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AN APPROACH FOR SELECTING A LANGUAGE FOR COMPUTER

HARDWARE DESCRIPTION AND SIMULATION

1. INTRODUCTION

The introduction of VLSI into the world of digital design has

provided hardware engineers with a good reason to develop a new

approach for designing digital hardware. In the days of SSI and MSI

it was possible for a designer to keep track of the overall structure

and behavior of a hardware design by using logic diagrams, Boolean

equations and his own memory. As systems grow in complexity in the

VLSI era, it becomes increasingly more difficult for a designer to

keep track of a design, resolve design problems or communicate the

design to others without the assistance of a computer. A new hard-

ware design approach must include the ability for computer-aided

design (CAD) work.

With many of the current design approaches it is popular to

partition the digital design world into several layers of abstrac-

tion. The lower levels of this hierarchy (the circuit and logic

levels) are well defined and in use throughout industry on design

projects. The next higher level, the register transfer (RT) level,

is a relatively new level with respect to its use in digital hard-

ware design projects. However, there are several advantages to

doing design work at the RT level. The purpose for moving up to

this level is to abstract (i.e., disassociate from any specific

entity) [W077] the structure and behavior of the lower levels and

focus the design onto a higher-level picture of a digital system.
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A new design approach that utilizes the RT level of abstraction is

beginning to gain acceptance with designers.

The design tools that are needed to allow useful work at the

RT level are: a concise, yet precise, hardware description at this

level and a method for performing RT level simulations of the hard-

ware description. The need for a concise method of describing a

digital design with thousands of gates is very apparent. This de-

scription must also be a precise one in order to reduce ambiguity

in the design and allow for development of the software in unison

with the hardware. The use of simulation aids designers by increas-

ing their understanding of how a design will actually behave, and

thereby allowing them to locate and concentrate on the critical

areas of the design. Simulation will also reduce the number of

prototypes that will need to be built, saving money in design costs

and getting the product out the door in less time.

There are three classes of formal languages that can fulfill

both the description and simulation requirements of the register

transfer level design tools. These classes are grouped together

into a set called Hardware Description Languages (HDLs). The three

individual classes of languages that make up the set of HDLs are:

the High-Level Languages (HLLs), the General Purpose Simulation

Languages (GPSLs) and the Computer Hardware Description Languages

(CHDLs).

HDLs provide a means of attaining computer assistance in hard-

ware design. Thus, the use of an HDL-based design approach is an

efficient method for dealing with the complexity of VLSI design
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projects. An HDL design approach is realized by implementing an

HDL on a host computer which then becomes an HDL-based design system.

Several papers have been published that present the many advantages

of using an HDL design system for digital hardware design [Br66,

Br72, Ba75, Sh79a].

There are several implementation-related questions that need to

be answered when developing an HDL-based design system. The purpose

of this paper is to answer one of these questions. This topic

question is:

HOW SHOULD AN HDL BE SELECTED FOR USE IN A DESIGN SYSTEM?

This is an important question to answer as it deals with the

selection of the best available language for satisfying the require-

ments of a proposed design system. It is also a question that has

not been well addressed in the current HDL-related literature. To

answer this topic question a three-step approach for selecting an

HDL will be presented.

The first step of this approach is to select one of three

classes of HDLs as being best suited for a design task. This is

done by comparing the advantages and disadvantages of using each

class for hardware design purposes. The second step is to select a

small group of languages that possess a majority of the technical

features needed to make a language useful for the particular design

environment. The third, and final, step of this selection approach

is to develop an order of preference within the group of useful

languages based on some practical considerations.
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This approach will include making a selection from any of the

three HDL classes. However, the CHDL class will be the most heavily

emphasized because of the design industry's lack of familiarity

with CHDLs and the languages' superior suitability for hardware

description and simulation purposes. This emphasis will be carried

out throughout the entire paper.

This paper has been written with two secondary purposes in

mind. The first of these is to increase a designer's familiarity

with CHDLs by reviewing some of the historical background, general

language constructs and specific examples of this class of HDL.

The second purpose is to compile a bibliography of CHDL-related

literature to serve as a useful starting point for further research.

Chapter Two is devoted entirely to a review of CHDLs, as they

are relatively new and not well known by designers. On the other

hand, HLLs and GPSLs are older and thus better known by the design

industry. This chapter provides information aimed at helping the

reader to more familiarity with the fundamentals of CHDLs. It

includes an examination of three early CHDLs, a look at the syntax

of a general CHDL and description and examples of two popular CHDLs.

Chapter Three presents some of the languages that are available

for use in hardware description and simulation projects. This is

accomplished by discussing the advantages and disadvantages of using

each of the three classes of HDLs and then examining specific

languages from each class. HLLs and GPSLs are discussed first as

they are already familiar to most designers. Only two example

languages are presented for each of these classes because languages
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within each class are very similar both in structure and use. CHDLs

offer a wide range of structures and uses. No single language can

be used to describe the entire class, so ten individual examples are

presented. This section also introduces a four-dimensional CHDL

space. This is used in Chapter Four to aid in the selection of

languages based on technical considerations. Following the ten

relatively detailed examples, 14 other languages are briefly dis-

cussed to provide a more complete listing of available CHDLs. All

24 CHDLs are summarized in Table 3, located at the end of this

chapter.

Chapter Four introduces and discusses the HDL selection

approach. This chapter is divided into four sections; the first

two are aimed at all three classes of HDLs while the last two

emphasize the CHDL class. The first section reviews some of the

reasons for using an HDL for design purposes. Section 2 discusses

the selection of an appropriate class of HDL for particular design

environments. Sections 3 and 4 examine the selection of individual

languages based on the fact that a CHDL is to be selected. An

example of selecting an HDL for use in an academic environment is

developed throughout this chapter.

Finally, Chapter Five gives a summary of the ideas presented

in this paper.
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2. CHDL REVIEW

While most hardware designers have had some hands-on experience

with HLLs, very few have ever worked with a CHDL. To increase a

designer's familiarity with this class of languages, several aspects

of CHDLs will be reviewed. This chapter has been organized into

three main areas, each presented in a separate section. The first

of these sections discusses three "historic" CHDLs. Special emphasis

is given to constructs that were introduced by these languages and

have become common features of modern CHDLs. The second section

uses many of these original constructs to develop a set of general

features that can be used to characterize individual languages.

The final section of this chapter will review two popular CHDLs with

respect to the features presented in Section 2.2.

2.1. Early Languages

The languages from the first generation of CHDLs can be classi-

fied into three groups. This classification scheme is based on the

approach used to develop a particular language. The first group

includes those languages that were developed from scratch as dedi-

cated hardware description languages. The second group includes the

languages that were developed as high-level programming languages

that had some applications in the hardware description area. The

final group includes those CHDLs that were adapted from high-level

programming languages and converted into hardware oriented languages

with the addition of special data structures for hardware descrip-

tion.
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This section will review one language from each of these groups.

The languages chosen (RTL, APL and LOTIS) are usually referred to as

the first CHDL to appear from each of the corresponding groups. For

each language an explanation of the reasons leading up to the develop-

ment of the language and a brief look at some of the unique features

of the language will be given. The purpose of these introductions is

to present some general features common to all CHDLs rather than to

examine the languages in detail.

A. Introduction to RTL

Perhaps the earliest example of any CHDL is the Register Trans-

fer Language (RTL). This notational scheme was developed in the

1950s and early 1960s by I.S. Reed. The RTL language was first

presented in an ACM report in 1952 ERe52] and then used 10 years

later in two textbooks on digital computer design [BL62,Ch62]. The

philosophy behind the development of RTL was that all operations of

a digital computer could be expressed by means of transfers between

the registers of the system. RTL was created as a notational means

for recording these transfers and thus became an early description

language for digital computers.

In a design procedure based on the use of RTL the following

three design phases were introduced: [BL62]

(1) The System Design phase - which outlines the overall

configuration of the machine and the class of hardware

structures to be used.
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(2) The Structural Design phase - which describes the system

in terms of the transfer relations between the registers.

(3) The Logic Design phase - which realizes the transfer

relations by means of Boolean equations.

The RTL language was the key factor in making this digital design

process work. In fact, the entire structural phase depended on the

use of RTL to provide the register transfer descriptions. The

descriptions at this level detailed the registers and the allowable

transfers between those registers. A digital machine was regarded

as a set of registers communicating with one another by means of the

transfer operations allowed for that machine. Thus, the operation

of a computer could be described by a set of transfer relations

written in RTL.

The main advantage to using this type of descriptive technique

for design work is in the notation. The RTL description is a short-

hand way of designating a potentially complex set of Boolean

equations, which may themselves specify a complex set of electronic

operations. These transfer descriptions are intended to provide

only the minimum amount of detail necessary to specify the machine

at the register transfer level.

Once the RTL description is available, the individual trans-

fers may be implemented by translating the transfer relations into

Boolean equations and then by realizing the equations as logic

components. Although RTL did not provide a means for automatically

translating the register transfer descriptions into logic equations,

an algorithm for completing this translation by hand was presented
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with the RTL language [BL62].

The basic statement of the RTL language is the transfer state-

ment. All of the various RTL statements are of this same format.

The general form of this statement is:

CONTROL CONDITION / f(set of registers) --+ destination register

The control condition is used to allow for synchronous operations

by requiring a clock-like condition signal to be set true before the

register transfer is allowed to take place. The / symbol is used

to denote the division between the condition section and the register

transfer section. The actual transfer operation is some function of

one or more registers with the result being sent to a single destina-

tion register for storage. A typical example of an RTL statement,

shown below, reads as follows: when the signals f and p are both

f p/A

set true then the content of register A is transferred to register

B.

The RTL language allows for only four elements that can store

information. These four elements are memories, registers, sub-

registers and dependent registers. The most important of these is

the register which is denoted by a capital letter. The memory unit

is thought of as an array of registers and is usually denoted by a

capital M. A particular word in the memory is referenced by placing

the address of the word into a general purpose register that can

serve as an address register. A subregister is a section of a

register and is denoted by a two letter identifier followed by the

register of interest as a parameter. A dependent register is a
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special type of register that is dependent on inputs from two or

more registers, such as an adder. The notations for both the sub-

register and the dependent register are given below. Single bits of

any of these elements can be specified by using a numeric subscript

following the identifier for that element. The subscript represents

the particular bit or bits of interest.

RTL has no provisions for declaring the word lengths of memory

or the sizes of individual registers or subregisters. Declarations

such as these, which are very important to provide a precise RTL

description, are made by developing a block diagram of the object

machine and including the necessary information on that diagram.

When a designer wants to create an RTL description of some machine

he must first develop the block diagram for that machine. This

diagram should include identifying names for all of the registers

and memories that will be referenced by the RTL description. The

sizes of the individual registers (in terms of the number of bits

stored by each) and the allowable data paths between the registers

must also be indicated on the block diagram. Once the block diagram

(or an equivalent type of documentation) has been completed, the

RTL description can be easily worked out. The block diagram serves

as the structural description of the system and the RTL description

serves as a behavioral one.

One of the most important functions for a behavioral descrip-

tion of a digital computer is to describe the instruction fetch,

interpretation and execution sequences used by a particular design.

These sequences are basic to the functioning of a computer and the
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designer must have a detailed understanding of how these sequences

behave. This understanding should include the register transfers

for each of the sequences and a timing study to determine if any

timing problems exist.

RTL has features to provide a means for performing such timing

studies. Timing is carried out by defining an amount of time equal

to one clock cycle and then writing all register transfers in

reference to that amount of time. Multiple phase clocks can also

be denoted in RTL.

Two sample sequences of the simple computer shown in Figure 1

have been written in the RTL notation. The first sequence

(Figure lb) describes an instruction fetch routine for the computer.

The second sequence (Figure lc) describes a typical machine instruc-

tion involving both an instruction and operand fetch.

The typical addition instruction for this computer might read

as follows: add the number in memory location X to that in register

A and store the sum back into register A. This instruction will

take three clock cycles to complete: the first to obtain and

interpret the instruction, the second to fetch the operand and the

third to execute the addition. Notice that after the instruction
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has been decoded, the control line f is asserted and ANDed with the

clock phases to allow activation of the remaining statements. No

information concerning the amount of time required to complete an

operation is given in these examples. After the instruction has been

decoded, the correct control lines will be asserted (f
1

in this case).

This control line is ANDed with the clock to provide a new set of

control signals for the next sequence of register transfers.

The RTL language introduced many major concepts to the family

of CHDLs. The most important of these was the idea of, and a method

for, describing the behavior of a digital machine. The language also

allowed for timing considerations, individual bit operations, and

concurrent activities. All of these features were first introduced

by RTL and are still considered to be essential features of today's

CHDLs.

Despite the initial promise of Reed's language there were

several items lacking from it. RTL lacked a structural description

that could be incorporated into the language descriptions, a method

for describing iterative sequences (i.e. branches), a method for

decoding instructions efficiently and a method for describing

complex addressing modes. Several second-generation CHDLs were

developed, based on the RTL language, to correct these faults

CSc64b,Ga62,Pr64,St70].

B. Introduction to APL

The earliest example of a programming language that was used

for hardware descriptions was A Programming Language (APL). APL
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was developed in the early 1960s by K.E. Iverson [Iv62a,Iv62b]. The

original purpose of APL was to provide an effective notation for the

description of programs for digital computers. A new type of lan-

guage was needed to move away from the lengthy English and imprecise

flow-chart descriptions popular at the time. This new language

needed to be precise, concise, provide symbols that were similar to

the types of data they were to represent and be independent of any

particular data representation. While this language was developed

for program descriptions it possessed many of the same features

desired in a hardware description language.

In the design and development of a computer it is important to

have a very precise description of the system so that hardware and

software designers can work toward their common goal without needing

to know the details of what the other groups are doing. This can be

accomplished by using a language that fits the needs of both design

groups. APL was proposed as such a language at a conference in 1962

EIv62b].

If a program for a digital computer is considered to be a

sequence of instructions and if those instructions are considered to

be a sequence of register transfers, then the method of applying APL

to hardware descriptions comes to light. APL deals with register

transfers by using one and two dimensional arrays (to represent

registers and memories) and by representing data in binary notation.

In APL, a single register transfer description is called a micro-

program statement and a sequence of these is called a microprogram

(which is equivalent to an instruction).
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The APL language provides a rich set of data operators, an

efficient facility for handling arrays of various sizes and an index-

ing facility. This made the APL language popular for hardware

descriptions. Unfortunately, APL was also developed with concise-

ness in mind which usually lead to some long and complex statements.

This fact combined with APL's non-standard precedence algorithm

(right to left) makes APL descriptions hard to read. As an example

of this an APL description of a complete instruction fetch micro-

program is provided in Figure 2. There are several good sources

explaining APL statements and data structures from a programming

language approach Da76a,Le78,Iv62a].

In addition to providing hard-to-read hardware descriptions,

the APL language has some other drawbacks. The most obvious of

these is the inability to describe any parallel system. Other draw-

backs include a lack of timing capabilities, no way to declare

register sizes and a non-block structure. These problem areas have

been accounted for in newer CHDLs that are based on the APL language

[HP73].

APL was an important step in the development of CHDLs as it

increased the number of data operators available beyond the set pro-

vided by the RTL language. At this point designers had two lan-

guages to work with. Designers preferred the RTL format and

readability and the APL data operators and array handling capabil-

ities. These two areas were combined with the introduction of the

LOTIS language.
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C. Introduction to LOTIS

A third example of an early CHDL is the LOTIS language that was

introduced by H.P. Schlaeppi in 1964 Bc64a]. LOTIS is a formal

language for describing the LOgical structure, the TIming and the

Sequence of digital machines. This was developed to provide the

designer with a precise notation for expressing both the structural

and the behavioral properties of a digital design. LOTIS was the

first CHDL to provide for structural description facilities [Sc64a].

The development of the LOTIS language was based on the follow-

ing five goals:

(1) The language should be able to describe both structure and

behavior.

(2) The elements of the language should correspond directly to

the hardware units they are to represent.

(3) The notation of the register transfer level should

abstract the details of the lower design levels.

(4) The description of a machine using the LOTIS language

should have a hierarchical structure.

(5) Timing and concurrent events should be represented by this

language.

The LOTIS language was developed from the ALGOL programming lan-

guage. LOTIS combines the structure of ALGOL with several new data

types and operators to create a hardware description language that

meets each of the five goals. This development approach differ-

entiates LOTIS from RTL which was developed from scratch and from

APL which was developed as a high-level programming language.
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LOTIS was an important step in the development of CHDLs since

it effectively combined the best features of the earlier two lan-

guages. The type of easy-to-read statement formats and the timing

capabilities presented by the RTL language were incorporated into

LOTIS. The improved and varied data operators provided by a pro-

gramming language (ALGOL rather than APL) were also used for the

LOTIS language.

