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Abstract 

 Developing new medical tests and identifying single biomarkers or panels of biomarkers 

with superior accuracy over existing classifiers promotes lifelong health of individuals and 

populations.  Before a medical test can be routinely used in clinical practice, its accuracy within 

diseased and non-diseased populations must be rigorously evaluated.  We introduce a method for 

sample size determination for studies designed to test hypotheses about medical test or 

biomarker sensitivity and specificity.  We show how a sample size can be determined to guard 

against making type I and/or type II errors by calculating Bayes factors from multiple data sets 

simulated under null and/or alternative models.  The approach can be implemented across a 

variety of study designs, including investigations into one test or two conditionally independent 

or dependent tests.  We focus on a general setting that involves non-identifiable models for data 

when true disease status is unavailable due to the nonexistence of or undesirable side effects 

from a perfectly accurate (i.e., “gold standard”) test; special cases of the general method apply to 

identifiable models with or without gold-standard data.  Calculation of Bayes factors is 

performed by incorporating prior information for model parameters (e.g., sensitivity, specificity, 

and disease prevalence) and augmenting the observed test-outcome data with unobserved latent 

data on disease status to facilitate Gibbs sampling from posterior distributions.  We illustrate our 

methods using a thorough simulation study and an application to toxoplasmosis.   

 

Key Words: comparing diagnostic tests, power and sample size, sensitivity and specificity 
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  1. Introduction 

 Sample size determination is a key component to designing a study of medical test 

accuracy.  Throughout this paper, we use the terms “medical test” and “test” to broadly include 

any binary classifier for a well-defined condition (termed “disease,” with “non-diseased” used to 

indicate absence of the condition).  Medical examples include antibody and antigen detection 

tests, and single biological markers or collections of biomarkers that are associated with a 

disease.  A non-medical example is the examination of system parts, processes or products for 

quality control in manufacturing.  For tests that produce binary outcomes, including 

dichotomization of continuous test data, accuracy is routinely characterized by the tests’ 

sensitivity and specificity.  Let T denote the outcome of a test (T=1 indicates testing positive and 

T=0 indicates testing negative), and let D denote disease status (D=1 indicates disease positive 

and D=0 indicates disease negative).  The sensitivity (S) of a test is defined to be its accuracy 

among diseased individuals, namely S=Pr(T=1|D=1), while its specificity (C) is the probability of 

testing negative for non-diseased individuals, C=Pr(T=0|D=0).     

 When disease status is ascertainable from a flawless (i.e., “gold standard”) procedure, 

statistical methods for inference about sensitivity and specificity are relatively straightforward 

compared to when disease status is unknown. There are many popular study designs used to 

investigate the accuracy of a single test or to compare two or more medical tests in the absence 

of a gold standard (e.g., Hui and Walter, 1980; Joseph et al., 1995; Dendukuri and Joseph, 2001; 

Johnson et al., 2001; Georgiadis et al., 2003).  Many of these models contain more parameters 

than can be uniquely estimated from the data and model alone, and constraints are needed to 

counteract this lack of identifiability.  Commonly used constraints involve model contraction or 

model expansion (Gustafson, 2005).  For instance, we might set some parameters equal to 
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constants (e.g., set C=1 for a test known to have high specificity) or obtain data from a second 

population that has different disease prevalence (Hui and Walter, 1980).  An alternative approach 

uses informative prior distributions in a Bayesian data analysis (e.g., place a prior on C that has 

most of its probability mass above 0.95, for a test thought to have high specificity).   

 We focus on Bayesian models with informative priors for studies designed to test 

hypotheses about the accuracy of one test or to compare the accuracies of two tests using paired 

data (i.e., both tests are applied to each sampled individual).   For example, a study might aim to 

determine if the sensitivity and specificity of a newly developed test exceed those for a standard 

test.  We develop a simulation-based procedure to assist in sample size determination for both 

types of study designs.  In our approach, hypothesis testing using Bayes factors proceeds by 

simulating multiple data sets assuming either a null model is true (to guard against making a type 

I error) or an alternative model is true (to guard against making a type II error).  For instance, our 

approach can be used to find a sample size that yields an appropriately high probability of 

producing null-supporting Bayes factors across the conditions that exist in the population when 

the null model is true.  We also demonstrate methods for addressing both types of errors by 

simulating data and calculating corresponding Bayes factors under both the null and alternative 

models.   

