequency of the generator were evaluated, and

runs and lag products were tested. The tests indicated that similar

sequences appeared to occur more frequently than expected, the distri-

bution was reasonably uniform, more significant runs occurred than

expected, and autocorrelation appeared in positive and negative

"clumps". The general conclusion was that the generator would produce

reasonable "random" numbers for most applications.
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The random numbers were generated using a seed that was a function

of the system clock time. Thus, repeated runs would in general pro-

duce different sequences of random numbers. The uniformly distributed

numbers were transformed into normal deviates using the Box-Muller

method (Hammersley and Handscomb, 1964).

The small sample tests were carried out using 40 samples of size

30. In order to investigate the behavior of the estimators over the

entire parameter space, p was held equal to 1. Although the

AR and regression parameters are the parameters of most intrinsic

interest, it was anticipated that the value of the AR and MA parameters

would have the most influence on the behavior of the estimator.

Hence values of cp and 8 were selected that spanned the parameter space.

The values used were ± .95, + .5 and + .1 for both parameters,

resulting in 36 combinations.

The regression parameter B and the variance parameter a
2
were

held constant at 2.0 and 2.25, respectively. The input function was

a sine wave with period n/4. This constitutes a fairly pessimistic

selection, since the magnitude of the noise term will frequently be

greater than the magnitude of the accessible input term.

The sample size tests were conducted to investigate how seriously

small sample sizes influenced the estimators. Four tests were planned

at values of (I) and 8 of + .5. An additional test was carried out at

(1) -.95, e = .95. For each test 10 samples of size 200 were generated.

Parameter estimates were made using an increasing number of points in

steps of 25.



60

B. Results of the Simulation Studies

The sample size simulation studies are summarized in Tables 1

through 6. In general the MULE appears to be better behaved than

the MLE. The standard error of the MULE is smaller than that of the

MLE except for nominal values near the boundary of the parameter

space. However, as can be seen from Figures 7-12, the smaller SE

(and MSE) of the MLE near the boundary is largely due to the fact

that many of the MLE's are on the boundary.

Figures 1 through 6 are plots of some sample likelihood functions.

The negative log of the ULF is plotted versus e for nominal values of

e = .95 and co = + .95, + .5 and + .1. The functions are generally

skewed. Figures 3, 5, and 6 are particularly interesting because they

represent concave likelihood functions. Figure 3 has nearly equal

minima at both endpoints of the parameter space, implying that the

likelihood is about the same for 9 = +1 as it is for e = -1. Similar

behavior is exhibited in Figure 6, except that the likelihood function

has three nearly equal maxima.

Confirmation of the fact that the selected likelihood plots were

not unusually aberrant is presented in Figures 10, 11, and 12. These

are scatter plots of the MULE and the MLE of q) versus the correspond-

ing estimates of e for nominal e = .95 and co = -.1, -.5, and -.95,

respectively. For (1) = -.1, most of the MLE's of e are clumped on the

right boundary. For (1) = -.5, the spread increases and some MLE's

appear on the left boundary. For 4) = -.95 the estimates appear in a

band from the upper left to the lower right.



TABLE 1. SUMMARY OF SMALL SAMPLE SIMULATION TESTS FOR PHI = -0.95

MULE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE

PHI

MSE
PHI

MEAN
BETA

SE

BETA
MSE
BETA

-0.950 -0.890 0.055 0.007 -0.914 0.071 0.006 1.975 0.204 0.042
-0.500 -0.511 0.189 0.036 -0.930 0.082 0.007 2.013 0.259 0.067
-0.100 -0.133 0.211 0.046 -0.916 0.091 0.009 1.995 0.374 0.140
0.100 0.028 0.290 0.089 -0.894 0.145 0.024 1.866 0.437 0.209
0.500 0.469 0.299 0.091 -0.861 0.163 0.034 1.867 0.701 0.509

0.950 0.140 0.431 0.842 -0.158 0.329 0.736 1.329 0.758 1.024

MLE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE

THETA
MEAN
PHI

SE
PHI

MSE
PHI

MEAN
BETA

SE

BETA
MSE
BETA

-0.950 -0.978 0.044 0.003 -0.912 0.072 0.007 1.974 0.196 0.039

-0.500 -0.560 0.213 0.049 -0.927 0.087 0.008 2.010 0.258 0.067

-0.100 -0.151 0.242 0.061 -0.912 0.096 0.011 1.990 0.376 0.142

0.100 0.019 0.338 0.120 -0.887 0.167 0.032 1.858 0.444 0.217

0.500 0.555 0.377 0.145 -0.881 0.150 0.027 1.888 0.709 0.516
0.950 0.257 0.798 1.117 -0.269 0.548 0.764 1.497 0.930 1.119



TABLE 2. SUMMARY OF SMALL SAMPLE SIMULATION TESTS FOR PHI = -0.50

MULE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE
PHI

MSE
PHI

MEAN
BETA

SE
BETA

MSE
BETA

-0.950 -0.890 0.047 0.006 -0.533 0.140 0.021 2.037 0.261 0.069
-0.500 -0.593 0.168 0.037 -0.448 0.186 0.037 1.961 0.300 0.092
-0.100 -0.069 0.338 0.115 -0.514 0.234 0.055 2.115 0.501 0.265
0.100 -0.031 0.376 0.159 -0.384 0.288 0.096 1.847 0.608 0.394
0.500 0.121 0.414 0.315 -0.212 0.335 0.195 1.838 0.768 0.615
0.950 0.592 0.259 0.195 -0.166 0.203 0.153 0.479 0.692 0.750