The description of a machine in this language is composed of

a declaration section and a procedure section. The declarations are

used to define the structure, logical and temporal properties of

hardware units and also to assign names to those structural units.

The procedural section is used to describe the behavior of the

machine in terms of the declared hardware units.

The behavioral elements of LOTIS are register-to-register trans-

fers. Each of these transfers is accomplished via a data path.

These data paths, in combination with the declared hardware units,

detail the structure of the digital machine. The data paths are

defined by assignment statements in the procedural section of the

LOTIS description. A group of these assignment statements makes

up a sequence which is equivalent to an instruction.

Timing in a LOTIS description can be described either explicitly

by associating a transfer timing delay with an assignment statement,

or implicitly by using a delay time that was declared for the

particular operator occurring in the assignment statement. The

latter mode allows for descriptions of asynchronous events in an

efficient manner. Timing can also be expressed by assuming time
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intervals for each statement (such as one clock cycle for a simple

register transfer); this form is useful for synchronous operations.

LOTIS was the first language to allow simulation of its computer

descriptions on another computer. While the LOTIS description needed

much additional overhead, including an initialization procedure and

commands specifying what the simulation is to do, the first ground-

work for simulating digital designs had been laid.

An example of an instruction fetch and an addition sequence for

a simple computer are given in Figure 3.

From studying the reasons for developing the three previously

described languages, a group of these that are common to each lan-

guage stand out. These reasons or goals for CHDLs are:

1. To describe digital hardware of the register transfer level.

2. To provide behavioral descriptions of digital systems.

3. To make the behavioral description as precise and concise

as possible.

These goals still remain today and are addressed by all of the

languages presented later in this paper.

Many improvements in the next-generation CHDLs quickly made

these first three languages impractical for industry use. With the

added improvements, CHDLs have acquired some very complex charac-

teristics. A discussion about some of the general characteristics

of CHDLs will be presented in the next section.
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cpu simple /

m(12b,16);

2(16) = [O -(4), ad(12)];

n(16);

c(12);

p(12);

f(4);

s(16);

seq instrfetch /

1: a := m(c) /

2: p := p + 1 /

3: c := ad; f : = op / fin

seq add /

1: a := m(c) /

2: p := p + 1 /

3: n := a + n / fin

Declaration
Section

Procedure
Section

LOTIS Description of Simple Computer Sequences
Figure 3

(taken from an example in Schlaeppi, 1964a)
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2.2. General Characteristics of CHDLs

A CHDL can be characterized as having an alphabet, a syntax,

and a set of semantics. An alphabet is a set of symbols that are

used in the language. The syntax is a set of rules to be followed

for combining the allowed symbols into meaningful language state-

ments. The semantics are a set of interpretations for all possible

statements. Since each CHDL is developed by a different person or

for a different purpose, these three areas will be different for

each language. Thus the alphabet, syntax and semantics of a lan-

guage can be combined to act as a fingerprint for that language.

To describe a CHDL in terms of its alphabet, syntax and

semantics is a very logical and straightforward process. However a

complete description of this form would be much too long for this

paper's purpose. Thus a short list of general syntactical and

semantical features has been selected for discussion. This list

will primarily include areas that an engineer would use as comparison

points when selecting a CHDL. The discussion of these points will

also serve to show how CHDLs differ from other classes of HDLs. The

set of features chosen are:

Alphabet

Representation of Constants

Identifiers

Primitive Elements

Primitive Operators

Statement Types
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Complex Operators

Order of Execution

Structure

Organization of Description

The ALPHABET of a language is a set of symbols that can be used

to create descriptions in that language. Nearly all modern CHDLs use

a subset of the ASCII character set. The following characters are

common to all text-oriented CHDLs. Only additions to this character

set will be shown in the language reviews following this section.

upper-case English letters (A,B,C,...,Z)

lower-case English letters (a,b,c,...,z)

decimal digits (0,1,2,...,9)

common punctuation (,/./;/:/(/)/+/-/=)

It should be noted that while these characters exist in all languages

they do not have standard meanings in all languages.

The method a CHDL uses to represent CONSTANTS varies greatly

from language to language. The most common constants are the

Boolean scalars (0 and 1) and the decimal integers (0,1,...,9).

Other types of constants such as Boolean vectors, floating-point num-

bers characters and character strings are allowed by some languages.

Integer representation is often allowed in several common bases,

including binary, octal, decimal and hexadecimal. The use of such

notational flexibility is useful in making descriptions in that

language shorter and easier to read.

An IDENTIFIER is a symbol used to name a variable or primitive

element. Typically an identifier is a single letter or a letter
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followed by other letters or digits. The use of a complex identifer

scheme is useful for allowing mnemonic variable names to be assigned.

The PRIMITIVE ELEMENTS of a language are those data structures

that are used to hold and carry system information. These elements

are called primitives because they are used as building blocks to

construct higher level data structures and cannot themselves be

broken down into lower level elements. For example, in most CHDLs

a group of registers (a primitive element) can be combined to form

a processor while they cannot be reduced to the gate or circuit

levels. Primitive elements can be split into two classes depending

on their storage capability. Some elements are memoryless, such as

wires, buses and decoders. This type of element is used to transmit

information. Other elements have memory, such as registers and

memories, and are used to hold information. The complexity of

primitive elements can vary from single-bit object (wires and flip-

flops), to bit vectors (buses and registers), to bit arrays

(memories). Examples of some primitive elements can be found in

the review of the two CHDLs in Section 3.

The PRIMITIVE OPERATORS found in each language are closely

related to the particular elements used in that language. The

operators are entities that produce new information by translating

bit patterns stored in the elements according to a set of assigned

meanings. The meanings are usually well understood by designers

(e.g. AND, OR, NOT, ADD) but also typically have different represen-

tations for each language. Operators can vary in both size and

type of transformation performed. The size can range from
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single-bit operations and register operations up to memory (array)

operations. A set of CHDL operators is developed by selecting one

or more operators from each of the following groups:

Logical (AND, OR, NOT)

Arithmetic (ADD, SUB)

Comparison (GT, GE, LT, LE, EQ)

Rotational (SHIFT, ROTATE, CONCATENATION)

Special (COUNT-UP, SWAP)

The various STATEMENT TYPES are formed by combining constants,

primitive elements and primitive operators together. These state-

ments are used to describe the operation of the system and the inter-

connection of the system components. There are five common types

of statements used by most CHDLs.

DECLARATION

DATA TRANSFER

CONDITIONAL

SEQUENCING

TIMING

Declaration statements are used to describe the system com-

ponents and their interconnections. Data Transfer statements

describe the action of operators. These statements also include

information specifying when a statement is active. Conditional

statements are used to allow iterative and decision making capabil-

ities to the system description. Sequencing statements allow for

correct operation of an algorithm providing for serial or parallel

activities and unconditional jumps. Timing statements are used to
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explicitly declare timing characteristics for components or

activities of the system. To describe hardware completely a CHDL

should have facilities for expressing each of these types of state-

ments, although some languages may combine two or more statement

types to create a more general statement format.

COMPLEX OPERATORS are formed as a collection of one or more

statements. These operators can take the form of functions, pro-

cedures and subroutines. The use of these complex operators can be

an efficient way to increase the readability and conciseness of a

description.

The ORDER OF EXECUTION can be used to partition CHDLs into

two groups. The first group consists of non-procedural languages,

where some or all description statements require an attached con-

dition label to be set true before the statement can be executed.

The second group consists of procedural languages, those CHDLs

where statements are executed in the order in which they are written

in the description. For non-procedural languages sequencing is

performed by modifying control variables used in the statement

label to enable or disable a statement. The control variables can

be changed explicitly by a condition statement or a data transfer

statement, or implicitly by an independent hardware element such as

a clock or decoder. Sequential and concurrent actions are allowed

with both classes of languages although the statement forms will be

slightly different.

The STRUCTURE of a description is that part of a language that

allows for the physical aspects of the design to be reflected into
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the description. Early CHDLs used a single block format in which all

variables were global. Newer languages use the multiple hierarchical

block structures common to most programming languages. Block

structures can convey some of the modular aspects of a design and

allow the description of multiple levels of detail within the same

description.

The ORGANIZATION of a DESCRIPTION includes any conventions that

might need to be followed when writing a description in a particular

language. These conventions can include such things as rules for

naming elements, an ordering of which statements should occur before

others, and required components to perform specific tasks. Every

CHDL uses a slightly different set of conventions thus making some

languages better suited for special types of hardware design pro-

jects. Careful consideration should be given to this aspect when

selecting or using a CHDL.

The list of CHDL characteristics presented in this section can

be used as a guideline for learning about a particular language.

These characteristics begin with fundamental language constructs

and then use them to build a foundation on which to develop the more

complex features and structures of a language. This approach will

be used in Section 3 to review two common CHDLs.

2.3. Review of Two CHDLs

This section will review two important CHDLs to help the reader

gain an understanding of some of the features and structures present

in this class of HDL. The languages selected for use here, the
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Computer Design Language (CDL) and the Digital System Design Language

(DDL), were chosen because of their easily accessible documentation

and thus, their relative popularity (or vice versa). The partial

hardware descriptions presented for each language (different systems

are described) should be especially helpful in giving a designer a

feeling for the structure of CHDLs.

The Computer Design Language ECh65,Ch70,Ch72a,Ch72b]

This language was developed to describe the structure and

behavior of a digital system. The ease of reading CDL descriptions

and the language's simple structure have made this language one of

the most popular CHDLs [Sh79a].

The ALPHABET of CDL includes the standard set of ASCII charac-

ters and the following non-standard characters.

* O ce,

The blank is not a part of the CDL alphabet but it can be included

in CDL descriptions (as with most CHDLs) to increase readability.

CONSTANTS in CDL are from one of two categories. The first

consists of the Boolean constants 0 and 1 which correspond to FALSE

and TRUE respectively. The second category includes integers from

several common bases. The radices 2, 4, 8, 10 and 16 are allowed in

CDL descriptions. The following examples are all valid CDL

constants.

377
8

4F2C
16

35
10

42

A CDL IDENTIFIER (or variable name) may contain up to six

characters, the first of which must be alphabetic. An identifier

may be followed by a subscript to indicate a specific bit position,
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a range of values or a value from an array. The following examples

are valid CDL identifiers.

A , START , MAR(16) , ADDR1(0-11) , M(16,0-15)

All PRIMITIVE ELEMENTS used in a CDL description must be defined

and assigned a name with one of several types of declaration state-

ments. These statements have the form

Element , body,

where the "Element" represents the type of elements being declared

and the "body" of the statement is used to list the names and sizes

of hardware components included in a description. A list of the

element types and a brief definition of each is given below.

FLIP-FLOP A single bit storage element.

REGISTER A set of synchronized flip-flops.

SUBREGISTER A smaller section of a register.

CASREGISTER A cascaded set of registers.

MEMORY An array of synchronized flip-flops.

SWITCH An external input device.

LIGHT An external output device.

TERMINAL A combinational logic network.

DECODER A device to select specific output lines.

CLOCK A clock.

DELAY A delay element.

Several of these elements are of special interest because of

the frequency of their use or special abilities they possess. The

first of these are the REGISTER and MEMORY elements which are the

most frequently used elements in CDL descriptions. The subscripts
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of the following examples are used to denote size and bit positions.

REGISTER, ACC(0-15), MAR(0-11), BUF(5-1),

MEMORY, M(MAR) = M(0-1023,0-15) ,

The SUBREGISTER is a useful element type that was first

explicitly introduced with CDL. A subregister is a part of an

already defined register that needs to be accessed separately from

the entire register. The name of the subregister begins with the

name of the "parent" register followed by the mnemonic for the

subregister given in parenthesis. The size of the subregister and

the particular bits of the "parent" register is specified in a

manner similar to the REGISTER declaration statement. Thus,

SUBREGISTER, ACC(HEAD) = ACC(0-7), ACC(TAIL) = ACC(8-15),

declares the subregisters ACC(HEAD) and ACC(TAIL).

Two other elements that first appeared with CDL are external

input and output devices, the SWITCH and LIGHT elements respectively.

Both of these elements are considered to be accessible by an oper-

ator. These elements can be used to simulate the external opera-

tions of a digital system, such as start-up and power-failure

procedures. Switches can have one or more positions and similarly

lights can have one or more light conditions. The following

examples are valid CDL declarations.

SWITCH, POWER(ON,OFF), START(ON),

LIGHT, WARNING(YELLOW,RED,GREEN), POWER(GREEN),

The PRIMITIVE OPERATORS found in CDL are symbols that represent

the functions performed by various logic networks in one clock cycle.

The operators that are encountered frequently have been given
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specific symbols and are shown in Table 1.

Two types of STATEMENTS are allowed in CDL descriptions. The

first type includes the previously discussed declaration statements

which are used to declare system elements. The second type includes

the execution statements that describe a system's register transfer

activities. The general format of an execution statement is:

/ label / operationi, operation2,..., operations,

The "label" is some logic function that must be evaluated as being

true before the associated operations can be executed. Only the

first operation is required; all others are optional. An example

of an execution statement is given below. Conditional operations

/ F*P(1) /A4--Aadd B, PC 4-- Countup PC,

are also used in CDL descriptions. An example of an execution

statement with a condition operation is also shown.

/ F*P(2) / IF (C=0) THEN (A A sub B),

CDL allows for one type of COMPLEX OPERATOR. This is the

BLOCK/DO statement combination which allows a set of operations to

be labeled and referenced by a symbolic name. A BLOCK statement

is used to label the set of operations in the declaration section

of a description. Then a DO statement is used to reference that

BLOCK in the executable portion of a description.

CDL uses a non-procedural ORDER OF EXECUTION mechanism. This

means that every execution statement must have a label associated

with it to determine the correct order of statement sequencing.

It is useful to describe a sequence of statements in a procedural

manner when the designer is not concerned with control signal
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GROUP SYMBOL NAME EXAMPLE OF USE

+-- TRANSFER A 4---- B

LOGICAL I NOT A 4---- A

+ OR A +- A + B

* AND A 4- A * B

01 EX-OR A 4-- AGO B

0 COINCIDENCE A 4-----AQB

ARITHMETIC add ADD A 4--- A add B

sub SUB A-- A sub B

COMPARISON) = EQUAL IF (A=)) THEN (A 4-----B)2

# NOT EQUAL IF (A00) THEN (B +---4)
2

ROTATIONAL shi SHIFT LEFT A-4-- shl A

shr SHIFT RIGHT A 4---- shr A

cil CIRCULATE LEFT A 4.-- cil A

cir CIRCULATE RIGHT A -4---- cir A

SPECIAL countup INCREMENT A 4---- countup A

countdn DECREMENT A -4---- countdn A

NOTES: 1. In some more recent versions of CDL the comparison

operators .NE., .EQ., .GT., .LT., .GE., .LE. were added

to the language.

2. These are conditional operations.

CDL Primitive Operators
Table 1
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analysis. CDL descriptions can also be written in a procedural

manner if some slight description modifications are made. These

differences have been listed below for a procedural description.

1. Declaration statements for generating control signals are

not needed.

2. The order of statement execution is dependent on the order

in which the statements appear.

3. A GOTO statement is created to change the order of execution

from the ordered form.

4. Labels are required only for the statements that are used

with the GOTO statements.

5. A semicolon is employed to indicate the end of an execution

statement.

CDL uses a single BLOCK STRUCTURE. This limits the suitability

of using CDL to describe digital systems in a modular fashion.

There are no subroutines allowed in a CDL description. The

variables (elements) used in a CDL description are global to the

entire description due to the single block structure. It is also

not possible to declare special hardware elements, such as ICs,

with CDL.

The ORGANIZATION of a CDL description consists of a list of

declaration statements followed by a list of execution statements.

There is no provision for partitioning the description into blocks

of related statements (subsystems).

To sum up the CDL features discussed above, portions from a

CDL description of a simple digital computer [Ch72a] have been
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given in Figure 4. For comparison with other languages CDL is again

summarized in Section 3.3.

The Digital System Design Language [DD68,Di71]

This language was developed to describe and simulate combina-

tional and sequential logic networks by meeting four diverse goals.

The first of these was to keep the language from being restricted

to any single computer organization, timing mode or design procedure.

