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source into machine code (executable form) can no longer be assumed, given the
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tures and information (i.e., intellectual property). Numerous methods have been

proposed targeting the protection against reverse engineering tools and techniques;

however, one of the most promising and widely used of these is obfuscation, or the

introduction of obscurity into a software program. The process of reverse engi-

neering can be seen as a two-phase inverse of compilation composed of disassembly

and decompilation. The level of attention that has been given to preventing disas-

sembly through obfuscation is relatively small when compared to the prevention of

decompilation. Very few positive results have been published in this arena, leaving

it as a promising medium for research. Novel techniques are presented in this dis-

sertation for the prevention of static disassembly on x86 computing architectures.

These new methods illustrate two main approaches by which disassembly can be

thwarted. Results given within indicate the first positive technique by which the
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Advances in Low-Level Software Protection

1. INTRODUCTION

Preventative methods for software reverse engineering have been given greater

attention in recent times due to the increase in computational resources and re-

verse engineering tools available to the public. The inherent security provided

by encoding source code into machine code (executable form) can no longer be

assumed, given the availability of effective automated methods for extraction of

source-level structures and information. Numerous methods have been proposed

targeting the protection against various reverse engineering tools and techniques;

however, one of the most promising and heavily researched of these is obfuscation.

The process of reverse engineering a software program can be seen as a

two-phase inverse of compilation composed of disassembly and decompilation.

The level of attention that has been given to preventing disassembly through ob-

fuscation is relatively small when compared to the prevention of decompilation.

Very few positive results have been published in this arena, leaving it as a promis-

ing medium for research contribution.

In this dissertation novel techniques for the prevention of static disassem-

bly on x86 computing architectures are presented. These techniques illustrate

both new contributions to current research in this area as well as the redesign and

optimization of existing methodologies. Results given within indicate the first

positive technique by which the run-time of disassembly is attacked as well as the
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best current solution for optimal protection at minimal cost for the reduction of

instruction leakage. Additionally, new engineering techniques for the realization

of effective protection tools are given as improvements over existing methods.

This dissertation is the first of its kind to address the binary protection

of executables against static disassembly and provides a solid ground for future

work in this field.

1.1. Summary of Research Contributions

The contributions of this work to the research area of disassembly prevention and

low-level software protection are as follows:

• It is the first to develop a method for obfuscation at the assembly-code

level targeting binary disassembly, alleviating the inaccuracies of previous

techniques in engineering design as well as providing the generation of low

associated overhead.

• It is the first to develop obfuscation methods targeting the run-time perfor-

mance of disassembly.

• A modified branch function design is introduced to be applicable to a broader

class of branch instructions within the x86 architecture at lower cost, thus

making more rigorous obfuscation feasible.

• It is the first to define a formal, viable method for the analysis of disassembly

protection techniques.

• A new, optimized general algorithm for the calculation of junk byte sizes is

given.
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• It is the first to provide a feasible and effective method for a theoretically

complete protection of an original source program against disassembly and

thus gives the most optimal results to date regarding minimization of disas-

sembly accuracy.

• It is the first to identify the need and ability to perform selective protection

of special code regions (algorithms) against static disassembly and provide

an architecture for the realization of said techniques.

• It is the first to introduce the problem of undesirable code regions as well as

identify solutions to this new problem.

• It is the first to give an equation for the computation of Potency vs. Cost

for disassembly protection methods, which can be used as a standard metric

for evaluating any binary protection scheme targeting static disassembly.

1.2. Background and Motivation

Before reading this dissertation, a certain level of background knowledge is re-

quired to understand the contributions developed in subsequent chapters. In this

section various concepts are presented in order to familiarize a reader to a level

sufficient for understanding later topics at a basic level.

1.2.1. Reverse Engineering

Reverse Engineering, as its name implies, is the inverse of the engineering process.

That is, given an end product a Reverse Engineer attempts to evaluate its func-

tionality and determine how its internals are structured in order to obtain some
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information about the product’s design. In this section I will give a fundamental

introduction to the reverse engineering process and its application, with specific

focus on topics of interest to my research.

1.2.1.1. Applications and Purpose

The purpose of reverse engineering is to extract information about a software

program that is not revealed by the developer through any public interface. This

information can be of various use to a third-party, and is often gathered for ma-

licious or illegal activity.

Several popular applications of the reverse engineering process include the

identification of computer viruses [50, 51], removal of software digital rights man-

agement (DRM) [45] and the revelation of exploitable holes in software products

[34, 54]. There is no defined application of this concept, and new uses are found

as time passes. For example, research in binary code rewriting and optimization

[40, 46, 48, 36, 13, 10] is based on fundamental concepts of reverse engineering.

However, the roots of modern reverse engineering are seeded in the illegal extrac-

tion of information from proprietary software systems. As a result, its legality

is often questioned, and new legislation is frequently proposed [22, 4] to combat

intellectual property theft from software.

1.2.1.2. Dynamic vs. Static Analysis

There are two fundamental analysis techniques used in the reverse engineering

of software. The first, Dynamic Analysis, involves the dynamic reconstruction of

software internals through direct program execution. Often this is accomplished
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through the monitoring of current code segments and data values through a de-

bugger.

Static Analysis is the reconstruction of software internals without direct

program execution. Rather than observable program behavior, static analysis

attempts to reconstruct software internals through the direct evaluation of the bi-

nary code. For a more in-depth treatment of these concepts the reader is referred

to [33] which provides an illustrated tutorial on both dynamic and static analysis

techniques.

The primary application of dynamic analysis is in the isolation of discrete

code segments that perform some operation such as serial number registration; in

general it is not used for the reconstruction of software internals. Static analysis

has a much broader impact in the field of software protection as it builds upon

theoretical elements of computer science, such as operating system concepts and

programming language design, rather than human interpretation and observation.

As a result, software protection techniques targeting specifically static analysis

have a stronger theoretical basis and are the target of most current research in

this field.

1.2.1.3. Stages of Software Reverse Engineering

The process of software reverse engineering is closely related to compilation [1], in

which a series of discrete steps are performed, each producing a lower-level code

representation. As stated in [38], reverse engineering can be generalized as the

dual process of recovering higher-level structure and semantics from the executable
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FIGURE 1.1. Compilation vs. Reverse Engineering

machine-code version of the original program. This relationship is illustrated in

Figure 1.1 [38].

It can be readily observed that software reverse engineering is broken into

two discrete steps: Decompilation and Disassembly. Decompilation is the pro-

cess of reconstructing high-level programming language constructs from assembly

language. In general, this is accomplished through a series of analyses that ab-

stract away from the hardware-based features of assembly languages and recover

common high-level language features [12]:

• Data Flow Analysis: Recovers high-level language expressions and state-

ments (other than control transfer statements), actual parameters and func-
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tion return values. Also used to remove hardware-dependant code from

assembly, such as register, pipeline and stack references.

• Control Flow Analysis: Recovers control flow structure information, such as

loops and conditional statements, as well as their nesting level.

• Type Analysis: Recovers high-level type information for variables, formal

and actual parameter types and function return types.

This area has been researched extensively in recent years [8, 6, 9, 7, 12, 41,

14, 42]. The process of recovering the assembly language used for decompilation

from the code region of a binary executable is called Disassembly. It is a simple

concept complicated by some design constraints in modern computer architecture,

and is the primary focus of this research; as a result, it will be covered in greater

detail in the next section.

1.2.1.4. Disassembly

Static Disassembly is the process of recovering assembly language instructions

from a software program without the invocation of the executable file. Another

approach to disassembly is through Dynamic Disassembly, in which a program is

executed on some input and each executed instruction is monitored and decoded

into its assembly equivalent. Rather than analyzing small windows of code, static

disassembly processes an input file as a whole and takes time proportional to the

size of an executable program. This is an advantage over dynamic disassembly,

which requires time proportional to the number of instructions executed during a

program’s execution cycle [38].
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Every executable contains two fundamental parts: the header and sections.

Prior to disassembly the actual instruction stream must be recovered from within

an executable file, which is accomplished through the location of the code entry

point from within the header. This value, coupled with the code size (also indi-

cated within the file header) allows for the isolation an instruction segment from

within an executable file. This is illustrated in Figure 1.2 [38].

The disassembly process is complicated by the presence of non-executable

data such as jump tables and alignment bytes within an instruction stream, which

often causes the production of incorrect assembly instructions [47]. This problem

derives from the representation of both instructions and data within a von Neu-

mann architecture in which they are indistinguishable [9]. This is often likened to

a chicken-and-egg problem; we are unable to identify instructions without know-

ing what is data and vice-versa. The problem is exacerbated by statically linked

libraries and variable-length instructions. The former forces disassembly to not

assume that the code follows familiar source-level conventions or uses known com-
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piler idioms, while the latter complicates the heuristics for instruction sequence

extraction. Modern research in disassembly attempts to alleviate these restrictions

through direct analysis of machine-code control flow and complex state machines

for instruction decoding [47].

There are several published algorithms for static disassembly, formally de-

scribed in [47], [35] and [38]. These algorithms are the target of the research

described in this dissertation and will be presented along with the relevant at-

tacks in subsequent chapters.

1.2.2. Software Protection

The group of mechanisms applied to software programs to aid them against mali-

cious reverse engineering is classified as Software Protections. This is a relatively

new field of research, whose foundations are in classic virus writing [39]. Most

of the techniques used to protect computer viruses in the late 1980s and early

1990s against detection and removal have been applied to the protection of mod-

ern software systems against reverse engineering, which share the mutual problem

of execution in untrusted environments.

1.2.2.1. General Overview

Proprietary software is distributed in machine-code form, which is fundamentally

a low-level representation of the original program. As a result, all potential in-

tellectual property within a software program is distributed in encoded form for

execution in what must be assumed as an untrusted environment. To protect

this intellectual property, various techniques have been created for making the
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FIGURE 1.3. Software Protection Techniques

extraction of information from binaries as difficult as possible. These techniques,

shown in Figure 1.3, have little theoretical foundation and are generally mutually

exclusive.

Each protection technique is based on different fundamental paradigms and

concepts, and therefore there is no theoretical standard unifying software protec-

tion as a field of research. Obfuscation is the application of code transforms in

order to introduce obscurity into a software program while maintaining observ-

ably identical run-time behavior [59, 21, 18, 19, 57, 58, 44]. Tool Detection is

the process of inserting specific code segments into a software program which use

operating system characteristics for the run-time identification of reverse engi-

neering tools such as debuggers [5, 33]. Encoding (or Packing) is the application

of known cryptographic and non-cryptographic transforms to a software program

such that it is distributed in non-traditional (i.e., non-machine-code) form and

decoded prior to execution and is a well-known technique for executable polymor-

phism [33, 39]. Self-Checking is the insertion of integrity verification statements

within given source code segments that check to verify no modification of instruc-

tions or data has occurred [2, 37, 30, 25]. Steganography utilizes redundancy in
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instruction representation and ordering to encode messages within a software pro-

gram for version tracking purposes (such as identifying the original owner of a

stolen software package) and includes new techniques in software watermarking

[24, 18, 17, 43]. Binary Modification is the most basic protection technique in

which physical information is stripped or added to an executable file in order to

confuse the reverse engineering process [29].

The most widely used and heavily researched protection mechanism in the

above group is obfuscation. Due to its more developed and recognized theory, it

will be used as the foundation for our work in software protection.

1.2.2.2. Obfuscation

As previously stated, the most heavily researched software protection technique is

obfuscation, whose basic premise is to introduce obscurity into a software program

while maintaining identical observable program behavior. While not provably se-

cure, obfuscation is seen as the best possible method of hiding information within

software without using cryptographic hardware [19].

The concept of program obfuscation spawned from the optimizations ap-

plied to a software program by a compiler. In essence, a transform may be seen as

the inverse of an optimization for run-time performance. A program is not nec-

essarily streamlined, but a programs obscurity is optimized such that its analysis

becomes increasingly difficult. Therefore, some concepts from code optimization

can be applied to code obfuscation, such as function inlining and data reordering

[19]. The following is a formal definition of an Obfuscating Transform used by
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Collberg et al. [20]:

Definition 1: Obfuscating Transform
Let τ : P → P’ be a transformation of a source program P into a target
program P’. τ : P → P’ is an obfuscating transformation if P and P’
have the same observable behavior. More precisely, in order for τ : P
→ P’ to be a legal transformation the following must hold:

• If P fails to terminate or terminates with an error, then P’ may
or may not terminate.

• Otherwise, P’ must terminate and produce the same output as
P.

A constraint in this definition is the term observable behavior. For all purposes of

our work, this observable behavior can be defined as the behavior experienced by

a user. Using this definition, a transform creating a program P’ may introduce

certain non-observable characteristics (such as File I/O, network communication,

etc.) that are not contained in P and still be considered a valid Obfuscating

Transform. In addition, P’ is not constrained to be as computationally efficient

as P, and a certain measure of overhead will be inherent in the transform of τ : P

→ P’ [19].

There are three primary metrics that are important in the design of an

obfuscating transform as defined in [19]. These metrics allow one to sufficiently

evaluate the quality of an obfuscating transform on a superficial level (as there is

no sound theoretical basis for the strength of a transform to date). In Chapter

4, a first definite method of evaluation based on these concepts is presented. The

primary concerns when evaluating an obfuscating transform are: the level of ob-

scurity added to the program P (a measure of potency, M τ
pot), how difficult it is

to detect and circumvent the transform (a measure of resilience, M τ
res), and the

degree of computational overhead required with the application of the transform
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(a measure of cost, M τ
cost) [19].

A great deal of research has been done on developing formal models for ob-

fuscation on different levels. These levels, as illustrated in Figure 1.4, correspond

to the different stages that a software program goes through during compilation

as illustrated in Figure 1.1. High-Level Obfuscation is the traditional obfuscation

of a High-Level Language as illustrated in [21, 18, 19, 57, 58, 44]. Mid-Level

Obfuscation targets intermediary languages such as Java Bytecode and Microsoft

Intermediary Language (IL) [23]. Low-Level Obfuscation targets machine-code,

and has just recently been proven to be feasible in [59].

The primary means of classifying an obfuscating transform is by the type

of information it targets. This is illustrated in Figure 1.5, and corresponds to the

three main classifications developed by Collberg et al. in [19].

The most trivial of obfuscating transforms is the Layout Transform, which

targets the physical structure (layout) of a source-level program. Some transfor-

mations that are classified as effecting layout are identifier renaming and whites-

pace removal. This is the most widely used technique for source-level obfuscation,
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made popular by the annual IOCCC (International Obfuscated C-Code Contest).

