Abstract:

Cystic ovarian disease (COD) is one of the main causes of infertility in dairy cattle and has a high economic impact on farmers. COD is caused by an endocrine imbalance within the hypothalamic-pituitary-ovarian axis which prevents the mature Graafian follicle from ovulating. The cause at the molecular level is not well understood. Our research investigated the possibility of using plasma concentrations of matrix metalloproteinases (MMP) -2 and -9 and their natural tissue inhibitors (TIMP) -1 and -2 as prognostic indicators of COD. Plasma samples from cystic and non-cystic dairy cows were analyzed using ELISA. Although plasma concentrations of MMP-2 and -9 were greater and TIMP-2 was lower in non-cystic compared to cystic cows, no significant differences were observed in MMP-2 and -9 and TIMP-1 and -2 due to cyst status. However, the TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios were greater, (P=0.099) and (P=0.038), respectively, in cystic compared to non-cystic cows, suggesting a proteolytic insufficiency in cows with COD that may be a contributing factor to the anovulatory pathology. These data may
provide the groundwork for future research and development of tools for dairy
farmers to selectively choose replacement heifers less likely to develop COD.

Introduction:

Cystic ovarian disease (COD) is a reproductive pathology affecting
dairy cattle in which the mature Graafian follicle fails to ovulate. Because the
Graafian follicle does not ovulate in a timely fashion, the postpartum interval to
first estrus is prolonged and estrous cyclicity is irregular. This is a concern for
dairymen because it decreases the reproductive efficiency of cows thereby
increasing culling rates and costs of production. Over a lifetime, COD is
estimated to affect 10% to 30% of high producing dairy cows (Kesler &
Garverick 1982). Currently, there are no prognostic indicators of COD that can
be used as a tool for dairy farmers to select replacement heifers less likely to
develop COD. Our research investigated potential plasma indicators of the
disease.

The Estrous Cycle

The estrous cycle of a cow is 21 days in duration and includes two
distinct phases; the follicular phase and the luteal phase. The follicular phase
accounts for about 25% of the estrous cycle, during which estradiol, secreted
from the ovarian follicles, is the primary hormone. The follicular phase consists
of proestrus and estrus. The three steps of follicular development are
recruitment, selection and dominance. During the first stage, follicle stimulating hormone (FSH) and luteinizing hormone (LH) stimulate recruitment of follicles. Follicles that do not undergo atresia during recruitment enter the selection phase and increase in size while producing estradiol. The follicle that becomes dominant produces inhibin which suppresses FSH needed by other follicles to continue growing, causing them to undergo atresia. The luteal phase accounts for the remaining 75% of the estrous cycle and consists of metestrus and diestrus. During the luteal phase, the corpus luteum (CL) is producing progesterone. The estrous cycle consists of a hormonal cascade, eventually leading to the release of an oocyte. On day 0 of the estrous cycle the follicle is producing estradiol, which triggers gonadotropin-releasing hormone (GnRH) to be released from the hypothalamus. GnRH triggers a surge in FSH and LH from the pituitary gland. LH begins the proteolytic cascade resulting in the follicle wall degrading, rupture of the preovulatory follicle, and release of an oocyte. From approximately day 1 to day 5 the ruptured follicle luteinizes. This causes the CL to form and begin producing progesterone. The hormonal cascade from approximately day 16 to day 18 depends on whether the cow becomes pregnant or remains open. If the cow is pregnant, the newly formed embryo blocks uterine prostaglandin $F_{2\alpha}$ ($\text{PGF}_{2\alpha}$) synthesis, allowing the CL of pregnancy to form, and the pregnancy is maintained. If the cow does not become pregnant, $\text{PGF}_{2\alpha}$ regresses the CL, causing progesterone to decrease and allowing FSH and LH to increase, which begins formation of a new wave
of follicles. During this process, the follicle wall undergoes significant remodeling to transform into the CL. Ovulation depends on proliferation and differentiation of the follicles on the ovary. There are many follicles developing at once in cattle, but one must become the dominant follicle. The remaining follicles undergo atresia, an apoptotic process, and then regress. The dominant follicle continues to grow and eventually becomes the mature follicle containing the oocyte. In cows with COD, there is a failure of the hypothalamus to trigger the preovulatory surge of LH (Silvia et al. 2002). Once the follicle reaches 2.5 cm in diameter, it is considered a cystic follicle.