This was important to insure that DDL remained a viable design tool

as technology changed. The second goal was to make the language

capable of describing digital systems at both an architectural

"block" level and at a logical "gate" level. This feature will

allow several groups of digital designers to use DDL and thus

facilitate communication on a design team. The third goal was that

the language should serve as the initial input for an automatic

design process. The final goal was to have DDL description follow

the actual system's structure as much as possible; if a system uses

a multi-level block structure then the DDL description should be in

a multi-level block format.

DDL can be a very useful tool for the design, documentation and

simulation of digital systems. Descriptions can be made for both

sequential and concurrent activities. The large number of operators,

the conciseness of the language and the block structure of DDL make

a good tool for dealing with systems in a complete and organized

manner.

The ALPHABET of DDL includes the standard set of 70 ASCII

characters and the following non-standard characters.
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Register, R(0-23), $ buffer register

A(0-23), $ accumulator

C(0-14), $ address register

Subregister, R(OP)=R(0-5), $ OP-code part of register R

R(I)=R(6), $ indirect addressing bit

Memory, M(C)=M(0 -32767,0 -23),

Clock, P(1-3), $ three-phase clock

/FETCH*P(1)/ IF (G=0) THEN F4---6),

/FETCH*P(2)/ R4---M(C), D countup D,

/FETCH*P(3)/ F4---R(OP),C R(ADDR),

/ADD*P(2)/ R4-- -M (C)

/ADD*P(3)/ A4--A add R,

/JMP*P(3)/ D4---R(ADDR), F÷--9,

/JOP*P(3)/ IF (A(0)) THEN (D.(---R(ADDR)),

/SHR*P(3)/ A4.--shr A, F4---9,

/CIL*P(3)/ A,

END

Example CDL Description
Figure 4

(taken from example CDL description in Chu, 1972a)
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-4
a A 4, -191

The blank is not a part of the DDL alphabet but it can be included

in DDL descriptions to increase readability.

CONSTANTS in DDL take the general form,

n R k

where "n" specifies the value of the constant in one of three number-

ing systems, "R" specifies the particular numbering system and "k"

is a positive decimal integer giving the number of bits in the binary

form of the constant. A constant can be written in binary, octal

or decimal notation (R=B, 0 or D respectively). When a constant is

expressed in binary the question mark, "?", may be used to indicate

that the value of a bit is unknown or a "don't-care." The following

examples are all valid DDL constants.

REPRESENTATION BINARY EQUIVALENT

10D4 1010

1204 1010

0101B3 101

10?0B4 10x0

A DDL IDENTIFIER (or variable name) may contain up to eight

characters, the first of which must be alphabetic. An identifier

can be followed by a subscript to indicate a specific bit position,

a range of values or a value from an array. The following examples

are valid DDL identifiers.
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A , START , MARE16], ADDR1E0:11] , ME16,0:15]

ALL PRIMITIVE ELEMENTS used in a DDL description must be defined

and assigned a name with one of several types of declaration state-

ment. These statements have the form

<DT> body.

Where "DT" represents the declaration type, the body of the statement

denotes the hardware elements that exist of type DT and the period

signifies the end of the statement.

The declaration type consists of at least the first two letters

of words that describe the hardware types. For example when

registers are being declared, at least "RE" must appear inside the

angle brackets. The body of the statement is used to either list

the names and sizes of hardware components or to indicate how

already declared units are interconnected. A list of the types of

elements and a brief definition for each is given below.

<RE> REGISTER A set of synchronized flip-flops.

<ME> MEMORY An array of synchronized flip-flops.

<TE> TERMINAL A set of wires.

<TI> TIME A clock

<DE> DELAY A delay element.

<BO> BOOLEAN A combination logic circuit.

<EL> ELEMENT An off-the-shelf component.

REGISTER and MEMORY element types are the most frequently used

elements in DDL descriptions; valid examples of these declaration

statements are given below. Subregisters are implicitly declared
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<RE> GO, MARC16], IR[0:4]

<ME> M[0:4095, 16]

in a REgister declaration statement with the use of the concatena-

tion operator. In the following example the subregisters IR and ADDR

are declared as portions of register BUF.

<RE> BUF[16] = IR[4] o ADDRE12]

Another useful type of data element that first appeared with

DDL is the ELEMENT declaration. This declaration provides a means

of introducing a hardware block into a system description without

indicating how the block is constructed or what functions it per-

forms. In this statement the block is named and its output and in-

put terminals are defined.

<EL> JKFF(Q1, NQ1: C, Jl, Kl)

It should be noted that connections to these "block boxes" may be

defined and translated into Boolean equations, but simulation of

descriptions that include these blocks are not allowed.

DDL contains a large number of PRIMITIVE OPERATORS to aid in

developing clear and concise hardware descriptions. The terminals

of the primitive elements serve as the operands of operations which

express the interconnections and interactions between those elements.

The operators determine the nature of these activities. A list of

the frequently used operators is provided in Table 2.

There are several different types of STATEMENTS allowed in DDL

descriptions. These can be divided into two groups. The first

includes the declaration statements already described, while the
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GROUP SYMBOL NAME EXAMPLE

CONNECTION A = B (A is connected to B)

TRANSFER A<----B (contents of B goto A)

LOGICAL NOT A -1A

OR A -4---- A 1/B

AND A A AB

EX-OR A A B

0 COINCIDENCE A4--A0B

4 NOR A A Nie B

NAND A 4-- A B

ARITHMETIC ADD A A + B

SUB A A - B

COMPARISON
4.) 4--

LT,LE

GT,GE

EQ,NE

ROTATIONAL 114 SHIFT/CIRCULATE RIGHT A *--- A

4-11- SHIFT/CIRCULATE LEFT A A

(where x is either blank, 0, 1, c or e)

SPECIAL X EXTENSION A +---- XA

0 CONCATENATION IR[3]=0P[0] X[2]

SELECTION V\A

./'
REDUCTION

COUNTUP, COUNTDN A f- t A

DDL Primitive Operators
Table 2
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second consists of the functional statements that are used to

describe the behavior of a system. This second group includes

Register Transfer, Connection, IF-THEN-ELSE, IF-VALUE and FOR state-

ments.

The Register Transfer and Connection statements rarely appear

without some condition that determines whether the operation is

performed or not. Boolean expressions are used to represent these

conditions. Identifiers in the expressions refer to registers,

clocks and terminals previously declared.

The IF-THEN-ELSE statement is used to relate the activation

conditions to the register transfer and connection statements. In

DDL these statements appear as vertical lines enclosing a Boolean

expression of the condition to be satisfied. The ELSE portion is

expressed as a semicolon. A period is used to indicate the end of

the statement. Thus,

F B ; C.

reads as follows: If A is true, then B is transferred to F, else C

is transferred to F.

An IF-VALUE statement is used to describe the decoding of

multivalued conditions. The general form of the expression is,

[-Boolean expressionlyalue 1 operation a Lvalue 2 operation b.

If the Boolean expression has a value of "value 1" then operation a

is performed where " r; represents "if" and " represents "then

do." To show an example of this type of statement assume a three-

way multiplexer, A, which must select one of three different

registers.
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<RE> ACC[10] , MAR[10] , PC[10] , BUF[10].

rA 12 ACC BUF LI MAR 4-- BUF L2 PC BUF.

An optional ELSE condition can be added to the end of an IF-VALUE

statement if desired. This type of statement can easily be thought

of as a decoder.

When a designer needs to specify a parallel data transfer it

usually involves the entire register, in which case no subscripts

are needed. If a data transfer is valid for only certain subscript

value or range of values, a FOR statement can be used. The general

form of this statement is as follows;

[index variable = list of valuesi operations in terms of the index.

This statement is used to provide a more concise system description.

As an example of this the following two equivalent examples are

given.

C[1] = C[2] X[1].

i = 1:3J C[i] = CEi +l] Xa]. c[2] = a3] X[2].

cE3] = aii] x[3].

The DDL language allows for two types of COMPLEX OPERATORS.

The first is the OPerator statement, which is used to define a block

of combinational circuitry whose outputs will be used by one

facility at one time and a different facility at some other time.

This can be considered as a time-shared circuit that has been

developed to reduce the amount of duplicate hardware in a design.

A full adder could be described as an operator as shown.
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<OP> ADDER(SUM,CARRY).

<TE> A,B,CIN,SUM,CARRY.

<BO> CARRY=AB+BCIN+ACIN

SUM=ABC+(A+B+C):TARRY.

In this statement the variables SUM and CARRY are local "dummy"

variables that represent the output of the adder. The facilities

declared by the terminal statement, which should be thought of as

wires, are local to the operator block only.

The second type of complex operator is the IDentifier declara-

tion. This statement is used when a series of operations is repeated

often in a description. The <ID7statement gives a name to the

series of operations and allows that name to be used in place of a

long or complex set of operations. This statement is primarily used

to reduce the amount of writing needed to make a DDL description.

The ORDER OF EXECUTION for DDL is dependent on the state

transitions of subsystems called automatons. Since these transi-

tions must be declared explicitly, DDL is a non-procedural language.

This sequencing mechanism will be further explained in the next

paragraph.

DDL is a BLOCK STRUCTURED language. It has been developed to

accurately describe the modular structure of digital hardware

designs. Many hardware systems can be considered to be a collection

of semi-independent subsystems interacting with each other via some

overall system facilities. This type of design structure is

efficiently described in DDL with the use of the following four

types of statements; SYstem, AUtomaton, STate and SEgment.
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The overall system is declared with a SYstem declaration. This

all encompassing block is used to provide all of the needed global

elements and intercommunication systems. There is only one system

declaration per description.

The subsystems that comprise the entire system are labeled

with an AUtomaton declaration. A subsystem is typically a single

finite state machine and it's private facilities. The body of an

(AU 7statement can contain facility declarations, operation state-

ments and state and segment declarations.

A STate declaration is used to express the states of a finite

state machine. Each state must have a set of operations to perform

and specify a next state transition. A new operator is used to

specify a state transfer. It is called the "go to" operation (---4-)

and the only operand is the name of the next state to be activated.

If a group of states is divided into two or more groups of

related activities they may be labeled separately with a SEgment

declaration. An example of this would be a finite state machine

that includes an input processing segment, a data manipulation

segment and an output processing segment. An example of a DDL

description using these four statements is shown in Figure 5.

The ORGANIZATION of a DDL description is based on the finite

state machines used in a particular hardware design. The main

system consists of declared facilities (RE, ME, TE, etc.) and one or

more automaton. Similarly, the individual automaton consists of

locally declared facilities and one or more states (with related

groups of states split into segments if possible). This arrangement
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provides for a very modular description of hardware. The timing in

an automaton is carried out by IF-THEN-ELSE statements and state

transitions. The timing mode can be synchronous, asynchronous or

a combination of the two in any particular automaton. DDL allows

for global and primitive facilities in its descriptions.

To show how the DDL constructs discussed in this section fit

together in an actual hardware description, selected portions from

a DDL description of a simple digital computer have been presented

in Figure 5.

This section has developed specific information on two types

of CHDLs. By using the construct discussions and the partial

hardware descriptions, the features and structures presented in this

section can be extended to develop an intuitive picture for other

CHDLs introduced in the next chapter.
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<SY> EDC: <TI> P(1E-6).

<ME> M[0:1023,16].

<RE> IR[16]=013[0:3].IXE2] ADRE10],CARC10],

ACC[16],MAR[10],....

<AU> CPU:P: <ID> Z=0D16.

<ST> IFL:1CLEARIRUN-4---0, CLEAR-4-0, CAR4-0,...

IRUN1MAR+--CAR,

mi-Op L9 IINIMEMAR]-4---INPUT,

L I IOUTIOUTPUT+M[MAR] ,OUT+---,

ACC { -m[mAR],--÷in

Ls ACC{ ACC+M(MAR],--+IF1

L.6

L8

EXBIX : IN : M[MARJ INPUT, ADR , IN< 0 ,+EX .

...(end of ST,AU,SY)

Example DDL Description
Figure 5

(taken from example DDL description in Dietmeyer, 1971)
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3. AVAILABLE HDLS

Before selecting an HDL for design purposes, it is important to

be aware of what types of formal languages can be chosen to describe

and simulate digital systems. This awareness could include knowing

the advantages and disadvantages of using each type of language.

The purpose of this chapter is to provide this kind of information

for three classes of computer languages. Each class is capable of

describing digital hardware at or above the register transfer level,

thus they can be considered to be HDLs. The three classes of lan-

guages are:

1. High-Level Programming Languages (HLLs)

2. General Purpose Simulation Languages (GPSLs)

3. Computer Hardware Description Languages (CHDLs)

This chapter is divided into three sections, with a separate section

being dedicated to each class of HDL. Each section includes a

discussion of the advantages and disadvantages of using the par-

ticular class of HDL and specific examples of languages from that

class. A glance at the names of the three types of HDLs may make it

seem that the CHDL is the best suited for describing computer hard-

ware. However, this is not always the case.

3.1. High-Level Programming Languages

HLLs were first developed in the 1950s and 1960s (FORTRAN in

1954, ALGOL in 1960 and many more since then) to abstract the de-

tails of implementing machine and assembly language programs. The
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object of the HLL was to allow the programmer to concentrate on the

algorithm itself rather than on its machine implementation for a

particular type of computer.

The same type of situation now exists in regards to digital

system design. Logic level descriptions are becoming so large and

complex that they can no longer be easily understood. The design

industry can benefit from using a high-level description language

that concentrates on the design itself rather than on the logic

needed to implement the design. HDLs have been suggested as

suitable languages for hardware descriptions because they are

sufficiently general to provide the constructs necessary to describe

digital hardware functions at the register transfer level [RD83].

As a general class, HLLs have facilities for performing loops,

making conditional decisions and involving subroutines and pro-

cedures. Each of these features is vital for the development of a

precise hardware description.

Many HLLs possess special features that make them particularly

attractive for hardware descriptions. For example: [Li77]

ALGOL has a block structure useful for control procedures.

APL has a concise vector notation useful for working with

registers.

C has both a block structure and a wide variety of useful

operators.

PASCAL has an ALGOL-like block structure.

PL/I has a structure useful for declaring variables in a

modular fashion.
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In addition to providing many of the language constructs needed

to represent hardware, there are several practical reasons for using

HLLs. The first of these is the availability of HLLs in the design

environment. Nearly every company with a fair-sized computer has

access to at least one type of HLL. The use of a language that is

known to be available is a plus in the planning stages of developing

an HDL based design system.

A second advantage is that HLLs tend to be well known by

engineers. This means that no time would be lost trying to teach

designers a new language. If a specialized design language were

used, time would have to be spent familiarizing designers with the

new language and its uses. Working out any system bugs could be a

long and tedious process. The use of an already known HLL can re-

duce these problems.

Related to the familiarity of an HLL is the abundance of soft-

ware support packages available. A large portion of a design

system is implemented via software. Software programs for perform-

ing data transformations or developing graphics capabilities may

already exist or if not could be quickly written.

Another valuable advantage to using HLLs is that they come

with verified compilers [RD83]. When an HLL description is being

run on a computer, the compiler acts as the simulator. Using a

proven HLL compiler to simulate a system will eliminate the need to

verify that the simulator for a specialized description language is

working correctly.
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A final and perhaps the most important reason for using HLLs is

that they are relatively low cost. HLL software packages have been

on the market for so long that their cost is considerably lower than

that of the software for newer forms of description languages.

In spite of the practical advantages of using an HLL, there

are several serious drawbacks to using one for the description of

hardware. While many HLLs have some of the constructs needed to

describe computer systems, none seems to have all of the ones that

are needed. There are also several hardware properties that all

HLLs have difficulty expressing.

The biggest of these problems is in trying to use an HLL to

describe concurrent operations. Most programming languages were

developed to describe algorithms as procedures which are executed in

a sequential manner. Thus developing hardware descriptions where

concurrent operations are commonplace is an ineffective use of many

HLLs.

Another disadvantage is that descriptions in an HLL tend to be

much longer than in the other classes of HDLs. This is an important

consideration since the longer a description is the more difficult

it is to read and understand. As an example of the difference in

size between an HLL description and a CHDL description, the way in

which a 6-bit register is declared will be examined. For a CHDL

description the declaration would take one line of code. To

declare a 6-bit register in FORTRAN requires the use of an INTEGER

statement which sets up the register as an integer variable having

the word length of the host computer. In the actual hardware no
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number with more than 6 bits could be stored in the register. A

FORTRAN description must insure the same property holds by masking

and shifting the right-most bits so that no overflow conditions

violate the conditions of the register. This can take up to four

lines of FORTRAN code for each register declaration. Possible lan-

guage codings for this example are shown below. Simplifications of

this coding result in shorter but imprecise descriptions.