Data Transforms target the specific data within a source-level program.

Data types carry an intrinsic structure, and this information can be used by a

reverse engineer for decompilation. As a result, data transforms attempt to break

up this structure into non-traditional representations [19].

Perhaps the most relevant obfuscating transform effects a program’s con-

trol flow. These Control Transforms attempt to obscure the actual flow of control

from external monitoring while maintaining an identical run-time behavior. This

is an effective method of obscuring internal run-time information (such as algo-

rithms) and is illustrated in detail in [19, 57].

The concept of obfuscation is used as a foundation in the research presented

in this dissertation. In subsequent chapters various obfuscating transformations

are developed with the specific purpose of targeting a characteristic of disassembly

performance. Chapter 2 introduces a new concept in obfuscating transforms tar-

geting the run-time performance of certain disassembly algorithms while Chapter

3 develops transforms introduced in [38] for high reduction of Instruction Leakage

at low cost.
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1.2.3. Review of Current Literature

This subject of disassembly prevention is a relatively untouched research area,

despite its importance to the overall protection of software against attack. Pre-

viously there have been only two published advancements [15, 38] which address

the problem of thwarting the disassembly of executable code, and they will be

identified here. General topics in software protection which form the foundation

of these two published results will also be identified.

The first published result was [15], in which Cohen proposed the over-

lapping of adjacent instructions to fool a disassembler into producing incorrect

results. However, no practical implementation of his ideas was provided. Linn

and Debray in [38] showed undesirable results in their implementation of Cohen’s

algorithm. In general, for a successful overlapping of two instructions I and J,

they found that the following must hold true [38]:

• Execution cannot fall through from I to J and,

• the trailing k bytes of I must be identical to the leading k bytes of J for some

k > 0.

These strict requirements were analyzed against a number of software pro-

grams, and it was determined that a relative few programs satisfy this criteria

in any acceptable manner. For example, Linn and Debray found that in a test

of several programs, the program with the highest number of overlaps was gcc,

which contained only 27 possible overlapping instructions out of a total 360,152 in-

structions. Cohen’s concept of overlapping instructions to fool disassembly, while

providing a first positive result in this direction, had very limited impact and

therefore was never widely regarded.
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The second published result was by Linn and Debray in [38] in which

obfuscation was specifically used to target the incorrect static disassembly of exe-

cutable programs. The primary contribution of this paper was a first valid result

in which modern disassembly algorithms are broken by obfuscation. Additionally,

self-correction within disassembly on x86 was first identified and briefly analyzed.

Several obfuscating transforms are introduced, such as Branch Functions, Jump

Table Spoofing and Call Conversion. Performance metrics for the analysis of

disassembly-thwarting transforms are introduced and used for the analysis of the

previously mentioned obfuscating transforms. This is the only published work in

which obfuscation is specifically used to target disassembly, and the authors seem

to have halted research on this topic after its publication.

Obfuscation in general is not a new research area, and a considerable

amount of work has been published on this topic in recent years. Some of the

most paramount work in this area was accomplished by Collberg, Thomborson

and Low, who developed a foundation on which to define all later work in this

area. In [19], they defined a standard taxonomy, as well as metrics and definitions

by which obfuscating transforms can be classified. In [21], they identified new

techniques for the construction of opaque predicates, and in [18] they identified

and explored three main focal areas in software protection. Other contributions

by Collberg et al. to the field of software protection (primarily via obfuscation)

appear in [20] and [17]. A parallel work to Collberg et al. was published in [57],

and is often used in conjunction with the techniques and algorithms in [19]. One

of the primary problems with the techniques outlined in the above publications

is the lack of a theoretically strong foundation on which the relative strengths

and weaknesses of obfuscating transforms can be analyzed. A recent contribution

in [44] approached addressed this issue by developing an obfuscating transform
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based on a computationally difficult problem.

The focus of current work in obfuscation has mainly been on the prevention

of decompilation of a lower-level language in order to extract higher-level semantic

information, while little focus has been paid to the prevention of disassembly or

obfuscation of machine code. In fact, only in [59] is any attempt made at the

obfuscation of machine code in general. Wroblewski’s work showed a theoretical

algorithm, as well as implementation, for the obfuscation of machine code and

proved the feasibility of such a technique.

Hardware-based mechanisms for software protection have been proposed

in [2] and [37]. In [2], Aucsmith proposed a method by which software was main-

tained in encrypted form, and then decrypted during runtime; in [37], specific

architectural mechanisms were identified to aid in this type of protection. These

two approaches are plagued by the fact that they are infeasible due to high compu-

tational overhead without highly specialized hardware, or require a change in the

uniform standard computing architecture in order for proper software execution.

Due to the lack of current research on this topic and the relatively small

set of publications in this area (two on disassembly prevention [15, 38] and one on

machine-code obfuscation [59]), there is a great deal of promise for development

and publication of valid results. As stated in [38]: work in this area is orthogonal

to the topics mentioned above. That is, any attempt to make a program harder

to correctly disassemble will make the process of decompilation have a higher

failure rate; additionally it will “sow uncertainty in an attacker’s mind about

which portions of a disassembled program have been correctly disassembled and

which parts may contain errors” [38].
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1.3. Disassembly Attack Model

There are two fronts by which disassembly can be attacked such that its per-

formance is adversely affected: accuracy and resources. In this section a formal

attack model is developed which will be used to characterize the obfuscating tech-

niques presented later.

1.3.1. Static vs. Dynamic

The focus of work presented in this dissertation is on static disassembly as intro-

duced in Section 1.2.1.4. The problems of protecting against disassembly is split

into two mutually exclusive domains according to whether the target algorithm

is static or dynamic. Solutions for each domain only apply to their specific al-

gorithm with the exception of encoding which can cross domains but is generally

considered weak.

Traditionally the problem of protecting against dynamic disassembly is

considered unsolvable, due to the availability of on-chip ports which can be mon-

itored to view the currently executing instruction. If the disassembly tool ac-

cesses these ports directly, rather than through the operating system, then there

is no non-cryptographic method for protection, and cryptographic methods require

hardware support as previously mentioned. Most protection methods targeting

dynamic disassembly protect only against disassemblers that utilize operating sys-

tem calls to access the CPU debugging information. By monitoring the values of

various system registers after specific interrupt calls, it can be determined if a

debugger/disassembler is active on the host system and the software can take ad-

verse action against it. These solutions are highly specific to the environment in

which they are run and generally break software portability.
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Research presented in this dissertation targets static disassembly only as

it is not plagued by information leaked during run-time of an executable and is

feasibly protected against using non-cryptographic methods. Therefore, the dis-

assembly attack model used considers only static algorithms and does not address

any dynamic techniques such that protection techniques are portable across any

x86 environment.

1.3.2. Characteristic Targeting

As previously mentioned, there are two fronts by which a static disassembly algo-

rithm can be attacked. To represent this visually, the disassembly characteristics

which are targeted by this work are illustrated in Figure 1.6. These two attack

domains will be the focus of work presented in this dissertation. To this point

there are no published methods other than that given in Chapter 2 that target

the first characteristic.

Two attacks are presented in later chapters; the first targets characteristic

two, or the run-time requirements of a disassembly algorithm. By forcing the al-

gorithm to require exponential resources based on a binary file size, the use of said
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algorithm becomes infeasible as time requirements grow. For example, a small file

may require a relatively short period of time for disassembly; however, as the file

size grows in a linear fashion its requisite disassembly time grows exponentially.

The goal of targeting this characteristic is to make the process of static disassem-

bly more expensive than the return on time invested.

The second attack targets characteristic one, or the accuracy of a given

disassembly algorithm. This is the traditional goal of any software protection

mechanism: to make an algorithm fail to produce correct results. The informa-

tion presented in Chapter 4 gives an attack against this characteristic. In that

chapter obfuscating transforms are presented that severely reduce the accuracy

of a disassembly algorithm’s results such that use of them would make the recon-

struction of higher level structures or extraction of algorithmic information of a

binary file inaccurate and incorrect.

1.4. Formal Methods for the Evaluation of Disassembly Prevention

Unfortunately, all current literature in disassembly prevention provides metrics for

results analysis but fails to provide a feasible method for obtaining said results.

As a consequence, a formal technique for obtaining these results was developed

for this dissertation and will be presented here.

To date, the standard and accepted method of evaluation for both dis-

assembly and binary obfuscation tools within the research community has been

through the SPECint95 benchmark suite [35, 38, 47]. These benchmark appli-

cations are compiled using gcc version egcs-2.91.66 with optimization level -O3.

In order to ”modernize” the process, the SPECcpu2000 Integer benchmark suite

is used as a replacement in this dissertation. Specific compilation or obfusca-

tion steps required by protections given in later chapters will be presented in the
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relevant sections and omitted here. All simulations are performed on either the

Software Attack Machine (SAM), which is a 1.0 GHz Celeron with 512MB RAM

running SuSE Linux, or WALES, which is a Dual Xeon 3.06GHz machine with

2GB RAM running RedHat Enterprise 3.

The two common metrics, aside from time/space overhead, used in an-

alyzing binary obfuscation and disassembly are the Confusion Factor (CF) and

Disassembler Accuracy (DA), respectively. The Confusion Factor was introduced

in [38] and indicates the fraction of program instructions incorrectly disassembled

(or, how confused the disassembler was). It is be defined in an abstract form as

CF = |V −O|
V

, where V is the set of valid program instructions and O is the set of

disassembled instructions. The notion of Disassembler Accuracy was introduced

in [35] and represents the efficacy of a disassembly tool in identifying valid in-

structions; formally, it is defined as DA = 1 - CF. This metric actually relates the

fraction of valid instructions recovered from a binary file.

To measure the effects of of a binary protection technique against various

disassembly algorithms, four tools will be used. The GNU Objdump [28] utility is

a common development tool implementing the Linear Sweep algorithm. ISLDasm

is the ISL Disassembler Suite [32] including tools implementing both Linear Sweep

and Recursive Traversal; they were developed strictly for this dissertation (and

on a side note, the Recursive Traversal Implementation is the first published for

x86/Linux operating on ELF binary files). Objdump and the Linear Sweep ver-

sion of ISLDasm are not necessarily used in conjunction. Rather, whichever tool

achieves the best results will be used for evaluation of protection techniques. The

final disassembler was developed by Kruegel et al. to illustrate their Heuristic-

based disassembly algorithm in [35] and is used only in Chapter 2.
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For our purposes a new metric was developed which formalizes the two pre-

viously mentioned. This new metric, called Instruction Leakage (IL), represents

the fraction of original instructions recovered by a disassembler on a protected

binary. IL is a scalar value associated with ratio of the number of elements within

two defined sets Ω and P . The two sets are composed of unsorted elements ωj

and pk respectively, where each element is composed of a numeric value (address)

and string value (instruction). Instruction Leakage is computed as follows:

Algorithm 1: Instruction Leakage
Formally, define a set element I as I = {a, i | a ∈ Z, i ∈ x86 in-
structions}. Then, given two sets Ω, P where Ω = {ωj | ωj ∈ I} and
P = {pk | pk ∈ I} plus the empty set S = ∅ we can calculate IL as
follows:

1. A new element in Ω is created for each original instruction.
2. A new element in P is created for each disassembled instruction.
3. S = P ∩ Ω.
4. IL = |S|

|Ω|

If no element of P is shared with Ω then no original instructions were
disassembled (or “leaked”). Otherwise, the scalar value IL will give
the fraction of original instructions recovered through disassembly.

Using this abstract algorithm we can derive very specific techniques for accurate

analysis of the software protection techniques in this dissertation.

The first applied use of this algorithm is developed for Chapter 2 and is

similar to the techniques used in [38, 35]. The premise of this technique is to use

the Unix utility diff, which gives direct differences between two textual files. From

the command-line the steps proceed as follows:

• diff -y <disassembler output> <original instruction reference> | grep -v ’|’

| grep -v ’<’ | grep -v ’>’ > <recovered instruction listing>
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This command gives the addresses from <disassembler output> that are also con-

tained in <original instruction reference>, or the union of the two sets. Instruc-

tion Leakage (IL) is then computed through the following pseudocode, which

simply gives the ratio of perceived instructions to actual instructions:

count1 = wc -l <recovered instruction listing>

count2 = wc -l <original instruction reference>

IL = count1
count2

Output from the disassembler must list only addresses at which instructions are

perceived. There is a flag for the PLTO tool [46, 38] which outputs information

of the form:

feedface -> 0x8000001

0x8000001 -> 0x8000002

Instruction mappings which translate an original address to a final address sig-

nify mappings of original code and not inserted code. These final addresses are

compiled into a list of original instruction addresses used above as <original in-

struction reference> and are used to determine if a disassembled instruction is

valid. This technique provides an accurate, applied method for calculating IL

with obfuscation based on PLTO [38].

Algorithm 1 is applied secondly to the calculation of IL for topics covered

in Chapter 3 by a similar fashion. That is, during the first step of postprocessing

for the application of our improved techniques, the original code addresses are

generated and later translated according to the location and volume of inserted

code/data. The result is an output file that contains original code addresses.
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Output of the disassembler is then compared one address at a time to calculate

the intersection of disassembler output and original code addresses.

1.5. Problem Statement

The overall goal of this research falls into a single problem: is it possible to make

static disassembly of x86 binaries infeasible, such that the accuracy of results

is minimized or the run-time requirements of obtaining results are exponentially

long based on the size of a binary? Additionally, is it feasible to do so such that

the overall resource cost of the resulting binary file is minimal? The subsequent

chapters in this dissertation address this problem by developing new methods

and optimizations based upon obfuscation that give a positive answer to these

questions. The results obtained illustrate that both definitions of infeasible within

this problem are provided through two different obfuscating attacks.

1.6. Organization of this Document

This dissertation is organized into five main chapters, where each chapter outside

of the Conclusion covers a singular topic in low-level software protection.

Chapter 1 presents an introduction as well as the necessary topics form-

ing the basis for the remainder of this dissertation. It begins by defining and

developing the topic of Reverse Engineering and then continues to review current

techniques in Software Protection. It defines the notion of Static Disassembly

as well as Obfuscation, and briefly reviews the current literature on the topic of

utilizing Obfuscation for the prevention of Reverse Engineering. A first formal

definition of evaluation techniques for binary software protection methods target-

ing static disassembly is given in Section 1.4. The direct problem statement that
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this dissertation addresses is given in Section 1.5.