Cystic Ovarian Disease

There are two different types of ovarian cysts: follicular and luteal. Ovarian cysts are defined as ovarian structures that are over 2.5 cm which have persisted for longer than 10 days without a CL present (Roberts 1971). Follicular cysts are single or multiple thin-walled structures, while luteal cysts are generally single structures with a thicker wall of luteal tissue (Kesler & Garverick 1982). Of the two, follicular cysts account for approximately 70% of COD cases (Kesler & Garverick 1982). Luteal cysts are often associated with high plasma progesterone while follicular cysts are associated with lower progesterone concentrations (Dobson et al. 1977). Luteal cysts are often follicular cysts that have persisted and formed a thicker layer of luteal tissue around the edges of the cyst (Garverick 1997).
The only practical method of detection of COD for dairy farmers is rectal palpation. COD can also be detected by ultrasound, but this is not an economically feasible option for many dairy farmers. Due to the large size of cystic follicles, a trained professional can easily identify them by rectal palpation.

COD in cattle can be treated with an intramuscular injection of GnRH. This injection causes the pituitary gland to release LH which luteinizes the ovarian cyst wall. To cause regression of the luteinized ovarian cyst, an injection of PGF$_{2\alpha}$ is given approximately one week after the GnRH injection. This treatment causes the luteal tissue to regress and progesterone to decrease allowing the estrous cycle to restart in approximately 2 to 3 days.

After this treatment, 80% of cows reestablish their ovarian cycles and 50% become pregnant on their first estrus (Kesler & Garverick 1982). Other treatment options for COD are LH and human chorionic gonadotropin (hCG). GnRH is currently the most frequently used treatment because cows are less likely to form antigens against these products due to the small molecular size.

If a cow is open more than 85 days postpartum there is an estimated loss of $2.50 to $3.00/cow/day. Cows with cystic ovaries have calving intervals that are 22-64 days longer than herd-mates with no cystic history (Hatler et al. 2003). Thus, each case of COD costs a farmer approximately $150-$180 in decreased milk production, breeding and medical costs, as well as increased culling rates (Coleman, Dairy Integrated Reproductive Management, West...
Virginia University). According to the USDA, as of 2015, there are approximately 125,000 dairy cows in the state of Oregon. At $150 per case and a 10% incidence rate, Oregon farmers are losing approximately $1.875 million annually due to COD. Nationally, farmers are losing $139.5 million each year to COD ($150, 9.3 million cows, 10%). COD has a high economic impact for dairy farmers due to increased postpartum and calving intervals, breeding and treatment costs, and culling rates and decreased milk yield. Research is necessary to help decrease the economic impact of COD on dairy farmers.

COD is associated with a dysfunction of the hypothalamic-pituitary-ovarian axis, but there is no consensus on a specific intra-ovarian dysfunction that causes COD (Silvia et al. 2002). Stangaferro et al. (2014) found that expression of components in the activin-inhibin-follistatin system were altered. This system could be responsible for the endocrine alterations and follicular persistence seen in COD. Other factors can be stress, herd management, nutritional status, body condition, and infectious disease (Silvia et al. 2002).

Seventy-one percent of ovarian cysts develop within 45 days postpartum (Whitmore et al. 1974). This means that most cysts develop before the first ovulation after calving. There is also an association between high milk production and the incidence of ovarian cysts (Marion & Bier 1968). It is possible that the increased milk production is a result of the hormonal imbalance, and not the actual cause of COD (Kesler & Garverick 1982). Some research supports the idea of ovarian cysts having a genetic link. Casida &
Chapman (1951) found that 26.8% of daughters from cows who had a history of ovarian cysts also have a history of cysts, while those from cows with no history of ovarian cysts only have an occurrence rate of 9.2%. A genetic link was also shown in a study completed on a Swedish dairy farm from 1954 to 1977, where the occurrence of COD dropped from 10.8% to 3.0% over the course of 23 years. This reduction in COD was accomplished by culling bulls whose daughters had high rates of COD (Bane 1968; Swedish Agriculture 1978). Other possible predisposing factors may be nutrition, seasonal changes, age or genetics (Roberts 1955; Dawson 1957; Peter 1997). While many researchers do not agree on a specific cause of COD, many agree that it is due to some type of endocrine imbalance, which affects the mechanism for extracellular matrix remodeling.