MLE ESTIMATOR

NOMINAL MEAN SE MSE MEAN SE MSE MEAN SE MSE
THETA THETA THETA THETA PHI PHI PHI BETA BETA BETA

-0.950 -0.984 0.038 0.003 -0.518 0.144 0.021 2.007 0.259 0.067
-0.500 -0.682 0.193 0.070 -0.410 0.209 0.052 1.910 0.317 0.109
-0.100 -0.086 0.439 0.193 -0.504 0.278 0.077 2.097 0.541 0.302
0.100 -0.095 0.600 0.398 -0.336 0.425 0.207 1.778 0.701 0.541
0.500 0.154 0.723 0.643 -0.250 0.525 0.338 1.903 0.913 0.843
0.950 0.886 0.274 0.079 -0.363 0.239 0.076 1.705 0.817 0.754



TABLE 3. SUMMARY OF SMALL SAMPLE SIMULATION TESTS FOR PHI = -0.10

MULE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE
PHI

MSE
PHI

MEAN
BETA

SE

BETA
MSE
BETA

-0.950 -0.862 0.075 0.013 -0.170 0.151 0.028 2.096 0.336 0.122
-0.500 -0.359 0.281 0.099 -0.220 0.200 0.054 2.271 0.509 0.333
-0.100 0.137 0.372 0.195 -0.284 0.305 0.127 2.258 0.611 0.439
0.100 0.237 0.266 0.090 -0.242 0.269 0.093 2.268 0.663 0.512
0.500 0.335 0.391 0.180 0.005 0.308 0.106 1.894 0.766 0.597
0.950 0.742 0.317 0.144 0.023 0.211 0.060 1.880 0.793 0.644

MLE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE
PHI

MSE
PHI

MEAN
BETA

SE

BETA
MSE
BETA

-0.950 -0.970 0.064 0.005 -0.147 0.158 0.027 2.061 0.342 0.121
-0.500 -0.512 0.392 0.153 -0.125 0.259 0.068 2.111 0.579 0.348
-0.100 0.205 0.644 0.507 -0.328 0.457 0.261 2.301 0.740 0.638
0.100 0.308 0.579 0.378 -0.300 0.459 0.251 2.363 0.903 0.947
0.500 0.419 0.610 0.378 -0.088 0.451 0.204 2.084 1.025 1.059
0.950 0.892 0.408 0.170 -0.058 0.263 0.071 2.031 0.886 0.786



TABLE 4. SUMMARY OF SMALL SAMPLE SIMULATION TESTS FOR PHI = 0.10

MULE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE

PHI

MSE
PHI

MEAN
BETA

SE

BETA
MSE
BETA

-0.950 -0.840 0.174 0.042 -0.028 0.188 0.052 2.254 0.382 0.210
-0.500 -0.361 0.360 0.149 -0.068 0.253 0.093 2.416 0.610 0.545
-0.100 0.051 0.454 0.229 -0.141 0.356 0.185 2.508 0.837 0.958
0.100 0.128 0.433 0.188 -0.015 0.343 0.131 2.283 0.869 0.836
0.500 0.419 0.365 0.139 0.176 0.276 0.082 1.979 0.566 0.321
0.950 0.764 0.216 0.081 0.161 0.209 0.047 1.947 0.927 0.863

MLE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE

PHI

MSE
PHI

MEAN
BETA

SE

BETA
MSE
BETA

-0.950 -0.939 0.184 0.034 -0.003 0.190 0.047 2.209 0.391 0.196
-0.500 -0.525 0.421 0.178 0.016 0.297 0.095 2.247 0.714 0.570
-0.100 0.044 0.708 0.522 -0.132 0.499 0.303 2.512 1.112 1.499
0.100 0.164 0.704 0.500 -0.082 0.515 0.298 2.415 1.123 1.433
0.500 0.498 0.479 0.229 0.115 0.328 0.108 2.086 0.623 0.396
0.950 0.888 0.328 0.112 0.113 0.230 0.053 2.037 0.967 0.936



TABLE 5. SUMMARY OF SMALL SAMPLE SIMULATION TESTS FOR PHI = 0.50

MULE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE
PHI

MSE
PHI

MEAN
BETA

SE
BETA

MSE
BETA

-0.950 -0.861 0.111 0.020 0.464 0.073 0.007 2.110 0.239 0.067
-0.500 -0.464 0.307 0.095 0.444 0.114 0.016 2.179 0.330 0.141
-0.100 -0.077 0.322 0.104 0.435 0.194 0.042 2.217 0.624 0.436
0.100 0.099 0.304 0.092 0.403 0.217 0.057 2.353 0.860 0.865
0.500 0.513 0.220 0.049 0.457 0.159 0.027 2.108 0.734 0.550
0.950 0.862 0.086 0.015 0.449 0.186 0.037 2.037 1.062 1.128

MLE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE
PHI

MSE
PHI

MEAN
BETA

SE
BETA

MSE
BETA

-0.950 -0.970 0.073 0.006 0.477 0.066 0.005 2.072 0.227 0.057
-0.500 -0.542 0.362 0.133 0.457 0.121 0.016 2.137 0.291 0.103
-0.100 -0.112 0.373 0.139 0.445 0.207 0.046 2.193 0.649 0.459
0.100 0.077 0.403 0.163 0.403 0.235 0.064 2.346 0.891 0.914
0.500 0.585 0.246 0.068 0.429 0.176 0.036 2.175 0.766 0.617
0.950 0.975 0.076 0.006 0.430 0.188 0.040 2.074 1.074 1.159



TABLE 6. SUMMARY OF SMALL SAMPLE SIMULATION TESTS FOR PHI = 0.95

MULE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE

PHI

MSE
PHI

MEAN
BETA

SE
BETA

MSE
BETA

-0.950 -0.886 0.052 0.007 0.938 0.025 0.001 2.002 0.134 0.018
-0.500 -0.626 0.193 0.053 0.950 0.043 0.002 2.003 0.244 0.060
-0.100 -0.166 0.267 0.076 0.947 0.039 0.002 1.970 0.342 0.118
0.100 0.059 0.348 0.123 0.920 0.060 0.005 2.034 0.392 0.154
0.500 0.493 0.225 0.051 0.937 0.059 0.004 2.171 0.672 0.481
0.950 0.874 0.076 0.012 0.934 0.057 0.004 2.156 0.820 0.697