Chapter 2 presents our first approach for the prevention of static disassem-

bly through obfuscation. This chapter introduces a new type of obfuscating trans-

form, classified Structural Obfuscation, and develops a method of thwarting highly

accurate static disassembly algorithms that have been robust against current pro-

tection techniques [35]. It shows the first published technique by which static

disassembly is prevented, not through the reduction of IL, but rather through the

increase in disassembly time requirements. It concludes by illustrating the efficacy

of protection against disassembly at very small overhead.

Chapter 3 revisits topics presented in [38] and explores methods by which

they can be greatly improved. This new design follows the basic concepts in cur-

rent literature, but recreates the means by which they function in order to increase

the efficacy of the concept of Branch Function Obfuscation against static disas-

sembly. Errors and sub-optimal approaches in current literature are identified and

modified in order to achieve much more desirable ratios of potency versus cost in

the final design. Additionally, new paradigms in the application of obfuscation to

the protection of low-level software are given for the first time. This chapter con-

cludes by giving the best current results concerning prevention static disassembly

for binary files.

Chapter 4 presents the engineering considerations that are required for the

efficient realization of topics covered in Chapters 2 and 3. Fundamental algo-

rithms are developed defining the obfuscation transforms, and tools are presented

based on these. Design flaws in previous obfuscation tools are given along with

their remedies. Topics presented in this chapter yield a new paradigm in the cre-

ation of binary obfuscation tools for the prevention of static disassembly, and give
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the most minimal resource overhead of any approach in current literature. The

chapter concludes by presenting graphically the measure of Potency versus Cost

associated with our techniques when compared with others in modern literature

on the topic as well as defining a formal equation for the computation of this

metric. The equation for the computation of this metric is the first realizable and

definite method given in current literature.

Chapter 5 gives concluding remarks on this topic as well as brief review of

the results presented in previous chapters. Additionally, future areas of concern

are identified and some brief, but not proven, solutions are proposed.
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2. STRUCTURAL OBFUSCATION

Most traditional approaches to disassembly followed one of two simple algorithms,

Linear Sweep or Recursive Traversal (see Chapter 3). However, with the devel-

opment of protection mechanisms, which lessened the effectiveness of these al-

gorithms [38], new approaches to disassembly were necessitated. Rather than

reinvent the wheel, Kruegel et al. proposed in [35] a new disassembly algorithm,

similar to existing methods, but designed to be robust and effective for binaries

protected with the techniques of Linn and Debray [38]. Their work represented

a fundamental shift in disassembly research; rather than focus on good, general

algorithms, their approach was to develop a highly specialized algorithm meant

to circumvent modern protection mechanisms for binary executables. This keeps

with the tradition of software protection in that it mimics an arms race in the Cold

War style, by which one side develops a new technology, and the other creates a

technique to circumvent it; repeat ad infinitum until a truly unbreakable solution

is developed. Their new disassembly algorithm is truly a unique step in a different

direction, using code structures and control flow graphs to develop relationships

within a program to determine the most likely code sequences for disassembly.

In this chapter, an attack utilizing a new type of obfuscation developed

for this research is shown which targets structural assumptions utilized by the

algorithm developed in [35]. The process of obscuring control flow boundaries

on x86 binaries leads to a decrease in disassembler accuracy and an increase in

run-time requirements for this algorithm, both valid methods of weakening the

effectiveness of a disassembler as described in 1.3. The results of this work are

meant to motivate further research into the robust disassembly of obfuscated and

non-obfuscated binary files, as well as break the notion that disassembly time

requirements are linear based on input size.
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This chapter is structured as follows: Section 2.2 briefly introduces the

disassembly algorithm targeted by this work. Section 2.3 presents the topic of

Structural Obfuscation and gives an attack targeting pattern-dependent disas-

sembly. Section 2.4 gives the results analysis of this attack.

2.1. Target Algorithm

In [38], Linn and Debray introduced methods of obfuscation specifically targeting

the Recursive Traversal and Linear Sweep algorithms through obscuring branch

target addresses and inserting non-executable junk data. Their experiments were

very positive and provided an effective means of thwarting disassembly. As a re-

sult, Kruegel et al. in [35] introduced a new, novel disassembly algorithm, based

on statistical methods and control graph information, for general and obfuscated

binaries. For the remainder of this chapter, their technique will be referred to as

Heuristic-based Disassembly.

The general method of Heuristic-based disassembly functions much like

Recursive Traversal at a high level in that the techniques are based on a pro-

gram’s control flow. However, reconstruction of a control flow graph (CFG) for a

given input program is different , and tailored to be more resilient in the presence

of obfuscated binaries. From a general view, their approach seeks to isolate the

functional blocks of a program through heuristic search for source-level structures

indicating a function prologue, and then construct an inter-procedural control flow

graph based on the functional subdivisions of the code as well as branch target

addresses. This CFG is developed through a multi-pass processing of functional

blocks. In general, the first pass develops an initial CFG and further passes at-

tempt to resolve conflicts and ambiguities in the CFG. The remaining portions

of a program not covered by the subdivision into functional blocks are processed

using statistical methods termed Gap Completion. Additional methods are also
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used to identify and circumvent the protections developed in [38]. The algorithm

developed by Kruegel et al. gave very positive results for the static analysis of

binaries obfuscated using the methods of Linn and Debray, as well as general bi-

naries. For the purposes of this chapter, a sufficient knowledge of the algorithmic

internals is given here. The attack presented below simply obscures actual func-

tion boundaries such that the construction of a valid CFG becomes difficult. For

a thorough treatment of the algorithm refer to [35], as further development is not

necessary in the context of this dissertation.

Static disassembly, in general, is not limited to the brief treatment given

here, and several other approaches have been developed based on the fundamental

techniques presented above. Schwarz, Debray and Andrews in [47] propose a

hybrid method based on the Linear Sweep and Recursive Traversal algorithms.

In [11], Cifuentes and Van Emmerik propose a technique for the more accurate

extraction of control flow successors for indirect jumps using jump tables; in [10]

the same group propose the concept of Speculative Disassembly, by which they

process undisassembled portions of code in the expectation that it might be a

target of indirect jumps and flag it as speculated. The fundamental algorithms of

Linear Sweep and Recursive Traversal are given treatment in Chapter 3.

2.2. Utilizing Structural Obfuscation

Several disassembly algorithms used in modern research [35, 47] attempt to di-

vide and process small blocks of code separately within a large piece of software.

Primarily, the method used for subdivision of code into smaller discrete blocks is

through identification of branch target locations, or pattern matching of known

structural source conventions.
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All currently published techniques for protection against disassembly ex-

ploit the subdivision process used by the recursive traversal disassembly algorithm

[38] to reduce information leakage. Structural obfuscation directly targets physical

code segments utilized for subdivision and control target identification in certain

disassembly algorithms such as [35]. Through our work, we found a desirable at-

tack against disassembly to increase its run-time resource requirements. To date,

no such technique has been proposed outside of our research. That is, our work

in structural obfuscation is the first approach that gives more weight to making

disassembly infeasible due to its execution time requirement, rather than its rel-

ative accuracy in decoding. Structural transforms are a special classification of

obfuscating transforms wherein code structure is not removed, but translated to

its binary functional equivalent as illustrated in Figure 2.1. Additionally, some

information may be inserted (given the circumstances) to further confuse func-

tion boundaries, similar to the concept of “dead code insertion” introduced in

[19]. This is fundamentally different than Layout Transforms defined in [19] in

that, while code structure regarding source layout is removed through a Layout

Transform (and has no overall effect on the resultant binary), a Structural Trans-

form translates and/or removes structure effecting the physical makeup of a final

binary file. Structural Obfuscation is formally defined, using the same concepts

of [19], as follows:

Definition 3: Structural Obfuscation Transform
Let τ : B → B be a transformation of a binary source program B into
a binary target program B. τ : B → B is a Structural Obfuscation
Transform if B and B have the same observable behavior yet different
physical binary structure. More precisely, in order for τ : B → B to
be a legal transformation the following must hold:

• If target structure sa is present in B and is obfuscated with sb,
then no occurrence of sa can appear in B. Additionally,
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     push %ebp
     mov  %esp, %ebp

(a) (b)

     mov  %ebp, %edx
     push %edx
     mov  %esp, %edx
     push %edx
     or      %eax, %eax
     pop   %ebp

FIGURE 2.1. (a) A simple code structure and (b) its obfuscated equivalent

• If B fails to terminate or terminates with an error, then B may
or may not terminate.

• Otherwise, B must terminate and produce the same output as B.

The notion of using functionally equivalent code sections was first intro-

duced in [24] for the embedding of information within a binary file. Their approach

encoded information through various permutations of a short series of assembly

instructions. Our methods are much less complicated and essentially an extension

of their work to a different arena; we acknowledge that many permutations exist

that are functionally equivalent to a select code segment, but do not give weight

to one over the other. We randomly select from a pool of functionally equiva-

lent code and replace the original with its functional equivalent to obscure the

structure of the final binary program. Given that the subdivision process used

by the initial heuristic search of [35] for disassembly assumes certain structural

conventions be present within a binary, its run-time performance can be adversely

affected through the use of structural obfuscation.

The subdivision technique used by Kruegel et al. in [35] is accomplished

through identification of function start addresses by heuristic search of a binary

file for byte sequences implementing typical function prologues. It is briefly men-
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          jmp   .fakelabel
          push %ebp
          mov  %esp, %ebp
     .fakelabel

FIGURE 2.2. A Fake Code Insertion

tioned that confusing the Control Flow Graph (CFG) used for disassembly might

adversely degrade disassembler performance. As such, our methods target the

confusion of the CFG through obscuring function boundaries at the binary level;

that is, we remove the structure of function prologues in the original code and

insert “fake” prologues at random intervals within an actual function, essentially

complicating the extraction of an accurate CFG for a binary program.

A typical function prologue follows the structure shown in Figure 2.1a,

while one possible application of structural obfuscation on this prologue is il-

lustrated in Figure 2.1b; the structure of a “fake” code insertions is given in

Figure 2.2. In this work, a set of functionally equivalent code sections of varying

size were developed against the patterns utilized for subdivision in heuristic-based

disassembly. The structure of a source program is greater diversified with a larger

set of equivalent instructions, making the identification of obfuscation techniques

scale with difficulty equivalent to the size of the equivalent code set. These tech-

niques were implemented with a tool described in Chapter 4 which parses an

assembly file and replaces/inserts obfuscated code structures at given intervals.

The impact of removing these structures on heuristic-based disassembly is given

in the next section.
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TABLE 2.1. Information Leakage (%)

Program Original Linn/Debray Structural

bzip2 97.21 92.68 92.60

crafty 96.17 92.09 92.00

gap 95.66 91.12 89.72

gzip 97.03 92.81 92.61

mcf 97.43 92.91 92.83

parser 96.58 92.50 91.70

vortex 96.17 91.05 89.59

Mean 96.61 92.17 91.58

2.3. Experimental Evaluation

As previously described in Chapter 1, results were obtained for the impact of

structural obfuscation on disassembly using the SPEC benchmark suite. These

benchmark applications were compiled using gcc version egcs-2.91.66 with opti-

mization level -O3 as done in [35, 38]. These applications are then obfuscated

using a structural obfuscation tool, and processed using the methods of Linn and

Debray with their tool PLTO [46]. To represent the original version of each tool,

the files were compiled as above and not obfuscated ,but simply written into a

final executable with obfuscation disabled using the tool in [38]. Each applica-

tion was tested against the disassembler developed by Kruegel et al. in [35]. All

results were obtained using an average of ten tests for each benchmark utility on

the SAM.

Time and space overhead for our structural obfuscation technique was

gathered through a series of ten tests. Overall, the results were not astounding

regarding overhead associated with structural obfuscation on the SPECint2000
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TABLE 2.2. Disassembler Execution Time (in seconds)

Program Original Linn/Debray Structural

bzip2 50.5 151.8 182.2

crafty 100.9 223.2 2303.33

gap 60.0 181.0 14398.7

gzip 52.8 121.8 206.2

mcf 40.7 94.4 99.7

parser 49.4 136.0 1499.7

vortex 65.0 240.0 18827.3

benchmark tools. The mean execution time required was found to be 2.86%

higher than binaries obfuscated with Linn and Debray’s approach; additionally,

the mean space requirement was found to be 0.40% over Linn/Debray obfusca-

tion. These results indicate a small, statistically insignificant cost associated with

structural obfuscation when used in conjunction with Linn and Debray’s obfusca-

tion methods.

Table 2.1 gives reference results illustrating the impact of structural obfus-

cation, in conjunction with Linn/Debray obfuscation, on the accuracy of disassem-

bly. The column associated with Linn/Debray gives performance results when

a binary has been transformed only by Linn and Debray’s techniques, while the

column associated with Structural indicates performance of binaries obfuscated

with the methods of Linn and Debray in conjunction with structural obfuscation.

Results for the tool-specific mode of the disassembler are omitted, as this work

is addressing the impact against the general algorithm. Kruegel et al. in [35]

achieved a mean value for information leakage of 90.10 in general mode when

operating on SPECint95 binaries obfuscated using Linn and Debray’s methods.

Analysis for structural obfuscation indicate an accuracy of 92.17 in general mode
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against the SPECint2000 binaries obfuscated with the same method and 96.61

against unobfuscated binaries. The information leakage achieved against binaries

whose structure has been obfuscated is 91.58. W. S. Gossett’s (Student’s) t-Tests

were developed to indicate the chance that a standard deviation and calculated

mean on small sample sizes (as associated with this research) could deviate from

values associated with much larger sample sets (during which true behavior can

be seen over a longer time period). The test indicates the statistical significance

of variance in small data sets. When using this test on the data in Table 2.1, a

t-value of 0.984 was found with a standard deviation of 1.12. We can note that

the t-value 0.984 is not greater than the corresponding t-table value (2.18) with

probability of 0.05 (95% probability of making a correct statement), indicating

that the differences are not statistically significant. This is an important note, as

it illustrates an insignificant impact on disassembler accuracy using these tech-

niques and thus they cannot be relied upon for decreasing this metric. However,

Table 2.2 illustrates an aspect of disassembly adversely affected by these obfus-

cating transforms.

A non-traditional method for attacking disassembly is in degrading its

run-time requirements. Kruegel et al. made a very important point in that their

heuristic-based disassembler was not susceptible to the traditional poor scalability

and inability to deal with real world input associated with static analysis tools.

