AN ABSTRACT OF THE THESIS OF

Erik D Geissenhainer for the degree of Master of Science in
Title: Characterization of a Digital Phase Locked Loop and a Stochastic Time to
Digital Converter

Abstract approved:

Un-Ku Moon Kartikeya Mayaram

A digital phase locked loop (DPLL) and a statistical time-to-digital
converter (STDC) were previously fabricated in a 0.35µm, 3.3V SOI
CMOS process. This work summarizes these designs and characterizes the
measured performance. Simulations supplement the measurements where
applicable.

The DPLL was found to reach a locked state under a limited range of
input conditions. Evaluation of the DPLL’s digitally controlled analog
oscillator (DCAO) revealed that transistor mismatch resulted in a
non-ideal tuning curve. Simulations and measurements of the DCAO phase
noise showed good correlation.

The STDC circuit was characterized for several test chips. Measurement
results show good matching between the chips for the same input
conditions. The ability to achieve higher resolution than standard
time-to-digital converters is demonstrated through simulations and
measurements.
Characterization of a Digital Phase Locked Loop and a Stochastic Time to Digital Converter

by

Erik D Geissenhainer

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented July 21, 2006
Commencement June 2007

APPROVED:

__
Co-Major Professor, representing Electrical and Computer Engineering

__
Co-Major Professor, representing Electrical and Computer Engineering

__
Director of the School of Electrical Engineering and Computer Science

__
Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

__
Erik D Geissenhainer, Author
ACKNOWLEDGEMENTS

I would like to thank Dr. Un-Ku Moon and Dr. Karti Mayaram for being my advisors. Over the past two years, my research work has been performed under their guidance.

Thanks to Pavan Hanumolu who was a great mentor and he was always willing to explain engineering concepts to me.

I would also like to thank the students in the analog group for answering my questions.
Table of Contents

1. Introduction ... 1

2. Phase Locked Loops ... 3
 2.1 Analog Phase Locked Loop ... 3
 2.2 Digital Phase Locked Loops .. 4

3. Characterization of a DPLL .. 6
 3.1 Implemented DPLL.. 6
 3.2 PFD and TDC... 7
 3.3 Digital Loop Filter ... 10
 3.4 Digitally Controlled Analog Oscillator.. 11
 3.5 Divider Circuit ... 12
 3.6 DPLL Analysis... 12
 3.7 Simulations... 14
 3.8 Initial IC Testing and Findings .. 14
 3.9 Comparison of Measured and Simulated Results .. 15

4. Stochastic Time to Digital Converter ... 26
 4.1 Quantization of Phase Error ... 26
 4.2 Theory of Operation of the STDC ... 27
 4.3 Design Limitations.. 29
 4.4 Implemented STDC ... 31
 4.5 Arbiter Mismatch Analysis .. 31
 4.6 Delay and Slew Control ... 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 Simulation Results</td>
<td>36</td>
</tr>
<tr>
<td>4.8 Comparison of Measurements and Simulations</td>
<td>38</td>
</tr>
<tr>
<td>5. CONCLUSIONS</td>
<td>41</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>44</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>46</td>
</tr>
<tr>
<td>Appendix A Additional IC and PCB Details</td>
<td>47</td>
</tr>
<tr>
<td>Appendix B Additional Measurements</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Analog PLL</td>
<td>3</td>
</tr>
<tr>
<td>2.2. Digital PLL</td>
<td>5</td>
</tr>
<tr>
<td>3.1. Digitally controlled analog oscillator block diagram</td>
<td>6</td>
</tr>
<tr>
<td>3.2. Implemented DPLL block diagram</td>
<td>7</td>
</tr>
<tr>
<td>3.3. Time-to-digital converter</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Digital loop filter diagram</td>
<td>10</td>
</tr>
<tr>
<td>3.5 Phase noise measurement and simulation</td>
<td>17</td>
</tr>
<tr>
<td>3.6 DCAO tuning characteristic</td>
<td>18</td>
</tr>
<tr>
<td>3.7 Binary weighted DAC major bit transition</td>
<td>19</td>
</tr>
<tr>
<td>3.8 Divided DCAO output (top) and reference signal (bottom) vs time</td>
<td>20</td>
</tr>
<tr>
<td>3.9 Phase error signal (top) and control signal (bottom) vs time</td>
<td>21</td>
</tr>
<tr>
<td>3.10 Frequency spectrum of the DCAO output – divide by 64</td>
<td>23</td>
</tr>
<tr>
<td>3.11 Jitter Histogram of DPLL</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Quantization of phase error for TDCs</td>
<td>27</td>
</tr>
<tr>
<td>4.2 Relationship between rise time and offset voltage</td>
<td>30</td>
</tr>
<tr>
<td>4.3 STDC block diagram</td>
<td>31</td>
</tr>
<tr>
<td>4.4. Arbiter schematic</td>
<td>32</td>
</tr>
<tr>
<td>4.5. Histograms of offset voltage for different overdrive (delta) values</td>
<td>34</td>
</tr>
<tr>
<td>4.6. Delay and slew control circuit schematic</td>
<td>34</td>
</tr>
<tr>
<td>4.7 Decimal code vs delay time for a 305 ps rise time</td>
<td>36</td>
</tr>
<tr>
<td>4.8. Signal delay vs control current</td>
<td>37</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>39</td>
</tr>
<tr>
<td>4.10</td>
<td>40</td>
</tr>
</tbody>
</table>