MLE ESTIMATOR

NOMINAL
THETA

MEAN
THETA

SE

THETA
MSE
THETA

MEAN
PHI

SE
PHI

MSE
PHI

MEAN
BETA

SE
BETA

MSE
BETA

-0.950 -0.976 0.053 0.003 0.940 0.025 0.001 2.006 0.128 0.016
-0.500 -0.704 0.225 0.092 0.954 0.042 0.002 2.005 0.247 0.061
-0.100 -0.171 0.290 0.089 0.947 0.039 0.002 1.969 0.344 0.119
0.100 0.064 0.406 0.166 0.918 0.061 0.005 2.034 0.391 0.154
0.500 0.546 0.293 0.088 0.933 0.061 0.004 2.172 0.677 0.488
0.950 0.963 0.080 0.007 0.931 0.058 0.004 2.156 0.826 0.706
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Figure 1. Realizations of ULF(6) for nominal values e = 0.95 ¢ = 0.95
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Figure 2. Realizations of ULF(e) for nominal values 6 = 0.95 = 0.50
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Figure 3. Realizations of ULF(8) for nominal values e = 0.95 4) - 0.10
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Figure 5. Realizations of ULF(e) for nominal values e = 0.95 (1) = -0.50
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Figure 6. Realizations of uLF(e) for nominal values e = 0.95 q) = -0.95
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Figure 7. Scatter plots of PILE and MULE for nominal values
e = 0.95, (I) = 0.95.
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Figure 8. Scatter plots of-MLE and MULE for nominal values
= 0.95, (I) = 0.50.
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Figure 9. Scatter plots of MLE and MULE for nominal values
6 = 0.95, cp = 0.10.
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TABLE 7. SUMMARY OF SAMPLE SIZE TESTS FOR THETA = 0.50 AND PHI = 0.50

MEAN VALUES

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.511 0.598 0.513 0.490 1.411 1.400 2.635 2.708
50 0.496 0.536 0.507 0.489 1.488 1.484 2.065 2.114
75 0.524 0.545 0.510 0.502 1.485 1.485 2.063 2.082
100 0.490 0.510 0.521 0.513 1.481 1.481 1.992 2.011

125 0.490 0.506 0.528 0.522 1.473 1.473 1.997 2.011

150 0.474 0.487 0.539 0.535 1.470 1.470 1.983 1.995
175 0.489 0.498 0.522 0.519 1.477 1.477 2.081 2.090
200 0.503 0.509 0.523 0.521 1.484 1.484 2.051 2.056

STANDARD DEVIATIONS

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.221 0.271 0.147 0.161 0.261 0.261 0.505 0.539
50 0.156 0.191 0.121 0.139 0.203 0.303 0.415 0.455
75 0.088 0.089 0.064 0.065 0.144 0.144 0.271 0.278
100 0.093 0.094 0.070 0.072 0.123 0.123 0.290 0.291

125 0.076 0.074 0.063 0.064 0.113 0.113 0.309 0.309
150 0.076 0.073 0.054 0.055 0.083 0.083 0.284 0.282

175 0.060 0.056 0.055 0.054 0.080 0.080 0.280 0.277

200 0.062 0.058 0.057 0.057 0.099 0.099 0.294 0.290



TABLE 8. SUMMARY OF SAMPLE SIZE TESTS FOR THETA = 0.50 AND PHI = -0.50

MEAN VALUES

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.127 0.147 -0.168 -0.204 1.419 1.353 1.486 1.549
50 0.343 0.469 -0.342 -0.441 1.404 1.377 1.854 2.013
75 0.463 0.550 -0.415 -0.467 1.438 1.415 1.919 2.002
100 0.432 0.529 -0.398 -0.466 1.478 1.464 1.851 1.977
125 0.447 0.496 -0.413 -0.444 1.469 1.460 1.888 1.952

150 0.491 0.493 -0.470 -0.454 1.471 1.463 1.889 1.885
175 0.450 0.455 -0.427 -0.414 1.473 1.470 1.833 1.807

200 0.405 0.415 -0.378 -0.372 1.484 1.480 1.771 1.754

STANDARD DEVIATIONS

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.542 0.929 0.451 0.651 0.209 0.198 0.693 0.945

50 0.516 0.757 0.446 0.578 0.123 0.122 0.770 0.981

75 0.352 0.572 0.361 0.520 0.127 0.131 0.703 0.879

100 0.319 0.602 0.329 0.564 0.119 0.119 0.611 0.890
125 0.279 0.477 0.293 0.467 0.124 0.124 0.497 0.752

150 0.234 0.437 0.244 0.429 0.100 0.101 0.414 0.661

175 0.168 0.426 0.176 0.417 0.094 0.094 0.370 0.541

200 0.210 0.414 0.229 0.408 0.077 0.077 0.317 0.465



TABLE 9. SUMMARY OF SAMPLE SIZE TESTS FOR THETA = -0.50 AND PHI = 0.50

MEAN VALUES

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 -0.512 -0.752 0.404 0.470 1.442 1.403 2.189 2.011

50 -0.504 -0.559 0.452 0.471 1.471 1.468 2.118 2.069

75 -0.459 -0.500 0.454 0.466 1.490 1.489 2.066 2.034

100 -0.484 -0.513 0.464 0.473 1.507 1.506 2.073 2.051

125 -0.497 -0.520 0.466 0.472 1.494 1.494 2.070 2.053

150 -0.470 -0.488 0.457 0.463 1.495 1.494 2.107 2.092

200 -0.462 -0.475 0.469 0.472 1.485 1.485 2.093 2.083

STANDARD DEVIATIONS

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.300 0.272 0.173 0.122 0.265 0.244 0.592 0.433