Currently, the cause of COD at the molecular level is not fully understood. Animals with COD have decreased cell proliferation, apoptosis and expression of pro-apoptotic proteins in comparison to anti-apoptotic proteins in ovarian tissue (Salvetti et al. 2010). This suggests these important systems are altered in cows with COD. Gonadotropins in granulosa and theca cells are responsible for steroidogenesis and folliculogenesis. Recent research found that gonadotropin receptor mechanisms are altered in cows with COD. This affects proliferation and apoptosis and could contribute to the cause of COD (Ortega et al. 2015). Steroids, such as estrogens, androgens and
progesterone, play a critical role in follicle and ovarian development. Steroid receptors in the ovaries of cows with COD are disrupted (Ortega et al. 2015).

Extracellular Matrix Degrading Proteinases

Ovulation is dependent on breakdown of the extracellular matrix (ECM), which allows for the release of the oocyte. The breakdown of the ECM is dependent on the matrix metalloproteinase (MMP) and plasminogen activator (PA) families.

The MMP family consists of 26 different proteins, all of which are proteolytic enzymes. MMP are zinc-dependent proteinases known for reorganizing the ECM. MMP-2 and -9 are in the gelatinase family of MMP. MMP are important for many cellular behaviors, including ECM remodeling during the estrous cycle (Matthew et al. 1995, Curry & Osteen 2003) and ovulation (Smith et al. 1999). Other reproductive processes MMP play an important role in include placentation and development of the embryo (Schatz et al. 1999), spermatogenesis (Siu & Cheng 2004) and menstruation in women (Dong et al. 2002). They are critical participants in the proteolytic cascade of the estrous cycle. The role of MMP in ovulation is not fully understood at this time, but it is known that they play an important role in degrading the follicle wall to allow for release of the oocyte (McIntush & Smith 1998; Ny et al. 2002).

Follicles on bovine ovaries greater than 2.5 cm, had more proMMP -2 and -9 activity in the follicular fluid than follicles smaller than the threshold for
cystic follicles. These cystic follicles also had significantly lower inhibin concentrations (Imai et al. 2003). Inhibin inhibits FSH secretion. Although these results conflict with the traditional role of MMP, other studies have found similar results, in which both circulating and follicular concentrations of MMP-2 and -9 were higher in women with polycystic ovarian syndrome (PCOS), which is a condition similar to COD (Lewandowski et al. 2006; Baka et al. 2010). MMP-2 and -9 expression are also linked to ovarian cancer (Davidson et al. 1999).

Another proteolytic system associated with ovulation, which is similar to the MMP family, is the PA system. This system converts the zymogen plasminogen into the active protease, plasmin (Dano et al. 1985). Plasmin is responsible for degrading components of the ECM and activating pro-MMP, which go on to further degrade the follicle wall. Plasmin generation is dependent on tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). In some processes, the PA and MMP systems are regulated together (Ny et al. 2002).