4.9 Average decimal code output vs delay time. .. 39

4.10 Decimal code output vs delay time. .. 40
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Die photograph of DPLL and STDC.</td>
<td>47</td>
</tr>
<tr>
<td>A2</td>
<td>Layout of DPLL and STDC.</td>
<td>48</td>
</tr>
<tr>
<td>A3</td>
<td>Printed circuit board photograph.</td>
<td>49</td>
</tr>
<tr>
<td>A4</td>
<td>Oscillator phase noise plot for locked DPLL.</td>
<td>50</td>
</tr>
<tr>
<td>A5</td>
<td>DCAO tuning characteristic.</td>
<td>51</td>
</tr>
<tr>
<td>A6</td>
<td>Frequency spectrum of the DCAO output – divide by 64.</td>
<td>53</td>
</tr>
<tr>
<td>A7</td>
<td>Phase error and control signal with large reference signal vs time.</td>
<td>54</td>
</tr>
<tr>
<td>A8</td>
<td>Phase error of DPLL (top) and STDC (bottom) vs time.</td>
<td>55</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The first phase locked loop (PLL) system was designed in the 1930s for use in radio receivers [1]. Since that time, the phase locking concept has been applied to many applications ranging from generating clock signals in microprocessors to synthesizing frequencies. PLLs are currently being designed on integrated circuits for use in modern electronics, such as wireless devices. Since the performance of these devices can be limited by the PLL, product designers desire the highest performance PLLs possible.

The high performance PLLs used in electronic products need to operate at high speeds to handle the ever increasing data throughput. Since most wireless devices are portable and use batteries, these PLLs must consume low power in order to maximize the operating time of the battery. Finally, there is a desire to combine the PLL circuitry and other system components onto a single integrated circuit due to consumer demands for more features.

The following chapters discuss the system design, circuits, simulation, and measurements of a digital PLL (DPLL) and a statistical time-to-digital converter (STDC). Chapter 2 begins by describing an analog PLL and then relating it to a DPLL. In Chapter 3, the architecture of the implemented DPLL is discussed. Simulated and measured results showing the performance of the DPLL are presented. Chapter 4 discusses the motivation for obtaining a more accurate time-to-digital converter, and then presents a statistical time-to-digital converter as a
way to obtain this accuracy. Simulated and measured results of the implemented circuit are also presented. Chapter 5 concludes this report with a summary of the work performed, closing remarks on the obtained results, and suggestions for future work.
2. PHASE LOCKED LOOPS

A phase locked loop (PLL) uses negative feedback to align the phase of an input reference signal to the phase of an oscillator. The PLL is considered locked when the phase error between the reference and oscillator signals does not change over time. The analog PLL has been extensively described in prior publications [2, 3].

2.1 Analog Phase Locked Loop

Figure 2.1 depicts a block diagram of an analog PLL. The PLL consists of a phase/frequency detector (PFD), a charge pump (CP), a loop filter (LF), a voltage controlled oscillator (VCO), and a divider (N). The PFD creates UP or DN pulses whose widths are proportional to the phase error between the reference and oscillator signals. The PFD creates UP pulses if the VCO frequency should be increased and DN pulses if the frequency should be decreased in order to reduce the phase error between the input signals. The CP uses these UP and DN pulses to create current pulses that add or remove stored charge from the LF, thus changing
the VCO control voltage. The polarity of these current pulses is dependent on whether the VCO frequency should be increased or decreased. The output of the LF is a regulated control voltage that is used to set the VCO frequency. The VCO’s output is fed back to the PFD through the divider, thus closing the system loop.

The frequency divider (N) is an optional component in the PLL. The VCO output can be divided by a factor of N before it is fed back to the PFD. The divider allows for frequency multiplication since the oscillator frequency will be N times higher than the reference frequency when the PLL is locked. For increased functionality, the division factor N could be an integer or a fractional user-programmable number depending on the design of the divider [4].

2.2 Digital Phase Locked Loops

A digital PLL’s components, shown in Fig. 2.2, are very similar to those of the analog PLL discussed above. The digital PLL uses a time-to-digital converter (TDC) along with a PFD to determine the phase error sign and magnitude. The digital loop filter (DLF) integrates the phase error information (PE) to create a frequency error signal. The frequency and phase error signals are gain scaled and then summed to create the DLF’s output signal. This output is used to set the frequency of the digitally controlled analog oscillator (DCAO). The DLF replaces the CP and LF components in the analog PLL. As in the analog PLL, a frequency divider connected to the DCAO output may be used in the feedback path.
The DPLL is becoming increasingly more desirable than analog PLLs for the following reasons. As deep submicron processes become available, a DPLL design can be easily scaled into the new process. The DPLL is also easier to test because the digital error signals can be accurately monitored. The digital control word in a DLF is less susceptible to noise than the analog voltage present in the LF. Finally, digital circuits are also less susceptible to noise.