 A complication arises in the process of making a statistical inference for the sensitivities 

and specificities of two tests with paired data due to the potential for correlation among test 

outcomes from the same individual.  Correlated test results might occur, for instance, when both 

tests target similar biological mechanisms (e.g., comparison of antibody-antibody or antigen-

antigen detection tests).  There are four possibilities to consider: correlation among test results 

for diseased but not non-diseased individuals, correlation among test results for non-diseased but 
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not diseased individuals, correlation among test results for both populations of individuals, and 

uncorrelated test results for both populations.  We use Bayes factors for the inferential task of 

determining whether estimates and comparisons of sensitivities and specificities of two tests 

should be adjusted for correlation or not.  This provides an attractive alternative to current 

practices, which include use of a model selection statistic such as the Deviance Information 

Criterion (e.g., Pan-ngum et al., 2013), model averaging (e.g., Black and Craig, 2002), or relying 

solely on a sensitivity analysis to compare how estimates change under different assumptions 

about correlation (e.g., Branscum et al., 2005).     

 We present a method for finding a sample size such that the Bayes factor from the future 

study will be highly likely to support an assumed correct model.  Although we focus on studies 

about medical test accuracy, the ideas and methods can be used in a variety of other contexts and 

disciplines.  We focus on a general scenario involving test-accuracy models that lack 

identifiability due to over parameterization (e.g., Joseph et al., 1995; Johnson et al., 2001; Jones 

et al., 2010); simpler settings and models are special cases.  In our proposed sample size analysis, 

non-identifiability is offset by using informative prior distributions on some model parameters.  

This concentrates posterior sampling to regions of high prior probability, and hence the chosen 

prior will influence posterior inference even when the sample size is large.    

This paper presents new approaches to aspects of study design and statistical inference 

for medical test accuracy.  The design consideration we address is the development of a novel 

simulation-based method for sample size determination for studies that investigate hypotheses 

about medical test accuracy, while the important inferential task we address involves testing 

competing models that make different assumptions about correlation among test outcomes with 

paired data.  Although the study designs we consider in this paper are used to investigate test 
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accuracy (i.e., sensitivity and specificity), it is possible to alternatively use them to evaluate 

diagnostic accuracy (i.e., positive and negative predictive value).   

 

2. Models and Methods 

2.1. One test 

A study will be conducted to decide between competing hypotheses about the sensitivity 

and specificity of a single test.  For instance, the null might hypothesize low S and high C, while 

the alternative hypothesizes high S and high C.  The study will enroll a random sample of n 

individuals from a large population that has unknown disease prevalence π.  Let n1 and n2 denote 

the number out of the n individuals who test positive or negative, respectively.  When a gold 

standard test is unavailable, we will model the future data as n1|(π, S, C) ~ binomial(n, p), where  

).1)(1(

)0Pr()0|1Pr()1Pr()1|1Pr()1Pr(

 



CS

DDTDDTTp
 

We will assign independent beta prior distributions to π, S, and C, namely π ~ beta(aπ, bπ), S ~ 

beta(as, bs), and C ~ beta(ac, bc), which is very common in practice (e.g., Joseph et al. 1995; 

Dendukuri and Joseph, 2001; Georgiadis et al. 2003; Branscum et al. 2005; among many).  The 

model lacks identifiability because there are 3 unknown parameters (π, S, and C) and only one 

degree of freedom (n1).  Therefore, we require informative prior distributions for at least two 

model parameters (often for the prevalence and either S or C).   

The model yields unrecognizable full conditional distributions in a Gibbs sampler.  

Therefore, we incorporate latent data in such a way that a Gibbs sampler involves simulation 

from only standard distributions.  To this end, let Z1 and Z2 denote the latent number of 

individuals who are diseased out of the n1 and n2 individuals, respectively.  These variables are 

also chosen because, together with the observed data n1 and n2, they constitute the data that 
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would have been available under the ideal scenario in which disease status is known, as depicted 

below:  

   
D 

 

  
1 0 

 T 1 Z1 n1-Z1 n1 

 
0 Z2 n2-Z2 n2 

 

The distribution of the augmented data (Z1, Z2, n1-Z1, n2-Z2) is multinomial with parameter vector 

(Pr(D = 1, T = 1), Pr(D = 1, T = 0), Pr(D = 0, T = 1), Pr(D = 0, T = 0)).  Hence, the augmented 

data likelihood is proportional to 221121 })1{()}1)(1{()}1({)(
ZnZnZZ

CCSS


  , with  

corresponding augmented data posterior proportional to 

111111 112221212121 )1()1()1(


 ccss bZnaZnbZaZbZZnnaZZ
CCSS  . 

It immediately follows that π, S, and C are sampled from beta distributions in a Gibbs sampler 

that simulates from the augmented data posterior (e.g., π|(n1,n2,Z1,Z2)~beta(Z1+Z2+aπ , n1+n2-Z1-

Z2+bπ)).  The latent data are also easy to update since Z1|(n1, π, S, C)~binomial(n1, )1)(1( CS
S

 
 ) 

and Z2|(n2, π, S, C) ~binomial(n2, CS

S

)1()1(

)1(








).      