Our laboratory conducted a study which investigated the PA system in cows with cystic follicles (McNeel & Menino 2011). In this study, no significant differences were found in plasma concentrations of tPA or PA inhibitor-1 (PAI-1) in cystic and non-cystic cows. Ratios of tPA and PAI-1 were not different between the two groups. This study also looked at gene expression of the PA family at the ovarian level using relative quantitative RT-PCR. tPA and PAI-1
expression did not differ (P>0.10) between preovulatory follicles and follicular
cysts. However, more uPA (P=0.08) and less uPA receptor (uPAR) (P<0.05)
expression was observed in preovulatory follicles compared to cystic follicles.
The ratio of PAI-1 to uPA was also greater (P<0.10) in follicular cysts
compared to preovulatory follicles. These results suggest gene expression is
altered in follicular cysts, leading to a cow having impaired proteolysis. This
could explain the molecular mechanism behind COD where a greater protease
inhibitor to protease ratio impairs follicle wall breakdown leading to the cyst
pathology. McNeel (2010) also collected blood samples for PCR to determine
if a single nucleotide polymorphism (SNP) was present in the promoter region
of the PAI-1 gene (serine protease inhibitor E1; SERPINE1), like there is with
PCOS. A four base pair insertion/deletion was detected upstream from the
transcriptional start site in 27 of the 78 cows tested. Jersey cows had a
deletion rate of 56.4%, while Holsteins had the deletion at a rate of 12.8%. A
greater proportion of Jerseys with COD had this deletion compared to Jerseys
without COD (P=0.07). Similar results were not observed in Holsteins
(P>0.10). However, plasma concentrations of PAI-1 were not affected in either
breed in the presence or absence of the insertion/deletion. These data
suggest that although the SERPINE1 deletion polymorphism found in Jersey
cattle was associated with COD it had no effect on plasma PAI-1
concentrations.
MMP activity is inhibited by four tissue inhibitors of matrix metalloproteinases (TIMP-1, -2, -3 and -4) which form non-covalent bonds with MMP. Increased TIMP-1 expression is often seen in conditions with excess ECM components present, which then leads to fibrosis (Arpino et al. 2015). Hence, TIMP-1 may have a role in limiting ECM proteolysis. TIMP-2 and MMP-2 imbalance is associated with Dupuytren’s disease, which is a condition where ECM components are deposited excessively on the joints of the hand to the point where the patient can no longer flex the joints. In this condition TIMP-2 is found excessively, which suggests that TIMP-2 is associated with ECM component buildup (Ulrich et al. 2009). A similar association is found in some cases of heart disease, where ECM components are excessively deposited. TIMP-2 directly inhibits MMP-2, although TIMP-2 is also required for activation of MMP-2. Arpino et al. (2015) found that in some cases, TIMP-2 may indirectly control ECM buildup, through activation of MMP-2. This finding was contrary to the traditional role of TIMP inhibiting MMP, leading to buildup of the ECM. TIMP also inhibit a disintegrin and metalloproteinases (ADAM) and ADAMs with thrombospondin motifs (ADAMTS), which are both closely related to MMP. In summary, high concentrations of TIMP are associated with the buildup of ECM components, while ratios that are higher in MMP support proteolytic activity. Ovulation depends on a proper balance between MMP and TIMP. If an imbalance exists between MMP and TIMP, ovulation may be disabled.
Polycystic Ovarian Syndrome

Polycystic ovarian syndrome (PCOS) is a condition somewhat similar to COD that affects 10-20% of women in developed countries (Russell et al. 2015). It is often associated with infertility and frequent abortions (Shalev et al. 2001). The physiologic pathway of PCOS has been associated with a SNP in the promoter region of the SERPINE1 gene. It is possible that abnormalities in MMP and TIMP concentrations in women with PCOS could be similar to cows with COD. Circulating serum concentration of MMP-2 and -9 and one of their tissue inhibitors, TIMP-1, was found to be significantly higher in women with PCOS compared to healthy control women. The same study found no significant difference in the other tissue inhibitor of MMP-2 and -9, TIMP-2, between the two groups (Lewandowski et al. 2006). Another similar study found women with PCOS have significantly higher concentrations of MMP-2 and -9 as well as TIMP-1 and -2 in their follicular fluid while going through in vitro fertilization procedures (Baka et al. 2010). Shalev et al. (2001) also researched MMP-2 and -9 concentrations in women with PCOS and normal ovulatory women. In this study they found MMP-2 and MMP-9 concentrations were 1.6 and 1.7 fold higher, respectively, in follicular fluid of women with PCOS. In the same study, MMP-2 and MMP-9 secretion in granulosa cells was quantified. Cultured granulosa cells from women with PCOS have higher concentrations of MMP-2 and -9, but similar concentrations of TIMP-1.
compared to normal ovulatory women. Due to the similar nature of PCOS and COD, MMP and TIMP concentrations in cows with COD could have comparable ratios to women with PCOS.

If differences in plasma concentrations between normal and cystic cows correlate with follicular expression of MMP-2 and -9, then plasma MMP could emerge as an indicator of COD in dairy cattle. This could assist with providing dairy producers tools in selecting replacement heifers that are less likely to develop COD. The ramifications of this could be great for the dairy industry, providing a reduction in veterinary, breeding and culling costs. We expect that cows with COD will have lower plasma concentrations of MMP-2 and MMP-9, and higher concentrations of TIMP-1 and TIMP-2 compared to cows that have no history of follicular cysts.