![Figure 2.2. Digital PLL.](image-url)
3. CHARACTERIZATION OF A DPLL

A digital PLL with the components described above was designed and fabricated in a 0.35µm technology SOI process [5]. This DPLL uses a digitally controlled analog oscillator (DCAO) that converts the digital controlling word into two analog signals with two 6 bit digital to analog converters (DACs) [6]. These two signals create fine and coarse tuning controls for the oscillator (Fig. 3.1). The motivation for doing this is that a 12 bit DAC with a single tuning control is much harder to design than two 6 bit DACs with two tuning controls.

![Figure 3.1. Digitally controlled analog oscillator block diagram.](image)

3.1 Implemented DPLL

Figure 3.2 depicts the block diagram of the implemented DPLL. The diagram shows the components, the outputs, and the external controls necessary to operate the DPLL. All external controls and outputs are shown with a small circle on the ends of their connecting wires. Each of the components is discussed in the following sections.
3.2 PFD and TDC

The PFD used in the DPLL is no different from that of an analog PLL. The PFD’s pulse widths are analog signals that represent the phase error between the input signals. A TDC is used to create a binary word that represents these pulse widths. The TDC’s output only defines the magnitude of the phase error and an additional logic circuit is required to determine the sign of the phase error. The sign of the phase error arises from which input clock signal arrives first. Assuming the two input clock signals have the same frequency, the time difference that is represented is proportional to the phase difference between these clocks.
A phase detector alone is not sufficient for use in a PLL design. The use of a phase/frequency detector is necessary in order to avoid false frequency locking [2]. A PLL using only a phase detector would allow false frequency locking since there are usually both phase and frequency errors present between the reference and oscillator signals.

The most common TDC uses a chain of non-inverting delay cells to measure the phase difference of the rising edge transitions of the input clocks. The delay chain propagates a signal starting when either input clock’s rising edge transition occurs. The delay chain is sampled by flip flops when the second clock input has its rising edge transition. The flip flops generate a digital word depicting how many delay cells propagated the signal between the rising edges of the two input clocks. The digital word created is thermometer coded and is often converted into binary to simplify hardware used in the controller block.

There are two common ways that the delay elements of a TDC are sized. All of the elements in the delay chain can have equal sizing [7] or they can have exponential sizing [8]. If the delay chain contains equally sized elements, the quantization error of each element remains small. The exponential delay chain, on the other hand, has increasing quantization error across the elements but it can measure a larger time range using the same number of elements as an equally sized delay chain.
The TDC implemented in the DPLL is shown in Fig. 3.3. The TDC, which consists of nine delay cells, uses both equal sized and exponential delay cell (ΔT) sizing. The sign of the error, determined by a D flip-flop, depends on which input clock (R - Reference or V - DCAO) transitioned first. If the DCAO rising edge occurs first, then the DCAO is early compared to the reference and the frequency should be decreased. The sign of the phase error will be negative in order to decrease the DCAO frequency. The opposite is true when the reference clock rising edge occurs first.

The pseudo-thermometer encoder converts the flip-flop outputs and the sign bit into a 2’s complement number that represents the phase error. The lowest phase error output value generated is +/- 1 and this occurs when none of the TDC’s delay cells transition between the two clock signals. Since the sign bit still captures the phase error, a dead zone region does not occur because the encoder’s
output is always nonzero. Thus, the highest phase error output from the encoder is +/− 256 and this occurs when all of the delay cells have transitioned.

The variable delays in the TDC are controlled by VG1 and VG2 from Fig. 3.2. These controls are present to balance the time delays of the two paths branching out from the OR gate. Mainly, the delay adjustment compensates for the constant phase error introduced by the PFD’s reset pulse.

3.3 Digital Loop Filter

The digital loop filter (Fig 3.4) is used to create proportional and integral signal paths, which represent the phase and frequency errors, respectively. In this implementation, the proportional gain term, α, and the integral gain term, β, are used to gain-scale the two paths. The proportional gain term used in this design is 1. The integrator’s attenuation factor of $\beta = 2^{-5}$ is created because the integrator stores a 16 bit word but the output only uses the 11 upper bits.

The digital loop filter sums the proportional and integral paths with an 11 bit adder. This adder is a saturating type, which means the sum does not ‘roll over’ when the endpoint values are reached. The $\frac{1}{2}$ gain element after the adder
is realized by using only the 10 upper bits of the adder. These remaining 10 bits are converted from two’s complement into offset binary notation which becomes the control word for the DCAO.

In [9], it was concluded that the smallest phase change of the proportional branch should be much larger than the smallest phase change of the integral branch. This ratio is referred to as the stability factor which is shown below.

\[
\text{Stability Factor} = \frac{\Delta \theta_\text{proportional}}{\Delta \theta_\text{integral}} = \frac{1}{2^{-5}} = 32
\]

(3.1)

This is a low stability factor value, which results in an under-damped response of the PLL due to a frequency step.

3.4 Digitally Controlled Analog Oscillator

The DCAO is a three stage delay cell with the Lee/Kim [10] structure. The DCAO output is rail to rail which is beneficial because this minimizes the effect that noise has on the output. Each of the delay cell stages has a differential output in order to increase the power supply rejection ratio. A single ended output from the delay cell’s differential output is connected to the programmable divider for use in the feedback loop.