They indicated that subdivision allows for good scalable performance results, but

state that if this is not possible then their disassembler could slow and give no

simulation numbers illustrating the degree of impact. One of the goals in devel-

oping a valid software protection technique is to make the recovery of code from

binary files not only inaccurate, but computationally expensive; the disassembler

of Kruegel et al. showed a linear increase in time requirement based on the size of

the input given accurate subdivision. The structural obfuscation attack, in addi-
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FIGURE 2.3. Disassembly Time Requirements

tion to reducing information leakage, also targeted the run-time requirements of

heuristic-based disassembly. The direct impact of this attack on the time require-

ments of our target disassembler is given in Table 2.2. To represent the numbers

visually, the increase in time required for disassembly versus the binary file’s text

section size is graphed in Figure 2.3. As illustrated, the run-time requirements for

disassembly fail to run in a linear fashion, and actually require an average-case

exponential increase in time based on the size of the input. This attack effectively

makes this disassembly technique infeasible as program size increases. From the

results illustrated in this section it is shown that this attack leads to a slight, un-

desirable (yet statistically insignificant) reduction in information leakage as well

as an exponential increase in disassembler runtime proportional to input program

size.
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The exponential increase in disassembler time requirements is due to the

extension of several computationally expensive steps in the disassembly algorithm.

The algorithm is cornered on the development of an accurate CFG by which dis-

crete regions of code are developed and determination of correct instruction se-

quences are based. As we obscure function prologues, they are missed by the

subdivision process utilized in CFG generation. Rather, these function heads

are interpreted lie within the basic block of a previous function. The insertion

of “fake” prologues inside a real function block obscures the boundaries of that

function, making it appear as if the original function is not present, but several

functions exist within the original function body. Thus, the actual utility calcu-

lating the CFG is forced to evaluate erroneous blocks equivalent to the number of

inserted prologues. The adverse affect this has on disassembler performance can

be evaluated mathematically. Let us assume that the algorithm has to process n

blocks of code, and compare their control flow with each other block. The authors

of [35] claim this algorithm to run in linear O(n) time. The insertion of a single

fake prologue will force the processing of additional blocks on the order of O(n

· n
21 ), as each n functions must be analyzed against n

2
new functions to develop

intra-procedural control flow. The additional of further fake prologues forces the

algorithm to converge to the value O( nm

2m−1 ). The value m is variable for any given

obfuscation attempt, and is in essence a random number. It can be observed that

the CFG evaluation is forced to exponential time requirements. This situation is

exacerbated by the Gap Completion step, which is the second computationally in-

tensive step of this disassembly algorithm. The level of gaps increases linearly with

the value m, which introduces overlapping blocks of ambiguity in control flow and

thus several sequences of candidate code blocks. The statistical analysis is then

forced to determine which block is “most likely” given the pre-computed CFG,

and this additional overhead is a constant addition to the above average-time case.
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The combination of these two factors force disassembly time requirements into an

exponential fashion, and are illustrated analytically through our work.
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3. BRANCH FUNCTION OBFUSCATION

The level of attention that has been given to preventing static disassembly through

obfuscation is relatively small when compared to the prevention of decompilation,

as previously mentioned. The traditional approach has focused on jumping around

fake code regions, thus misdirecting a reverse engineer as to what is actual versus

“fake” code [5]. Some approaches were proposed in the past exploiting structural

aspects of an instruction set architecture [15], but were not widely used due to

lack of applicability. The most influential contribution to this area was recently

published by Linn and Debray in [38]. The primary result of their work was a

first valid method by which modern disassembly algorithms are broken through

obfuscation. In addition, self-correction within disassembly on x86 was first identi-

fied and briefly analyzed; performance metrics for the analysis of anti-disassembly

obfuscating transforms are introduced and used to analyze the methods they pro-

posed.

In this chapter numerous improvements on the fundamental ideas of Linn

and Debray are given, allowing for an effective and theoretically complete pre-

vention of static disassembly on x86 binaries. This work builds upon a simple

foundation, given in [38], and extends their work through optimization and cor-

rection to allow for a greater level of obfuscation to be applied on a binary file,

such that the overall accuracy of disassembly is minimized.

This chapter is structured as follows: Section 3.2 introduces the disassem-

bly algorithms targeted by this work, as well as existing obfuscation techniques for

disassembly prevention. Section 3.3 presents fundamental improvements and ad-

ditions to Branch Function Obfuscation and Section 3.4 gives the results analysis

of this work.
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global startAddress, endAddress;

proc LinearSweep(*address)
 begin
  while (address < endAddress) do
   instruction := decode instruction at address;
   *address := *address + instruction.Length;
  od;
 end;

proc main()
 begin
  startAddress := address of first executable byte;
  endAddress := startAddress + sizeof(text section);
  currentAddress := startAddress;
  LinearSweep(&currentAddress);
 end;

FIGURE 3.1. Pseudocode for Linear Sweep Algorithm

3.1. Target Algorithms

Unlike the previous chapter, the attack presented here targets the two most fun-

damental algorithms used for disassembly. Consequently, the impact of this work

is broader than Structural Obfuscation, as a greater array of commercial tools uti-

lize the two algorithms presented here. Each algorithm has a weakness, which is

exploited by Branch Function Obfuscation, and will be illustrated in this section.

3.1.1. Linear Sweep

The Linear Sweep Algorithm starts at the beginning of a code region and se-

quentially decodes addresses until the maximum address is encountered. This is

illustrated through pseudocode in Figure 3.1 [38].
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  Address          Memory Contents        Disassembly Results

      ...
0x809ef45:          eb 3c                           jmp 0x809ef83
0x809ef47:          00 00                           add %al, (%eax)
0x809ef49:          00                                add %al,
0x809ef4a:          83 ee 04 83 ee                 0xee8304ee(%ebx)
0x809ef4f:           04 83                           add $0x83, %al
      ...
0x809efaa:          73 9e                           jae 0x809ef4a
      ...

FIGURE 3.2. Linear Sweep Example

This algorithm is implemented in several popular disassembly applications

such as GNU objdump [28], as well as several link-time optimizers such as alto [46],

OM [49] and Spike [16]. The primary benefit of Linear Sweep is simplicity. How-

ever, this algorithm will interpret any data embedded in the instruction stream

as a valid instruction. The only exception to this is when an invalid opcode is

detected, at which time an error can be flagged. It is due to this reason that it is

not considered a “good” technique for disassembly [47].

It is important to look at a simple example of this misinterperetation. Ob-

serve Figure 3.2, which provides a simple illustration [47]. At address 0x809ef47,

three null alignment bytes were inserted in the instruction stream to push the loop

header at 0x809ef4a forward (for reasons such as those outlined in [26]). The Lin-

ear Sweep algorithm interprets these bytes as valid instructions, and disassembles

as shown. It is easily determined that this is an erroneous disassembly, because

the jump at 0x809efaa targets a location in the middle of an instruction. However,

Linear Sweep does not identify this error and produces invalid results [47].
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3.1.2. Recursive Traversal

The primary problem with Linear Sweep is that it is unable to discern that the

alignment bytes in Figure 3.2 are unreachable during execution. Observation of

the control flow within the instruction stream would reveal this, and is the tech-

nique used by the Recursive Traversal algorithm [47].

The Recursive Traversal algorithm is a simple and effective method for

avoiding the disassembly of data that is unreachable by program control flow. It

is less widely implemented due to its increased complexity, but is seen in several

popular binary translation systems [9, 53]. This algorithm functions much like

Linear Sweep; however, when a branch instruction is disassembled, the algorithm

proceeds to process all possible control flow successors (branch targets). Figure 3.3

shows pseudocode for the Recursive Traversal algorithm [47].

The pseudocode for Recursive Traversal shows that several additional steps

are taken for disassembly when compared with Linear Sweep. First, since disas-

sembly is no longer processed in a linear fashion, each address is flagged as being

visited if seen by the algorithm. Once decoding on a particular address is finished,

it is flagged to ensure that it is not processed further. If this address decodes to

a branch instruction, the algorithm recurses to all possible branch targets before

continuing disassembly of the next physical address.

It is assumed by this algorithm that the consideration of control flow within

a binary will allow disassembly to go around data embedded in the instruction

stream. The primary drawback of Recursive Traversal results from its most fun-

damental assumption: that the set of control flow successors for each branch can

be accurately identified. This is not necessarily the case, and is difficult in the

presence of indirect jumps. This concept is used as the primary means of attack
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global startAddress, endAddress;

proc RecursiveTraversal(*address)
 begin
  while (address < endAddress) do
   if (address has been visited already) then return fi;
   instruction := decode instruction at address;
   set address as visited;
   if (instruction is a branch or function call) then
    for each (possible target t of instruction) do
     RecursiveTraversal(t);
    od;
   else
    *address := *address + instruction.Length;
   fi;
  od;
 end;

proc main()
 begin
  startAddress := address of first executable byte;
  endAddress := startAddress + sizeof(text section);
  currentAddress := startAddress;
  RecursiveTraversal(&currentAddress);
 end;

FIGURE 3.3. Pseudocode for Recursive Traversal Algorithm
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against disassembly [38].

Several advancements have been proposed to the algorithms identified here.

Schwarz, Debray and Andrews in [47] propose a hybrid method based on the afore-

mentioned algorithms. In [11], Cifuentes and Van Emmerik propose a technique

for the more accurate extraction of control flow successors for indirect jumps us-

ing jump tables; in [10] the same group propose a new concept of Speculative

Disassembly, by which they process undisassembled portions of code in the expec-

tation that it might be a target of indirect jumps and flag it as speculated. These

algorithms are fairly new and have not been researched extensively [38].

3.2. Branch Function Obfuscation

Linn and Debray published in [38] the first positive application of obfuscation

targeting the prevention of disassembly on x86 binaries. Their work, though

simple in concept, gave birth to a new arena of research in software protection

at the binary level. No longer were protection techniques limited to encryption

and encoding, but simple obfuscating transforms and information insertion gave

practical results, without necessitating special hardware or software mechanisms

for expensive mathematic encoding/decoding. In this section, their work will

be introduced such that the improvements outlined later in this chapter become

apparent.

3.2.1. Junk Bytes

The accuracy of disassembly is based on alignment of potential instructions with

actual instructions. When a sequence of bytes is to be potentially decoded into

an instruction, success depends on the first byte of the proposed sequence being

the first byte of the actual machine code instruction. As previously stated, this
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          ...
     je <target>
          ...

          ...
     jne label
     jmp <target>
label:
          ...branch flip

FIGURE 3.4. Branch Flipping

alignment is lost with the Linear Sweep algorithm when some form of unreachable

data is encountered. Linn and Debray proposed, in [38], the insertion of Junk

Bytes into an instruction stream in order to confuse instruction boundaries, and

thus produce incorrect disassembly. These Junk Bytes are restricted to satisfy the

following criteria [38]:

• (1) They must be partial instructions to confuse the disassembler and,

• (2) must be inserted such that they are unreachable at run-time.

The latter requirement led to the definition of Candidate Blocks within a program,

after which junk bytes could be inserted without being reachable at runtime. Linn

and Debray target blocks of code that begin with unconditional control transfer,

such as function calls and direct unconditional jump instructions. They extend

the set of candidate blocks by performing branch flipping on conditional control

transfers; that is, they transform conditional branches to their inverse, and insert

an unconditional control transfer to create a new candidate block as illustrated

in Figure 3.4. The insertion of junk bytes into candidate blocks is illustrated in

Figure 3.5. Junk byte insertion at these locations will break disassembly align-

ment and produce incorrect results. However, as identified in [38], disassembly

will eventually realign and begin producing correct results again. It is therefore

necessary to determine the ideal amount of junk bytes to insert at a given code
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Unconditional Control Transfer

Inserted Junk Bytes

Code
Basic Block

Protection Window

FIGURE 3.5. Structure of Junk Byte Insertion

location to achieve maximally large windows of unaligned disassembly.

There is no formal algorithm for determing that number of junk bytes to

insert at an arbitrary control-unreachable location within a program; however,

the number of junk bytes inserted should provide the maximum window of un-

aligned instruction decoding prior to realignment. In [38], a generalized method

of determining a value k (the number of junk bytes) is determined as a subset

of bytes from an n-byte instruction I (the general instruction XOR was used to

supply junk bytes by Linn and Debray). To determine this value, k bytes are

inserted prior to a candidate block, and disassembly on that block is simulated.

That is, the first k bytes of I are processed by the disassembler, followed by the

machine code bytes of the candidate block. Through successive variations of k,

and simulations of disassembly on a candidate block of code, the value of k that

provides the largest window of broken disassembly is chosen as the ideal number

of junk bytes for insertion prior to the given candidate block [38].
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jmp target1

call target2

jmp target3

...

call targetN

target1

target2

target3

...

targetN

FIGURE 3.6. Structure of Original Control Flow

3.2.2. Branch Functions

The most fundamental assumption used by the Recursive Traversal algorithm is

that control flow will continue at the next address following a function call on

return. To exploit this the concept of branch functions was proposed in [38]. The

fundamental premise of this idea is to convert any unconditional direct-addressed

control flow transfer (such as a jmp instruction or function call show in Figure 3.6)

to a call to a single branch function, which would then redirect control to the orig-

inal target as shown in Figure 3.7 [38].

Immediately following the branch function call are the junk bytes described

in the previous section. The branch function itself rewrites the function return

address such that these bytes are “skipped” over, and never executed during run-

time control flow. The branch function itself generates control target addresses

by indexing a lightweight hash table, whose correct entry is extracted based on

a hash of the invocation address. The value obtained from the table is an offset

from the invocation address, not a direct target address; the final address is then

determined as <invocation address + table offset> [38].
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call branchfunction

call branchfunction

...
call branchfunction

target1

target2

...
targetN

branch
function

FIGURE 3.7. Structure of Branch Function Control Flow

This technique provides an effective means of exploiting the assumptions

of the recursive traversal algorithm. By including junk bytes following branch

function calls any linear decoding of machine code instructions is broken for a

period before realignment and the control flow of a program is obscured through

multiple layers of indirection. The branch function further enhances this security

by using a lightweight one-way hash to extract branch target offsets from a table.