50 0.209 0.179 0.075 0.069 0.175 0.171 0.287 0.282

75 0.169 0.153 0.041 0.040 0.141 0.140 0.210 0.207

100 0.153 0.145 0.040 0.038 0.106 0.106 0.210 0.207

125 0.148 0.143 0.042 0.040 0.089 0.089 0.217 0.214

150 0.104 0.097 0.030 0.029 0.079 0.079 0.194 0.191

175 0.097 0.090 0.035 0.034 0.074 0.074 0.200 0.196

200 0.081 0.074 0.031 0.030 0.052 0.052 0.188 0.186



TABLE 10. SUMMARY OF SAMPLE SIZE TEST FOR THETA = -0.50 AND PHI = -0.50

MEAN VALUES

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

FILE

SIGMA
MULE
BETA

MLE
BETA

25 -0.648 -0.792 -0.461 -0.411 1.462 1.423 2.082 2.010
50 -0.504 -0.548 -0.528 -0.506 1.494 1.493 2.074 2.045
75 -0.470 -0.510 -0.538 -0.517 1.486 1.485 2.067 2.040
100 -0.512 -0.538 -0.522 -0.509 1.484 1.484 2.048 2.030
125 -0.513 -0.532 -0.513 -0.503 1.486 1.485 2.049 2.037

150 -0.527 -0.537 -0.498 -0.493 1.494 1.494 2.029 2.022

175 -0.521 -0.531 -0.506 -0.502 1.487 1.487 2.035 2.029

200 -0.515 -0.524 -0.497 -0.492 1.495 1.495 2.010 2.003

STANDARD DEVIATIONS

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.186 0.217 0.166 0.203 0.241 0.236 0.256 0.302

50 0.099 0.108 0.105 0.117 0.130 0.129 0.244 0.255

75 0.114 0.114 0.125 0.131 0.132 0.132 0.170 0.179

100 0.080 0.078 0.115 0.117 0.114 0.114 0.175 0.176

125 0.069 0.061 0.102 0.103 0.106 0.105 0.172 0.173

150 0.064 0.059 0.096 0.095 0.086 0.086 0.160 0.160

175 0.054 0.047 0.096 0.095 0.079 0.079 0.147 0.144

200 0.052 0.046 0.101 0.100 0.058 0.058 0.148 0.147



TABLE 11. SUMMARY OF SAMPLE SIZE TESTS FOR THETA = 0.95 AND PHI = -0.95

MEAN VALUES

N

MULE
THETA

MLE
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.147 0.111 -0.126 -0.116 1.431 1.336 1.049 1.041

50 0.173 0.254 -0.213 -0.289 1.512 1.383 1.285 1.431

75 0.351 0.450 -0.358 -0.446 1.505 1.495 1.455 1.568

100 0.392 0.544 -0.381 -0.525 1.531 1.519 1.389 1.554

125 0.454 0.550 -0.461 -0.554 1.489 1.481 1.428 1.522

150 0.400 0.496 -0.392 -0.492 1.474 1.469 1.370 1.436

175 0.440 0.473 -0.445 -0.471 1.485 1.479 1.429 1.436

200 0.490 0.585 -0.483 -0.566 1.497 1.492 1.433 1.487

STANDARD DEVIATIONS

N

MULE
THETA

MLF
THETA

MULE
PHI

MLE
PHI

MULE
SIGMA

MLE
SIGMA

MULE
BETA

MLE
BETA

25 0.465 0.926 0.339 0.582 0.187 0.143 0.533 0.762

50 0.386 0.808 0.372 0.680 0.184 0.188 0.664 0.938

75 0.223 0.491 0.287 0.497 0.116 0.115 0.501 0.665

100 0.252 0.553 0.244 0.535 0.115 0.116 0.462 0.696

150 0.233 0.476 0.224 0.441 0.112 0.112 0.422 0.417

175 0.225 0.472 0.216 0.432 0.089 0.086 0.328 0.390

200 0.198 0.405 0.190 0.379 0.078 0.078 0.290 0.298
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The apparently poor behavior of the estimator in the cases when

(I) is near -e can be explained by noting that a cancellation of factors

occurs in the noise transfer function. In the ARMA model used by Box

and Jenkins, the asymptotic inverse covariance matrix of the parameter

estimates is singular for this case (Box and Jenkins, 1974, p. 246).

If a forcing function is present, the inverse covariance matrix is no

longer singular. However, if the signal to noise ratio is low, the

covariance matrix may be ill-conditioned.

These observations can be illustrated by an examination of the

inverse covariance matrix for the case p = 1. From Section 4.C, the

inverse covariance matrix of the estimated parameter vector (p, e)'

is

(G'
G)/a2

A) /2
T-2

(G' A)/a' (T-1-j)(1)
2j

j=0

+ A' E
-1

A/a
2

0 - 2: (T-1-fle (-e)j 2: (T-1-j)6
2j

j=0 j=0

with symmetric terms in the upper triangular portion, and where

A = Jl pZ - F(1). The vector A is related to the information about

the AR parameter contributed, by the accessible input. If there were no

accessible input, then A 0. If, in addition, (I) = -6, then the above

matrix is obviously nearly singular.
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This suggests that a statistic based on A' E
-1

A/a
2
might be a

reasonable measure of the signal to noise ratio. A statistic that

could be useful is

= Tr(A' ET1 A)/G ,

where Tr(.) is the trace operator. E might be useful in testing whether

the accessible input had accounted for most of driving input to the

system.

A series of simulations were made to examine the utility of

These simulations were run with 8 = 0.95, co = -0.95, and a = 2.0. Five

runs were made for each of the values 1.0, 0.75, 0.50, 0.25, 0.10, and

0.05 for a. Some summary results are given in Table 12.

Table 12.

Q

Summary of Signal to Noise Ratio Tests

Mean Mean E) Mean $

1.00 5.4 0.197 -0.274

0.75 7.0 0.288 -0.277

0.50 6.4 0.678 -0.610

0.25 11.4 0.578 -0.543

0.10 35.2 0.757 -0.812

0.05 79.4 0.823 -0.876

As expected the estimates do improve as the noise variance decreases,

and large values of indicate better estimates. Also the correlation

between e and (I) tended to be around -0.9. A low value for E and a high

o+,

negative correlation between a and $ should be sufficient grounds to
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use the estimates carefully.