The implemented DCAO differs slightly from the Lee/Kim structure, in that an additional pair of auxiliary transistors was added to create both fine and coarse tuning. The fine and coarse tuning DACs create analog voltages that are used to drive the tuning transistors of the DCAO, which controls the oscillation frequency. The oscillation frequency is controlled by a 12 bit word where the
controller supplies the lower 10 bits, and the most significant two bits are externally controlled as shown in Fig. 3.2. Both of the DACs are six bit, where the lower 6 bits use the fine DAC and the upper 6 bits use the coarse DAC. The fine and coarse DAC gains are controlled by the external bias currents I_{fine} and I_{coarse}, respectively.

Although not shown in the block diagram of Fig. 3.2, a multiplexer exists between the DLF’s output and the DCAO’s control word input. The multiplexer allows the DCAO’s input control word to be externally created (open loop) or determined by the DLF (closed loop). This multiplexer allows the DCAO to be characterized out of the loop, which is beneficial for understanding the DPLL operation.

3.5 Divider Circuit

The PLL loop contains an externally programmable DCAO divider. The divider can be set to produce the following divisions of the DCAO signal: (64, 32, 16, and 8). Two digital input signals (div0 and div1) control the divider ratio by simply switching D flip-flop divide-by-two stages into or out of the signal path as necessary.

3.6 DPLL Analysis

The frequency steps of the DCAO are produced by the proportional and integral paths. The step size depends on the following parameters: proportional
path gain, integral path gain, DCAO gain from the fine DAC, DCAO gain from the coarse DAC, the current phase error, and the current integrator value. The value of the resulting control word determines what portions of the fine and coarse DACs are to be utilized. The upper 6 bits of CTRL use the coarse DAC and the lower 6 bits use the fine DAC.

In [5], the equations governing the DPLL are derived from a continuous time analog PLL. These equations can be used if the loop bandwidth is less than 1/10th of the PFD’s update frequency. From these equations, the unity gain bandwidth and phase margin can be estimated for the operating conditions used in the measurements. The values for this DPLL will be discussed in Section 3.9.

\begin{equation}
\omega_{UGB} = \left(\frac{K_{dig}F_R}{N} \right) \sqrt{1 + \tan^2(\varphi_M)} \tag{3.2}
\end{equation}

\begin{equation}
\varphi_M = \tan^{-1}\left(\frac{\omega_{UGB}}{\omega_Z} \right) \tag{3.3}
\end{equation}

\begin{equation}
K_{dig} = G_n \left(\frac{T_R}{\Delta T} \right) f_{lsb} T_R \tag{3.4}
\end{equation}

where, \(F_R \) is the reference frequency, \(T_R = 1/ F_R \), \(f_{lsb} \) is the smallest DCAO frequency step size, and \(G_n = 0.5 \).

The selection of the PLL’s loop bandwidth is critical to the overall system performance. A low bandwidth PLL has the best ability to filter input jitter and also a high bandwidth PLL is necessary to reduce jitter from the VCO [11]. This obviously leads to a trade off because both criteria cannot be met. The designer must select a loop bandwidth to best fit the desired specifications.
3.7 Simulations

Each block of the DPLL was individually simulated with Spectre to verify proper operation and expectations. The simulation results were also used to determine the approximate current and voltage bias conditions that would be used when measuring the fabricated test chips. From this information, biasing resistor sizes, or their range, could be determined so properly sized trimpots and resistors could be populated on the PCB. A DCAO tuning curve and an oscillator phase noise plot were also generated for comparison with the measured values.

3.8 Initial IC Testing and Findings

It was found that the DPLL was able to lock to the reference signal but only if the reference was a sine wave with a small amplitude centered at Vdd/2. The use of a sine wave reference was not obvious since a square wave reference signal indicated no problems in simulation. Also, the necessary reference amplitude of ~500mV pk-pk was unexpected.

These special conditions, necessary to make the DPLL lock, seem to suggest that the input signals are coupling into other parts of the circuit. The source of the coupling is most likely the input/output buffers shown in Fig. 3.2. Since a sine wave has a more gradual rise and fall time than a square wave of the same frequency, a sine wave reference would, therefore, allow the input buffer to switch states slowly. When the buffer switches states slower, it consumes less
current. It is assumed that the fast transition of a reference square wave is causing the buffer to have a higher switching current. These current spikes are likely creating noise and glitches that affect other circuits which cause the DPLL to not reach a locked state.

Also, it was found that 50Ω termination was required for all three of the input/output buffers. If one of these signals was not buffered, the circuit could not reach a locked state. This seems to indicate that signal coupling from the buffer signals was occurring.

The divide-by-N circuit was found to produce proper division rates of the DCAO output for the divide by 64, 32, and 16 settings. The divide by 8 did not properly divide the DCAO’s output. The high switching speed and buffer issue described above may account for the problems with this divider setting.