3.3. Improving Branch Function Obfuscation

The work of [38], while of paramount importance to software protection, is still

immature in development. As a result the work in this chapter is meant to further

refine and optimize the basic existing foundation of Branch Function Obfuscation

into a strong and effective means for protecting a binary file against disassembly

on the x86 architecture. In this section several problems with existing Branch

Function Obfuscation methods are presented along with their solutions; addition-

ally, some new techniques based on these concepts are developed. This work

furthers the existing knowledge and techniques concerning disassembly preven-

tion through obfuscation and provides the most positive technique for minimal

recovery of original code through static disassembly in current literature.
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(a)
hash invocation address

(b)
get table data

(c)
calculate target 

address

(d)
rewrite return 

address

(e)
goto target address

FIGURE 3.8. Traditional Branch Function Design

3.3.1. Branch Function Design

While the Linn/Debray methods of binary obfuscation against disassembly pro-

vide very positive results, their techniques provide no means for the protection

of windows of code not encompassed by disassembly misalignment. Additionally,

they introduce unnecessary complexity as a solution to the attack paradigm of

static disassembly. A natural optimization of their work is to reduce the complex-

ity of their branch function design as well as stringent application requirements,

such that it supports a broader class of branch instructions for optimal application

to real-world binary executables.
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The basic design of a branch function used in current literature takes the

structure given in Figure 3.8. Function calls and unconditional jumps within a

binary file are replaced by calls to this function. The branch function begins by

recovering the invocation address, and then hashes it with a lightweight hashing

algorithm given in [27]. This value is used to look up a relevant index within a

table containing an offset value. The offset is then added to the invocation ad-

dress, and the branch function redirects control to this point [38].

There are two primary drawbacks when analyzing the branch function de-

sign used in [38]. First, it supports a limited subclass of branch instructions;

that is, when a conditional branch is encountered, it must be flipped and an un-

conditional branch is inserted. This leads to information leakage about control

behavior if the flipped branch fails to lie within a protection window and the

recursive traversal algorithm will disassemble the new target block. The current

branch function also has no ability to deal with indirect jumps commonly encoun-

tered with the inclusion of dynamically linked libraries.

Second, the inclusion of the hash table and hashing functionality gives

unnecessary complexity and run-time overhead to the protected binary. Since

omitting protection from being applied to frequently executed regions of code is

sub-ideal from a security point of view, it is necessary to limit the computational

overhead within a branch function. The purpose of including a hash-table of

address offsets is to limit the amount of information available to an adversary.

However, this type of attack is not within the scope of static disassembly, which

focuses on composed, algorithmic decoding of machine code into assembly lan-

guage. An attack to extract branch target addresses would require direct binary

analysis for numeric patterns, and is not related to disassembly. If the primary

attack model concerns static disassembly, then this approach adds unnecessary
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          ...
     branch (target)
          ...

          ...
     push params
     call branchfunction // lightweight
     // junk bytes
     branch (target)        // target of 
          ...                       // branch function

branch insert

FIGURE 3.9. Lightweight Branch Function

complexity to the branch process and excessive storage requirements on the bi-

nary file, while providing no additional security for the targeted attack.

To alleviate these drawbacks. a new lightweight branch function design is

proposed; the primary difference is how exactly a branch is protected. Instead of

converting branches and cataloguing target addresses through a hash table, this

new technique simply ensures that disassembly is always unaligned as it passes

control-altering instructions. such that they are never decoded properly. This is

accomplished by the insertion of a lightweight branch function (as well as junk

bytes) immediately prior to control altering instructions. The branch function

then transfers control past the junk bytes to the original branch. If this structure

is encountered by a target disassembly algorithm. it will be unable to resolve the

branch target and move to the next instruction (which will offset disassembly due

to the presence of junk bytes). This process, though simple, alleviates many of

the drawbacks in previous methods; a branch function insertion is illustrated in

Figure 3.9.

The lightweight branch function shown in Figure 3.9 follows an extremely

simple design. Its sole functionality is to take a parameter passed to it. rep-

resenting the inserted junk bytes. and indirectly jump to it (thus making the

determination of the branch target infeasible). One possible criticism of this ap-
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proach is that it exposes a great deal of information passed as parameters to the

branch function. However, with the exception of the first branch function call in

a code segment. these parameters will be “obscured” by the protection window

of a previous branch function insertion. and disassembly will fail to recover them.

The only feasible way of recovering these addresses is through a binary file search

for patterns indicating a protection insertion, which is out of this problem do-

main. Regarding the initial branch function insertion used to start disassembly

misalignment, a special branch function can be constructed knowing this offset

as a static value. Because these branch functions utilize indirect jumps. it is not

possible for a static disassembly algorithm to determine the target address. The

primary benefit of this approach is in reducing computational overhead associ-

ated with traditional branch functions while increasing the class of instructions

that can be protected. This approach is not dependent on any conversion, and

can thus be used to protect any branch type. When used in conjunction with a

new application algorithm given in Section 3.3.4. this method becomes a viable

and secure approach for software protection. Additionally, it requires no space

overhead when compared to traditional branch functions; that is, those branch

functions required a parameter passed to them indicating a junk byte offset as

is used in this approach. leading to identical size requirements for calls to the

branch function. This new branch function design is more optimal overall for size,

as the required code for branch function implementation is reduced.

One goal in this dissertation is to design a branch function that supports

any branch instruction and provides a foundation for minimal resource over-

head while maintaining maximum protection against static disassembly. The

lightweight branch function presented in this section requires minimal compu-

tational overhead and, when used in conjunction with the concepts outlined later,

allows for aggressive obfuscation such that information leakage can be minimized.
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FIGURE 3.10. Original Junk Byte Protection Windows

3.3.2. Junk Byte Calculation

The primary drawback of the approach for calculating the number of junk bytes

for insertion following a branch function call provided in [38] is that diminishing

returns on size versus protection occur when two or more protection windows over-

lap, as illustrated in Figure 3.10. Because their tool works in reverse order junk

bytes are inserted at (b) such that the protection window generated is maximal

according to the aforementioned process. Additionally, junk bytes are inserted

at (a) following the same method. However, due to the close proximity of these

two code blocks the protection window generated by (a) will overlap that of (b).

In this scenario, the protection window generated at (b) is nullified unless this

location is the target of another branch traversed by the disassembler. Because

the disassembler will in theory never process the junk bytes at (b) in their original

intention when moving from (a) to (b) this technique of junk byte calculation is

limited in this scenario.

Due to this problem, the algorithm provided in [38] is not optimal for size

or protection in that there exist situations as shown in Figure 3.10 which do not

provide the best calculated size for junk bytes. Through analysis of the instruction

profiles of the benchmark tools it was determined that this situation arose with the

majority of candidate branches for protection (given the protection characteristics
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FIGURE 3.11. Optimized Junk Byte Protection Windows

of the junk bytes used in [38]). As a result a simple extension to their algorithm is

proposed here to optimize junk byte calculation such that it is more robust. In this

new algorithm a value k (the number of junk bytes) is still computed as a subset of

bytes from an n-byte instruction I. However, rather than just observing candidate

blocks of code a window of m instructions is fetched with the goal of providing the

maximum length of protection for m (with m larger than the maximum protection

window). The length of the protection window is determined through simulated

disassembly as originally proposed in [38]. However, if a branch is encountered

within this protection window, the constraints are shortened such that only enough

junk bytes are inserted such that protection is provided through the last byte

of this branch instruction (where new junk bytes will be inserted for the next

protection window). If no branches are encountered then junk byte calculation

proceeds as normal to compute the value k providing a maximally large window

of protection. Also, if a demarkation instruction (a necessary structure used by

supporting research tools for this work presented in Chapter 4) is encountered

it is treated as if the immediate ID is zeroed out to ensure consistency with the

final executable image. This approach alleviates the problems that can possibly

arise in the techniques of [38] and provides a protection characteristic illustrated

in Figure 3.11.
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3.3.3. Structural Diversification

The algorithm used by Linn and Debray used a single branch function for obscur-

ing branch targets, as well as a single instruction as the source for junk bytes.

This approach, while efficient and easily applied, leaks a great deal of informa-

tion about the protection to a potential adversary. Foremost, it is unusual for a

program to redirect all function calls to a singular address. The presence of this

behavior within an executable can leak the fact that the file has been protected

using known techniques, and the reverse engineering strategy can be modified ac-

cordingly. Specifically, an attacker can modify their disassembly approach such

as using special algorithms targeting the protection technique [35], or utilizing

dynamic disassembly on the exposed branch function to extract branch target

addresses.

The use of a single, known instruction for creation of junk bytes is also

a weakness of the techniques developed in [38]. That is, the byte sequence used

for disalignment of instruction boundaries is predictable. The junk bytes can be

identified through heuristic search of the code giving candidate junk sequences

whenever the known instruction is incomplete or has improbable parameters, giv-

ing information about the obscured branch return addresses.

To alleviate this problem, the structural diversification of inserted infor-

mation used for disassembly protection is proposed. A multiple number of branch

functions should be generated and placed at random address intervals within a

binary code section. These branch functions should be functionally equivalent,

yet structurally diverse, which can be accomplished using the techniques of [24,

55, 56]. The inclusion of multiple branch targets will diversify the branch target

addresses and mimic the structure of an unprotected executable. This approach

creates a diverse environment in which no branch “monoculture” exists, hiding
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as much as possible the presence of protection within a binary file. That is, the

branch function calls will appear to be regular function calls, or calls to heavily

used functions such as printf(), etc.

In addressing the issue of junk bytes, we propose using the entire instruc-

tion set architecture as candidate instructions from which junk bytes can be ex-

tracted. This has two benefits: first, the identification of junk byte sequences

becomes much more difficult and improbable; second, we can search the entire

instruction set for the maximal junk byte sequence for any given location, leading

to increased protection window lengths and less space overhead overall. Because

the cost of any information insertion into a binary file is very high in regards to

overhead in the final binary, it is important to always look for the highest level of

protection while maintaining the lowest cost.

In the development and realization of these methods, a calculation was

made of the average maximal window of protection achieved by use of diversified

junk bytes for insertion. Contrary to the small windows associated with the

single instruction used in [38], our methods were able to achieve average protection

windows of much greater length (on the order of approximately 50-90 instructions).

This leads to less information insertion, which increases protection cost more than

any other facet.

3.3.4. Degree of Obfuscation

The algorithm of [38] applied obfuscating transforms to branch instructions within

a binary program. This approach led to a protection profile illustrated in Fig-

ure 3.12 due to the limited branches considered valid for transformation. A natu-

ral extension of this technique is to insert lightweight branches (where they always

are untaken conditional branches) into unprotected code regions such that all orig-
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FIGURE 3.12. Original Protection Profile

inal program instructions are protected.

The application algorithm for this is similar to that of Linn and Debray,

but if a branch instruction is not encountered at the end of a protection window,

a new branch is inserted to break disassembly alignment and create a new win-

dow of protected code. This process is repeated until a new candidate block is

reached and gives a protection profile illustrated in Figure 3.13. Utilizing this

complete protection method, the possibility of leaking parameters passed to a

branch functions is nullified; that is, these parameters will always fall within a

protection window and their recovery through static disassembly will not happen.

The benefit of this approach is that all original code within a binary file can be

theoretically protected against static disassembly. To formalize this claim, let us

generalize the target binary file as a series of basic blocks bi where the overall exe-

cutable can be represented as B = {b0, b1, ..., bn} and each bi begins with a branch

instruction. Define additionally the windows of unprotected code for the binary

file as W = {w0, w1, ..., wn} where wi corresponds to the window of unprotected

code in basic block bi. Assume protections are applied to each basic block bi and

provide protection windows pj
i where each j states the order the protection was

applied in the current basic block. For example, pretend that at basic block bi

two separate protections are applied. They would therefore be denoted as {p0
i , p

1
i }.
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FIGURE 3.13. Modified Protection Profile

Now, assume that a protection is applied at the head of each block bi providing

protection windows p0
i of length ≤ (wi − p0

i ). If wi − p0
i = 0 then the basic block

is fully protected and no windows of unprotected code exist for the current basic

block. Otherwise, a window of unprotected code of length wi − p0
i exists starting

at bi + p0
i and must be resolved. In this case, a protection p1

i is inserted at bi + p0
i

and the window of protection is analyzed against the previous test. That is, if

wi − (p0
i + p1

i ) = 0 then the block is fully protected; if this difference is still > 0

then further protections pj
i (j > 1) are applied at location bi + p0

i + ... + pj−1
i until

wi − (p0
i + p1

i + ... + pj
i ) = 0. This process is completed for each bi ∈ B, creating

a profile that will theoretically leave no wi ∈ W strictly larger value than the

corresponding p0
i + p1

i + ... + pj
i .

One further consideration addressed by this aggressive level of obfuscation

is the protection of branch function parameters. In [38] the static offset to the

branch fall-through instruction is passed as a parameter to their branch function,

effectively giving the location of the next sequential valid instruction. As previ-

ously noted, our techniques utilize this approach as well. However, through more

aggressive obfuscation it can be ensured that this parameter is never recovered by

static disassembly.
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To accomplish this, we observe the previously mentioned algorithm for

junk byte calculation. Branch function parameters will lie as an instruction im-

mediately before the branch function call. Because protection windows are created

such that they protect up to the branch function call instruction, these parameters

will be broken from static disassembly. In the situation that a branch function

call must be inserted outside of the original branch profile due to insufficient pro-

tection windows, the branch function parameters are always included as the last

instruction in the protection window, with the branch call occurring immediately

after. This profile-independent branch function insertion, however, is rare in prac-

tice accounting for less than 5% of actual protections. This can be credited to

the use of diversified junk bytes which achieve much more practical windows of

protection while applying the same degree of obfuscation provided in [38].

3.4. Experimental Evaluation

As previously described in Chapter 1, results were obtained for the impact of

this new branch function obfuscation on disassembly using the SPEC benchmark

suite. These benchmark applications were compiled to assembly using gcc version

egcs-2.91.66 with optimization level -O3 as done in [35, 38]. These applications are

then obfuscated using the Nebbiolo tool presented in Chapter 4 which implements

the concepts of this chapter. Each application was tested against ISLDasm, a sim-

ple disassembler developed for this research implementing both Linear Sweep and

Recursive Traversal as well as the popular utility Objdump [28] for results verifi-

cation, which implements the Linear Sweep algorithm. All results were obtained

using an average of ten tests for each benchmark utility on WALES.

Time and space overhead for improved branch function obfuscation was

gathered through a series of ten tests. Due to the use of a tool designed to im-

prove these characteristics as well as a lightweight branch function design, the
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TABLE 3.1. Percent of Original Instructions Recovered Through Disassembly

(IL)

Program Linear Sweep Recursive Traversal

bzip2 02.66 02.89

crafty 05.50 05.74

gap 04.24 04.51

gzip 04.43 04.82

mcf 07.16 07.61

parser 03.04 03.31

vortex 04.10 04.43

Mean 04.45 04.76

resulting size overhead is much less than in [38] and was, in general, 30.87% over

the original binary file. Execution overhead was 43.14% on average which provides

a beneficial (yet statistically insignificant, as shown in Chapter 4) decrease from

[38], due to the use of a lightweight branch function despite rigorous obfuscation.

