An inexpensive system requiring a minimum of power for steep, uphill logging as observed in Kentucky is of significance for other parts of the country.

Many small areas of timber comprising in the aggregate a large volume have been left unharvested because they were considered inaccessible. These areas, usually below rock outcroppings in steep-sided gullies are often too small to justify rigging up cable systems, or cable systems are so destructive that they are not permitted by the land owner.

The inexpensive logging incline observed is built from the bottom of a gully to the top of a bluff, a distance of 800 feet with a difference in elevation of about 350 feet and a grade approaching 80 percent at some points. It follows the ground irregularities (fig. 1) except over rock outcroppings where it is braced with logs (fig. 2). The rails are a double thickness of low-grade 2x4's, and the cross ties are made from short lengths and salvaged material. Since the lumber used in its construction is obtainable at the operator's own mill, the cash outlay is low, in this case amounting to $56 for wages and hardware.

The log-hauling car is fitted with mine car wheels and is built in two flexibly coupled sections so that it can follow irregularities in the track. Loads hauled by the car average 500 to 1,000 board feet of logs. These are hauled to the top of the incline by a cable from a towing winch on a tractor that is backed up to the end of the track. Cribbing and blocking elevate the last section of the track so that logs can be rolled from the incline car to logging trucks (fig. 3).

Cost of transporting logs up the incline amounts to between $0.75 and $1.00 per thousand board feet.

E. W. Fobes
December 1947
Figure 1.—General view of logging incline.

Figure 2.—Logs used to support track over rock outcroppings.

Figure 3.—Loading logs from incline car to truck.