Materials and Methods

Animals

A total of 65 lactating cows were used in this study. Four of the animals were Jersey cows housed at the Oregon State University Dairy Center in Corvallis, Oregon. The remaining 61 cows used in this study were Holsteins housed at a cooperating dairy in Coburg, Oregon. This dairy had approximately 3,000 cows with 1,500 milking. At both sites, cows were provided with free-choice water and a total mixed ration consisting of corn.
silage, grass silage, alfalfa, corn, cotton seed and soy bean meal. Cows were divided into two groups based on ovarian palpation during herd health evaluations by a licensed veterinarian at 14-day intervals. Cows diagnosed with an ovarian follicular cyst, a follicle > 2.5 cm in diameter, were assigned to the cyst group and a blood collection was performed. Cows selected to serve as the control, or non-cystic group, were cows observed in estrus the day of the blood collection by the herdsmen. Signs of estrus are standing to be mounted, increased step count and decreased milk production. For the non-cystic cows, medical records were inspected to verify no history of follicular cysts. All work was performed in accordance with the Oregon State University Institutional Animal Care and Use Committee.

Age and parity data were collected for the 61 cows housed at the cooperating dairy. For cystic cows, the number of lactations in which a cow had been diagnosed with a cyst was recorded. Health records for the four cows housed at the Oregon State University Dairy were not available.

Blood Collection

Blood samples were collected via coccygeal venipuncture using 10 mL Vacutainer (Becton Dickinson) blood-collection tubes. Vacutainers for plasma collection were preserved with heparin as the anticoagulant. Blood samples were transported back to the laboratory within approximately one hour of collection. Tubes were centrifuged at 5,000 X g for 10 minutes to separate
plasma from whole blood. Three 500-ml aliquots of plasma were collected from the top half of each vacutainer, and each tube was labeled with “A”, “B” or “C” according to the order in which the sample was taken, date of blood draw, and cow number. Aliquots were stored at -20° C until analysis for MMP-2 and -9 and TIMP-1 and -2.

Following blood collection, all cystic cows were injected intramuscularly with 2 mL of Factrel® (Zoetis, Florham Park, NJ), a synthetic GnRH, and 7 days later with 5 mL of Lutalyse® (Pfizer, New York, NY), a synthetic PGF$_{2\alpha}$.

Cows were artificially inseminated at their next estrus.

ELISA

Plasma MMP-2 and -9 concentrations were quantified using Genorise (Berwyn, PA) ELISA kits. One-hundred microliters of standard or sample plasma in duplicate were incubated in a pre-coated antibody plate for one hour at RT. Any targeted MMP present in the sample were bound to the antibody on the plate. After the initial incubation, each well was washed with 200 µl of wash buffer 4 times. One hundred microliters of detection antibody specific for bovine MMP-2 or -9 were added to each well in the plate and the plate was incubated for one hour at RT. Another wash was completed to remove unbound antibody reagent. One hundred microliters of detection reagent were added to each well and incubated for 20 minutes. Another wash cycle was completed and 100 µl of substrate were added, which causes color formation
during the 20-minute incubation at RT. Fifty microliters of stop solution were
added to the wells to halt color development. The optical density (OD) of each
well in the plate was immediately quantified at 450 nm and 550 nm using a
BIOTEK EL800 plate reader. The amount of color formation is directly
proportional to the amount of MMP-2 or -9 bound to the antibody during the
first incubation period.

To calculate MMP-2 and -9 plasma concentrations in the samples, OD
measurements at 550 nm were subtracted from OD at 450 nm as a correction
factor for imperfections in the plate. Corrected OD measurements were
transformed into plasma concentrations using Excel and equation of the line
calculations. A standard curve was created using the OD readings of the
standards provided in the Genorise ELISA kit. Plasma concentrations of MMP-
2 and -9 in the samples were determined by entering OD readings into the
standard curve equation.

TIMP-1 concentrations were quantified using a MyBioSource (San
Diego, CA) ELISA kit. All reagents were brought to RT prior to starting the
assay. One hundred microliters of standard or sample were added to each
well in the assay plate. All standards were run in duplicate. A closure
membrane was then placed on top of the plate while the tray incubated for two
hours at 37°C. After the first incubation, all liquid was removed from the wells
and 100 µl of detection reagent A were added to each well. The plate was
covered again and incubated for one hour at 37°C. Each well was aspirated
and washed four times using 400 µl of wash buffer. One hundred microliters of detection reagent B were added to each well and the plate was covered again for 1 hour at 37°C. Each well was washed five times. After all liquid was removed from the wash steps, 90 µl of substrate solution were added to each well. The plate was sealed and incubated at 37°C for 15 minutes, while being protected from light. Fifty microliters of stop solution were added to each well and the OD of each well was quantified within 5 minutes using a BIOTEK EL800 plate reader. Blank wells served as the correction factor.