  

2.2. Comparing two tests 

Consider a comparative study of test accuracy that will use the same sampling scheme 

described in Section 2.1, but where two tests will be applied to each sampled individual.  The 

goal of the future study is to decide between two hypotheses that make different conjectures 

about S1, S2, C1, and C2, the sensitivities and specificities of the two tests.  A common application 

involves testing whether the sensitivity and specificity of a newly developed test exceed those for 

a standard test.   
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The data from each of n randomly sampled individuals are pairs (T1, T2) of binary test 

outcomes.  We assume that the tests are independent, conditional on disease status.  That is, we 

assume Pr(T1=i, T2=j | D=k)=Pr(T1=i | D=k)Pr(T2=j | D=k), for i, j, k = 0, 1.  Biologically, this 

assumption is often supported when the tests detect different mechanisms (e.g., an organism 

detection test and an antibody detection test).  Then, the probabilities of the four possible 

combinations of paired outcomes are: 

p11 = Pr(T1 = 1, T2 = 1) = πS1S2 + (1 – π) (1 – C1)(1 – C2), 

p10 = Pr(T1 = 1, T2 = 0) = πS1(1 – S2) + (1 – π) (1 – C1)C2, 

p01 = Pr(T1 = 0, T2 = 1) = π (1 – S1)S2 + (1 – π) C1(1 – C2), 

p00 = Pr(T1 = 0, T2 = 0) = π (1 – S1)(1 – S2) + (1 – π) C1C2.      

Let nij denote the number of subjects for whom T1=i and T2=j, for i, j=0,1.  These observed 

counts are distributed as (n11, n10, n01, n00) ~ multinomial(n, (p11, p10, p01, p00)).  We again 

introduce latent data to ease the implementation of Gibbs sampling from the augmented data 

posterior distribution.  Let Zij denote the unobserved number of individuals who are diseased out 

of nij, for i, j=0,1.   Then, the augmented data likelihood is the multinomial mass function for 

(Z11, Z10, Z01, Z00, n11-Z11, n10-Z10, n01-Z01, n00-Z00).  Since the tests are conditionally independent, 

the element of the multinomial probability vector associated with Z11 is 

Pr(T1=1,T2=1,D=1)=Pr(T1=1|D=1)Pr(T2=1|D=1)Pr(D=1)=S1S2π.  The other multinomial 

probabilities are derived similarly to obtain an augmented data likelihood function proportional 

to  

11)( 21

Z
SS  000110 )}1)(1({})1({)}1({ 212121

ZZZ
SSSSSS   

 1111)}1)(1)(1{( 21

Zn
CC


 000001011010 })1{()}1()1{(})1)(1{( 212121

ZnZnZn
CCCCCC


  . 
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With independent beta priors on π, S1, S2, C1, and C2, a Gibbs sampler is straightforward to 

implement because it contains only beta and binomial full conditional distributions (Table 1).   

It is important to note that we again require informative prior distributions because, since 

n is fixed, there are only 3 degrees of freedom (n11, n10, and n01) to estimate 5 parameters 

(prevalence, two sensitivities, and two specificities).  Therefore, in practice, this design is 

commonly used to compare a new test to a standard test when the disease prevalence is 

approximately known.  Then, informative priors are placed on π and the sensitivity and/or 

specificity of the standard test. 

 

2.3. Conditional dependence 

In order to apply the model in Section 2.2, we must rule out conditional dependence 

between the two tests.  Our approach uses a Bayes factor to compare the conditional 

independence model to a conditional dependence model.   We proceed by using the conditional 

dependence model developed by Georgiadis et al. (2003) (see also Dendukuri and Joseph, 2001).  

Briefly, the model parameters are the prevalence and sensitivities and specificities of the two 

tests, plus two conditional covariance parameters.  The covariance between test outcomes for 

diseased individuals is defined as Cov(T1,T2|D=1)=E(T1T2|D=1)-E(T1|D=1)E(T2|D=1)=S11-S1S2, 

where S11=Pr(T1=1, T2=1 |D=1).  For non-diseased individuals, the covariance is defined to be 

C00-C1C2, where C00=Pr(T1=0, T2=0 | D=0).  Data augmentation by the same Zij’s in Section 2.2 

leads to a simple Gibbs sampler that contains only beta and binomial distributions (Georgiadis et 

al. 2003).  Informative prior distributions are required (e.g., on the prevalence, and the sensitivity 

and specificity of the standard test).      
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2.4. Bayes factor  

We use Bayes factors for selecting between competing models (Kass and Raftery, 1995).  