CDL FORM FORTRAN FORM

REGISTER, A(0-5), INTEGER A

EQUIVALENCE (A, REALA)

DATA MASK/ZFC0000/

REALA=AND(MASK,A)

A final disadvantage of using an HLL is that once the descrip-

tion is complete it is less likely to resemble the hardware it

describes than a CHDL description. It can be very difficult to

obtain an intuitive feeling for how the hardware behaves from an HLL

description. In addition, very little structural information can be

described by an HLL (except as comment statements).

As a summary of an HLL's usefulness for describing computer

hardware, the advantages and disadvantages will be again listed.

The advantages are:

1. Several of the constructs needed to describe hardware are

available.

2. HLLs are frequently found in industry.

3. HLLs are already known by a large percentage of the

designers.
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4. They have a relative low cost.

5. The compiler acts as a simulator.

6. There is a large amount of HLL software available.

The disadvantages are:

1. HLLs cannot be used to describe several important hardware

features.

2. The descriptions are long and imprecise.

3. The descriptions don't easily reflect the structure of

hardware.

Examples

Two languages have been selected to represent the class of HLLs.

The first language is the scientific-oriented language FORTRAN which

is one of the oldest and most frequently used programming languages.

The second language is C which is a newer general purpose program-

ming language that is becoming popular within the computer industry.

FORTRAN (FORmula TRANslation) CCa83,Ni80] is a high level pro-

gramming language that was first introduced by J.W. Backus in 1954.

Several improved versions of this language have been developed, the

most recent of which is FORTRAN77. This language is one of the

most frequently used for the programming of scientific algorithms.

Figure 6 presents a section of a hardware description in the FORTRAN

language.

The C programming CHK82] language was developed at Bell Labs in

1972. It is a descendent of the ALGOL (1960), CPL (1963), BCPL

(1967) and B (1970) programming languages. This language allows

the specification of algorithms at a slightly lower level of detail
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INTEGER A,B4OP,ADDR
1

int a,b,op,addri REGISTER,

EQUIVALENCE (A,RA),(B,RB), A(0-22),

(OP,ROP),(ADDR,RADDR) B(0-22),

DATA MASK1/ZFFFFFE00/,

MASK2/ZFF000000/,

MASK3/ZOOFFFE00/

RA=AND(MASK1,A)
2 a=& maskl SUBREGISTER,

RB=AND(MASK1,B) b=& maskl A(OP)=A(0-7),

ROP=AND(MASK2,A) op=a & mask2 A(ADDR)=A(8-22),

ROP=ROP/256 addr=a & mask3

RADDR=AND(MASK3,A)

RADDR=RADDR/256,

RA = COMPL(A) a =! a

RA = AND(A,MASK1)

A = A+1 a =+ 1 countup A,

A = MOD(A,256)

A = A-1 a =-1 countdn A,

A = MOD(A,256)

RA = AND(A*2),MASK1) a = << 1 shl A,

RA = AND (A/2) ,MASK1) a = >> 1 shr A,

RA = OR(A,B)

RA = AND(A,B)

RA = AND((A+B),MASK1)

RA = AND((A-B),MASK1)

a = 1 b A4-- A + B,

a = & b A+.-- A * B,

a =(a+b)&maskl A±--- A add B,

a =(a-b)&maskl A*--- A sub B,

Notes: 1. Assume 32-bit word length for computer.

2. AND,OR, and COMPL are library functions that act in a

bitwise fashion and return real values.

HLL Descriptions and Corresponding CDL Description

Figure 6
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than does FORTRAN. A description corresponding to the FORTRAN

example is also shown in Figure 6.

3.2. General Purpose Simulation Languages

The purpose of this class of programming language is to provide

a facility for describing and then simulating nondeterministic

discrete systems. These languages were developed to reduce the

total time spent in designing, programming and testing simulation

models. Typically these languages are used for the simulation of

queue-like systems, such as a single-line, single-server queuing

system used to simulate a bank teller assisting bank customers.

Since these customers arrive at the bank in a nondeterministic

manner a GPSL is ideal for describing this type of system.

This class of HDL is very useful for describing computer systems

at the architectural design level. At this level, the system is

often modeled as a nondeterministic system due to the randomness of

high-level parameters. At the register transfer level where a

computer design is seen as a deterministic system the use of GPSLs

is not as effective. It is ironic that the advantages of using a

GPSL at the architectural level are similar to the disadvantages of

using a GPSL at the register transfer level.

Some of the advantages of using GPSLs are:

1. They specialize in describing nondeterministic systems.

2. They provide a wide variety of statistical tools for system

analysis.
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3. Their data types are especially good for defining random

parameters.

All of these advantages make the GPSL ideal for high-level simula-

tions. At this high level, system parameters include access times,

delay times and priorities all of which are nondeterministic in

nature. System elements include memories, processors and I/O units.

These elements are often requested, held and then released, opera-

tions that GPSLs excel at representing. While these languages are

very useful for high level simulation, precise hardware structural

descriptions at this level are not possible.

Other disadvantages are related to using GPSLs to describe a

digital system at the register transfer level. At this level, where

a system's activities are specified by a pre-defined set of rules

(instructions) this class of languages is not well suited for hard-

ware descriptions. Some of the disadvantages of GPSLs for the reg-

ister transfer level are:

1. At this design level most digital systems are deterministic

in nature.

2. GPSLs provide a wide variety of statistical tools for system

analysis of nondeterministic events. These tools are of

little or no value to the digital hardware designer.

3. The description of a digital system should include struc-

tural as well as behavioral information. GPSLs provide no

constructs to describe the large number of devices and

interconnections that are present in a complex digital

system.
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4. Simulating a digital computer involves scheduling a large

number of operations. Most GPSLs are not designed to pro-

vide this type of control.

Considering these four drawbacks and the lack of familiarity by most

hardware designers these languages are a poor choice for register

transfer level descriptions and simulations.

Examples

Two languages have been selected to represent the class of

GPSLs. The first language is GPSS, which is a discrete stochastic

simulation language. The second language is SIMSCRIPT II which is

a general purpose programming language with built-in simulation

facilities. The examples given for these two languages are not

computer design related and are intended to show the commands and

structure of the languages. A third popular GPSL which is not

presented here is the SIMULA language [DM70,BD73].

GPSS (the General Purpose Simulation System) Na80,Sc82] is a

very popular simulation language that has evolved from a block dia-

gram approach of performing simulations. For this reason, GPSS is

particularly well suited for describing digital systems at the

architectural level. Figure 7 gives a short example of a GPSS

program that is used to simulate a bank teller window.

SIMSCRIPT II EKV69,Ki81] is a general purpose programming lan-

guage with simulation capabilities. SIMSCRIPT II has the ability

to be used as an HLL in some situations and as a GPSL for others.

This language achieves a block structure with an extensive use of

subroutine-like constructs. In Figure 8 an example similar to the
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* PROGRAM TO SIMULATE A DRIVE-IN WINDOW AT A BANK

* ARRIVALS - 1 TO 5 MINUTES, UNIFORMLY DISTRIBUTED

* PROCESSING - 1 TO 3 MINUTES, UNIFORMLY DISTRIBUTED

* TERMINATION CONDITION - 250 CUSTOMERS PROCESSED

SIMULATE

1 GENERATE 3,2 CUSTOMERS ARRIVE

2 ADVANCE 1 CUSTOMERS DRIVE TO WINDOW

3 QUEUE WINDO CUTOMER WAITS FOR WINDOW

4 SEIZE WINDO CUSTOMER REACHES WINDOW

5 DEPART WINDO REMOVE CUSTOMER FROM QUEUE

6 ADVANCE 2,1 TRANSACTION IS PROCESSED

7 RELEASE WINDO CUSTOMER DEPARTS

8 TERMINATE 1

*

START 250 PROCESS 250 CUSTOMERS

END

GPSS Program to Simulate Bank Teller Window
Figure 7

(taken from program provided in Maryanski, 1980).



1 PREAMBLE

2 THE SYSTEM OWNS A WAITING LINE

3 TEMPORARY ENTITIES

4 EVERY CUSTOMER HAS A N. TRANSACTION AND AN ENTRY.TIME...

15 END

1 MAIN

2 READ MIN.ARRIVAL, MAX.ARRIVAL, AVG.TRANSACTIONS

3 LET WINDOW = IDLE

4 LET N.ARRIVALS = 0

5 LET N. DEPARTURES = 0

6 LET MAX.WAIT = 0

7 SCHEDULE AN ARRIVAL IN UNIFORM.F(MIN.ARRIVAL, MAX.ARRIVAL, 1)

MINUTES

8 SCHEDULE A DEPARTURE IN UNIFORM.F(MIN.TRANSACTION, MAX.

TRANSACTION,1)

9 SCHEDULE A STOP.SIMULATION IN 8 HOURS

10 START SIMULATION

11 END

1 EVENT ARRIVAL

18 END

1 EVENT STOP.SIMULATION

5 STOP

6 END

SIMSCRIPT II Program to Simulate Bank Teller Window
Figure 8

(taken from program provided in Maryanski, 1980).

56
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GPSS example is presented.

3.3. Computer Hardware Description Languages

CHDLs are used to describe and simulate computer hardware at

or above the register transfer level. These languages were initially

developed as a method to omit inessential low-level details from a

system description. This allowed designers to describe a system's

behavior in a more algorithmic-like form. CHDLs have been expressly

developed to provide language structures for describing hardware,

thus a more precise and concise hardware description is possible

with a CHDL than with an HLL or a GPSL. The goal of the early

languages of this class, RTL and LOTIS (both of which have been

discussed in Chapter 2), was to describe computer systems with

precision and efficiency. Today the goals of the CHDL have expanded

to include system simulation and automatic translation capabilities.

CHDLs are especially useful for describing hardware because

they have been specifically developed to overcome the disadvantages

of the other two classes of languages. CHDLs are able to express

the concurrency, control activities and timing modes that are

integral parts of a computer's description and are an improvement on

HLLs in this respect. Some CHDLs are also able to describe a system

at several levels of the design hierarchy and in this way are an

improvement over GPSLs.

The advantages of using a CHDL are:

1. It provides a precise, yet concise hardware description.

2. Descriptions can be made at several levels.
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3. Descriptions tend to be simple and easy to read.

4. Structural and behavioral features can be described.

5. Descriptions tend to resemble the hardware they describe.

6. It can represent pure hardware structures (in concurrency,

etc.).

7. It can take a procedural or nonprocedural form.

8. The description is in a form suitable for simulation.

9. It can be used as the input stage to an automatic design

system.

These advantages present a strong agreement for using CHDLs in

design work and have been discussed in detail by several papers

[Br72,Ba75,Su77,Sh79a,va79].

There are also some negative points to consider about CHDLs.

These are:

1. Implementation of a CHDL based system can be expensive.

2. Time must be spent learning a new language and design system.

3. Design information may be abstracted too much for efficient

design.

4. CHDLs are not as easy to simulate at the architectural level

as GPSLs.

Although these disadvantages can be trivial in the long run, they

should be considered when first implementing a CHDL based design

system.

CHDLs can describe computer hardware in a more efficient manner

than can either HLLs or GPSLs. With this in mind, CHDLs have become

a popular area of research in academia and industry alike EDu67,Ch69,
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B171,Ch76a,va77,Si81,EG76,St77]. As the number of research projects

increase so it seems does the number of published CHDLs. Currently

over 50 different CHDLs have been formally introduced and are avail-

able for use as design aids. There are three reasons that explain

why such a large number of CHDLs have been developed. The first

reason involves the design level hierarchy. Some CHDLs are aimed

at the register transfer level, others at the programming level and

still others at the architectural level. Another reason involves

the dichotomy between structure and behavior in computer systems.

Many languages were developed to emphasize the structure of a

design while others are better suited to describe the behavioral

details. A final reason deals with a language's facilities and

constructs. No single CHDL seems to have all of the features to

satisfy a researcher's picture of what the "ideal" CHDL should b

To correct this problem a new language is developed with all of the

"right stuff" and thus another CHDL appears. To reduce the number

of new languages that are being developed, a committee is writing a

consensus language (CONLAN) that will provide a wide range of facil-

ities in one vehicle [PB80a,PB80b,PB80c,PB82].

One problem with having such a large number of CHDLs available

is that it is difficult to gain an understanding of several languages

by studying the details of entire languages. Instead some form of

simplification must take place that leads to a better understanding

of the languages and their relationships to each other. One way to

do this is to break the class of CHDLs into smaller groups with

similar properties. A four-dimensional space has been developed
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with which the capabilities of a CHDL can be characterized as a CHDL-

space vector and plotted as a point. Points that lie near each other

have similar properties. The concept of a CHDL-space is useful for

characterizing individual CHDLs and is used in the next chapter as a

selection tool.

The dimensions of this space are features of CHDLs that are

possessed by all languages, but yet are features that are independent

of each other. Each dimension must be capable of partitioning the

CHDL-space into two or more smaller groups. For example, the

feature that a CHDL can be used to describe hardware is not useful

to partition CHDLs since all CHDLs can describe hardware. On the

other hand, CHDLs can be partitioned into groups based on the hier-

archical level at which a description is made. CHDLs can be

partitioned by the following four language features:

1. level of description

2. type of description

3. sequencing mechanism

4. type of timing specification

These four features have been chosen as dimensions for the CHDL-space

because of their relative independence to each other. The "level of

description" dimension is based on the hierarchical design levels

and as such can be considered a vertical partition. The other three

dimensions involve more horizontally based divisions as they are not

very hierarchical in nature.

An individual CHDL would be represented as a point in this four-

dimensional space. To do this each of the coordinates must be
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specified exactly. However, most CHDLs have capabilities that allow

a range of points for any particular dimension. Thus a four-

dimensional figure will be formed as a boundary to all of the points

representing a particular CHDL. This can be considered to be a sub-

space of the four-dimensional CHDL-space.

The first dimension involves the level at which a hardware

description is made. There are four discrete levels at which a CHDL

can be used. These are the: logic, register transfer, program-

ming and architectural levels. Often a CHDL will be capable of

describing hardware at a range of points. This range can mean

expressing varying degrees of detail at the same hierarchical level

or the possibility of descriptions at more than one level.

The second dimension involves the type of description a CHDL

is geared toward expressing. This dimension has three discrete

"types" of descriptions that a language can emphasize, structural,

functional and behavioral. A structural description represents a

system in terms of the actual hardware components. Interconnection

of the structural elements is stressed in this type of description.

A functional description suppresses low-level structural details so

that a designer deals with registers and logic networks rather than

individual flip-flops and logic gates. The action of a system is

described as an algorithm involving these higher level components.

With this type of description the actual data bits stored in a

system's elements are of major concern. The behavioral level offers

an even higher level of abstraction. This type of description is

concerned with the order in which operations take place, but not
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necessarily with the values of the data that is being manipulated

by the digital system.

The third CHDL-space dimension involves the sequencing mecha-

nism used by a CHDL. This mechanism can be either procedural, non-

procedural or strongly non-procedural [ST81]. A procedural language

uses the order that statements are placed in a description to deter-

mine sequencing information. Non-procedural languages are those

block structured languages that provide explicit sequencing informa-

tion for each block and rely on procedural sequencing internal to

the blocks. Strongly non-procedural languages require an explicit

sequencing label for every statement in a description. This

dimension is usually specified as a range of points within one

of these types of sequencing mechanisms.

The fourth and final dimension involves the type of timing

specification used by a CHDL. This dimension has two discrete

levels, the representation of either synchronous or asynchronous

systems. Most languages are best suited for describing only one of

these types of systems and allow a range of points within that one

group. Although, some languages are capable of describing both

types of activities.

The examples of this section will use the first, second and

fourth dimensions from this space to develop a three-dimensional

view of the example CHDLs. These three axes are shown as a three-

dimensional space in Figure 9. This will present a simple view of

how the examples fit into the overall CHDL-space and their relative

locations in this space. A more detailed discussion about selecting
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Three-Dimensional View of CHDL-Space
Figure 9
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CHDLs based on these four dimensions is presented in Chapter 4.

Examples

CHDLs have been expressly designed to describe digital systems

and they do so very well. Because they are the best-suited for this

type of design work CHDLs have been more heavily emphasized than

either the HLL or GPSL classes. In this section 10 different CHDLs

will be discussed. With each of these examples a portion of a hard-

ware description made in the particular language is given. These

descriptions are intended to give the reader only a feel for how a

description looks in that language; thus, no explanation of the hard-

ware description is given. A reference that gives a detailed

explanation of the hardware description is cited for each example.