These results are further developed along with the formal tool design in the next

chapter.

Table 3.1 gives reference results illustrating the impact of improved branch

function obfuscation on the accuracy of the two target algorithms. It can be read-

ily observed that techniques presented here provide a reduction in the accuracy of

disassembly protecting original code within a program against both Linear Sweep

and Recursive Traversal when compared to [38]. In fact, the only properly disas-

sembled instructions are encountered in areas where junk byte calculation failed

to develop an optimal result, leaving open windows of select unprotected code.

For Linear Sweep, the average IL value was 4.45 with a median value of 4.24 and
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a standard deviation of 1.52. Recursive Traversal had an average IL value of 4.76

with a median of 4.51 and standard deviation of 1.57. Previous work in this area

[38] has achieved an average information leakage of 15.0% for Linear Sweep and

60% with Recursive Traversal, both incurring an execution penalty of 52% on

average. When comparing our results with [38], there is a probability of less than

.0001 that the results were achieved by chance and are therefore statistically signif-

icant. Given the above results and those presented in the next chapter regarding

resource overhead, the techniques given here for branch function obfuscation are

a sound improvement in this area given the more aggressive obfuscation; however,

the reduction in execution overhead can be considered statistically insignificant

as shown in Chapter 4. The reduction in IL for the Recursive Traversal algorithm

is due to our application techniques, which ensure that no original branches are

“seen” by the disassembler. Additionally, the absence of flipped branches ensures

that each window of code is reached from only branch fall-through, which lands

directly on inserted junk bytes each time. This leads to profound reduction in

accuracy for Recursive Traversal when compared with current literature.

The primary goal in our improvement of branch function obfuscation was

to accomplish complete protection of a software program against static disassem-

bly. As illustrated above and previously mentioned, this goal was not reached due

to Undesirable Code. Undesirable code can be defined as a code region in which

no combination of available junk bytes was able to achieve a protection window

of length 2 or greater. That is, the window head and second instruction were

accurately disassembled into a single incorrect instruction prior to realignment.

As a result, when this scenario was encountered the instruction was “left behind”

and obfuscation proceeded at the next subsequent instruction. The process con-

tinued until no undesirable code is found, leaving behind variable-length windows

of unprotected code. The solution to this problem lies in extending the class of
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junk instructions for protection to the maximal count. In our realization, a single

example of each instruction is utilized. However, given that instructions can have

numerous input values, it was infeasible to implement them all and left as future

research. Work in this area must continue to extend the class of valid junk in-

structions such that they cover all possible instruction combinations (a very, very

large number). Only once the entire class of each possible instruction combination

is tried can the feasibility of complete code protection be known.

The primary goal in improving branch function obfuscation was to achieve

a minimal recovery of original code through static disassembly with accurate and

efficient application. From the results indicated in the above table it is seen

that improved branch function obfuscation gives a significant improvement over

previous work in this area in both strength and cost. Future work in this area

should focus on further refining these techniques to achieve full binary protection

(as previously mentioned) as well as reduce the overall cost to improve the Potency

versus Cost ratio.
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4. ENGINEERING DESIGN FOR DISASSEMBLY PREVENTION

One of the most glaring drawbacks of existing binary protection tools was in the

actual application of obfuscating transforms; this is not a theoretical problem with

their techniques, but rather an engineering design problem. As a result, some of

the fundamental contributions of this research to the field of binary software pro-

tection is through the development of obfuscation tools and techniques, which are

not plagued by certain engineering flaws. In this chapter two tools are presented

which were developed to implement the concepts of Chapters 2 and 3 while pro-

viding new concepts for the realization of efficient binary protection.

This chapter is structured as follows: Section 4.1 gives the design, algo-

rithm and abstract implementation details for the realization of Structural Ob-

fuscation. The resultant tool, as well as its specific functional algorithm, are the

first to develop Structural Obfuscation in current literature. Section 4.2 gives the

design, algorithm and abstract implementation details for the realization of an

efficient Branch Function Obfuscation tool. This tool is the first to implement

the Improved Branch Function concepts of Chapter 3, and gives the best ratio of

Potency versus Cost in current literature.

4.1. Tempranillo

Implementation considerations for the obfuscating techniques given in Chapter

Three are presented here. This tool, Tempranillo, is the first tool designed to per-

form Structural Obfuscation for the prevention of static disassembly. Its design,

fundamental algorithm and abstract implementation are given here while the full

source is given in Appendix A.
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4.1.1. Design

The Structural Obfuscation tool used as a realization of the protection techniques

of Chapter Three was designed to be exploit simplicity and accuracy. Its most

fundamental contribution, from an engineering point of view, was that it is an

effective obfuscation tool directly targeting x86 assembly, and the first binary

protection tool to obfuscate at the assembly level while targeting disassembly

execution time. It provides a foundation through which future Structural Ob-

fuscation methods can be refined and realized, and its core libraries serve as the

foundation for all tools treated in this chapter.

The only design restriction placed on this tool was that it had to not in-

troduce excessive resource usage into an obfuscated program, and was required

to transform the original assembly code to its functional equivalent. This is ac-

complished this through a static search of the assembly code for known target

structures and replacing them with an obfuscated version. Additionally, at ran-

dom intervals within a function it would insert “fake” code that would make it

appear as if a single function was composed of multiple functions without termi-

nation (meaning that those functions never returned, just blended from one to

another).

4.1.2. Algorithm

Tempranillo follows a straightforward algorithm for the application of structural

obfuscation to a set of assembly files that generate a target program. In this sec-

tion, a theoretical description of the structural obfuscation process is presented.

The Structural Obfuscation algorithm is a technique for obfuscating low-

level software against malicious disassembly and control-flow analysis through the
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transformation of its basic structures used by the techniques of [35], and is defined

as follows:

Algorithm 2: Structural Obfuscation
The algorithm is given as input F defining a fake code structure,
I = {i0, i1, ..., in−1} defining a set of n assembly language instruc-
tions, x (≥ n), T = {T1, ..., Ts} defining a target code structure of
s lines and τ = {t1, t2, ..., tm} defining m code structures which is
functionally equivalent to T . It then proceeds through the following
pseudocode:

// (A)
j = 1;
a = j;
b = 1;
r = random(1..x);

// (B)
while (j <= n) {

// (C)
if (r mod j == 0) {

insert fake structure F prior to ij;
} else if (ij == Tb) { // (D)

a += 1;
b += 1;
matched = TRUE;
while ((b <= s) AND (a <= n)) { // (E)

if (ia 6= Tb) {
matched = FALSE;
break;

}
a += 1;
b += 1;

}
if ((matched == TRUE) AND (b == (s+1))) { // (F)

c = random(1..m);
insert tc at ij;
j = a;

}
}
j +=1;
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a = j;
b = 1;

}

At location (A), variables are initialized. At (B), the algorithm loops
until n lines of code have been visited. At (C), a fake structure is in-
serted at random intervals. At (D), the current instruction is checked
against the first line in a target structure. The algorithm loops at (E)
to verify the presence of a target structure. If present, the functionally
equivalent is inserted in place of the target structure at (F).

It can be readily observed from the above algorithm that the outside loop exe-

cutes at most n times. During each path through the outer loop, if the current

instruction is equal to the first line of the target structure, then an inner loop is

executed at most s−1 times. In terms of run-time complexity, the worst case hap-

pens when each instruction forces the execution of the inner loop. The outer loop

provides a minimum complexity of O(n), while the inner loop adds s iterations in

the worst case for each n. The resultant worst-case complexity is then Θ(n · s).

However, this value s is a constant giving an average run-time complexity for this

algorithm of O(n). It is the first formal algorithm for Structural Obfuscation as

that concept is introduced in this dissertation and in [55] for the first time. The

tool Tempranillo implements a version of this algorithm as described in the next

section.

4.1.3. Implementation

An abstract implementation overview of Tempranillo is shown in Figure 4.1. It

is readily discerned that this implementation follows very closely with the algo-

rithm given in the previous sub-section with the exception of a few architectural

considerations. As presented in Chapter 2, this tool provides astonishing results

when attacking specific disassembly algorithms.
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(e)
verifyCandidate()

(a)
getNextLine()

(d)
Candidate?

(c)
In Function?

(g)
in_function = true

(b)
isFunctionReturn()

(h)
in_function = false

(f)
writeObfuscated()

FIGURE 4.1. Abstract Implementation for Tempranillo
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The structural obfuscation algorithm is realized through the steps pre-

sented in Figure 4.1, which are applied by a single pass through each assembly file

within a given program. For each assembly file, the flow of control for structural

obfuscation proceeds as follows: at each line within a source file a custom x86

assembly parser performs the function getNextLine() at (a) which returns a single

line of assembly code. At (b) the function isFunctionReturn() checks to see if

the current instruction indicates an exit from a function frame. If true, then the

boolean value in function is set to false at (h) and control resets. Some transfor-

mations for Structural Obfuscation require that they be applied within a function

frame; at (c), a check is performed against the value in function which, if true,

proceeds to (d). The reasoning for this is that fake code insertions can only take

place within a function.1 If an instruction is equivalent to the first line in the

predefined structural profile as given in the formal algorithm (and defined within

the file structures.h) then it is classified as a candidate at (d). Given the presence

of a valid candidate, it must be verified to conform to the specified structure as

performed at (e). This verification process simply checks the corresponding lines

speculatively following the current source line to conform against the pre-defined

structure. If they are verified then the program writes an obfuscated equivalent

in their place at (f); if not, then the algorithm repeats. The specific nature of

the attack outlined in Chapter 3 dictates that the target structure is a function

prologue. If control passes the candidate verification process without error than it

is noted at (g) that a function has been entered, leaving the possibility for further

1Not noted in the ASM, a check of the instruction index (the instruction number

relative within the current file) is made between (c) and (d) against a randomly gen-

erated value. If the two are equivalent, a fake structure is inserted to obscure function

boundaries as described in Chapter Three.
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obfuscation as previously described (through “dead” code insertion).

This implementation allows for a simple yet effective means of obscuring

function frame boundaries within a given source program. As described in Section

2, it provides minimal time an space overhead, while giving maximal attack results,

against a disassembly characteristic previously untouched (that is, no existing

attack methods address this aspect of disassembly). This tool provides the first

steps in a new paradigm of software protection.

4.2. Nebbiolo

In this section, the design of an efficient and effective obfuscation tool is developed

targeting the reduction of information leakage through new, lightweight techniques

in Branch Function Obfuscation given in Chapter 3. This tool, Nebbiolo, is a

unique approach to creating a practical method of protecting software against

static disassembly. The actual realization process changes the fundamental way

in which Branch Function Obfuscation is applied to create an ultimate solution

giving the most optimal Potency versus Cost to date, and serves as a foundation

for future work in this area.

4.2.1. Design

Numerous design constraints for this tool were developed to optimize the applica-

tion process and introduce minimal overhead into the final protected binary file.

Each is a fundamental contribution to this research area making the application

of the obfuscating transform as secure and optimal as the protection technique

itself.
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4.2.1.1. Application Phase

A fundamental change in this design from others is the abstraction of the obfus-

cation application level. Previous work in this area [38] has operated on binaries

specially compiled to contain relocation information for disassembly. This led

to unnecessarily large executable size for the level of protection provided; addi-

tionally, the approach of [38] did not integrate well into the traditional software

creation process. The technique used in this dissertation abstracts the level of

application for Branch Function Obfuscation to a program’s relocatable assembly

code rather than working at the binary executable level. The motivation for this

move is two-pronged: first, there is an inherent innaccuracy of disassembly on cer-

tain architectures and therefore the results of the rewriting-based identification of

a program’s blocks (used in [38]) cannot be guaranteed accurate. Second, work-

ing on a pre-compiled binary is unnecessary for owners of an application’s source

code wishing to add disassembly protection into a product as obfuscation can be

integrated into a single build process. Additionally, it allows for a simplified tool

design working primarily on a textual program representation rather than binary.

When performing obfuscation using the techniques of [38], a recovery of

the program’s assembly code must be performed prior to any other function. Pre-

vious work has accomplished this by enforcing input binaries to be compiled with

relocation information included. This relocation information, which specifically

contains information describing how to access and/or modify binary file section

contents [52], is used to aid the recovery of the original assembly code through

static disassembly (and is integrated into the obfuscation process). This has two

specific problems associated with it; first, the relocation information introduces

excessive bloat into a binary file. Second, even with the relocation information

present, the disassembly process for producing assembly code has an accuracy of

99.8% [47]. While a highly accurate number, there is a small chance that obfusca-
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tion will fail to be performed on the actual assembly code of a software program

with this approach.

By abstracting up to the relocatable assembly (or, assembly with no di-

rect addresses, just label references) level of compilation, this small chance of

error is eliminated and it can be guaranteed that the original source of a program

is obfuscated. Additionally, protecting executables from disassembly during the

compilation process is a more natural and transparent means of obfuscation. The

special compilation steps and file formats required by previous approaches limit

its applicability to real-world solutions.

The primary drawback to this abstraction is that no execution profiling

can be applied prior to obfuscation. This profiling is used in [38] to ensure that

costly obfuscation is not applied to frequently executed regions of code. However,

the goal of improving [38] as presented in Chapter 3 is to maximize protection and

minimize cost. By limiting obfuscation to regions of code that are not frequently

executed, large gaps between protected code are generated. Additionally, there

is no way to ensure that the core algorithms for protection are not within these

unprotected regions of code. If this is the case, then the regions protected in [38]

are of little importance to the software application as a whole. To reduce the

cost of obfuscating frequently executed code regions a lightweight branch function

design was developed in Chapter 3. As shown in Section 4.3 the overall cost

of obfuscation is sufficiently minimal given its potency, which is accomplished

directly through the elimination of disassembly for original code recovery.

4.2.1.2. Two-Stage Design

This tool follows a two-stage design illustrated in Figure 5.2. The initial stage ap-

plies branch function insertion to the assembly code and inserts some information
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FIGURE 4.2. High-Level ASM for Nebbiolo
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into the code for address maintenance. The final stage inserts binary junk bytes

into the code section as well as any further branch function insertions dictated by

the operation mode. Additionally, it utilizes the inserted utility code to calculate

the final branch function target addresses.