Secondly, the behavior of the estimator is only 'apparently poor'

in another sense. The measure of goodness that was computed was a

measure of distance in the parameter space. However, the real interest

is in the behavior of the system in the trajectory space. The widely

scattered estimates when cp = -8 simply reflect the fact that the system

is insensitive to the values of the parameters along the line (I) = -0.

It was noted above that this behavior of the parameters is reflected in

the correlation matrix. In an effort to build a realistic model, this

knowledge is as useful as more precise parameter estimates would be,

for it indicates that the model may be over parameterized. Model order

selection procedures are generally based on the behavior of the

residual mean square (Jenkins and Watts, 1968, Box and Jenkins, 1971).

The correlation matrix and the statistic could be valuable adjuncts

to such procedures.

Summary results of the sample size tests are presented in Tables

7 through 11. As expected the standard errors of both the MULE and

the MLE decrease with increased sample size, and generally both esti-

mators get closer to the nominal values. The mean values for the

samples of size 200 were quite close to the nominal values except for

the case e = .95, (I) = -.95. Generally the MULE appeared to have

smaller standard errors than the MLE and to have a mean value that was

as good or better than the MLE.
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C. Example Using Oregon Sheep Supply Data

The data for this example are taken from Brown and Fawcett (1974).

Their paper examines the relationship between the number of sheep in

Oregon, meat and wool prices, and predator control policy. Two basic

models were proposed: a geometrically distributed lag model and a

polynomial lag model, both of which are commonly used in econometrics.

The geometric lag is structurally similar to the forced ARMA model, but

the parameters are usually estimated by ordinary least squares, leading

to well documented problems.

The geometric lag model presented by Brown and Fawcett has the

form

q(t) = N(t-1) + Ro + R
1

P(t-1) + R
2

X(t-1) (5.1)

where q(t) is the number of stock sheep and lambs in Oregon in year t,

P(t) is a price index consisting of a weighted combination of meat and

wool prices, and X(t) is a dummy variable used to express the influence

of predator control policy. The policy was changed in 1965, so the

variable X(t) is set equal to one for the years 1947 through 1964 and

zero for the years 1965 through 1972, the last year of the data set.

The basic problem in the analysis of this data set is ancillary to

the choice of the correct model and parameter estimation. This problem

involves the logical difficulties of drawing an inference from observa-

tional data. The inferential techniques that are used for experimental

data cannot be applied indiscriminately to observational data. In an

experimental situation great care is exercised to either eliminate or
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control extraneous factors or to insure that both treated and control

groups are homogeneous in those factors. The assurance that treated

and control groups differ systematically only in treatments permits the

assertion of casuality when a difference is observed.

Comparable control is not available in the collection of observa-

tional data. In some instances these difficulties can be countered by

careful selection and/or stratification of the sample. Mantel and

Haenszel (1959) discuss some of the techniques that can be used to

analyze retrospective clinical data.

In the case of the data set that Brown and Fawcett analyze, such

techniques cannot be used. The problem is one of trying to infer the

effect of a policy change in a non-experimental situation. Only

limited data are available, and there is no possibility of obtaining

another data set to be used for a control. It is noted that this is

the prevailing circumstance in the context of this dissertation. As

noted earlier, most applications are properly regarded as unique reali-

zations. However, one does wish to investigate causal inferences in

this context.

In proceeding with the analysis of this data set, several general

principles should be followed. The first is that the model used to

describe the data must provide a good fit to the data. If care is not

taken to insure an adequate model, then the supposed significant effect

attributed to a policy change may in fact be the partial correction of

a bad model. A second principle is that the data should be analyzed

independently of prior concepts. Of course model formulation should
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be guided by theory, and the nature of the question being investigated

has a bearing on the analysis. But the data should point to the con-

clusion. A third principle that holds for all data analysis is that

both null and alternate hypotheses should be clearly stated before any

hypothesis testing is done. It is possible to be somewhat lax with

this principle when analyzing experimental data, since the experimental

design usually restricts both null and alternate hypotheses. This is

not the case in the analysis of observational data. Incorrect specifi-

cation of hypotheses can lead to the wrong analysis and to improper

conclusions. As an illustration suppose that one wishes to determine

if a policy change made in, say, 1960 had an effect on the behavior of

some system. If H0: 'The behavior of the system did not change' is

tested against H1: 'The behavior of the system changed in 1960' then

any test is almost surely biased in favor of H1 because the hypotheses

H
0

and H
1
are not exhaustive. For suppose an event occurred in 1958

that did have an effect on the system behavior. Unless the event is

corrected for by the model, a test of H0 versus H1 will show signifi-

cance which might be wrongly attributed to the policy change in 1960.

Additionally the inference of causality based on observational data

is at best of uncertain validity. Even if there is compelling evidence

of concurrent policy and system changes, the conclusion that the system

change resulted from the policy change does not necessarily follow.

The randomization element, which allows inference of causality in formal

experimentation, is lacking. The association could be a matter of chance

coincidence, which the procedures of sound experimentation are designed
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to rule out. But if it is not established that the system response

change was concurrent with (or possibly subsequent to) a policy change,

then the inference of causality is not warranted under any circumstances.

Thus, the problem of detecting a system change resulting from a

policy change has two aspects: establishing that a change occurred and

establishing that the change occurred in a time frame consistent with

the policy change. The second aspect can be examined using a procedure

much like stepwise regression. Suppose observations y(1), y(2),...,

y(T) are available. Let f(t) represent the system model, so

y(t) = f(t) + n(t)

where n(t) is a random disturbance term. Generalize the model to

account for a change in system behavior at time j by letting the vari-

able Xj(t) represent the structure

, t < j

X.(t) =

0 , t > j

for j = 1,2,...,T. The system model becomes f(t, Xj(t)).