Following these presentations, several more CHDLs will be mentioned

and references given to aid in the secondary purpose of this paper

to serve as a bibliography for CHDL related information.

ADLIB

ADLIB (A Design Language for Indicating Behavior) EHi79b,Hi80]

was developed to describe the behavior of computer hardware at

multiple levels of the design hierarchy. The language was intended

for descriptions at the architectural, register transfer, logic and

circuit levels. ADLIB is an extension of PASCAL so it possesses

characteristics that allow hierarchical descriptions, software

descriptions and individual component type specifications [Cal].

An early version of ADLIB was based on the SIMULA67 [DM70]

programming language but it tended to create large and bulky des-

criptions with long execution times. The language was redesigned as
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a PASCAL extension, which provided a much simpler and faster language

for hardware descriptions. The ADLIB language includes several

PASCAL constructs, including the PROGRAM statement, data structures

and global procedures and functions. ADLIB extends PASCAL with

constructs that are useful for hardware description such as control

and data flow facilities. The following constructs have been added

to this language [ST81].

The components of an ADLIB description communicate via a "net"

which can be thought of as a set of interconnecting wires in a

system. The ASSIGN statement is used to update these interconnec-

tions between hardware components. The form of the statement allows

the update to be performed in either a synchronous or asynchronous

manner.

ASSIGN < expression> TO < net name >< optional timing expression>.

The WAITFOR statement is a type of monitor that will keep an

expression from being executed until a Boolean control expression is

evaluated as true.

WAITFOR < Boolean expression >< control expression> .

The SENSITIZE, DESENSITIZE and DETACH statements are used to

control the dependency of hardware components on their input con-

nections (nets). These statements can be used to delay the operation

of a component until the inputs have been updated.

SENSITIZE < component > .

The UPON statement is used for defining random or independent

activities. This statement evaluates a Boolean expression every

time a net in its checklist is updated. The associated statement(s)
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is executed any time the Boolean expression is evaluated as true.

UPON <Boolean expression.> <check list> DO <statement>.

The TRANSMIT statement is used to provide monitoring for the

UPON statement. The TRANSMIT statement is activated when a "net"

in the UPON statement is updated. This statement specifies the net

and the value it is to assume (an expression) according to a schedul-

ing time expression.

TRANSMIT < expression > TO < net name >< scheduling time expression>.

The PERMIT and INHIBIT statements are used for starting and

stopping subprocesses in an ADLIB description.

This language has been combined with a second language, the

Structural Design Language (SDL) to create a multi-level digital

simulator system called SABLE Div79,Co817. In the SABLE system

ADLIB is used to express only the behavior of a digital system

while SDL is used to describe the structure of the system [Co81].

The ADLIB language is used to construct small behavioral blocks

called comptypes. An AND gate, JK flipflop, REGISTER and CPU are

all examples of possible comptypes. The SDL language is used to

describe how many components of a particular comptype exist in a

design and how they are all interconnected. A "D" flipflop and a

NOR gate comptype are given as examples of the ADLIB language in

Figure 10. A CHDL-space representation of ADLIB is given in Figure

11.

AHPL

AHPL (A Hardware Programming Language) [HP73,Hi74] was developed

as a tool to describe and simulate the behavior of digital hardware.



comptype Dff;

inward Clk,D:BoolNet;

outward Q:Boolnet;

begin

while TRUE do begin

waitfor clk check clk;

assign D to Q;

end;

end;

ADLIB D flip-flop comptype

comptype Nor;

inward A,B:BoolNet;

outward Y:BoolNet;

begin

while TRUE do begin

assign NOT (OR(A,B)) to Y;

waitfor TRUE check A,B;

end;

end; ADLIB NOR gate comptype

ADLIB Descriptions of Two Logic Components
Figure 10

(taken from example given in Cory, 1981)

67



LEVEL

arch

68

logic

ADLIB Representation in CHDL-Space
Figure 11
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A powerful set of operators allow for the description of system

behavior at several levels of detail. However, AHPL is primarily

used for design work at the register transfer and logic levels.

This language has been used extensively as a teaching aid for com-

puter hardware design.

AHPL is based on the notational conventions of APL. Only the

APL structures that can be interpreted as hardware constructs have

been incorporated into AHPL. Additional constructs have been

developed to represent hardware activities not covered by APL.

These include parallel control sequences, facilities for asynchronous

actions and conditional transfer sequences [Hi74]. The AHPL language

uses the economy of the APL notation to provide a compact hardware

description. The vector capabilities of APL are very useful in AHPL

for the description of registers and memories (primitive data types).

A unique feature of AHPL that sets it apart from most other

CHDLs is the partitioning of data and control statements. The data

statements include registers and memories that store information,

while the control statements include sequential logic to control the

register (data) transfers. The control statement is either a con-

ditional or unconditional branch to a data statement. Each data

statement is followed by a control statement to specify the correct

order of execution. The combination of a data followed by a control

sequence is called a control sequence. Including more than one

data statement in a control sequence allows for concurrent actions.

The use of control expressions to insure the correct sequencing

characterizes AHPL as a non-procedural language.
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An AHPL description consists of a declaration section, a series

of control sequences and a section of "always active" statements

[NH79]. Allowable AHPL declarations include flip-flops, registers,

memories, buses, inputs and outputs. The series of control sequences

are sequentially numbered by statement line and follow the declara-

tion section. There are no branches among the "always active" state-

ments. These are active when the corresponding condition portion

of the statement is evaluated as true.

AHPL descriptions use an implicit single phase clock which does

not need to be declared. Control operations are triggered by the

trailing edge of this clock signal. All data operations are trig-

gered by the trailing edge of a positive control pulse. Each

control sequence takes one clock cycle to execute. AHPL descrip-

tions can also be written in an asynchronous format.

Subroutines are used to develop a description modularity

similar to that of the hardware being described. Due to the single-

block structure (as in APL) all variables (declared elements) are

global.

In addition to description of hardware, AHPL was developed for

compilation and simulation. A compiler and simulator have both been

developed for this language EGe71,SN77,NS78,Ro78,NH79]. HPSIM2 is a

second generation simulator for AHPL that is currently in use at

the University of Arizona ENH79]. This software package is imple-

mented in FORTRAN and is currently running on CYBER 175 and DEC-10

systems. HPSIM2 simulates a designer's AHPL hardware description

and if the results are correct invokes a hardware compiler to



71

generate a wiring list for the design.

A simple AHPL description of an 8's complement logic network is

given in Figure 12. Note that no "always active" statements are

needed in this description. A CHDL-space representation of this

language is shown in Figure 13.

CDL

CDL (the Computer Design Language) [Ch65,Ch72b,Ch74a,Ch74b]

was developed to describe the functional organization, algorithms

and sequential operations of digital computers. First introduced

in 1965, CDL is one of the oldest CHDLs still active in the hard-

ware description field. It is also one of the most popular due to

its simple structure and FORTRAN implementation [Sh79a]. This

language has been used as a teaching tool in textbooks on computer

organization [Ch70,Ch72a] and implemented for several simulation

and design automation projects EMe68a,Me68b,HC77,Ch69,BB75].

CDL was developed with a structure similar to that of the ALGOL -

60 programming language. Its structure is like that of a single

ALGOL block with global variables, although it has no provisions

for nested functions or subroutines. The language has a wide

variety of computer elements which simplify the writing of a hard-

ware description.

A hardware description includes the declaration of the com-

puter's elements and a series of CDL statements that define the

micro-operations of the design. Each of these statements is pre-

ceded by a Boolean expression that controls the execution of the

statement, making CDL a non-procedural language. Multiple statements
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INPUTS: x, start

OUTPUTS: Z

REGISTERS: Y(2)

1 Y-(----x, 0

2 (start X 1 + start X 5)

3 Y4---x, Yo; Z =Y1

4 (start X 1 + start X 5)

5 Y-4----x, Yo; Z =Y1

6 (start X 1 + start X 7)

7 Z=COMP
2

(x,Y),

Y=a
2
/COMP

2
(x,Y)

8 (start X 1 + start X 3)

AHPL Description of 8's Complement Logic Network

Figure 12
(taken from example given in Hill, 1974)
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can be activated concurrently by dropping the control "label"

of the secondary statements and using correct CDL punctuation. A

multiple-phase clock can be explicitly declared in CDL descriptions

and used for control expressions. CDL is not well suited for

describing hardware in a modular fashion as it lacks function and

subroutine facilities [Sh79a].

A translator and simulator have been developed for the CDL

language. The translator is used to perform a syntax check on the

system description and translate it into Polish string logic

equations [Sh79a]. The simulator executes the output of the trans-

lator via a set of simulation commands. During the execution of

the simulator, data is collected and can be displayed at every clock

cycle [Ba75]. Some very complex digital systems have been

simulated using various versions of the CDL simulator; for example,

the simulation of 20 instructions from a PDP-8 took over two hours

of CPU time on an IBM 370/155 [HC77]. Both the translator and

simulator have been implemented in FORTRAN.

An example of CDL description is given in the more complete

CDL review in Chapter 2 of this paper. A CHDL-space representation

of CDL is given in Figure 14.

DDL

DDL (the Digital Systems Design Language) [Du67,DD68,Di71,Di74]

was developed to describe and simulate combinational and sequential

logic networks. The language allows for hardware specification at

several levels of detail, including the architectural, register

transfer and logic levels. A textbook has been published that uses
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DDL as a teaching aid, and DDL was chosen for use in NASA's

Computer-Aided Design and Test System (CADET) [Sh79a,Sh79b].

DDL is based on the idea that hardware systems can be split into

semi-independent subsystems. These subsystems are represented in a

hierarchial block structure in DDL descriptions. The control

portion of each subsystem is viewed as a finite state machine.

Sequencing in DDL descriptions is characterized by state variables

and state transitions. Because the state transitions must be

written explicitly in this notation, DDL is a non-procedural

language. Parallel and asynchronous operations can also be

'specified in DDL descriptions.

A DDL description provides the explicit declaration of the

structural elements used in a design, including registers, memories

and terminals. The behavioral specifications of the system con-

sists of transforming the declared elements with operators from a

large set. The control section uses state variables to insure

correct sequencing of the behavioral statements.

A translator and simulator for this language have been imple-

mented in FORTRAN [DD69] and PASCAL [CD79a,CD79b]. The translator

(DDLTRN) [Di7la] translates a DDL description into a set of Boolean

equations and register transfer statements [Sh79b]. The simulator

(DDLSIM) [Di7lb] uses the output of the translator to simulate the

design. This simulator possesses a simple yet powerful "free-format"

command language that allows a designer to have total control over

the simulation process [Sh79b].
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An example DDL description is given in the more complete DDL

review in Chapter 2 of this paper. A CHDL-space representation of

DDL is given in Figure 15.

FLOWWARE

FLOWWARE C0m73,CT77] was developed to describe digital systems

in a graphical manner and to allow simulation from that represen-

tation. FLOWWARE is used to develop descriptions at the register

transfer level of the design hierarchy. A register layout diagram

is used to represent the hardware structure and organization accom-

panied by a flowchart to specify the correct control sequence to be

followed. FLOWWARE was first introduced in 1973 and in 1976 it was

expanded to its current structure [Ch76a,Ch76b,Ch76c].

The FLOWWARE description process is split into two phases. The

first phase is an information flow phase that includes declarations

of registers, memories, clocks, etc. and drawing lines to connect

these declared elements. Declarations are made by instructing the

host computer to place a specific symbol on a layout diagram.

The computer will then draw the appropriate figure on the CRT.

Lines are also specified by the user and drawn by the computer. A

description at this phase represents the structure of a digital

system. The second phase is a control flow phase that specifies a

control algorithm with a flowchart. Common flowchart elements

include the function, decision, decode, start and terminate blocks.

The register transfer activities of the system are written inside

these blocks. A description at this phase represents the behavior

of a digital system.
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DDL Representation in CHDL-Space
Figure 15
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The FLOWWARE translation and simulation processes require the

use of a second software package called IDDAP (Interactive Digital

Design Assistance Package) [CT70]. IDDAP uses a subset of CDL and

acts as an interactive translator and simulator for a FLOWWARE

description. Input information to IDDAP and output information

from IDDAP are in a textual form so FLOWWARE must both pre- and

post-process a description to be simulated. The simulation occurs

in a textual form while the input and output are in a graphical

form. Simulations can be clocked or unclocked although all clock

changes must be explicitly declared in the FLOWWARE description

[CT77].

The FLOWWARE/IDDAP system is implemented at the University of

Missouri-Rolla. The computer used is an IBM 360/50 linked to

several Data General NOVA 800 minicomputers. A Tektronix T4014

graphics terminal is used for the user interface. As implemented,

FLOWWARE consists of two programs running simultaneously on the

host IBM and remote NOVA computers. The IBM 360/50 program is

written in PL/1 while the NOVA is programmed in assembly languages

[CT77].

A FLOWWARE description of a serial parity bit generator is

given as an example in Figure 16. A CHDL-space representation of

this language is shown in Figure 17.

ISPS

ISPS (Instruction Set Processor Specifications) [Ba81a,Ba79,

BB78] is a very popular CHDL that was developed to describe the

behavior of digital computers at the programming (instruction) level.
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FLOWWARE Description of a Serial Parity Bit Generator
Figure 16

(taken from example presented in Ching, 1977)
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The programming level is one level higher in hardware abstraction

than the register transfer level as it deals with instructions and

the rules for interpreting those instructions. The basic elements

of this level are data operations, instructions and instruction inter-

preters Ba75]. ISPS can be used to describe systems at the register

transfer level (see Figure 18) but it was primarily designed to des-

cribe digital systems at the programming level.

"It is important to emphasize that ISPS supports
a wide range of applications, rather than a wide
range of design levels" Da8la].

ISPS is the second attempt to implement the ISP notation as a

computer language. The ISP notation first appeared in 1970 [BN70,

BB72,Si74] and was the result of trying to develop a uniform

notational scheme for a book on computer structures [BN71,SB82].

The idea behind the development of the ISP notation was that the

logical behavior of a processor could be specified by knowing the

type and sequence of its operations. This sequence is determined by

the bit patterns stored in a system's memory and by a set of rules

for interpreting those bit patterns. Thus if the type of operations

and the rules for interpretation are specified then the behavior of

a processor depends only on the program stored in memory. ISP is a

notation to provide these specifications. The first attempt to

incorporate the ISP notation into a hardware description language

resulted in ISPL Ba76]. Five years later, in 1978, the ISPS

language was introduced EBB78].

A fixed notational format is usually used for ISPS descriptions.

This format consists of a declaration section followed by an



mult (a<7:0>, b<7:0>) <15:0>:=

BEGIN

mult -0 NEXT

temp <15:0> "00 @ b NEXT

COUNT -8 NEXT

run:=

BEGIN

IF a <0> =>

mult-mult + temp NEXT

a-a SRO 1 NEXT

temp-temp SLO 1 NEXT

COUNT-count -1 NEXT

IF (count GTR 0) =

RESTART run

END

END

REGISTER TRANSFER LEVEL VIEW

mult (a <7:0>, b <7:0>) <15:0>:=

BEGIN

mult a*b

END

PROGRAMMING LEVEL VIEW

ISPS Descriptions of 8-bit Multiplier
Figure 18

(taken from example used in Northcutt, 1980)
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activity section. The declaration section is used to define memory,

registers, allowed data operations and the format of the machine's

instructions. The activity section is used to define both the

instruction interpreter and the processors' instruction set. The

interpreter is the mechanism that fetches, decodes and executes an

instruction. The instruction set include all of the instructions a

particular processor can execute. An instruction is described by a

condition and associated action sequences.

ISPS descriptions use a block structure to provide for hardware

modularity. Function and MACRO statements are used to develop

hierarchically detailed descriptions. An ISPS description is

asynchronous and since no specific control signals are used for

sequencing it is classified as a procedural language. Typically,

ISPS is not used for precise timing studies, due to the lack of an

explicit clock declaration. Timing information can be produced if

it is carefully built into the description [Ba8lb].

ISPS is currently the basis for a multi-level design automation

system being used at Carnegie-Mellon University [Ba80,BS75]. Be-

sides the simulation and synthesis of hardware, software generation

[Bs75], programming verification and architecture evaluation EBS77]

have all been performed with the ISPS language [Ba81].