3.9 Comparison of Measured and Simulated Results

In Fig. 3.5, the results of a phase noise measurement and simulation performed for a divided DCAO (N=32) free-running frequency of 29.28 MHz are shown. As the figure indicates, the offset frequency where the phase noise roll-off changes from -30dBc/decade to -20dBc/decade is the same in both measurement and simulation. The slope change occurs approximately at a 10 kHz offset frequency where flicker noise (1/f) is no longer the dominant noise source. The phase noise is due to white noise for frequency offsets greater than 10 kHz. The phase noise at 10 kHz was simulated to be -71.76 dBc/Hz but was measured to be
-66.53 dBc/Hz. At 100 kHz, the phase noise was simulated to be -96.16 dBc/Hz but was measured to be -95.81 dBc/Hz. The measured values are slightly worse than what was simulated. The phase noise simulation was performed with noiseless power supplies, control signals, and bias currents along with matched transistor devices. The differences between the measured and simulated values are likely attributed to these idealities used in the simulations.
Figure 3.5 Phase noise measurement and simulation.
(a) Measurement, and (b) simulation for a divided DCAO frequency of 29.28 MHz.
Figure 3.6 DCAO tuning characteristic.

Figure 3.6 shows the simulated and measured tuning curves of the DCAO. The simulated DCAO circuit includes an additional 45fF of capacitance at the outputs of each ring oscillator stage in order to provide a close match to the measured results. This capacitance can be attributed to the capacitance of the metal wires used to connect the delay stages and other layout parasitics. The coarse DAC bias current, I_{coarse}, was 49µA and the fine DAC bias current, I_{fine}, was 319µA. The smallest frequency step, f_{LSB}, that the DCAO can resolve for these DAC gains was determined to be 600kHz.

As the frequency range increases, the current mismatch in the coarse DAC becomes increasingly more significant. The DACs that are used in the DCAO are
both binary weighted DACs. In [12], the drawbacks to using binary weighted DACs are discussed in detail. These drawbacks include current source mismatch and large switching glitches that occur at major bit transitions. The measured results in Fig. 3.6 clearly indicate that the mismatch of the transistors produces a non-monotonic DAC. The jump between control code 511 and 512 has the most mismatch because all bits below bit 10 are active for code 511 and then switch off for code 512 as shown in Fig. 3.7. In order for the DAC to be monotonic, the 512 current source must match the sum of the currents produced by all of the smaller current sources to within ½ lsb. This is difficult to accomplish since each of the current sources contains error.

![Figure 3.7 Binary weighted DAC major bit transition.](image)

Although the DCAO is controlled by 12 bits, the oscillator frequency does not continue to increase linearly when the control word is increased beyond the
shown 10 bit range. Since the upper two bits are externally controlled, the nonlinear region can be avoided. The biasing currents for the fine and coarse DACs could be adjusted to produce a large set of turning curves. However, all of these curves still contain the mismatch issue described above.

Figure 3.8 shows the reference and divided (N=32) DCAO output waveforms when the DPLL is locked to a reference frequency of 24 MHz. The rise time of both of these waveforms is less than 500ps which indicates that the input/output buffer sizes are larger than necessary. The amplitude of the waveform is 100mV because the signal is terminated on the PCB and also inside
the oscilloscope. The ringing present on the rising edges of the waveforms could be due to the oversized buffers or possibly cable reflections. Additionally, the duty cycle of the reference signal has been altered by the inverter stages in the DPLL’s reference buffers. This is because the input amplitude of the reference signal is very small which increases the duty cycle’s dependence on the inverter trip point. From simulation, the duty cycle shown in this figure could result from a Vt mismatch of approximately 85mV in the initial inverter stage.

![Figure 3.9 Phase error signal (top) and control signal (bottom) vs time.](image)

Figure 3.9 shows the phase error and control signal words when the DPLL is locked to the same state as in Fig. 3.8. The phase detector is operating like a bang-bang phase detector since the phase error simply switches between two
values. The step between control word values of 277 and 278 is caused by the integrator. Since the integrator stores 16 bits but only outputs the upper 11 bits, the frequency error accumulating in the lower 5 bits does not affect the DPLL loop until it becomes large enough to change the higher bits. At this point, the frequency error value of the loop is updated. This creates the switching pattern between the control word values of 277 and 278. Since the integrator is switching between two values, it means that both positive and negative frequency errors are being captured, as would be expected when the DPLL is locked.

Figure 3.10 (a) shows the free running DCAO’s frequency spectrum as seen after the divide-by-N circuit (where \(N = 64 \)). The spectrum of the free running DCAO is very noisy and has a large amount of jitter. Figure 3.10 (b) shows the same DCAO’s frequency spectrum once the DPLL circuit is locked. The spectrum is much cleaner and the jitter in the oscillator output has been greatly reduced.
Figure 3.10 Frequency spectrum of the DCAO output – divide by 64.
(a) Free running DCAO. (b) DCAO in DPLL.
The obtained jitter distribution shown in Fig. 3.11 was measured when the DPLL was locked to a 24MHz reference with a divider setting of N=32. This was the best case jitter obtained for any of the divider settings. When looking at the measured sigma distribution percentages, we can see they are close to the true Gaussian percentages.