A sample size can be chosen so that the Bayes factor from a future study is unlikely to support an 

incorrect alternative model (low probability of making a type I error) and/or highly likely to 

support a correct alternative model (high power).  To accomplish these goals, the sampling 

distribution of a Bayes factor is simulated under either a null or alternative model, or under both 

models.   

For concreteness, the remainder of this subsection presents details for addressing both 

type I and type II errors; obvious omissions and alterations of the procedure are needed when the 

study goals dictate focusing on only one type of error.  Multiple data sets are simulated under H0 

and H1 to approximate the distributions of Bayes factors under both models.  Specifically, data y0 

and y1 are generated under models H0 and H1, respectively, and Bayes factors are given by  






11111

00000

1

0

01
)(),|(

)(),|(

)|(

)|(





dpHyp

dpHyp

Hyp

Hyp
BF

j

j

j

j

y j
, 

where pk(θk) and ),|( kkj Hyp   denote the prior and likelihood function, respectively, for 

parameter vector θk under model Hk, for j, k = 0,1.  High values of BF01 (e.g., >10) support 

model H0, while low values (e.g., < 0.10) support H1; the decision between H0 and H1 is 

inconclusive when BF01 is near 1, in which case the more parsimonious model is often selected.  

To improve computational stability, we work with log-transformed Bayes factors (lnBF01).   

 
 We use the distribution of lnBF01 under two competing models to determine an 

appropriate sample size as follows.  First, for a fixed sample size, simulate multiple data sets 

under model H0 and use the data sets to determine a value   such that Pr(ln
001 yBF   <  ) = α, for 

a pre-specified (small) value of α.  Then, use the same sample size to simulate data under H1 and 



11 

 

approximate the following measure of “power”: Pr(ln
101 yBF   <  ).  The current sample size is 

selected for use in the future study if the power is acceptably high.  The future study will use   

as the decision threshold; we will select H0 if the log Bayes factor from the future study is > , 

and select H1 otherwise.  Note that Bayes factors are calculated by integrating the likelihood 

against the prior, which appropriately propagates uncertainty about parameter values under the 

null and alternative models instead of treating parameters as known constants for power analysis.      

  

2.5. Computing lnBF01  

 

For the models we consider, the analytic forms of the marginal densities in the numerator 

and denominator of BF01 are unattainable because they depend on intractable high-dimensional 

integrals.  Diverse approaches have been developed to approximate marginal likelihoods (e.g., 

Newton and Raftery, 1994; Green, 1995; Chib, 1995; Raftery, 1996; Chib and Jeliazkov, 2001; 

Neal, 2001; Friel and Pettitt, 2008).  We used Chib’s 1995 method because a Gibbs sampler 

contingent upon latent data for disease status is easy to implement for the models we consider.   

 In general, a log marginal likelihood function is given by 

ln p(y) = ln p(y|θ) + ln p(θ) – ln p(θ|y), 

where the parameter vector θ has length s.  Although this equation holds for any value of θ, 

efficiency considerations led Chib (1995) to suggest using a value θ
*
=( ),..., **

1 s  that has 

relatively high posterior ordinate.  The terms ln p(y|θ
*
) and ln p(θ

*
) are straightforward to 

compute.  The following procedure was used to approximate ln p(θ
*
|y).    

 Start with the decomposition:  

ln p (θ
*
 | y) =  ),,|(ln),|(ln)|(ln *

1

*

2

*

3

*

1

*

2

*

1 ypypyp  ).,,...,|(ln *

1

*

1

* yp ss      (1) 
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Our applications involve latent data, so we used the technique of Rao-Blackwellization (Gelfand 

and Smith, 1990; Chib, 1995; Robert and Casella, 2010) to approximate )|( * yp   by averaging 

over simulated realizations of the latent data.   

 Each conditional distribution on the right hand side of (1) gets approximated in turn by 

using a sequence of different Gibbs samplers.  For the general setting, denote the latent data by 

Z=(Z1,…,Zt) and let ),...,( ),(),(

1

),( gu

t

gugu ZZZ   be the (post-convergence) simulated values from 

the uth iteration of the gth Gibbs sampler, for g = 1,…,s.  The first Gibbs sampler is used to 

simulate from the augmented data posterior to calculate 





1

1

)1,(*

1

1

1

*

1

*

1 ),|()|(),|()|(
U

u

uZypUdZyZpZypyp  .  In a second Gibbs sampler, θ1 is set 

equal to 
*

1  and we generate )2,(uZ ~p(Z|y, *

1 ) for u=1,…,U2; these values are then used to 

calculate ),,|(),|( )2,(*

1

1

*

2

1

2

*

1

*

2

2
u

U

u

ZypUyp  


 .  This process is continued for a total of s 

Gibbs samplers to estimate ln p(θ
*
|y) by 

ln p̂ (θ
*
 | y) = 







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
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The number of draws in each Gibbs sampler can be different or the same (i.e., U1 = 
…

= Us).     