As an example of an ISPS description, the 1948 Manchester Mark

1 computer has been described in ISPS notation in Figure 19. Other

examples of ISPS descriptions can be found in the following two

sources ESN82,BM78]. A CHDL-space representation of ISPS is given

in Figure 20.
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MARK 1:=

begin

** MP. State**

M[0:8191]<0:31>

**PC.State**

P1\Present.Instruction<0:15>,

f\function <O:2 > := Pl<0:2,

s\address<0:12> :=P1 <3:15>,

CR\gontrol.Register <0:12 >,

ACC Accumulator <0:31>,

**Instruction Execution**

icycle\instruction.cycleEmaini :=

begin

REPEAT

begin

PI4---M CR <0:15> next

DECODE f = >

begin

#0:=CR=M[S], !JMP S (JUMP TO S)

#1: =CR =CR +MCS] !JRP S (RELATIVE INDIRECT JUMP)

#2:=ACC=-MES] !LDN S (LOAD NEGATIVE S)

#3:=M[S]-ACC !STO S (STORE S)

$4: #5:= ACC = ACC -MCS] !SUB S (SUBTRACT S)

#6:=IF ACC lss 0 =>CR=CR4.1 !CMP (COMPARE AGAINST ZERO)

#7:=STOP( ) !STOP

end next

CR=CR=1

end

end

end

ISPS Description of Manchester Mark 1 Computer
Figure 19

(taken from example presented in Sieworek, 1982)
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KARL

KARL (the Karlsruhe Architectural and Register Transfer

Language) CHa77,Hv79] is intended for design documentation and use

as a modern design approach. KARL combines a graphical notation

and a textual register transfer language to create a description

approach suitable for use at the register transfer and instruction

levels. The language is best known in Europe where it has been used

as a pedagogical tool in a textbook on hardware design [Ha77].

KARL was developed to provide a descriptive aid for use in

cases where both a textual CHDL description and a graphical block

diagram representation were needed'to supply information for a

design. A modified version of CDL, called CDL/KA (Karlsruhe), is

used as a textual documentation language. A graphical language, ABL

(A Block Diagram Language), is used to obtain equivalent block

diagrams of the CDL/KA description. The combination of both

language descriptions into one common format is called KARL.

The CDL/KA language used in a KARL description adds several

extensions to the original CDL language. Primitive storage elements

such as registers and memories remain the same but memoryless

elements have been extended with the addition of an ENCODER state-

ment. The peripheral elements SWITCH and LIGHT are now accompanied

by UNIT and EXTERNAL device types. Control statements have also

been extended with the introduction of the following three state-

ment types: [Ha77]



88

AT...UNTIL...KEEP...ELSE...

WHILE...KEEP...ELSE...

The first two statements are used with asynchronous activities

while the third is used for synchronous operations.

With the use of ABL descriptions, a complete KARL description

of a digital design can become quite large. For this reason a

shorter KARL description of a 74194 TTL logic chip will be used as

an example in Figure 21. A CHDL-space representation of this lan-

guage is given in Figure 22.

PMS

PMS (the Processor Memory Switch) [BN70,BK72,SB82] notation

was developed to describe the structure of a digital system at the

highest level of design. This level, the architectural or PMS

level, describes systems in terms of processing units, memory

components, peripheral units and switching networks. The PMS

notation is an excellent tool for such things as system performance

analysis and bottleneck detection ESB82]. This notation was origi-

nally used in a textbook to describe the physical structure of

computers and computer networks [BN71]. The PMS notation has been

implemented as a CHDL called PMSL [Kn73].

PMS is primarily a graphical notation (PMSL is in a textual

form), that presents system structure information in a block diagram

format. There are seven basic elements used for descriptions at

this level, these are: Memories, Processors, Links, Controllers,

Switches, Transducers, and Data Operations. Components from the
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Symbolic CDL/KA Description

Unit TTL 194 (P1(3:6),CR,trigger(CK),SR,SL,
S(1:0);Q(3:0));

register Q(3:0);

while CR keep Q=0 else

at CK do case S of

(0: )

(1: Q:( ):=shl Q:SL)

(2:( ):Q:=shr SR:Q)

(3:Q:=P1)

END TTL 194

KARL Description of Parallel Shift Register
Figure 21

(taken from example presented in Hartenstein, 1977)
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seven categories are connected to make stored program computers,

which become an eighth element in the PMS descriptions. The classic

structure of a simple computer consisting of a memory, a processor

(with control and arithmetic portions), a transducer and an external

device is given in PMS notation below [BN70].

C: = Mp K

D

In this example Mp is the primary memory, K is the processor control

unit, D is the ALU, T is the transducer and X is some external

device. The structure of a system is implied by the inclusion of an

element in a PMS description and by the interconnection of these

elements. The functions of the elements are either implied by the

element label or can be explicitly listed by means of an attribute

list [BK72]. PMS provides for little functional information in its

notation. Hierarchical descriptions can be obtained by decomposing

large blocks into subcomponents with more specific functions. This

can be seen in the PMS example of a Burroughs B5000 computer system

in Figure 23. In this example the transducer block of the gener-

alized computer structure (shown above) has been expanded. A CHDL-

space representation of PMS is given in Figure 24.

SDL

SDL (the Structural Design Language) Na77,Co81,va77b] was

developed for describing only the structural properties of a digital

system. The language is intended as a complement to existing CHDLs
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NOTES:

T. console

Kio(#1:4

Pc(iiA:B)

1. Mp(core; 4us/w/4096w;48,3b/w)
2. S( from:2Pc,4k;to:8Mp;concurrency:

4)

3. Pc(stack;Rb/syllable;1 2 syllable

per instruction; 66/char;
technology: 1962 transistor)

4. S(from:4 kio; to:KT,KMs:con-
currency:4)
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T (console;typewriter)

T(#1:2;cardreader

T(#1:2;paper tape)

card punch)

--15E--T(#1:2;line printer)

LINEN

K --IT(Ms(#1:2;drum

T(Ms(#1:16;mag tape)

PMS Description of B5000 Computer
Figure 23

(taken from example presented in Siewiorek, 1982)
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that emphasize only the behavioral aspects of a computer description

Cva77b]. SDL can be used to represent structure at all levels of

the design hierarchy. This language has been combined with ADLIB

[Hi79] to form the SABLE multi-level digital system simulator Elii79].

SDL is unique in that it provides only the structural informa-

tion of a design. There are four objectives the language was de-

veloped to meet; these are: [va77]

1. To provide accurate representation of structural infor-

mation.

2. To be useful over all levels of the design process.

3. To be applicable to the different purposes a designer may

have during the design process.

4. To be able to perform designer-controlled mapping of higher-

level hardware primitives into lower-level ones.

To achieve these objectives a language describing how systems are

interconnected was developed.

SDL descriptions consist of an individual block connected to

its outside world by (EXTERNAL) connections. These external

connections can also be divided into OUTPUTS and INPUTS if that

information is necessary. Some external connections may be logically

equivalent, this can be taken into account with an EQUIVALENCE state-

ment. When using SDL it is necessary to declare the types of all

components used in a description. For each TYPE of component names

must be given to all components of that "type." Finally, all

component interconnections must be defined. In this language an

interconnection is called a "net." Several other statements are
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allowed with SDL including: MACRO, PURPOSE, and LEVEL.

The future use of this language seems to lie in the area of a

design automation system, such as SABLE, and in design verification

studies.

An SDL description of a 16-bit shift register built from two

8-bit shift registers is given in Figure 25. A CHDL-space represen-

tation of this language is given in Figure 26.

SLIDE

SLIDE (Structured Language for Interface Description and

Evaluation) CPW81,PA80] was developed to describe the behavior of

input/output interfaces and interconnected digital systems. This

language is used to describe asynchronous activities at the register

transfer level. SLIDE is an updated version of an early I/O des-

cription language called GLIDE EPW77].

The purposes behind developing an I/O description language are

unique to this class of CHDL. First, a nonprocedural environment

is needed so that processes will be inhibited until some conditions

become true. Secondly, a timeout construct is needed to prevent

"fatal" timing problems in simulation runs. Finally, a set of I/O

related primitives is needed. These are such things as synchronous

line declarations, transition of logic levels (rather than at edges),

and FIFO declarations.

A SLIDE description is constructed by developing a number of

processes and placing them into one main process block. A process

is a hardware unit that is executing independently from any other

hardware unit. Within each process local variables (registers and



NAME: SHIFTREG:

PURPOSE: LOGSIM, PCBGEN, CKTANALYSIS:

LEVEL: TTLPACK:

TYPES: SN7491;

EXT::DATA, ENABLE, CLOCK, Q;

SN7491:C1, C2;

NET 1 =FROM (.CLOCK) TO (CL. CLOCK, C2 CLOCK);

NET 2=FROM (.ENABLE) TO (CL. ENABLE, C2.ENABLE);

NET 3=FROM (.DATA) TO (CL.DATA);

NET 4=FROM (Cl.Q) TO (C2.DATA);

NET 5=FROM (C2.Q TO (Q));

END;
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SDL Description of 16-bit Shift Register
Figure 25

(taken from example presented in vanCleemput, 1981)
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lines) and other processes (subprocesses) can be declared. These

processes communicate through variables declared in the main

process (which are global variables) and executed synchronously.

Process execution is dependent on its assigned priority in the

description. A set of three rules must be satisfied to schedule

execution of a process. These are:

1. If the process is a subprocess of one currently existing.

2. If all initialization conditions are true.

3. If no process with a higher priority at the same subprocess

layer is executing.

Pascal-like BEGIN...END blocks are used to allow for concurrent

execution within a process.

A SLIDE simulator exists that allows the simulation of a SLIDE

description. A hardware description is first written in SLIDE, then

compiled into SIMULA-67 code, which is finally run on an interactive

simulator. Both UNIBUS and D-bus have been simulated with this

language DA801. A partial outline of a SLIDE description of the

UNIBUS is given in Figure 27 CPW81]. A CHDL-space representation

of SLIDE is given in Figure 28.

The following descriptions of some of the less publicized CHDLs

are intended for the benefit of the reader who is interested in

further studying this case of HDLs. References will be supplied in

order to make this paper a good starting point for further research.

APDL (A Processor Description Language) [Da68,Da69] is an ALGOL

based language for the description of processors at the register

transfer level. This language uses the block structure provided by
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MAIN PROCESS UNIBUS;

global bus declarations

INIT I arbiter:0 WHEN initline EQL/;

INIT arbiter:1 WHEN TRUE:

INIT D reset:0 WHEN initline EQL/;

INIT D transfer:1 WHEN dataready EQL/;

INIT A reset:0 WHEN initline EQL/;

INIT A transfer:1 WHEN dataready EQL/;

Other device processes and initiated similarly

PROCESS arbiter:

EXT REGISTER

psw <15:0>; !program status word!

COMB pri <2:0>:=psw <7:5>: !processor priority!

BEGIN

WHILE TRUE DO

BEGIN

IF npr THEN

ELSE IF ( ) THEN

NEXT

END ! end of while true statement!

! end of arbiter!

Partial SLIDE Description of UNIBUS
Figure 27

(taken from example presented in Parker, 1981)
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the ALGOL constructs to organize hardware descriptions into

hierarchical levels. ALGOL extensions are used to handle timing

and register activities. APDL descriptions must be translated into

ALGOL before simulation can occur.

CASD (Computer-Aided System Design) [Cr70] is a collection of

computer programs to aid in the design of computers. The CASD design

language is based on an extended version of PL /l. Control and data

operations are specified with the use of microinstruction sequences.

CASL (Computer Architecture Specification Language) [M079] was

designed to provide hardware descriptions at the register transfer

level. CASL is best suited for describing machines that can be

easily split into asynchronous modules EST81]. CASL has many

features that distinguish it from other CHDLs. These include

abstract data representations and structure-oriented control mech-

anisms (FSMs).

DTMS (Descriptive Techniques for Modules and Systems) [TS80,Si81]

was developed to provide mixed-level descriptions of systems or

subsystems in a procedural, nonprocedural or mixed timing format.

DTMS is also capable of describing the interconnections of hardware

modules. It also provides constructs to describe parallel and con-

current operations called processes.

FST (Functional Simulator and Translator) [Fr67,B162,B171,FM68]

is a set of computer programs that perform functional design and

simulation of small scale synchronous digital systems. The FST

system consists of four major facilities: 1) A language to describe

the process flowchart of a digital system. 2) A compiler to convert
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the flowchart descriptions into a list structured description of the

system. 3) A simulator to verify that the system will perform as

expected. 4) A translator to generate State and Control Unit Tables.

This design process is best suited for synchronous systems.

FTL (Functional and Timing Specification Language) Bc79] was devel-

oped for precise modeling of complex digital systems. This language

is particularly well suited for timing analysis. An FTL description

is intended to be used as an input for simulation of a design.

HILOMK2 CFM811 is an attempt to provide both structural and behavioral

information about a digital system. The HILOMK2 language produces

very accurate structural descriptions. Both synchronous and

asynchronous operations can be described. A simulator written in

BCPL and driven by a waveform description is available.

LCD [EG76,EG77] (a Language for Computer Design) permits the des-

cription of both the structural and functional aspects of a digital

system. LCD descriptions can be made at very high architectural

levels, at the logic gate level or at any level in between. This

language requires the development of two alternate descriptions of

the same design. The first description is a high level model giving

the system specifications of the design. The second description is

an implementation model that describes the dataf low or control

operations at a particular design level.

LOGAL [St77,Lu73] (Logical Algorithmic Language) was developed to

perform logic design at the register transfer level. This language

adds several new features to Reed's RTL language. LADS (Logic

Algorithm Design System) is used with LOGAL and provides software
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support and processes a LOGAL description to allow simulations of

digital systems.

MODLAN [PJ81,Pa76] (A Hardware Module Description Language) is used

to describe digital systems at the gate, register transfer and

instruction levels. This language uses PASCAL-like constructs to

develop very modular hardware descriptions. A MODLAN description

consists of a hierarchical block structure of modules and submodules.

A module can be one of three types: 1) Structural module. 2)

Functional module or 3) A controller module. Communication between

modules is carried out via links and terminals.

MIMOLA [Zi79] is a procedural language used as the primary component

for the "top-down" MIMOLA design system. The MIMOLA language is

suitable for use as a CHDL of the RT level and as a HLL to describe

algorithms. The algorithmic descriptions are similar to the in-

struction level of the design hierarchy. Both synchronous and

asynchronous operations and concurrent activities can be described

by this language. Support software for this language has been

implemented in PASCAL.

PHPL [AF79] (Parallel Hardware Processing Language) was developed

for the description and simulation of hardware at the gate, register

transfer and architectural levels. It is intended for use by logic

designers and computer architects for design verification, de-

bugging and documentation [ST81]. Descriptions can be made of

synchronous or asynchronous operations. Statement execution depends

on explicit control event labels. A control event may depend on

logic levels, periods of stability or high or low transitions.
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S
A
* [Da81] is a language for describing computer architectures.

This language deals solely with the PMS level of a digital design.

S
A
* breaks a system's architecture up into two levels. The first

level is called the exo-architecture, it is concerned with the

logical structure and capabilities of the system as visible to the

user. The second level is called the endo-architecture, which

includes the functional capabilities of a machine's physical hard-

ware. This second level is equivalent to the PMS level of design.

Both sequential and asynchronous systems can be described with

S
A
*.

LALSD CSB75,BS71,So73] (A Language for Automated Logic and System

Design) allows a system to be decomposed into subsystems that can

be independently designed. Descriptions can be made at the gate,

register transfer and architectural levels. This language has been

upgraded by the introduction of the LALSDII language which is useful

for multi-level descriptions and simulations ESH81,SF81]. All of

the CHDLs that have been discussed in this section are summarized

in Table 3.
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4. AN HDL SELECTION APPROACH

At this point, it should be apparent to the reader that a large

number of languages (HLLs, GPSLs and CHDLs) are available for the

description and simulation of digital hardware. The selection of a

single language that is well suited for a particular design environ-

ment can be a difficult and unrewarding task if an organized decision

making approach is not used. Picking an HDL at random, studying its

features and constructs and then making a determination as to

whether or not the language should be used in a design project is

not an efficient selection approach. Clearly, some type of com-

parison process must be used. This chapter presents an HDL selec-

tion approach that relies on two distinct levels of comparisons.

An important preliminary step in any decision making process

is to insure that a decision does indeed need to be made. In the

case of selecting an HDL this involves considering if the use of an

HDL-based design approach would be advantageous in a particular

design environment. The advantages and disadvantages of using HDLs

for design purposes are reviewed in Section 1 of this chapter. These

will be presented in a brief form as it is assumed that the reader

has already considered these points and is now interested in

selecting an HDL.