The motivation for this two-phase design is due to the fact that there is

constraint in the level of obfuscation that can be applied directly to the assembly-

language representation of a program. Simple code transformations to the assem-

bly can be applied and structural information about a program can be gathered

during the initial phase, but binary data cannot be accurately inserted (i.e., Junk

Bytes) without information about final program addresses. The assembly and

linking stage further obscures the information gathered from the first stage and

the postprocesser relies on unique information inserted during the initial stage

into the program in order to maintain address integrity. Therefore, the obfusca-

tion process is distributed across two stages of a program’s compilation lifecycle.

4.2.1.3. Modes of Operation

A benefit of working at the abstracted level of relocatable assembly code is the

flexibility in how obfuscation can be applied. The mode of operation specifies how

much information to consider a candidate for obfuscation. This tool supports, but

is not limited, to three modes of application: Normal, Complete and Selective.

Normal Mode specifies application similar to the approach of [38] in that

obfuscation is limited to existing candidate blocks of code. Obfuscation is applied

to each supported branch instruction (which is the entire set given the techniques

of Chapter 3) for the entire body of assembly code as shown in Figure 4.3. This

mode is limited by the fact that it does not provide complete code coverage and

produces windows of unprotected disassembly while providing a good average level
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FIGURE 4.4. Code Coverage for Complete Operation Mode

of security.

The design of a lightweight branch function in Chapter 3 was motivated by

a desire to provide complete code coverage against disassembly. Complete Mode

specifies the obfuscation of a source file such that all original code is protected

against disassembly as illustrated in Figure 4.4. Complete Mode is an extension of

Normal Mode, where a branch function call is inserted at the end of a protected

code window to extend the code coverage up to the next window of protected

code; that is, broken disassembly alignment should be maintained up to the lo-

cation of the next sequential junk bytes. This approach provides the maximum

level of security at the maximum performance cost. As shown in Chapter 3, its

realization does not provide total code coverage, but leaks small windows of code

on undesirable code regions. Alleviating this is a topic for future consideration.
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FIGURE 4.5. Code Coverage for Selective Operation Mode

A unique protection against disassembly is available when working at the

assembly code level in the compilation process and is provided by the selective

mode of operation. Selective Mode allows for the limited application of obfus-

cation specified to discrete regions of code as specified by a developer. That is,

selective mode operates by identifying directives within assembly code and ap-

plying Complete Mode Obfuscation to individual blocks of code as illustrated in

Figure 4.5. This approach provides the maximum level of security for individual

functions or algorithms while providing no security to code outside of specified

blocks and is useful in situations when intellectual property is limited to small

code sections and it is unnecessary to take the performance drawback of further

protection.

4.2.1.4. Branch Target Integrity

The primary limitation when working at a higher code level for the protection

of a binary file is the information loss during the linking stage of compilation

immediately following assembly into an object file. This loss is exacerbated in sit-

uations when a source project consists of multiple files. Because of the reliance of

disassembly-targeting obfuscation transforms on known, defined addresses within

a process memory image it is important for us to ensure that these locations are
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known and accurate.

To circumvent this information loss a combination of information tables

and demarcation instructions are used to store relevant code addresses such as

addresses of inserted branch function calls and junk bytes. A demarcation instruc-

tion is a simple concept that was developed in which a functionally useless but

structurally important instruction is inserted at relevant locations within an as-

sembly file in order to act much like a map demarcation point. These instructions

allow one to locate certain instruction locations within the final binary executable

and are necessary for the abstraction of application level. A typical demarcation

instruction sequence is structured as follows:

mov immediate, free register // demarcation

The value of immediate is a unique number randomly generated and associated

with a specific location in the source program. No two demarcation instructions

will have the same immediate value, and the demarcation value must not be

present within a source program. The level of demarcation that can be applied

to an assembly program is equivalent to the size of the set of numbers used for

immediate, and is in realization b232−1
2
c due to the use of 32-bit registers on x86.

Because this approach works at the assembly level to apply branch func-

tion obfuscation, and because branch function target addresses will change with

the insertion of junk bytes during postprocessing and linking, there must be some

method by which the integrity of these addresses is maintained. This is accom-

plished not by archiving addresses during the obfuscation process, but by archiving

demarcation IDs into address maintenance tables. The actual branch target and

insertions will be located at a static offset from the demarcation instruction. The
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linking stage will likely rearrange function structure as well as insert functions

from other object files and this method of address archiving through demarcation

will maintain validity throughout the entire process. To eliminate any chance

of information leakage through demarcation, the instruction is removed during

postprocessing.

4.2.2. Algorithm

The formal algorithm for implementing improved branch function obfuscation is a

straightforward description of how methods developed in Chapter 3 are realized at

an abstract level. This algorithm is a technique for obfuscating low-level software

against malicious disassembly and control-flow analysis through the transforma-

tion of its basic branch structures and insertion of garbage information. It follows

two distinct stages, preprocessing and postprocessing, as described below.

Algorithm 3: Improved Branch Function Obfuscation

Preprocess

Take as input A = {A1, A2, ..., An} where each Ai is a source file of
the form Ai = {ai

1, a
i
2, ..., a

i
m}. Additionally, T = {t1, t2, ..., tb} is given

where each ti represents a supported branch instruction. An empty
list D is used to store demarcation values. The algorithm proceeds as
follows:

j = 1;
k = 1;
while (j <= n) {

while (k <= m) {
if (aj

k ∈ T ) {
generate unique demarcation d;
insert lightweight branch function prior to aj

k;
insert demarcation d after branch function;
add demarcation d to list D;

}
k += 1;

}
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k = 1;
j += 1;

}

Postprocess

Given as input is a binary file representing the compiled version of
A, D = {d1, d2, ..., dn} representing demarcation points and J =
{j1, j2, ..., jk} representing each partial junk instruction. The algo-
rithm proceeds as follows:

i = 0;
while (i < n) {

i += 1;
c = address of di;
while (c < address of di+1) {

L = 0;
if (c 6= address of di) {

insert branch function B at c;
c = c + sizeof(B);

}
for each (k in J) {

W = length of protection window for j of length k;
if (W > L) {

L = W;
}

}
c = c + L;

}
}

The outer loop in the preprocessing stage forces the evaluation of n source

files, where each source file contains m lines of code. This generates an average

run-time complexity of O(n · m). The time requirement for the steps contained

within the inner-loop require constant time and fall from the complexity of the

algorithm. The postprocessing stage again contains an inner- and outer-loop.

The outer loop forces a complexity of O(n) as at least n locations must be visited.

The inner-loop will only repeat if the length L of protection does not cover all
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instructions to the next di. Its worst case running time occurs when the loop

must be run for every instruction between di and di+1 which would be some value

z contributing to a worst-case complexity of Θ(n · z). On average, this inner

loop will only be required some of the time, but the overall average complexity

remains O(n · z). The algorithm as a whole is composed of two iterative stages

each requiring O(n ·m) time on average. It is a very abstract representation of the

actual process, which is presented in the next section.2 This is the first formalized

algorithm for Branch Function Obfuscation. The tool Nebbiolo implements a

version of this algorithm as described in the next section.

4.2.3. Implementation

Using the above design considerations and formal algorithm, this section gives

an abstract view of the actual implementation of our improved obfuscation tech-

niques. The tool is split into three major phases as illustrated in the following

sections.

4.2.3.1. Preprocessing Phase

The Preprocessing Phase is responsible for applying simple obfuscating transforms

on a source program, including the insertion of lightweight branch functions on

control-altering assembly instructions as well as gathering information about the

source-level structure of a program. Primarily, its job is to insert protecting branch

function calls prior to each branch and archive the insertion points through demar-

2For example, this algorithm makes no mention of the offsets generated by code in-

sertion which have the potential to break references to immediate addresses within a

binary file.
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FIGURE 4.6. Abstract Implementation of Preprocessing Stage

cation instructions. It is infeasible to insert junk bytes or additional lightweight

branch function calls (as required by the complete operation mode) at this point

in obfuscation due to the dependance on final machine code for calculating their

size and effectiveness. The preprocessing phase is illustrated in Figure 4.6.

From an algorithmic view, the preprocessing stage follows several simple

steps of operation based on the chosen mode. Its basic goal is to parse through

a source file and perform obfuscating transformations based on some discernible

semantics within the code. At (a), the preprocessor simply parses the next line of

code. There is no functionality for enforcing source conventions as this is handled

later by the assembler. Once a single line of code has been gathered, a path of

execution is chosen at (b) based on the selected operation mode. At this point the

flow of control essentially mimics a waterfall based on the path chosen. If selected
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mode is specified, then at (c) the preprocessor will check if the current instruction

is in a predefined protection region. This notion of being in or out of a region

is defined in the assembly code by directives that indicate the head and tail of a

region where protection is desirable. If the current instruction is not in a specified

region of protection and selective mode is specified then control returns to (a).

If not, then at (d) a check is made if this is the first instruction in the selected

block of code. If at (b) the operation mode was set to complete, then control

proceeds to this location. In a situation where one wants to completely protect a

region or body of code, the first location must always contain an inserted branch

function as handled at this location in Figure 4.6. If the current instruction is

not the first in a block or if the operation mode was set to normal then control

will continue at (e). If the current instruction is the first in a block of code and

the relevant operation mode was specified control will then insert a branch func-

tion before proceeding to (e). The core functionality of the preprocessing stage

is performed at (e) in that if the current instruction is a valid branch instruction

then a lightweight branch function call is inserted, the relevant table information

is created and a demarcation is inserted. If this instruction is not a valid branch,

control returns to (a). This process is performed on the body of an assembly file

provided as input to the preprocessor. Once all files have been exhausted a file is

generated giving a definition for the branch function(s).
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One of the most important stages of the preprocessor is in the construction

of information tables representing structure and transformations applied to a pro-

gram’s source. These tables are similar to those gathered during the first pass of

a traditional two-pass assembler. Using the structure shown in Figure 4.7, entries

are created for each branch insertion as they are performed during obfuscation. A

demarcation instruction is inserted following a branch function call. An entry is

created in the tables for each inserted branch function call with their correspond-

ing demarcation as well as branch type (as different call insertions and branch

functions can be used with different branch types). This information is gath-

ered in a top-down fashion. These tables are utilized in the postprocessing stage

for the insertion of junk bytes and the computation of offset values for address

translation. An additional table is created during preprocessing which indicates

“protection profiles”, or regions of code specified for protection.

As previously stated, there is a limitation on the degree of obfuscation

applied in the preprocessing stage. That is, due to the operation at an abstracted

level of code in which obfuscation is unable to accurately insert the additional

lightweight branch function calls as required by selective and complete modes of

operation. This is justified by the fact that boundaries of protection windows

generated by junk byte insertion cannot be discerned until the postprocessing

stage when instruction addresses and structure are formalized.

4.2.3.2. Assembly and Linking

Assembly and linking is an intermediary stage, and the actual obfuscation process

”wraps” around it. For the purposes of this tool (developed for Linux/x86) the

compiler gcc is used, as it is the de facto standard for this operating environment.

It is invoked from within the program with the necessary input parameters.
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4.2.3.3. Postprocessing Phase

The Postprocessing Phase is responsible for the insertion of junk bytes into a

binary file, the insertion of additional branch function calls for complete mode

obfuscation and the generation of the final binary image. A general view of the

postprocessing stage is given in Figure 4.8.

Again, the postprocessing phase follows several discrete and logical steps

of operation. First, the binary file is read as input to the postprocessing stage and

a listing file is generated to give information about addresses within the binary.

The algorithm proceeds at (a) to go to the next branch function call as indicated

within the branch management tables. At (b) junk bytes are inserted based on

the algorithms described in previous sections; parameters for the branch function
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are updated and the offset generated is tabulated into a file giving the total offset

for a given code region at (c). At (d) a check is made to see if the set of branch

functions has been exhausted or the end of code has been reached. If so, then at

(e) the final binary image is generated by updating address dependancies. Note

that prior to this the binary file must be in its final form. At (f) a check is made on

the operation mode. If Normal operation mode is chosen, then control returns to

(a); if selective or complete operation mode is chosen then the algorithm proceeds

to (g). At (g), a check is made indicating whether the current code region flagged

for protection is exhausted or fully protected. If true, then control proceeds to

(d) and ultimately if selective mode is chosen then at (f) will be redirected to (a)

at the next selected region; in the case of complete mode the protection region is

the entire body of code. If the check at (g) is false then the algorithm proceeds to

the next unprotected instruction address given by (b). At (i) a lightweight branch

function is inserted and the relevant table information is created. After (i) the

process continues at (b) in the regular algorithmic steps.

The justification for a postprocessing phase is two-fold. First, in order to

accurately compute the maximal number of junk bytes to insert after an extended

branch function call one must first know the final binary structure of the basic

block of code following the point of insertion. That is, any changes in the binary

structure of these instructions will alter the point at which disassembly realign-

ment occurs. This forces one to insert these bytes at a time when it is considered

safe to simulate disassembly and compute the number of bytes to insert. Second,

in order to achieve the level of protection provided by the complete mode of oper-

ation the boundaries of protection provided by a normal mode of operation must

be known. This can only be determined by calculating and inserting junk bytes,

which require the final binary structure utilized during the postprocessing stage.
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The postprocessing stage, and thus this protection tool, completes through

the updating of address-dependent instructions in the binary file. A direct scan

is made of the listing file to locate addresses of these instructions and, using the

information in the offsets table, the instructions are found and updated to reflect

the total offset of their target’s locale. Once this is complete the final binary is

fully protected.

4.3. Experimental Evaluation

The goal in creating an effective tool design is to minimize the time and space

overhead generated through obfuscating transforms while providing a high degree

of potency against attack. The results given in Chapters 2 and 3 indicate the

efficacy of proposed obfuscating transforms against target disassembly algorithms.

In addition to achieving high levels of protection, it is important to minimize the

overall time and space overhead required for protection application. The tools

presented in this chapter provide significant engineering optimizations for the

development of effective, efficient methods of software protection.

4.3.1. Tempranillo

As previously stated while developing a formal method of evaluation, the route

chosen for generating results in this dissertation is through the obfuscation and

disassembly of the SPEC benchmark suite. These benchmark applications are

compiled using gcc version egcs-2.91.66 with optimization level -O3. For this sim-

ulation the SPECint2000 suite is preferred over the previously used SPECint95.