The variables X1, X2,...,XT could be entered into the equation

sequentially to determine which single variable gives the most improve-

ment in model fit. Say the best single variable is Xk. Relabel Xk as

X(1). Repeat the process using the model f(t, X(1)(t), Xj(t)) and the

variables X1, X2,...,Xk_i, X101,...,XT_1, and select X(2) as the vari-

able which gives the most improvement in model fit given that X(1) is in

the model. Continue until the additicn of further variables does not
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produce significant model improvement. If one of the variables X(1),

X
(2)'

...,X
(s)

that has entered the model is consistent with a policy

change, then the data do present some evidence for an effect of the

policy change.

For some models f(t) the analogy to stepwise regression is exact,

and commonly available stepwise regression programs could be used. How-

ever the F-tests used in stepwise regression are not always appropriate.

If parameters are being estimated using maximum likelihood, then

significance tests could be constructed using likelihood ratio tests.

The above procedure was not carried out in toto for this example.

Instead, several models with an increasing number of Xi's were fit to

the data. First order lags and first order MA noise processes were

used for all models.

At first a model with no policy variable present was tried. The

model equation is

q(t) = (pq(t-1) + 130 + (31 P(t-1) (5.2)

+ a(t) + 6a
(t-1)

The parameter estimates and their standard deviations are given in

Table 13.
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Table 13. Model 1 Parameter Estimates

Parameter Estimate Standard Deviation

(1)
1.112 0.014

BO -216.680 37.012

1
3.713 1.038

e .482 0.180

a 26.054

The data and the fitted model are plotted in Figure 13. Figure 14

is a plot of the standardized residuals versus time. As can be seen in

Figure 13, the model does not track the data. The residuals exhibit a

definite pattern. It can safely be concluded that the model is not

adequate.

The primary interest of the modelling effort is in the system

structure. This interest is reflected in the choice of objective

function and in the way fitted values used to compare with observations

are computed. From (3.1) the objective function is

(Y -Gp)' E1.1 (Y-Gp).

Following the standard procedure of using estimated parameter values in

model equations to obtain fitted values, there results

A A A
Y = G p

and from (2.9)
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Z = M G p . (5.3)

None of the factors on the right hand side of (5.3) depend on the

observed values of Z except through the parameter estimates. This is

in contrast to the method commonly used to compute Z for lagged models:

Z
k

= +

e's

(5.4)

The differences in the two means of calculating Z can be striking. The

second method, represented by (5.4), can present an overly optimistic

view of how well the model fits the data. The same parameter values

used in Figure 13 were also used in Figure 15. The fitted values were

computed using (5.4) instead of (5.3). The fit appears to be much better.

Adding the dummy variable associated with the policy change being

tested does improve the model fit. The model equation becomes

q(t) = qq(t -1) + so + f31 P(t -l) + s2x19(t) + a(t) + ea(t-1) (5.5)

The parameter estimates and their standard deviations are in Table 14.

Table 14.

Parameter

Model 2 Parameter Estimates

Estimate Standard Deviation

(I)
0.986 0.059

s0
-148.612 55.519

6
1

41.985 18.453

6
2

3.407 1.030

0.521 0.178

a 25.113



YEARS

Figure 15. Model 1 Sheep Supply Function Using Z(k) = C'pZ(k-1)
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The model and standardized residuals are plotted in Figures 16 and 17,

respectively. There is still substantial evidence of lack of fit and

the residuals still have a definite pattern. However it is clear that

the fit improved.

Although no exact test is available, a good indication of the

significance of 32, and, but for inferential problems, of the effects

of the policy variable, can be obtained through the use of the log

likelihood ratio. The above estimates are MULE; however, the MULE

should have all of the asymptotic properties of MLE. Thus

X = -2 log

Max ULF

3
2

= 0

_Max ULF_

(5.6)

should have an approximate X2(1) distribution. Applying the test gives

X = 3.24, which is almost significant at the 5% level.

If the analysis were concluded at this point, then one might be

tempted to infer that the policy change had an effect on the system.

However, such a conclusion is premature because concurrency has not

been established. Specifically, one has not rejected the
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associated alternate hypotheses that the system behavior changed in

1964, or in 1966, or in any of a number of other possible years. It

is clear that a test of the null hypothesis that a change occurred in

any of these years would lead to a similar indication of change. Before

one can accept the specific alternative of interest, these other

alternatives must be examined, and either rejected or incorporated into

the model.

The sheep supply function has three apparently distinct phases

(Figure 13). In order to duplicate this behavior, a model with three

levels instead of two was used. In essence this constitutes a subject-

ive "guess" of the best three Xk's to enhance the model. This model

(Model 3) had the form

q(t) = 0q(t-1) + Bi X5(t) + B2 X13(t)
+ 13 X + 134 P(t-l)3 26(t)

(5.7)

+ a(t) + ea(t-1)

where X5 was equal to one from 1947 to 1951 and zero otherwise, X13 was

equal to one from 1952 to 1959 and zero otherwise, and X26 was zero

prior to 1960 and equal to one afterwards. The estimated parameters

and their standard deviations are in Table 15.
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Table 15.

Parameter

Model 3 Parameter Estimates

Estimate Standard Deviation

(I) 0.989 0.038

B
1

-79.063 46.371

B
2

-33.971 51.552

B
3

-98.760 46.990

B
4

2.040 0.840

8 0.215 0.202

a 17.375

The model and standardized residuals are plotted in Figure 17 and

18, respectively. The model seems to track the data quite well and the

residuals do not exhibit any obvious patterns.