Using the measured data, the DPLL’s loop bandwidth can be approximated from the equations in Section 3.6 along with $F_R = 24$ MHz, $N = 32$, and $f_{LSB} = 600$kHz. The calculated loop bandwidth was found to be 400 kHz and the phase margin was 73º. Since the bandwidth is much less than $1/10^{th}$ of the PFD’s update
frequency, the continuous time PLL equations are valid for approximating the DPLL’s behavior which confirms that the DPLL loop is stable.
4. STOCHASTIC TIME TO DIGITAL CONVERTER

In order to reduce noise in a DPLL, it is desirable to have a small quantization error of the PFD’s pulse width. The smallest time step that a TDC, like the one described previously, can measure is dependent on the speed of the delay cells which are constructed with inverters. The stochastic time-to-digital converter (STDC) was designed to measure time differences that are smaller than the delay time of an inverter [14]. The addition of an STDC in a DPLL should improve the jitter performance.

4.1 Quantization of Phase Error

The fastest delay cell that can be constructed is an inverter, thus the inverter’s propagation time is the smallest measurable time step in a traditional TDC. In the 0.35μm process, this propagation time is at least 80ps. Fig. 4.1 shows how a TDC quantizes phase error into binary TDC codes. The TDC’s transfer function has a large nonlinearity as the phase error approaches zero. This is because small phase errors, less than |ΔT|, generate TDC codes of +/- 1. The dotted line in Fig. 4.1 shows how the STDC can be used to increase the resolution of the phase error. When a traditional TDC is locked, it operates like a bang-bang PLL with the phase error dithering between +1 and -1 codes. The STDC can more accurately measure the phase error that exists between these two TDC codes. The
STDC is designed to supplement a DPLL by creating a fine control loop that would be used for higher accuracy when the loop is locked to the reference signal.

Figure 4.1 Quantization of phase error for TDCs.

Although a TDC can be designed with inverting delay cells, many designers create TDCs with non-inverting delay cells because of differences in the inverter rise and fall time characteristics. These differences create inaccuracies when resolving the phase error. By using non-inverting delay cells, the smallest time step of the TDC is even larger than the propagation time of an inverter. Recently, [7] proposed a pseudo-differential TDC that uses inverting delay cells and avoids the described mismatch between even and odd delay stages.

4.2 Theory of Operation of the STDC

The STDC relies on mismatches of arbiters to help measure small time steps of the phase error. An arbiter can be used to determine which of two clock signals had its rising edge first. Transistor mismatch in this arbiter circuit creates
an offset voltage between the arbiter’s inputs which introduces a small error. When determining which rising edge occurred first, the offset voltage is effectively equivalent to time delaying one of the input signals by a finite amount. The original concept of this system was described in [13], where an array of arbiters calibrated a flash TDC. The STDC design, on the other hand, uses the sum of a group of arbiter outputs to determine the time difference between the signals in the DPLL [14].

The STDC design contains 84 independent arbiters, each connected to the two clock signals for which the time difference has to be measured. The output states of the arbiters are either high or low, depending on which clock signal had its rising edge first. The arbiter’s output is reset every time both of the clock signals become grounded. In a DPLL, the arbiter determines if the VCO clock signal is ‘early’ or ‘late’ when compared to the reference clock signal.

Each of these 84 arbiters has an input offset voltage due to the IC fabrication process. The offset voltage is assumed to have a statistical distribution. When the phase error between the input signals is small, the offset voltage will affect which output state is reached. By summing together the arbiter outputs, the number of output states that are in the majority can be used to create a fine time estimation of the phase error.
4.3 Design Limitations

Some of the factors that can limit the STDC’s performance include the size of the standard deviation of offset voltage, the input signal rise time, the number of arbiters used, and the speed of the hardware used to sum the arbiter outputs.

The size of the standard deviation helps to determine the time range over which the STDC can provide relevant information. If the time difference falls outside of this range, all of the arbiters will produce exactly the same output and the circuit will behave much like a bang-bang phase detector. For a fixed number of arbiters, an increase in the standard deviation of the offset voltage will result in a larger measurable time range. The downside to this is that the resolution of the STDC will decrease as the arbiter offsets are distributed farther out in voltage resulting in a farther spread in time.

The rise time of the input signals is also critical in determining the time range. With a sharp rise time, the offset voltage distribution does not have as large of an effective time delay of the input signal. However, an offset voltage with a slowly rising signal will have a large effective time delay. Figure 4.2 shows the resulting effective time delays (ΔT) of two signals with different rise times and the same offset voltage (ΔV_{os}).
Figure 4.2 Relationship between rise time and offset voltage.

The hardware necessary to sum the arbiter outputs limits the maximum operating speed of the STDC. In order to reduce the latency of the DPLL loop, which in turn reduces noise, the hardware needs to operate at the highest speed possible. As the number of arbiters increase, more additions are required to determine their sum which slows down the STDC. In order to maintain efficiency, the hardware should not be larger than necessary to achieve the desired performance.
4.4 Implemented STDC

Figure 4.3 depicts the STDC described above. The input clock was designed to operate at a maximum speed of 80 MHz. The input clock signal is sent to a divide-by-two circuit in order to obtain both in-phase and quadrature signals. The in-phase signal is used to create the two different clock signals that will be measured by the arbiters. The quadrature signal is used to sample the arbiter outputs. The arbiter outputs are summed together using adders which then represent the sum as a 7 bit number.