 For the one test setting, we have θ=(π,S,C), y=(n1,n2), Z=(Z1,Z2), and  

ln ),|(ˆ
21

* nnp  ]),,,|(ln[
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For every draw (Z1
(u,1)

, Z2
(u,1)

), we set )1,(u  equal to the mean of the beta full conditional for π, 

i.e., 



bann

aZZ
ZZnnE

uu
uuu


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* 

that we used was π
*
= 

.
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1
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1 



U
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uU   The first term on the right side of (2) is then calculated as 
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1 
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U

u

uuuu
bZZnnaZZU  , where β(x|a,b) denotes the 

beta(a,b) density evaluated at x.   

The second Gibbs sampler is run with π fixed at π
*
 throughout.  Calculation of the second 

term on the right side of (2) is also easy because 
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)2,(

1)2,( .  For the last Gibbs sampler, only the specificity parameter is 

updated (along with the latent true positives and false negatives).  The fixed values   and S
* 

from the two previous Gibbs runs are used here.  We have 
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Similar methods were used to compute lnBF01 in the case of two conditionally 

independent tests, which involves 5 Gibbs samplers and latent data (Z11, Z10, Z01, Z00);  we 

averaged over the Rao-Blackwellized values in Table 1 to determine θ
*
.  Similar methods were 

also used for the case of two conditionally dependent tests. 
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3. Illustrations 

 Our procedure requires prior distributions on prevalence and test accuracy parameters 

when fitting models to simulated data sets.  We also require distributions for prevalence and test 

accuracy parameters for use in simulating data sets under null and alternative models.  In all our 

examples, the same distributions were used for priors and data simulation.  The results in this 

section are based on 1000 simulated data sets under H0 and H1 at each sample size considered.  

For every Gibbs sampler, 5000 iterates were obtained with the first 1000 values discarded as 

burn in.   

 

3.1.       One test 

 Consider a population with disease prevalence believed to be about 0.75.  Suppose we are 

interested in comparing the following null model that specifies low test accuracy to an alternative 

model that specifies moderately high test accuracy: 

H0: π ~ beta(37.5,12.5)        H1: π ~ beta(37.5,12.5) 

           S ~ beta(25.5,24.5)   S ~ beta(42.5,7.5) 

             C ~ beta(25,25)                                         C ~ beta(32.5,17.5) 

Under H0, the sensitivity and specificity are expected to be about 50%, while under H1 they are 

expected to be 85% and 65%, respectively.  Observe that a+b =50 in all of the above beta(a,b) 

distributions.  Figure 1 presents distributions of the log Bayes factor under H0 and H1 for sample 

sizes of 25, 50, and 75.  As expected, there is greater separation between the null and alternative 

distributions of lnBF01 as the sample size increases.  The power increases from 68% to 79% to 

88% as n increases from 25 to 50 to 75.  The corresponding cut-offs ( ) determined by the fifth 

percentile of the distribution for ln
001 yBF   are -1.05, -1.11, and -0.65.  By lowering α to 0.025, we 
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obtained lower power values of 55%, 68%, and 84%, while increasing α to 0.10 gave power of 

79%, 89%, and 95% for n = 25, 50, and 75, respectively.   

 Figure 1 shows that the variability of log Bayes factors in this example increases as the 

sample size increases, which occurs mainly because the variance of the marginal distribution 

increases with sample size when the data are inconsistent with the model.  For example, 

compared to 4.9 and 3.5 at n=25, the variances of log-transformed p(y0|H1) and p(y1|H0) (where 

the data and model are mismatched) at n=75 are nearly doubled to 9.6 and 6.7, respectively.  On 

the other hand, the corresponding variances for p(y0|H0) and p(y1|H1) were less than 0.05 for the 

three sample sizes considered.         

Recall that in the one test setting, we model the probability of testing positive by p=Sπ 

+(1-C)(1-π).  Bayes factors in this context are highly dependent upon the difference in magnitude 

between the values of p under the null and alternative models.  This is noteworthy because 

different combinations of π, S, and C can lead to similar values of p.  Thus, data can be similar 

even when parameter values are different under competing models.  As a simple example, 

suppose the null hypothesis is H0: (π=0.50, S=0.10, C=0.90) and consider the alternatives H1: 

(π=0.50, S=0.10, C=0.901) and H2: (π=0.50, S=0.20, C=0.999).  In all 3 cases, p≈0.10.  This will 

lead to a Bayes factor for comparing (the very similar) H0 to H1 that is similar to the Bayes factor 

for comparing (the much more different) H0 to H2.  Thus, large differences between the null and 

alternative values of parameters do not necessarily translate into higher power compared to the 

power for similar null and alternative models.  We therefore suggest monitoring the simulated 

mean of p.  The same issue can occur in two test settings.       