If it is desired to use an HDL in design work then a search

process to find an appropriate language can begin. The selection

approach presented in this chapter is a two step process. The first

step is to select one of the three classes of HDLs as being best

suited to meet the goals of a design system. This portion of the
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selection approach is discussed in Section 2. Step two is to choose

an individual HDL from this class of languages. This second step is

itself split into two groups of selection considerations. The first

group consists of "technical" considerations and is used to determine

a small pool of appropriate languages. These considerations are

discussed in detail in Section 4.3. The second group involves con-

siderations of a "practical" nature, and is used to make the selec-

tion of a single language from the pool of applicable HDLs.

Practical considerations for the selection of an HDL are presented

in Section 4.4.

Throughout this chapter an example depicting the selection of

a language for use in an academic environment is carried out. At

the end of each section the results of the section are applied to

the example thus arriving at the selection of a single HDL at the

end of Section 4.

The type of HDL needed for an academic environment is very

similar to what might be required for an industry environment,

although cost is more of a consideration for a university. The

HDL should be capable of describing and simulating hardware at the

register transfer and architectural levels. It should emphasize

functional and behavioral information rather than the structural

aspects of a design. The HDL should use a modular description

format, so groups of students can work on individual modules with

relative independence. It would also be beneficial if the

sequencing mechanism was not dependent on the location of these

modules in a design description. Other requirements of this
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language will be discussed as they become applicable.

4.1. Should an HDL be Used?

The use of a specialized notation to describe hardware has been

a practice of the electronics industry since 1939 when Shannon

started his work on digital switching circuits. These initial

descriptions were carried out at the circuit, and later at the logic

levels. As VLSI designs became the reality of everyday design, there

was an increasing need to describe hardware at a design level that

was higher than the logic level. This higher level is the register

transfer level, which deals with data transfers between system

registers according to a specified set of rules. It can also be

useful to carry out descriptions at even higher levels of the design

hierarchy, such as the instruction and architectural (PMS) levels.

Several classes of computer languages are capable of describing

a digital system at one or more of these levels.

"A computer designer can benefit from using a
design language at a higher level just as a
computer user can benefit from a higher level

programming language" ECh72b].

Among the many advantages for using an HDL at the register

transfer level (or at a higher level) are:

1. A precise, yet concise design description is provided.

2. A standard format of documentation is developed.

3. Communication between interested parties is improved.

4. Hardware descriptions can be simulated on a computer.

5. Descriptions can be used as inputs to automatic design

systems.
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6. Design costs are reduced.

7. A designer's creativity is enhanced.

8. The HDL is useful in an educational environment.

The combination of top-down design techniques with complex

VLSI design projects has created a real need for precise hardware

descriptions that are simple enough to be easily comprehended by

designers. Typically on this type of design project the overall

system will be split into several semi-independent hardware modules.

Each member of a design team will then be responsible for the design

of at least one of these blocks. In this situation it is important

that all members of the team have a compatible picture of the overall

system requirements and precise descriptions of the functions their

subunits should provide.

An HDL description at an architectural level can provide the

needed system information and abstract the unnecessary detail that

can lead to misunderstanding. The ability to suppress information

about the lower design levels is especially useful in the develop-

ment of design specifications where the details have not yet been

designed. Once the design team fully understands the functions

their individual subunits are to provide, the team members can

work at their individual pace.

Without having a specific HDL to use for documentation, the

members of the design team are likely to use their own notations to

document their design work. This can make communication between

the various designers difficult and confusing. If a common HDL

were used by all of the designers, communication between them would
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be encouraged and easily accomplished. A consistent notational

scheme could also prove beneficial when it becomes time to connect

the individual subunits together and complete the overall design.

The final documentation of a design would also be made much

simpler if a multilevel HDL description of the entire system was

made. With the use of a standard HDL notation, users' guides and

technical manuals could be developed by people less familiar with

the design. There have been some studies done in the area of auto-

mating this documentation process based on a hardware description

EBr72,BS75].

Another important aspect of the design process is to insure

that the completed design works as expected. This can be done by

constructing a prototype of the system and observing its behavior.

This process can be expensive; especially if design changes cause

more than one prototype to be built. Another drawback to this

approach is that a designer must often wait until the entire system

has been assembled to test his particular subunit. Using an HDL

that has simulation capabilities can alleviate many of these testing

problems.

Most current HDLs have developed a simulator that allows the

usage of the hardware description as an input. Simulation of

digital designs can save money by reducing the number of hardware

prototypes that must be constructed. The most valuable attribute

gained by digital simulation is that design feedback can be carried

out at a much earlier stage in the design. For example, the early

architectural view of the system can be simulated to observe system
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performance and any possible bottlenecks. Subunits can be simulated

in a detailed fashion while the rest of the system is specified

very abstractly and cast in a supporting role. Simulation can be

a valuable design tool that should not be underestimated.

In addition to simulation, many other design-related services

can be performed based on a complete hardware description. The

automatic translation of a description into logic level components,

wiring lists, layout diagrams and IC mask specifications are all

features of some of the available computer-aided design (CAD)

systems that are based on HDLs. The development of these CAD

systems is another popular research area [Th81,Hv79,Su73,Br72].

Using an HDL for any of the stated reasons will increase the

efficiency of a design process. This efficiency will manifest

itself as increased design throughout, reduced man-hours per design

and cost reductions. If an entire automatic design system is

implemented, the savings in design costs can be dramatic (of course

a CAD system is not free).

The use of an HDL notational scheme can enhance a designer's

natural creativity by allowing experiments with design ideas that

would not usually be tried due to a lack of time. With the aid of

an HDL these ideas can be expressed in a form easily read and

understood by co-workers, possibly stimulating their creativity as

well. It is difficult to put a dollar value to this feature but

it is obviously a positive aspect of HDL use.

Another important area in which an HDL can play an effective

role is in the academic environment. Very few schools can afford
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to have students actually build the hardware systems they have

designed in class. If a simulation facility existed, the students

could still perform the required design work, then describe their

design in terms of an HDL and simulate it to verify its correctness.

This system would teach students more about design during their

time at college and give industry better-prepared designers.

Thus it seems that the use of an HDL to describe digital hard-

ware at the register transfer level is the answer to many of the

design industry's woes. Many companies have already accepted this

fact and are currently doing in-house research to develop a useful

HDL-based design system. However there are some negative aspects

that should be considered before jumping on the HDL bandwagon.

Many of these points are related to a design system's cost, they are:

1. Implementing a new design system can be expensive.

2. Designers must spend a significant amount of time learning

a new language and design system.

3. System bugs must be discovered and fixed, often with a

trial-and-error approach.

4. A company's typical design project may be too small to be

cost effective on an HDL-based system.

5. The abstraction of design information may cause problems

with design implementation.

The first three disadvantages are self-explanatory, while the last

two deserve further consideration.

If a design company typically works with design projects that

require a large portion of the system descriptions to be made at the
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logic level, then the use of a register transfer level HDL will not

be cost effective. Logic level simulation languages might be a

better choice. Design projects should be computer system related

to receive the most advantages from HDLs.

Another problem with using HDLs is that too much information

may be lost by working at levels higher than the level where actual

implementations are made. For example, an IF-THEN-ELSE statement in

an HDL might be implemented as a particular AND-OR logic circuit.

However, it could also be implemented as a multiplexer or decoder

chip. As long as a designer realizes that this situation can occur

then this disadvantage can be easily lived with.

After discussing the benefits and drawbacks of using an HDL,

it seems most designers choose to use an HDL. All in all, the

opportunity to simulate computer designs at the register transfer

level is not usually rejected by most designers.

4.2. Selecting a Class of HDL

The first step of selecting an HDL is to determine which class

of language will best meet the goals of a design system. The

selection of an HDL class is not a particularly difficult decision

as there are only three classes to choose from. However, the

selection of a class is important as it focuses a designer's

attention on the languages that will work best in his design environ-

ment.

Making a class selection involves weighing the advantages and

disadvantages of each of the three classes and selecting the one
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most beneficial for the design environment. The advantages and

disadvantages of HLLs, GPSLs and CHDLs have been previously presented

in Chapter 3 and will only be stated in a summary form here.

High-level languages can be useful for hardware description

and simulation applications as they provide most of the language

constructs necessary to describe digital hardware. Using an HLL

to describe digital systems is beneficial for the following reasons:

1. An HLL description can be simulated with the use of an

HLL compiler.

2. Implementing an HLL design system is relatively inexpensive

as HLL software costs are lower.

3. HLLs are very popular and frequently found in industry.

On the other hand, there are some serious drawbacks to using HLLs to

describe hardware, these are:

1. HLLs lack the essential language constructs that are

necessary to provide a precise hardware description.

2. HLL descriptions are long and often confusing.

3. The structure of an HLL description does not represent

the structure of the hardware it represents.

An HLL can be best used to describe digital hardware if cost is a

major concern or it is the only type of language available for use.

However, the description itself will be both lengthy and imprecise,

a combination not recommended for most design environments.

General Purpose Simulation Languages can also be useful for

hardware simulation. These languages are especially useful at

the architectural level of design, where advantage can be taken of
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their statistical nature. The benefits to using a GPSL are:

1. The languages specialize in simulating nondeterministic

systems, such as a computer system modeled at an architec-

tural level.

2. GPSLs provide a statistics package that allows the

occurrence of random events and the collection and eval-

uation of statistical data.

3. The languages are well publicized and documented (although

often for non-engineering applications).

GPSLs, like the HLLs, also have serious drawbacks that usually

preclude the selection of a GPSL for design purposes. These

disadvantages are:

1. Very little structural information can be represented,

even at an architectural level.

2. These languages have few facilities for dealing with

deterministic systems, such as a computer system modeled

at the register transfer level.

The GPSLs are ideal tools for the simulation of an architectural

level description if only performance information is hoped to be

gained from the simulation. The use of a GPSL for any other

hardware description related task is recommended only if no other

alternatives exist. The use of a GPSL that can also be used as a

high-level programming language, such as Simscript II ai81], will

facilitate the development of register transfer level descriptions.

If a GPSL must be used for multi-level description purposes, it

should be one from this more flexible subclass.
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Computer Hardware Description Languages have been developed

expressly for the purpose of describing and simulating digital hard-

ware. As such, they are by far the best suited for this type of

design work. The most important benefits to using a CHDL as a

design aid are:

1. They permit a precise, yet concise hardware description.

2. They provide an efficient means of communicating and

documenting designs.

3. They are amenable to use for design simulation purposes.

The disadvantages of using a CHDL are quite similar to those for

using any HDL. The most important of these is their relative cost

and the abstraction of too much information to provide an efficient

design structure. In spite of these drawbacks the CHDL class is

usually found to be the best suited for hardware design tasks. For

these reasons the selection of an individual CHDL will be emphasized

in the remaining sections of this chapter. The following statements

are made as a summary for the selection of an HDL class.

1. HLLs are recommended if low cost is important, or if they

are the only choice (i.e., some HLL simulation is better

than no simulation).

2. GPSLs are recommended for performance studies of algorithmic

level design descriptions.

3. CHDLs are the best choice for virtually all other digital

design environments at or above the logic level.
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Selection Example (Part A.)

The CHDL class has been chosen in this selection process

example as it is the only class that meets both the multi-level of

description and description modularity requirements.

4.3. Selection of an Individual HDL: Technical Considerations

After a particular class of HDL has been chosen as the most

suitable for use in a design system, an individual language from

that class must be selected for implementation. Before making a

choice of a specific language there are several language-related

points that should be considered. This section will list and

discuss the nature of these considerations. This discussion will

not be an evaluation of individual languages but rather it will

present key concepts that should be kept in mind when making a

language selection.

The considerations raised here have been selected to allow an

engineer to make a fitting choice of a description language while

having to evaluate only a small number of criteria. Basing a

selection process on a set of criteria is a common and efficient

approach to making decisions. Specific criteria for each separate

design system will vary with the scope and type of design work to be

performed. The considerations raised in this section are general

in nature and should be used as a guideline for developing a set of

specific criteria.

The group of considerations discussed in this section are called

"technical" considerations as they deal with universal characteristics
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of a language, such as its level of description and its sequencing

mechanism. These technical considerations are aimed at making a

CHDL selection rather than at choosing an HLL or GPSL. This has

been done for two reasons: first, CHDLs seem to be the best suited

for most hardware description tasks; and second, when a specific

HLL or GPSL is selected it is usually because it is already avail-

able on the job site.

The considerations presented in this section are split into

primary and secondary groups. The primary technical considerations

are the four universal characteristics of CHDLs used to create the

fOur-dimensional CHDL space discussed in Chapter 3. Once again

these four considerations are: the level of description, the type

of description, the sequencing mechanism and the timing specification.

Each of these is discussed in regard to the use as a basis for the

development of design system criteria. The four secondary con-

siderations are also important but are deemed to be dependent on

the "values" of the first four considerations/dimensions and are

not discussed in as much detail.

Both groups of consideration are useful aids for selecting an

individual CHDL. Toward this end the following procedure is

recommended:

1. Read each of the eight considerations presented below.

2. Using the four primary considerations develop a set of

criteria (i.e., standards on which a judgement or decision

can be made No77]) that represents the goals of the

proposed CHDL-based design system.
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3. Convert the set of criteria into ranges of acceptable CHDL

features that can be represented as "lines" on the

respective axes of the CHDL-space. From these lines a

four-dimensional subspace can be defined. Any of the

points within this subspace (figure) would successfully

meet all four of the design criteria.

4. Overlay the CHDL-space figures representing an individual

language's range of features. If there is any intersection

of the four-dimensional figures, then that particular lan-

guage could be used to satisfy the design system criteria.

The larger the intersection the better the individual CHDL

will meet the design goals.

5. Using the above method find several languages that can

satisfy the design criteria. This will form a pool of

suitable languages available for further consideration.

6. Then use the four "secondary" considerations in a case-by-

case examination of how each language in the pool matches

up with criteria based on these considerations. Any

language that is no longer appropriate for use should be

removed from the pool. Evaluations should be "tough"

enough that only a small number (2-4) of languages remain

in the pool.

At the end of this process only the languages that can best describe

digital hardware in the manner required will remain in the pool.

The use of this process is present in Part B. of the selection

example.
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Level of Description

The first dimension of the CHDL-space is based on the previ-

ously discussed hierarchical design levels. CHDLs were initially

developed to raise the level of abstraction in a design model to the

register transfer level. In recent years some CHDLs have been

developed that specialize in describing digital systems at levels

other than the register transfer level. These other levels include

the logic, instruction and architectural levels. The level at which

most design work will take place is an important criterion to use

in the selection of a CHDL. If most design work will be carried out

at an architectural level, then a language that emphasizes archi-

tectural descriptions should be selected. A language that provides

descriptions only at a single design level would be shown as a

point in this dimension at the appropriate level of detail.

There is currently a move toward using mixed-level descriptions

[SH81,Zi79,Hi79,Hi80]. This could involve describing sections of a

design at a detailed register transfer level while the remainder of

the design is described in an abstract architectural fashion. This

type of description can be useful in many design situations. One

example of this might be in simulation where only a single module

needs to be tested in a detailed fashion. The remaining sections

of the design are only needed to provide stimulus and data for the

module to be tested and can be specified at the architectural level.

The same situation could be formed with any combination of design

levels. A language that is suitable for mixed-level studies should

be capable of describing digital systems at several levels of
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detail, although the reverse is not necessarily true. A suitable

language should also provide convenient interfacing between modules

at different levels. A language that can support hardware descrip-

tions at several levels of detail would be represented as a range of

values or a "line" in this dimension.

Type of Description

The second dimension of the CHDL-space is the type of descrip-

tion emphasized by a language. Some CHDLs have been developed

specifically to provide structural information (i.e. SDL) and have

no facilities for indicating behavioral information. Just the

opposite is true for several other languages (i.e., ADLIB and ISPs).

The majority of CHDLs fall somewhere in between these two extremes

and are capable of describing both structural and behavioral

information in varying degrees. Included in this large middle ground

are functional descriptions.

Structural descriptions are used to represent a system in terms

of actual hardware components. The elements of this level are

typically user-defined hardware units such as logic gates, flip-

flops and IC packages. Interconnection of the structural elements

is stressed in this type of description. Structural descriptions

are the closest representations of the actual hardware.