4.5 Arbiter Mismatch Analysis

The Honeywell 0.35μm Spice model contains 1-σ variation information for the threshold voltage, Vt. The following equation was given to determine the normal distribution of Vt for a transistor [15]. Using this equation, the 1σ offset
voltage distribution was calculated to be less than 20mV for the input transistor used in the arbiter circuit.

$$1\sigma \text{ (in mV)} = \left(\frac{46.3}{\sqrt{W \cdot L}} + 0.08 \right) \cdot \left(\frac{1}{3} \right) \quad \text{W and L are in microns} \quad (4.1)$$

In [16], the author claims that V_t mismatch doesn’t follow $\frac{i}{\sqrt{\text{Area}}}$ when transistor geometries are wide/short and narrow/long and a more accurate model is proposed. The parameters required to use this more accurate model were not available and not necessary for proving the STDC concept.

![Arbiter schematic.](image)

The mismatch of the transistor parameters in the arbiter circuit shown in Fig. 4.4 will generate an output offset voltage. The mismatch in transistors M1 and M2 dominates the resulting effective time delay of the arbiter circuit. In the
schematic, the voltage source V_{os} is applied to the circuit input in order to cancel the output offset.

The analysis of mismatch in [17] describes the mutually independent components related to mismatch and also provides approximate percent variations. This information can be used to analyze the offset voltage of the arbiter circuit. The following equations [19] define the offset voltage when considering transistors M1 and M2 and simplifying the remaining transistors to have an effective resistance of R_D.

$$V_{os} = V_{GS1} - V_{GS2}$$

$$V_{os} = \frac{V_{GS} - V_t}{2} \left[\frac{\Delta R_D}{R_D} + \frac{\Delta (W/L)}{(W/L)} \right] - \Delta V_t$$

where W/L is for transistors M1 and M2.

Equation 4.3 was analyzed for four different overdrive ($V_{GS} - V_t$) voltage values of 50mV, 100mV, 200mV, and 500mV. Figure 4.5 shows the histograms for these overdrive voltages. Each histogram was created from 10,000 random offset voltage values using the percent variations found in [17]. From the figure, it can be determined that overdrive voltage has little affect on the offset voltage and V_t mismatch is, therefore, the dominant term.
Figure 4.5. Histograms of offset voltage for different overdrive (delta) values.

4.6 Delay and Slew Control

Figure 4.6. Delay and slew control circuit schematic.
The delay and slew control circuit was designed to create two “unique”
input clock signals from a single input clock. By using two of the circuits shown
in Fig. 4.6, a common input signal can be created to have different output rise
times and delay times. The rise time and delay time settings are externally
controlled by the bias currents I_{rise} and I_{delay} respectively. The delay time
adjustment controls the bias current of the three inverter stages, allowing one
signal to lead or lag the other. The slew rate adjustment controls the bias current
in the common source amplifier stage, which determines the rise time of the
output. These controls allow the circuit to generate the different types of clock
signals that could be present in a DPLL circuit.
4.7 Simulation Results

The effect that the offset voltage has on the output of the arbiters was simulated. A circuit with 84 arbiters, each having an offset voltage with a 100 mV standard deviation, was simulated to determine the usable delay time range. Figure 4.7 shows the resulting decimal code vs delay time for a 305 ps rise time of the two input clocks. The dark line in the center of the curve is the average of these resulting decimal codes. The linear time range of the STDC is about 200ps and approximately 52 of the 84 arbiters will be inside this range.

Figure 4.7 Decimal code vs delay time for a 305 ps rise time.
In the previous simulation, it was possible to directly measure the time delay created in the delay and slew control circuit. In measurements, it is necessary to approximate this from the delay control cell’s biasing current. The transfer function of the delay control circuit shown in Fig. 4.8, depicts how the input current changes produce a nonlinear change in the signal delay. The bias current value associated with a zero delay will be used to ‘set’ the delay time of the second delay control circuit. This allows the clock signal of the first delay control circuit to have almost equal positive and negative delays with respect to the second delay control circuit.
The rise times of the clock signals were set equal in order to simply compare the delay time sweep. The results obtained in Fig. 4.8 will be used to estimate the resulting delay signal from the measured input control when performing the STDC circuit measurements. Since the delay and slew circuits were created for evaluation purposes, this approximation would not be necessary in an actual implementation [18].

4.8 Comparison of Measurements and Simulations

The STDC was given an 80 MHz input clock signal and the delay control current of one input clock was swept for two different rise times. The sweep of this clock is relative to the other ‘stationary clock’ defined as 0 ps (~22μA bias current). Also, both of these clocks share the same rise time current biasing. The output control word was recorded 32,000 consecutive times and the resulting average was calculated for each delay current step taken. The simulated delay control current was equated to an approximate signal delay time as discussed in Section 4.7.
Figure 4.9 shows the measured results of the STDC’s output as the delay control is swept. The simulated average from Fig. 4.7 was also plotted for comparison. As can be seen in the plot, about half of the arbiters are ‘tripped’ when there is zero delay time between the two clock signals. Since each of the four measured chips shows similar characteristics, the offset voltage distribution between the chips is also similar. The rise time of the measurements was approximated to be 230 ps. Finally, the resolution of the STDC is about 25 times smaller than the resolution of the TDC using an inverter chain.
Figure 4.10 Decimal code output vs delay time.