Using the previous specification of H0, we studied changes in power for alternative 

models that conjecture different test sensitivity.  The one-test study design is commonly used to 
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determine whether the sensitivity or specificity (but not both) of a new test exceed the known 

value of a standard test.  Since, in this example, the prevalence is high (approximately 75%), this 

setting would typically be used to compare sensitivities of a new and standard test.  We therefore 

consider power calculations under five scenarios that posit increasing test sensitivity while 

leaving the specificity unaltered.  In particular, five specifications for H1 were considered, 

including the setting from above (details in the top half of Table 2).   For cases 1-5, mean 

sensitivities are hypothesized under H1 to be 70%, 75%, 80%, 85%, and 94%.  We modeled the 

prevalence as π ~ beta(37.5,12.5) for each H1.  The results for cases 3-5 demonstrate that a test 

with higher sensitivity requires a much smaller sample size to achieve similar power as a test 

with lower sensitivity in this example.  This is expected here because the prevalence is high (π ≈ 

0.75).  For instance, a sample size of 50 in case 4 yields approximately 80% power, while in case 

2 the power was only 74% even when the sample size was 5 times higher at n=250 (Table 3).   

We also investigated the power obtained when using fixed values of some parameters 

instead of priors, since it is common to use fixed inputs when performing power calculations.  

The same priors on π and S as in case 4 were used, but with test specificity under H0 and H1 fixed 

at 50% and 65% (the prior means used in cases 1-5), respectively.  This configuration with fixed 

C leads to power of 81% and 94% at n=50 and n=100, which is 3% and 1% greater than the 

corresponding values from case 4.  By also fixing the prevalence parameter at 0.75, the power 

was further increased to 83% and 96% at these sample sizes. 

 

3.2.  Two conditionally independent tests 

 Consider a population where the prevalence is known to be approximately 30% (modeled 

under H0 and H1 as π~beta(15,35)) and the sensitivity and specificity of the standard test are both 
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known to be low (S1≈50% and C1≈60%), as described in the bottom half of Table 2.  Because the 

prevalence is relatively low, we consider a setting where a future study will be designed to 

evaluate the specificity of a new test 2.  The null and alternative models specify S1~beta(25,25) 

and C1~beta(30,20) for the standard test.  The null hypothesis states that the new test is no better 

than the standard test: S2~beta(25,25)  and C2~beta(30,20).  For illustration, we considered three 

alternative hypotheses (details in the bottom half of Table 2).  All 3 alternatives posit the same 

slightly higher sensitivity for the new test (S2≈60%).   For comparison, we considered 

alternatives with increasingly greater specificity for the new test (C2≈80% in case 1, C2≈86% in 

case 2, and C2≈95% in case 3).   

 Results for   and power at different sample sizes are presented in Table 4.  The 

threshold   was determined from the distribution of ln
001 yBF   by setting α = 0.05.  Case 3 yields 

the highest power, with a sample size of 75 corresponding to over 90% power.  Note that the 

power is low for case 1 for all sample sizes considered.   

We also calculated power when using fixed parameter inputs.  Compared to 66% and 

74% power when n=75 and n=100 in case 2, replacing beta priors on π, S1, C1, S2 with constants 

(equal to the prior means in case 2) resulted in slightly larger power values of 70% and 79%.  

  

 3.3.   Toxoplasmosis 

Toxoplasmosis is a parasitic disease that can be transferred from animals to humans (a 

zoonotic disease).  One common mode of transmission is consumption of undercooked meat.  

Symptoms are generally mild, but the disease can be lethal for people with compromised 

immune systems.  Data from the 1999-2004 waves of the National Health and Nutritional 

Examination Survey (NHANES) estimate the seroprevalence of toxoplasmosis in humans at 

http://en.wikipedia.org/wiki/National_Health_and_Nutrition_Examination_Survey
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approximately 11% in the United States (Jones et al., 2007); global estimates have been as high 

as 33% (Montoya and Liesenfeld, 2004).   