Functional descriptions are a middle ground between structural

and behavioral views. At this level of abstraction, low-level

structural details are suppressed so that a designer deals with

registers and logic networks rather than individual flip-flops and

logic gates. The behavior of a system is described as an algorithm
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involving the register transfer level components of the system.

The actual data transformations, both content and order, are

stressed in this type of description. Timing and concurrency studies

can be carried out to a fine degree of accuracy at this level. Most

CHDLs offer a range of functional descriptions by using various

degrees of structural, behavioral and temporal abstraction.

Behavioral descriptions offer a very high level of abstraction.

Descriptions are algorithms that express the activities occurring in

a system. Complex expressions and operators are used to simplify

behavioral descriptions and often have no direct correlation to the

actual hardware. This type of description stresses the order in

which activities occur but not necessarily the data involved with

those activities. As an example of this consider a CHDL statement

that represents the contents of two storage locations being added

together. While an adder is implicitly declared by an addition

operator no specific details about it are implied (such as l's

complement, carry-look-ahead, etc.). Timing details are not usually

dealt with at this level of description.

It should be decided before a particular language is selected

which of these three types of descriptions is required by the design

goals. CHDLs that represent only one type of description are them-

selves represented as a point in this dimension. Languages that span

either a range of description types or a range within one particular

type, as frequently is the case for a language possessing functional

description capabilities, are indicated as a range of points in this

dimension.
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Sequencing Mechanism

The third dimension of the CHDL-space is the type of sequencing

mechanism used by a particular language. The sequencing mechanism

of a language is that process which allows execution of language

statements in the correct order. CHDLs use either a non-procedural

or a procedural sequencing mechanism.

Non-procedural languages require the use of control variables

to describe the order of execution for a system description. These

control variables are used to enable or inhibit the execution of a

statement. Sequencing is performed by modifying selected control

variables, enabling the next statement to be executed. The modif i-

cations of these control variables can be made in an explicit

manner and included in the operations performed by a statement (as

in AHPL) or in an implicit manner and generated by an independent

clock (CDL) or finite state machine (DDL). In non-procedural

languages the relative position of statements is not important

because the control variables are used to assure that the proper

order of execution is achieved [Ba75].

Procedural languages are similar to programming languages and

their method of sequencing. In this type of description, state-

ments are placed in the exact order they are to be executed [Sh79].

By grouping statements that are to be executed at the same time into

special syntactic blocks, parallel actions can be described.

Sequential actions are then expressed as lists of these blocks

placed in the order they are to be executed. This type of language

suppresses details of control hardware because that information is
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not needed to execute (or simulate) a procedural description. For

example, the procedural language ISPS has no facilities to explicitly

declare any sort of clock [Ba81].

Some CHDLs that utilize a block-structured description format

allow a hybrid of these two sequencing mechanisms. The total

description is treated as a non-procedural unit and blocks may be

executed in any order. Internal to the blocks a procedural sequenc-

ing mechanism is used to simplify the description. In this situation

the relative ordering of statements within a block is important but

the ordering of the blocks themselves is not of concern. This type

of description will be referred to as a non-procedural description

and the case where every statement is activated via a control var-

iable is now called "strongly" non-procedural [ST81].

The sequencing mechanism used by a CHDL can be of great

importance when deciding on the suitability of a particular language.

Strongly non-procedural languages can represent detailed control

and timing information. Thus they are useful for modeling control

circuitry and performing timing verification studies. Procedural

languages are more useful for dealing with new designs where specific

timing and control details are of no concern to designers. Non-

procedural languages provide a happy medium between these two

extremes. As before, a CHDL can be represented as either a point

or a line in this dimension.

Timing Specification

The fourth dimension of the CHDL-space is the type of timing

specification or mode a language uses. The timing mode refers to
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whether a CHDL can describe synchronous or asynchronous circuits.

Some languages have been developed that allow both types of circuits

to be described (i.e., SLIDE).

A synchronous language uses a signal from a clock structure to

activate the statements of a description. A clock is used to

specify a standard amount of time allowed for the action called for

by each statement. The clock period must be longer than the time it

takes for the longest instruction to execute. Several parameters

can be specified in this type of language to allow very detailed

timing studies. Some of these parameters include a clock's phase,

pulse width, duty cycle and period, propagation and setup delays

and trailing edge, leading edge and level triggering specifications.

Asynchronous languages use a signal from a preceding activity

to activate the next statement for execution. Asynchronous systems

do not require a clock for statement activation. Asynchronous

descriptions are usually more complex as they must describe con-

current actions that neither start nor stop at the same times.

Detailed timing studies can be carried out with this group of

CHDLs but some special control structures are needed [De70,PD72].

These structures include such things as ready and acknowledge

signals and facilities for combining multiple ready signals or

sending multiple acknowledgements. Some asynchronous languages

suppress the timing details completely and are grouped as an

asynchronous language only because the activation of description

statements is dependent on previously executed statements rather

than on a clock. ISPS is a prime example of this type of
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asynchronous language.

Both types of timing modes are useful for digital design work.

At the register transfer level synchronous operations are the most

common. At the architectural level asynchronous operations are

more frequently found. One CHDL, SLIDE, specializes in timing

studies of I/O related hardware using both of these timing modes.

A language that can describe both synchronous and asynchronous

circuits or a range within a single mode is represented as a line in

this dimension.

Secondary Considerations

There are also four secondary considerations about CHDLs that

should be briefly discussed. These considerations are dependent on

one or more of the four CHDL-space dimensions. While the previous

four dimensions characterize CHDLs using discrete levels, these new

considerations provide a continuous spectrum of relative values.

The presence and type of these considerations are dependent on a

language's location in the CHDL-space. Four of this type of CHDL

characteristics have been selected as providing the most supplemental

information to be combined with the earlier considerations thus

allowing the best technical selection. These four new considerations

are:

Secondary Consideration Primary Considerations Dependent Upon

1. amount of timing information (level, type, sequence, time)

2. amount of block structuring (level, type, sequence)

3. abstraction of data types (level, type)

4. complexity of operators (level, type)
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The amount of timing deals with how much timing detail is in-

cluded in a system description. CHDLs can vary from providing very

little timing information to providing very extensive models of

timing characteristics. AHPL is a procedural, synchronous CHDL

that allows very little explicit timing information. On the other

hand FTL is a strongly non-procedural, synchronous (and asynchronous)

language that allows for greater detail of timing specifications

than is possible with most other CHDLs [Sc791.

Another CHDL characteristic that presents a spectrum of values

is the amount of block structuring in a language. The addition of

a block structure to a language is a straightforward way to describe

the existence of several levels of detail in a design. Early CHDLs

used a single block structure where all system facilities were

declared at the same level of detail (i.e., CDL). More recent

languages use an ALGOL or PASCAL-like hierarchical block structure.

The ability to work with designs using blocks at different levels

of detail is dependent on the language's ability to describe systems

at several levels of detail. Using a block structured language is

very advantageous for mixed-level simulation studies [SH81].

A third CHDL characteristic that provides a range of choices

is the degree of abstraction of data components by a language.

Abstract data types allow a design to describe a hardware system

without being concerned with the actual structure of the data types.

Some CHDLs (ISPS) provide only a few generalized data types that

suppress most specific implementation details. Other languages use

a large number of explicit data types that imply a significant
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amount of physical structure. A CHDL that provides abstract data

types can be used more easily at different levels of abstraction

which results in a better model for simulation.

The complexity of operators used by a language is yet a fourth

characteristic that has a wide range of variations among CHDLs. An

operator is an entity that is used to transform data according to a

pre-defined rule. Operators are often used to suppress structural

information in a design description. For example two sequential

data transfers from separate registers to a common register could

be denoted as follows:

R ±v-- A,

R F B,

The actual hardware may require using a multiplexer or a bus between

the source and destination registers but this is not implied by the

language statements. Another example of operator abstraction is the

previously mentioned addition operand and its lack of implied detail

about the hardware implementation. Thus an operator can range from

a specific logic function to a very abstract combinational network.

The use of abstract operators at the early (high level) stages of a

design is beneficial since hardware implementation is not an issue.

At later stages of the design less abstract operators can be used to

express more of the actual hardware structure.

While it is conceivable that other "technical" considerations

could be used in this process, the first four are clearly fundamental

to a design system environment and the second four provide all of the

supplemental information needed for most design environments.
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Selection Example (Part B.)

This portion of the example for selecting a CHDL suitable for

use in an academic environment will follow steps 2 through 6 of the

recommended selection approach.

STEP 2: Develop a set of criteria based on the four "primary"

considerations.

1) Level of Description - the language should describe

systems at the architectural and register transfer

levels. Descriptions at the programming level are

allowed but logic level facilities are not desired.

Due to ranges of allowed capabilities, "high-level"

architectural and "low-level" register transfer

level descriptions will be allowed.

2) Type of Description - the primary area of simulation

for this desired language will be for functional

analysis. Structural and behavioral information

is tolerated but it is desired to place more

emphasis on the behavioral side.

3) Sequencing Mechanism - there are two conflicting

goals for this consideration. It is easier to

write descriptions in a procedural fashion.

However, since students will be working on hard-

ware modules independently there is a need to have

sequencing carried out in a "strongly" non-

procedural manner. The solution is to compromise

and use a non-procedural language that allows
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procedural sequencing internal to the modules

and non-procedural sequencing external to them.

A range of the degree of "non-proceduralness" is

biased towards "strongly" non-procedural in order

to include more control hardware description.

4) Timing Specification - only synchronous timing

mechanisms are needed for this implementation, but

asynchronous mechanisms can be tolerated.

STEP 3: To simplify the graphical views of these criteria two

two-dimensional plots will be used rather than the

three-dimensional plots presented in Chapter 3. The

Timing Specification axis will also be omitted as it

is a "don't-care" in this example. The two plots and

the representation of the design criteria on them are

presented in Figure 29.

STEP 4: In Figures 30, 31 and 32 three separate CHDLs are

overlayed with the design criteria. The CHDLs used

are CDL, ISPS and DDL.

STEP 5: While all three languages match up fairly well in

upper plot, only CDL and DDL have all of the features

required to satisfy the design criteria.

STEP 6: Use of "secondary" considerations to narrow down the

number of possible choices. Since there are only two

languages remaining in the pool this step will be

skipped. If it were not skipped, DDL could get the

nod due to the presence of block structuring.
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Now only one part of the selection process remains. This is to

reduce the pool of languages by considering some practical aspects of

the individual CHDLs.

4.4. Selection of an Individual HDL: Practical Considerations

A small group of CHDLs (2-4) have been discovered to be suitable

for use in a design system through an evaluation of technical con-

siderations. Typically only one of these languages can be implemented

in a design system. A set of practical implementation "issues"

should be used to develop an "order of preference" for the small

group of CHDLs. While the technical considerations are used to

insure that a CHDL is able to represent digital designs in the

formats desired, these practical considerations are used to assure

that a language can be efficiently implemented.

The following group of "issues" is used for practical con-

sideration:

1. other usage of the language

2. readability

3. generality

4. simulator availability

These are aspects concerned with making sure that a language can be

used by designers in an easy and efficient manner. Each is important

to consider when trying to select the best language.

The first consideration involves the industry wide use of a

particular language. It is important to select a language that is

being used in other design systems to receive the benefits of
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already existing software support and any language extensions.

Improvements in simulator and translator designs will be facilitated

by the mutual interest of several independent groups of users.

Languages that have never been implemented in design systems will

invariably have many "bugs" that need to be worked out. If a

language is selected that has several generations of software

support packages, the system "bugs" should be nearly eliminated.

The next consideration, readability, involves the ease of using

a language. This includes reading and writing hardware descriptions

in a particular language. A description language is used for trans-

ferring information both among humans and between humans and

machines. Some of the people who read a design description may be

only slightly involved with a design project. These people should

be able to completely understand the machine being designed just by

examining the hardware description. Thus a hardware description

should provide all of the information needed about a design. The

notation should be very precise and as short as possible. Design

information should be extracted from context rather than syntax

which can cloud a description. Since a description language is

primarily used by designers, it should be simple enough to be

written by the designer rather than a computer programmer. This

simplicity can be achieved by using common orders of precedence

(unlike APL), using popular constructs from design work (logic

symbols and related notations) and using only a reasonable number of

primitive data types and avoiding special case syntax. Designers

will take the time to write out a description only if it is easy to
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write descriptions in that language, making writability at least as

important as readability.

Another consideration in selecting a language is its generality.

A language should not be restricted to any single type of hardware

design. More specifically, a description language should be capable

of describing different machine organizations, timing mechanisms and

actual hardware implementations. This requirement relates to

simulation and hardware translation, too. For example, several

translators have been developed to translate a hardware description

to a NAND-NAND implementation table. This type of system is not

as flexible as one which allows a user to define the type of

implementation components (i.e., LCD [EG76]) or some future trans-

lator that may allow translations to the IC package level.

The final practical consideration is to check that a language

simulator exists and is capable of being implemented on the planned

host computer. A hardware description language must be combined

with a simulator (and a translator) to become a truly powerful

design tool. If a simulator does exist, it is of no use to a

designer if it can not be used on the type of computer the designer

has available for implementation. Studies of the various simulators

also need to be performed to determine if the simulation runs are

financially feasible. An example of such a study is found in DIC77].

These "practical" considerations are primarily matters of

individual design situations (e.g., read, write, generality, ease

of use). They are important for making sure an appropriate technical

choice is also an appropriate practical choice. These considerations
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should be thought of as a fine tuning tool, useful for developing

an order of preference among the pool of CHDLs arrived at through

technical considerations.

In the selection of an individual HLL or GPSL the technical

aspects of the languages need not be dealt with in such fine

detail since as a class these languages are relatively similar in

these areas. The same practical considerations should again be used

to make the final selection of an individual language that is

appropriate for use in a given design project.

Selection Example (Part C.)

Two CHDLs have been selected as suitable for design use based

on the technical considerations of Section 3. Now practical issues

should be considered to develop an order of precedence for the remain-

ing languages.

Both CDL and DDL have been implemented in design systems; CDL

in an academic environment [Me68a,Me68b] and DDL in both academic

ECD79,Di70] and industrial iSh79b] settings. However, DDL has

received more attention in recent years then has CDL. The two

languages are both very readable. DDL is somewhat harder to read

and write than CDL as it has a multiple block structure which

partially accounts for the extra difficulty. CDL and DDL are both

very general and have no dependency on any particular implementation.

The CDL translator is written in FORTRAN while the DDL translator

has both a FORTRAN and PASCAL version. Simulators for both languages

have been developed and improved several times [HC77,KS79].

For the purposes of this example DDL is the preferred language
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because of its increased popularity in recent years, its increased

notational flexibility due to a multi-block structure and its

simulator/translator which has been implemented in two high-level

programming languages.



142

5. SUMMARY

An approach for selecting a language suitable for computer

hardware description and simulation was presented. This approach

involves selecting one class of Hardware Description Language (HDL)

as being best suited for meeting design requirements and then choos-

ing an individual language from that class. The selection of an

individual HDL is made based on a set of technical and a set of

practical considerations. Technical considerations are used to

insure that a prospective language is capable of performing the

design tasks for which it will be implemented. Practical considera-

tions are used to aid in selecting a language that can be implemented

simply and effectively. The use of the selection approach allows

an organized and efficient examination of the languages available

for hardware design.

As Computer Hardware Description Languages (CHDLs) were found

to be the most suitable for describing hardware, they have been

emphasized more than the other two classes of HDLs. A review of

CHDLs was presented to acquaint the reader with these languages

so that they could be examined on an equal level with the High-Level

Languages (HLLs) and the General Purpose Simulation Languages.

Included in this review were discussions of "early" CHDLs, a general

form of CHDL syntax and semantics and detailed reviews of two

example CHDLs (CDL and DDL).

The range of formal languages available for use as hardware

description and simulation tools was then discussed. Each of
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the three classes of HDLs (HLLs, GPSLs and CHDLs) was presented on

the basis of the advantages and disadvantages of using each par-

ticular class. Examples of hardware descriptions written in specific

languages from each of the three classes of HDLs were also given.

CHDLs have again been emphasized by including more example CHDLs and

the introduction of a four-dimensional CHDL-space useful for the

characterization of languages from this class of HDL.

Finally, the specific details of the HDL selection approach

were discussed. This discussion included reviewing the advantages

and disadvantages of an HDL-based design system; discussing con-

siderations for selecting a single class of HDL; and then presenting

the sets of technical considerations and practical considerations.

The selection of an HDL for use in an academic environment was used

as a "continuing" example to aid in the presentation of the HDL

selection approach.
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