At this point the policy variable X19 was brought back into the

equation to assess the effect of predator control policy. The model is

q(t) . cpq(t-1) + 61 X1(t) + 62 X6(t)
+ 133 X14(t)

+ 64 X19(t)

(5.7)

+ 6
5
P(t-1) + a(t) + ea(t-1)

The parameter values and their standard deviations are given in Table

16. The model and standardized residuals are plotted in Figure 20 and

21, respectively. From (5.6) X = 2.57, which is not significant. Thus,

this data set does not appear to present substantial evidence that the

change in predator control policy effected the number of sheep in

Oregon.
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Table 16.

Parameter

Model 4 Parameter Estimates

Estimate Standard Deviation

0.912 0.061

61 -41.778 54.231

62 9.475 61.329

S3 -51.751 56.932

(3

4
25.830 16.861

B5 1.775 0.874

e 0.388 0.193

a 16.991

The Oregon sheep supply data set was used as an example for several

reasons. First, the sheep supply, price, and predator relationship is

a subsystem that can reasonably be approximated by a linear system

model even though the macro socio-economic system is almost certainly

nonlinear. Also, the relationships within the sybsystem are not static:

they depend on the interface to the macro system. Hence the constant

coefficient linear system approximation is adequate for only a limited

length of time. Analysis methods based on long-term stationary behavior

are not conceptually suitable for this data set.

Secondly, our perception of the data set is as a unique realization.

There is no realistic possibility of repeating the circumstances that

lead to the generation of the data set in order, say, to determine if

the results would be different if a policy change were nct

Furthermore, temporal extension of the data set would not be likely to
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add information pertinent to the question of the effect of policy

change. Any insight into the results of the change of predator control

policy must be gleaned from the data presently in hand.

Thirdly, the data set represents a situation where there is probably

an additional input that has not been identified. The residuals from

Model 1 and Model 2 (Figures 14 and 17) clearly indicate a change in

system behavior. This change was adjusted for and identified by the

use of dummy variables, but further research is indicated to determine

economic factors associated with these dummy variables.

Finally, the example illustrates the relevancy of the techniques

developed in this dissertation. There is a need to learn from dynamic

systems whose very existance may be ephemeral, and hence a need to

learn from small sets of data collected on dynamic systems.
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VI. MULTIPLE OUTPUT SYSTEMS

The estimation theory and the computational algorithm extend with-

out difficulty to multiple output systems. The computational algorithm

has additional steps because cross-covariance terms now have to be

considered.

In Chapter II shift operators 4) (F) were defined as p
th

-order

polynomials in F with scalar coefficients. For multiple output systems

the definition needs to be extended by allowing the coefficients to be

matrices:

t p-1 t2ts
(F) =

his
F + (I)

2

s
Fr
D

+ +
fps

s
where (Pi

t
is a txs matrix with elements (0

k.
(i). The multidimensional

analog to (2.4) is then

FP Z(k)
)7(Ott(C10 BtS(F\Ufk)

Ott(F)Z(k) rkik

op(F)A(k),

where

Z(k) = (zi(k), z2(k) zt(k))'

U(k) = (ui(k), u2(k) us(k))'

A(k) = (al(k), a2(k),,..., am(k))' .

The number of parameters increases rapidly as the number of out-

puts increases. In order to minimize notational burden, the estimation

theory and computational algorithm will be developed for a two output
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system with two correlated inaccessible inputs and a single accessible

input. This representation is sufficiently complex to serve as an

illustration of the general algorithm.

The system model will be the pair of linear difference equations

z1(k) = (011(1)z1(k-1) z2(k-2)
4- 4)11(2)z1(k-2) + 4)12(122(k-1) + (P12(2)

+ fiu(k-1) + al(k-1) + e1yk-2)

Z2(k)
4)21

(1)z(k-1) + d)
21 '22(2)z1(k-2) + 4122(1)z2(k-1) + (b ( 2. lz2(k-2)

+ (32u(k-l) + a2(k-1) + 82a2(k-2).

Additional accessible inputs and lagged terms in both the access-

ible and inaccessible inputs can be added without effect on the algor-

ithm.

The inaccessible input is assumed to be a zero mean Gaussian

sequence with the following properties:

{

0 k #2

E[a.1 (k)aj (2)] = ''1'

12 Ji .
s k-= 2

Y
12'

i # j, k =

(6.1)
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The parameters y
2

y2, and y
12

will be termed 'variance parameters'

and y will denote the matrix

The initial state of the system is again parameterized so that its

appearance is gradually shifted out of the model. Thus, let

W
(wll w12 w21 w22)'

be the initial state vector, i.e., state at time 0. Then

zj(7) (1),j1(7)w11 (1),j1(2)w12 cPj2(7)w21 (1)j2(2)w22

+ 3,j(.1(0) + a.(0),

zj(2) = cpil(1)zi(1) (1)j1(2)w11 + cpj2(1)z2(1)
4),j2(2)w21

+ ua . (1) + a.(1) + 8.J a.J (0),

zi(k) = ctii1(1)z1(k-1) + cpi1(2)z1(k-2) + (1)j2(1)z2(k) + (pj2(2)z2(k-1)

+Wc-1)+((-1) + O.a.(k-2),a

for k > 3, and for j = 1,2.

As in the single output case, the model will be transformed as

follows:



y.(1) =

yj(2) =

yj(k) =

111

z.(1)

zj(2) - cpj1(1)z1(1) - (1)j2(1)z2(1)

(6.2)

zj(k) - (pj1(1)z1(k-1) - cpi1(2)z1(k-2) - q5j2(1)z2(k-1) -

qbj2(2)z2(k-2)

for k > 3, and for j = 1,2.

Letting Y = (y1(1)y1(2) y1(T)y2(1)y2(2) y2(T))1

Z = (z1(1)z1(2) z1(T)z2(1)z2(2) z2(T))'

and
./1=1.

1

.411(1) 1

0

-.11(2) -.11(1)
1,

0
'-.11 (2) -.11(1)

0

_4)21(1) 0

0

-(021(2) (1)21(1) °.
.

.

.

0 1.21(2) 6-.21(1)

'1

L

0

0

-(012(1)

-.12(?)