In a previous study, the sensitivities and specificities of a microscopic agglutination test 

(MAT) and an enzyme-linked immunosorbent assay (ELISA) for toxoplasmosis in pigs were 

estimated using conditional independence and conditional dependence models (Georgiadis et al., 

2003).  Here we show that only the conditional dependence model should be used.  Both 

diagnostic tests were applied to 999 pigs with the following data breakdown:   

          ELISA 

    +   - 

MAT   + 164  58 

-      77           700 

 

We used Bayes factors to compare 3 conditional dependence models to the conditional 

independence model.  Using the same priors as Georgiadis et al. (2003), log marginal likelihoods 

were: -10.7 (conditional independence), -8.6 (conditional dependence between sensitivities), -8.5  

(conditional dependence between specificities),  and 1.7 (conditional dependence between 

sensitivities and between specificities); the corresponding Bayes factors in support of conditional 

dependence models over the independence model are 9, 10, and e
12

, respectively.  Estimates of 

MAT and ELISA test accuracy should therefore be adjusted for both types of correlation, namely 

dependency between test sensitivities and between test specificities.   

 

3.4. Diagnostic accuracy 

The one-test and two-test designs we consider in this paper are primarily used to study 

medical test sensitivity and specificity.  Although uncommon, they can also be used when the 

goal is to evaluate diagnostic accuracy, namely positive and negative predictive values.  For 
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instance, the parameters in the one-test setting are the positive predictive value, 

PPV=Pr(D=1|T=1), negative predictive value, NPV=Pr(D=0|T=0), and the probability of a 

positive test, p=Pr(T=1).  Let (appv, bppv), (anpv, bnpv), and (ap, bp) denote the beta hyperparameters 

for PPV, NPV, and p, respectively, and let Z1 and Z2 be defined as in Section 3.1.  Then the joint 

posterior distribution is proportional to 
11 111 )1(


 ppvppv bZnaZ
PPVPPV ×  

1111 21222 )1()1(


 ppnpvnpv bnanbZaZn
ppNPVNPV , with Gibbs sampling and calculation 

of Bayes factors implemented as described in Section 3.1.  As an example, consider a study 

designed to evaluate the diagnostic accuracy of an exercise stress test for coronary artery disease 

(Pepe, 2003).  The null model posits H0: PPV~beta(,), NPV~beta(,), and p~beta(,).  The 

alternative is H1: PPV ~ beta(88,12), NPV ~ beta(61,39), p~beta(,), which is consistent with 

values from a previous similar study.  Then, a sample size even as high as 1000 people yields a 

relatively low power of 65%. 

 

4.   Conclusion 

We addressed design and inference procedures for studies of medical test accuracy.  In 

terms of design, we presented a new method to aid in sample size determination for studies 

involving one medical test and comparative studies of two tests.  The procedure requires 

informative prior distributions and involves simulating Bayes factors under two competing 

models.   The procedure returns a value of “power,” a term we used throughout this paper to 

mean a measure of strength of an alternative hypothesis over a null hypothesis.  We also used 

Bayes factors for the important task of deciding whether inference for the sensitivities and 

specificities of two tests should be adjusted for conditional correlations.   
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Figure 1: Distributions of log Bayes factor for the one test example in Section 3.1.  The solid 

lines are for n=25 under H0 (right side) and H1 (left side), while the dashed lines are for n=50 and 

the dotted lines are for n=75.   
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Table 1:  The full conditional distributions used in a Gibbs sampler of the augmented data 

posterior for the case of two conditionally independent tests.  The Rao-Blackwellized (RB) 

estimator is used in the calculation of Bayes factors.   

Variable Distribution Parameter 1 Parameter 2 RB Estimator 

Z11 binomial n11 
)1)(1)(1( 2121

21

CCSS

SS

 


 N/A 

Z10 binomial n10 
2121

21

)1)(1()1(

)1(

CCSS

SS








 N/A 

Z01 binomial n01 
)1()1()1(

)1(

2121

21

CCSS

SS








 N/A 

Z00 binomial n00 
2121

21

)1()1)(1(

)1)(1(

CCSS

SS








 N/A  

π beta Z11+Z10+Z01+Z00+aπ n–Z11–Z10–Z01–Z00+bπ 




ban

aZZZZ



 00011011  

S1 beta Z11+Z10+
1Sa  Z01+Z00+

1Sb  
1100011011

11011

SS

S

baZZZZ

aZZ




 

C1 beta n01+n00–Z01–Z00+
1Ca  n11+n10–Z11–Z10+

1Cb  
1100011011

100010001

CC

C

baZZZZn

aZZnn




 

S2 beta Z11+Z01+
2Sa  Z10+Z00+

2Sb  
2200011011

20111

SS

S

baZZZZ

aZZ




 

C2 beta n10+n00–Z10–Z00+
2Ca  n11+n01–Z11–Z01+

2Cb  
2200011011

200100010

CC

C

baZZZZn

aZZnn




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Table 2: Beta prior distributions used in Sections 3.1 (one test) and 3.2 (two conditionally 

independent tests).  Five simulation scenarios that hypothesized different alternative values for 

test sensitivity were considered for the one test setting.  Three simulation scenarios that 

hypothesized different alternative values for the specificity of test 2 were considered for the two 

test setting. 