Structural Obfuscation is applied first using the Tempranillo tool; the ap-

plications are then processed using the methods of Linn and Debray with their

tool PLTO [46], as optimal results occur when the two are used in conjunction
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TABLE 4.1. No. of Instructions in Final Binary Executable

Program Original Linn/Debray Structural

bzip2 333,249 687,989 690,509

crafty 443,632 855,406 858,268

gap 658,808 1,350,104 1,363,866

gzip 333,831 692,409 694,046

mcf 285,720 597,242 597,355

parser 379,023 780,588 786,119

vortex 672,267 1,371,189 1,371,373

for both disassembly accuracy and time requirements. To represent the original

version of each tool the files were compiled as above and not obfuscated but sim-

ply written into a final executable with obfuscation disabled using the tool in [38].

Each application was tested against the disassembler developed by Kruegel et al.

in [35]. All results were obtained using an average of ten tests for each benchmark

utility on a 1.0 GHz Celeron with 512MB RAM running SuSE Linux.

Space requirements, in addition to those of [38], are given in Tables 4.1

and 4.2. Table 4.1 gives the additional number of instructions present in the final

binary while Table 4.2 gives the increase in the size of code in the binary after

obfuscation. It can be readily discerned from these two tables that the storage

overhead generated by this tool is small in comparison to other binary obfuscation

tools giving an average increase in the number of instructions to be 0.44% and

the total increase in physical size for a binary code section of 0.36%. Note that

the values associated with the Structural column indicate a final binary file in

which both Structural Obfuscation and the techniques of Linn and Debray have

been used.
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TABLE 4.2. Size in Bytes of .text Section in Final Binary Executable

Program Original Linn/Debray Structural

bzip2 101,715 232,009 232,348

crafty 129,711 281,128 281,482

gap 204,988 457,659 461,074

gzip 102,507 234,177 234,527

mcf 89,110 203,656 203,761

parser 119,191 266,553 267,890

vortex 213,949 471,785 475,455

Execution requirements are given in Table 4.3, and are structured in the

same manner as previous tables. Again, it can be observed that a minimal time

overhead is associated with structural obfuscation applied in conjunction with

PLTO. Though a first realization of Structural Obfuscation, this tool illustrates

that a small, yet statistically significant, measure of cost (2.86%) is associated

with these protections while maintaining high potency against attack (as shown

in [55]). It is important to note that the execution overhead of Linn/Debray in

Table 4.3 does not illustrate the high overhead given in [38]. While obfuscation

was performed with the default parameters given in their tool, their excessive

run-time overhead was not reproduced through our tests. One possible explana-

tion for this is that more aggressive obfuscation was applied for their work, thus

introducing further computational overhead. However, this is insignificant, as the

results of this section illustrate the overhead of Structural Obfuscation beyond

[38] when used in conjunction.

As shown in Figures 4.4 and 4.5, the relative cost associated with this

new transform is small when compared to other disassembly-specific obfuscating

techniques. Given its high potency when specifically targeting disassembly ex-
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TABLE 4.3. Execution Time in Seconds

Program Original Linn/Debray Structural

bzip2 17.0 17.6 17.2

crafty 6.30 7.20 7.67

gzip 5.7 6.4 6.5

mcf ∼1 1 1.1

parser 11.1 12.3 12.4

vortex 12.0 62.8 64.1

ecution requirements, it gives a very desirable ratio of Potency versus Cost as

introduced in [19] (though the potency derives from an entirely new application).

Given that it is the first such technique to target disassembly time, these results

regarding obfuscation cost make this method of protection simple and cheap to

use in conjunction with other obfuscating transforms.
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4.3.2. Nebbiolo

Nebbiolo was developed as an improvement over existing obfuscation tools tar-

geting disassembly as specified by design decisions in this chapter. Specifically,

its realization was designed such that the overall overhead associated with obfus-

cation would have minimal impact on the final binary image. As illustrated in

this section, the final results concerning resource overhead of obfuscation provide

a much more optimal and desirable pattern than existing techniques, leading to

the best Potency versus Cost relationship in current literature. All results were

obtained on a Dual Xeon 3.06GHz machine with 2GB RAM running RedHat En-

terprise 3.
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The output file sizes associated with our work are a steady improvement

over existing tools as illustrated in Table 4.4. Each obfuscated value was compared

with the original (via the computation of Obfuscated
Original

) to determine a percentage

increase in resource requirements. The average increase in resource consumption

for Linn and Debray over the seven benchmark tools was 1,716.42%, leading to a

costly obfuscation process. This can be directly associated to their requirement

for input files to have relocation information compiled in for their preliminary

code recovery step as well as the heavyweight branch function code. To alleviate

this, our tool abstracted obfuscation to the assembly level to provide a stream-

lined obfuscation process which paid careful attention to the additional overhead

generated. As a result, the final obfuscated binary files using our techniques were

analyzed in the same manner mentioned above to determine an average storage

increase of 30.87% over the original binary file. These numbers indicate that the
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TABLE 4.4. Size in Bytes of Final Binary Executable

Program Original Linn/Debray Nebbiolo

bzip2 52,837 1,132,000 70,939

crafty 236,981 1,402,392 276,955

gap 458,926 2,119,196 590,096

gzip 56,794 1,144,288 75,413

mcf 18,224 996,832 22,893

parser 138,659 1,279,456 209,024

vortex 545,762 2,246,112 694,419

approach given in this chapter for realization of Lightweight Branch Function Ob-

fuscation alleviates some overhead associated with [38] and provides a very low

total cost of obfuscation regarding space.

Execution overhead was a primary motivation for the design of a

lightweight branch function in Chapter 3. Due to the rigorous application of

obfuscating transforms during the protection process, a lightweight function is re-

quired to minimize the final run-time requirements for execution. At the hardware

level, any excessive introduction of branch instructions will cause performance

degradation due to the inability to speculatively execute instructions and prop-

erly pipeline instruction sequences; however, this problem is outside the scope of

this research. Though we were unable to reproduce the numbers given in [38] (an

average execution-time increase of 52%) it can be assumed that their simulations

are correct. Given this, the run-time overhead associated with our techniques

seems to be a solid improvement over existing methods as illustrated in Table 4.5.

It can be readily observed that the average overhead associated with our meth-

ods is 43.14%, which is minimal given the use of a lightweight branch function in

conjunction with rigorously applied obfuscation. When comparing the execution
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overhead of Linn/Debray with our techniques one can observe a greater spread of

executions times in [38]. Using Student’s t-Test we can determine if our lowered

average execution time is statistically significant and judge the overall impact of

this reduction. Applying this test we observe the following information about the

two data sets:

Linn/Debray

Mean = 1.56

95% confidence interval for Mean: 1.326 thru 1.786

Standard Deviation = 0.368

Hi = 2.24 Low = 1.14

Median = 1.54

Average Absolute Deviation from Median = 0.291

Nebbiolo

Mean = 1.43

95% confidence interval for Mean: 1.185 thru 1.678

Standard Deviation = 0.196

Hi = 1.72 Low = 1.12

Median = 1.46

Average Absolute Deviation from Median = 0.134

The final t-Test results are as follows:

t= 0.800

sdev= 0.301

degrees of freedom = 13

The probability of this result, assuming the null hypothesis, is 0.44

The purpose of the test is to ensure that the measured difference is not due to

“chance” and statistically significant. Given the above results we can see that
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TABLE 4.5. Execution Time in Microseconds

Program Original (TO) Nebbiolo (TN) Slowdown (TN

TO
)

bzip2 4802696 7020101 1.46

crafty 2545435 3220484 1.26

gap 545048 781108 1.43

gzip 1145396 1671935 1.46

mcf 197291 221005 1.12

parser 1546211 2655617 1.72

vortex 4004910 6300925 1.57

the likely ranges for the sample mean overlap and we cannot reject the null hy-

pothesis; thus, the two mean values could possibly be the same and we can claim

that the difference observed in testing is not statistically significant. Even though

the results are not statistically a significant improvement, they still have impor-

tance to the overall impact of this work. That is, given a more aggressive level

of obfuscation no overall increase in execution time was present. This greater

aggression in obfuscation led to significantly lower Instruction Leakage and gave

a much more desirable result in regards to potency versus application cost, and

provides an improvement over current literature.

The traditional problem of security versus performance is further optimized

with our techniques for the protection of binary files against static disassembly.

In [38] a good level of protection was given against disassembly but at an average

run-time cost of 52%. The results given here indicate a much more desirable ratio

of protection versus overhead and are meant to trigger a fundamental shift in the

development of protection tools targeting static disassembly. It has been shown

through our work that abstracting away from the binary level to assembly allows

for more accurate protections to be applied to an executable as well as reduced
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resource requirements in the protected file while achieving very high levels of pro-

tection. The use of a lightweight branch function reduced the impact of more

frequent obfuscation on the execution requirements of the protected binary.

Figures 4.11 and 4.12 illustrate graphically the Potency versus Cost ratio

for both space and time requirements comparing our work to other existing binary

obfuscation techniques [38]. These further illustrate the impact of our work to

current literature as well as the optimization of this ratio. The ratio is defined by

the following equation:

Potency vs. Cost = 100 - IL
1 + Overhead

In this equation, the numerator specifies the percent of protected instructions

while the denominator represents the actual percentage overhead in resource con-

sumption. The base resource consumption is 100%, signifying no associated over-
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FIGURE 4.12. Potency versus Execution Cost

head. It can be readily observed that as IL and Overhead decrease, the resulting

value approaches 1. This result lies in the range (0, 1] where larger values indicate

more desirable protection techniques, or a higher Potency versus Cost.

Future work on this topic should be focused on the development of a

lightweight branch function that takes into consideration its execution at the hard-

ware level, such that it can be effectively pipelined. This will further reduce the

time overhead associated with obfuscation, and produce an even stronger ratio of

potency versus cost. Additionally, new methods for the calculation of junk bytes

must be developed such that the presence of undesirable code regions (as defined

in Chapter 3) are eliminated from the final binary executable. One such approach

for this would be to extend the pool of junk bytes used, as the creation of every

possible instruction permutation is the only possible way to reduce this problem.
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FIGURE 5.1. Disassembly Time Requirements

5. CONCLUSION

The field of software protection against disassembly is very young, and the work

of this dissertation represents the most extensive and formal treatment of the

subject to date. The contributions of this dissertation achieve sound advance-

ments to the field of disassembly prevention through obfuscation. In Chapter 2

a new classification of obfuscating transform was presented. This Structural Ob-

fuscation Transform was then utilized for the increase in the time requirements

of static disassembly. It was the first approach presented to date that addressed

not the reduction in information leakage, but the increase in disassembler time.

As illustrated in Figure 5.1, proper obfuscation of a binary file with structural

transforms had a profoundly adverse impact on disassembly performance.
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This positive protection mechanism gave very strong protection against disassem-

bly in a non-traditional manner, and illustrated very small resource overhead into

a binary file. Figure 5.2 illustrates graphically this minimal overhead. It can be

readily observed from these results a small measure of cost associated with very

positive protection strength.

Chapter 3 presented an approach accomplishing the best protection against

static disassembly in current literature. These techniques took fundamental con-

cepts in current literature and refined them, such that much more desirable pro-

tection characteristics can be accomplished at a minimal cost to the resultant

binary file. Additionally, problems associated with current literature are identi-

fied and addressed. Techniques for the theoretically complete protection against

static disassembly for binary files are given, and problems with their realization
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are explained. The chapter concludes with results illustrating the smallest degree

of information leakage (an average of 4.61% between the two disassembly algo-

rithms) to date when compared with the most modern work in this area [38], as

well as the definition of Undesirable Code for disassembly protection and some

potential approaches for its future solution.

Chapter 4 introduced new engineering techniques for the creation of bi-

nary protection tools not susceptible to the overhead associated with modern

techniques. Additionally, it presented formal algorithms for the realization of

topics covered in Chapters 2 and 3. The first formal design and algorithm for a

Structural Obfuscating Transform was given, along with analysis of the required

overhead in applying said transform to a binary program. Also presented is a for-

mal algorithm and realization for improved branch function obfuscation, leading
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to the most desirable results in current literature. A formal equation for the com-

putation of Potency vs. Cost is developed, and is used to illustrate the strength

of our techniques over previously published methods. The obtained results inte-

grated the low information leakage values from Chapter 3 to analyze the Potency

vs. Cost ratio for Improved Branch Function Obfuscation implemented with the

techniques of this chapter to achieve values noted in Figures 5.3 and 5.4.

An additional contribution of this dissertation lies within Chapter 1, which

presented for the first time a formal method of evaluating the efficacy of protec-

tions against static disassembly. It was meant to even the playing field for all

future research in this arena, such that the wheel need not be recreated each

time. In our work, we developed a concrete approach based on feedback from var-

ious sources as well as our own techniques to define a simple, uniform technique
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for the realization of the information leakage (IL) metric.

Software protection is not a new topic, but it has been gaining interest

in recent years. Obfuscation has been more aggressively researched by numerous

groups in the past seven years, and its application is expanding each year. The use

of obfuscation specifically to target static disassembly is a young and relatively

untouched topic. That is, this dissertation presents the most thorough and broad

treatment of the topic to date. Prior to this, only one such publication existed

[38] directly moving the protection of binary programs against static disassembly

from haphazard code modification to a defined, theoretically founded technique.

As this research is still young, much can be done in the future to advance

the topic. Specifically identified in previous chapters, developing new branch func-

tion designs that take into consideration not only optimal software execution but

also the hardware design (such as pre-fetching, pipelining, etc.) are a necessity to

increase the Potency vs. Cost metric. Also, a currently unrealizable theoretical

model for the complete prevention of static disassembly on x86 was presented. The

defined Undesirable Code leading to information leakage can hopefully be solved

through the analysis and inclusion of every possible partial instruction combina-

tion on the x86 architecture. It will be exciting to see what happens with the

newly defined Structural Obfuscation Transform. Its use, to date, has been lim-

ited to this dissertation, but it has promise in other areas of software protection.

Specifically, it could be possible to utilize this transform for the translation of

protection over to dynamic disassembly wherein structures could be used to fool

a disassembler into non-terminating loops; however, due to the wide availability

of debugging information on modern CPUs and in most operating systems, this

could prove infeasible. These topics are the most fundamental areas of future work

in the topic of preventing static disassembly through obfuscation, and should be
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the focus of any further research in this area.

As the world moves forward, and access to computing resources as well as

information increases, the need for means by which to securely execute proprietary

software on untrusted environments grows in kind. It is this drive that is forcing

research in computer and software security to look to areas outside the traditional

monolithic model of client-server security, and find new techniques for securing

computing environments. It is truly fascinating to observe this from the inside,

in the guise of a security researcher; one cannot help but be excited for the years

to come, as security becomes more intertwined with the technological world.
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