0

1

-(1)22(1)

-.22(2)

0

0

.12(1)
'

-.12(2)

1

-.22(1)

, .

-.22(2)

0

0.

-.12(1)

0

1

t

-.22'1'

'0

1

then Y = MZ .

Theorem 6.1: The 2Tx2T matrix M as defined by (6.3) has unit

determinant.

(6.3)
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Proof: Denote by IMTI the determinant of the 2Tx2T matrix.

Expand IMTI by minors of the first row. This row has a 1 in position

(1,1) and zero elsewhere, so IMTJ = IMT*(1,1)1, where MT*(1,1) is

the matrix that results from deleting the first row and first column

of MT. The T
th

row of MT*(1,1) is all zeros except for a 1 in the

(T,T) position. Expand IMT*(1,1)! by minors of the Tth row to get

IMTI IMT*(1'1)1 1MT-11

since the matrix that results from deleting the T
th

row'and T
th

column

of M
T
*(1

'

1) is just M
T-1

. The above sequence can be repeated to obtain

IMTI ImT-li

1 0

0 1

= 1 .

It is convenient to re-order the Y vector at this point. Let

Y* = (y1(1)y2(1) yi(2)y2(2) yi(T)y2(T))1 .

The expected value of Y* is



E[Y*] =

(I)

11
(1) 012(1) 071(2) (1)

12
(2)

021 (1) 022(1) 021(1) 022(2)

011(2) 012(2) 0 0

4)21(2)
022(2) 0 0

r-

u(0) 0 w
11

0 u(0)

u(1) 0

0 u(1)

0
u(T-1) 0

0

= G*p.

Let E*
2T

be the covariance matrix of Y*. Since Y* has a multivariate

normal distribution, the log likelihood is, except for additive constants,

113

w21

w12

w22

a

$
2

g(1), 8, p, Yin = - logIETI - (Y*- V (Y!0) (6.4)G;!,)'E;

and the maximum likelihood estimate of p is given by

'Ps(q), e, Y) = (G*1E;VG*)-1 G*1E*2.-TlY*
(6.5)

If this result is substituted for p in equation (6.4), the resulting

equation is

= loglE2TI - Y*'(EliV - Eli-111G*(G*1E11G*)-1 G*1E2.-r1)Y*

Theorem 3.1 applies, so the matrix

*
= E*-

1
- E-1* G*(G*'E*-1G*)-1G*1E*-1

2T 2T 2T 2T
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is independent of (I) =
((1)11(1)' (D11(2)' 422(2))1*

If the rows of G*

are reordered to correspond to Y, and if E2T is the covariance matrix

of Y, then the same result, with the *'s omitted, holds. That is, the

matrix

= E-1 - E-1 G(G'E
2T 2T 2Tu 2T

is independent of (I).

Then analogous to (3.10) the estimate of 0 is

where

$(e,y) =

H

(H'tpH)-1

H
T

0

HIZ (6.6)

0 H
T

MM.

and

.=.0

0 0 0 0

Z (1)
1

0 Z
2
(1) 0

H
T

= Z1(2) Z1(1) Z2(2) Z2(1)

Zi(T-1) Z1(T-2) Z2(T-1) Z2(T-2)
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Let A = (a1(1) a1(2) ... ai(T) a2(1) ... a2(T))'. It follows from

equation (6.1) that

Cov(A) = r
A

Equations (6.2) imply that

where

R

5

=

E
2T

= R'r
A
R

el

1 el

0
1

1

0

r

i

Y
1

1
2

I
T

Y
12

I
T

121 IT

0

1
2

2
1
T

1 e
2

1 e
2

e2

1

=
R1 0

0 R
2

Analogous to the results for the single output case, we have

r-
1

RI 0

R-1 =
= Q

R-1
2



T-1
with -1

R . = = 7. 3 . , = 1,2 .

j=0

Moreover,

rA
1 1

2 2 2

Yl Y2 Y12

2

9
-Y12

T 2T I

Y12' Y1'

so that the inverse of E
2T

has an explicit form:

2T

1 -
E = Q r

A
1

Q'

Also, since IQ' = 1, it follows that

122T1 IFAI = MT = (y21 Y2 Y12)T*

The matrix E*
2T

can be written as

E*
2T

= R*' r* R*

where

r* =

and

.y/

116
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R* =

Let

and let

so that

0 e1

o e
2

1 0

e
2

e,

(Y* - Gp)R* = (d1 d2 d2T)'

0

0

Dj = (d2j_1, d2j)' , for j = 1,2,...,T ,

(Y* - G*p)R* = (D; Cs lys

Then the log likelihood function can be written

2,0), 0, P, ylz) = - log ly)T
ED..y-1



Let

and

Then

A

2

(2j-1 0

An
0

42

u2j

ay

ay
-1

T(2y - Ay) 2] (2D.D - A, ) .

j=1 ujj

It follows that

c(4), e, p) = 2] D. D/T
j=1

118

(6.7)

is the MLE of y.

Equations (6.5), (6.6), and (6.7) can be used to form an iteration

to compute ULF(8). Given starting values for y, (6.6) can be solved for

(1), then (6.5) for p, and then an updated value of y can be obtained

from (6.7).

It can be shown using Theorem 3.1 that if 81 = 82, then the esti-

mates of 8 in (6.5) and c in (6.6) are independent of y. Also, Di does

not depend on W for j > 3. Hence the iteration can be started by tak-
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ing 61 = 62, computing S and (15, and then using (6.7) to compute y,

beginning the sum with j = 3. Theorem 4.1 applies, and since the likeli-

hood is convex in p, cp, and y, convergence to the global maximum is

assured.

Computation of the MULE could very quickly become prohibitively

expensive because of the required multidimensional numerical integration.

The single dimensional ULF seemed to be quite smooth except near the

boundary of the parameter space. A numerical quadrature using a fine

grid near the edges and a coarse grid in the center may make the

computation of the MULE feasible.
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