One Test 

 

H0 H1 

a b Mean SD a b Mean SD 

π 37.5 12.5 0.75 0.06 same as π in H0 

S
1 

25.5 24.5 0.51 0.07 35 15 0.7 0.06 

S
2
 same as S

1
 in H0 37.5 12.5 0.75 0.06 

S
3
 same as S

1
 in H0 40 10 0.8 0.06 

S
4
 same as S

1
 in H0 42.5 7.5 0.85 0.05 

S
5
 same as S

1
 in H0 47 3 0.94 0.03 

C 25 25 0.5 0.07 32.5 17.5 0.65 0.07 

Two Tests H0 H1 

 a b Mean SD a b Mean SD 

π 15 35 0.3 0.06 same as π in H0 

S1 25 25 0.5 0.07 same as S1 in H0 

C1 30 20 0.6 0.07 same as C1 in H0 

S2 25 25 0.5 0.07 same as S2 in H0 
1

2C  30 20 0.6 0.06 40 10 0.8 0.06 

2

2C  same as 1

2C  in H0 43 7 0.86 0.05 

3

2C  same as 1

2C  in H0 47.5 2.5 0.95 0.03 
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Table 3: Power for the one test setting.  In each case, H0: π ~ beta(37.5,12.5), S ~ beta(25.5,24.5), 

and C ~ beta(25,25).  Under H0, the mean of p=Sπ+(1-π)(1-C) is )(
0

pEH =0.51.   

Sample Size Power
1
 Power

2 
Power

3 
Power

4 
Power

5 

50 0.34 0.52 0.61 0.79 0.96 

100 0.43 0.65 0.76 0.93 0.98 

150 0.45 0.65 0.84 0.94 1.00 

200 0.46 0.66 0.86 0.96 1.00 

250 0.47 0.74 0.91 0.99 1.00 
1
: H1: π ~ beta(37.5,12.5); S ~ beta(35,15); C ~ beta(32.5,17.5); )(

1
pEH =0.61 

2
: H1: π ~ beta(37.5,12.5); S ~ beta(37.5,12.5); C ~ beta(32.5,17.5); )(

1
pEH =0.65 

3
: H1: π ~ beta(37.5,12.5); S ~ beta(40,10); C ~ beta(32.5,17.5); )(

1
pEH =0.69 

4
: H1: π ~ beta(37.5,12.5); S ~ beta(42.5,7.5); C ~ beta(32.5,17.5); )(

1
pEH =0.73 

5
: H1: π ~ beta(37.5,12.5); S ~ beta(47,3); C ~ beta(32.5,17.5); )(

1
pEH =0.79 
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Table 4: Power and threshold cutoff ( ) for three alternative hypotheses in the two conditionally 

independent test setting of Section 3.2.  In each case, the null model is H0: π ~ beta(15,35); S1 ~ 

beta(25,25); C1 ~ beta(30,20); S2 ~ beta(25,25); C2 ~ beta(30,20), with  

),,,( 000110110
ppppEH =(0.19, 0.24, 0.24, 0.33). 

Sample Size  1 Power
1  2 Power

2  3
 Power

3 

25 -1.41 0.30 -1.50 0.38 -1.32 0.65 

50 -1.38 0.35 -1.44 0.53 -0.98 0.83 

75 -1.27 0.37 -1.13 0.66 -0.49 0.91 

100 -1.23 0.47 -0.92 0.74 -0.21 0.93 

)( 111
pEH   0.15  0.12  0.10 

)( 101
pEH   0.28  0.30  0.33 

)( 011
pEH   0.17  0.15  0.11 

)( 001
pEH   0.40  0.42  0.46 

1
: H1: π ~ beta(15,35); S1 ~ beta(25,25); C1 ~ beta(30,20); S2 ~ beta(30,20); C2 ~ beta(40,10). 

2
: H1: π ~ beta(15,35); S1 ~ beta(25,25); C1 ~ beta(30,20); S2 ~ beta(30,20); C2 ~ beta(43,7).  

3
: H1: π ~ beta(15,35); S1 ~ beta(25,25); C1 ~ beta(30,20); S2 ~ beta(30,20); C2 ~ beta(47.5,2.5). 

  

          

 

  

 

  

 

 

 

  