Figure 4.10 compares the STDC performance of one test circuit for 340ps and 230ps rise time settings. The figure shows how the time measurement window can be altered by simply changing the rise time of the input signals. Also, the statistical offset voltage produced by the 84 arbiters is adequate for measuring small time differences in the input signals. The good correlation between the chips suggests that such a design could be used in mass production.
5. CONCLUSIONS

Typically, transistor mismatch is undesired in analog circuits because it limits the circuit’s performance. However, the results shown in the previous section demonstrate that mismatch can be used to improve the resolution of time measurements. The achieved resolution of the STDC was less than an inverter’s propagation time at the cost of additional circuitry involving the use of 84 arbiters and their related hardware.

In the DPLL, the mismatch of the binary current sources in the DACs created non-idealities in the DCAO tuning curve. This DAC would require calibration of the elements in order to eliminate the current offsets that create the poor INL/DNL performance. The recommendation of using a combination of thermometer and binary weighted elements [12] would most likely reduce the mismatch that is present.

Although the DPLL was able to lock, its performance was severely limited. A possible cause is the noise coupling from the input/output buffers or perhaps from the DCAO. The DCAO mismatch between the fine and coarse DACs may have also limited the lock range of the DPLL.

For future designs, the following points are made to show potential areas that can be improved.

- The input/output buffers should use their own power supply pins to eliminate the possibility that their switching noise is coupling onto the power supply rails.
• If the 0.35µm process is reused, the size of the buffers could be reduced.

• For debugging purposes, it would be desirable to clear the value stored in the integrator. The current design has no reset capability and the integrator value is unknown at startup. This leads to a repeatability issue since the DPLL does not always lock for the same input conditions.

• The integrator’s gain value should be made programmable to test several unity gain bandwidths.

• When open loop control of the DCAO is desired, the control word should be programmed with a serial data stream rather than by parallel bits. A serial shift register can store the DCAO control word. Considering the fact that measuring the DCAO’s frequency over all 12 bits would need to be automated, a serial input stream would not add significantly to the design complexity. Also, this would have allowed more package pins to be available for other uses.

• The variable delay controls for the TDC used voltage signals for biasing instead of current signals. Current signals should have been used for biasing since they are less sensitive to noise.

• A calibration routine that eliminates arbiters with extremely large offset voltages or those with offset voltages approximately equal to
others can be implemented. This calibration routine reduces the hardware used while the DPLL is running at the cost of additional setup hardware. By reducing the hardware, the STDC could operate at higher speeds.
BIBLIOGRAPHY

APPENDICES
Appendix A Additional IC and PCB Details

Figure A1. Die photograph of DPLL and STDC.

Figure A1 shows the die photograph for the DPLL and the STDC.
Figure A2. Layout of DPLL and STDC.

Figure A2 shows the layout for the DPLL and the STDC.
Figure A3 shows the assembled printed circuit board that was used to characterize the DPLL and the STDC circuits.
Appendix B Additional Measurements

In Fig. A4, the phase noise measurement of the locked DPLL is shown. The DPLL is locked and has a divided DCAO (N=32) frequency of 29.28 MHz. The DPLL’s bandwidth is around 500 kHz. The phase noise peaking that occurs might be caused by the under-damped frequency response.
Figure A5 shows an additional DCAO tuning characteristic. This curve has less gain mismatch between the fine and coarse DACs. The coarse DAC bias current, I_{coarse}, was 49 μA and the fine DAC bias current, I_{fine}, was 245 μA. The major bit transition that occurs between codes 511 and 512 creates a positive step in the measured tuning curve. The DCAO’s resolution at this point is degraded since no frequency overlap occurs.
Figure A6 (a) shows the DCAO’s open loop frequency spectrum after the divide-by-\(N\) circuit (where \(N = 64\)). Figure A6 (b) also shows the DCAO’s open loop frequency spectrum with a 12.0 MHz reference signal being injected. The coupling of the reference signal onto the DCAO’s divided output can be seen. Both of the spectrum plots are an average of 100 measurements.
Figure A6. Frequency spectrum of the DCAO output – divide by 64.
(a) Open loop DCAO. (b) Open loop DCAO with reference signal.
Figure A7. Phase error and control signal with large reference signal vs time.

Figure A7 shows the phase error and control signals of the DPLL when the reference signal is a 3.3V pk-pk square wave. With this reference signal, the integrator saturates which appears to be caused by inaccurate representation of the phase error. The integrator is equally likely to saturate high or low and the DPLL never reaches a locked state. Since there is no reset feature in the DPLL, the measurement above was made when the circuit was initially powered.
Figure A8. Phase error of DPLL (top) and STDC (bottom) vs time.

The STDC circuit’s input signals could be switched so that it could monitor the same phase error as the PFD and TDC circuits in the DPLL. The STDC’s output was not used to control the DCAO. Figure A8 shows the phase errors of both the DPLL and the STDC with the same input signals while the DPLL is locked to a 24 MHz reference. The STDC’s phase error does not appear to have a clear relationship with the phase word as would be expected. The differences could be due to the noise coupling issue that limits the input amplitude.