TIMP-2 concentrations were also quantified using a MyBioSource (San Diego, CA) ELISA kit. All samples and reagents were brought to RT 30 minutes before starting assay procedures. Fifty microliters of sample, standard or sample diluent were added to each well in the assay plate. All standards were run in duplicate. Sample diluent was used as a blank control sample in duplicate. One hundred microliters of HRP-conjugate were added to each well. A closure membrane was placed on top of the plate and the tray was incubated at 37°C for 60 minutes. The plate was washed with approximately 400 µl of wash buffer four times. Fifty microliters of Chromogen solution A and B were added successively to each well. The tray was protected from light, covered with a membrane, and incubated at 37°C for 15 minutes. Fifty microliters of stop solution were added to each well, changing the color from blue to yellow. The OD of each well was measured at 450 nm within 15
minutes of adding the stop solution in a BIOTEK EL800 plate reader. The blank wells served as the correction factor.

To calculate plasma TIMP-1 and -2 concentrations in the samples, the average OD of the blank wells were subtracted from the OD of each standard as a correction factor. Corrected OD measurements were transformed into plasma concentrations using Excel and equation of the line calculations. A standard curve was created using the OD readings of the standards provided in the MyBioSource ELISA kit. Plasma concentrations of TIMP-1 and -2 in the samples were determined by entering corrected OD readings into the standard curve equation.

Statistical Analyses

Differences in plasma concentrations of MMP-2 and -9, TIMP-1 and -2 and the TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios due to breed (Jersey vs. Holstein) and cyst status (cystic vs. non-cystic) were determined by two-way ANOVA. Differences in plasma concentrations of MMP-2 and -9, TIMP-1 and -2 and the TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios due to cyst number were determined by one-way ANOVA. If significant effects were observed in the ANOVA, differences between means were evaluated by Fisher’s least significant differences procedures. Correlation-regression analyses were conducted to determine the degree of relationship in the TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios with cow age and parity. All
analyses were performed using the NCSS statistical software program (Number Cruncher Statistical System; 2007, Jerry Hintze, Kaysville, UT).

Results

For MMP-2 and -9 quantification, each group, cystic and non-cystic, consisted of 32 cows, which included three Jerseys, two cystic and one non-cystic. For TIMP-1 and -2, 33 cystic and 32 non-cystic cows were sampled, which included three cystic and one non-cystic Jersey. Two-way ANOVA conducted to detect differences due to breed and cyst status revealed no differences due to breed (P>0.10), hence all cows were pooled for subsequent analyses by one-way ANOVA. Average ages and parities of cystic and non-cystic cows were 44.4 ± 3.3 and 37.8 ± 2.2 months and 2.0 ± 0.3 and 1.8 ± 0.2 parities, respectively.

MMP-2

Although MMP-2 concentrations were greater in plasma recovered from non-cystic compared to cystic cows, no differences were observed (P=0.33). Mean plasma concentrations of MMP-2 in cystic and non-cystic cows were 228.8 ± 49.8 and 311.5 ± 68.2 pg/ml, respectively (Figure 1). Intra-assay coefficients of variation for MMP-2 assays 1 and 2 were 15.3% and 15.5%, respectively.
Similar to MMP-2, MMP-9 concentrations were greater in plasma recovered from non-cystic compared to cystic cows, however, no differences were observed (P=0.76). Mean plasma concentrations of MMP-9 in cystic and non-cystic cows were 89.5 ± 14.6 and 95.4 ± 12.3 pg/ml, respectively (Figure 2). Intra-assay coefficients of variation for MMP-9 assays 1 and 2 were 11.0% and 3.9%, respectively.

TIMP-1

No differences (P=0.86) in plasma TIMP-1 concentrations were detected between cows diagnosed with a cystic follicle and normal cows with no history of COD. Mean plasma concentrations of TIMP-1 in cystic and non-cystic cows were 4.71 ± 0.8 and 4.96 ± 1.2 ng/ml, respectively (Figure 3). Intra-assay coefficient of variation for the TIMP-1 assay was 9.0%.

TIMP-2

Although TIMP-2 concentrations were lower in plasma recovered from non-cystic cows compared to cystic cows, no differences were observed (P=0.15). Mean plasma concentrations of TIMP-2 in cystic and non-cystic cows were 39.7 ± 1.4 and 36.9 ± 1.3 ng/ml, respectively (Figure 4). Intra-assay coefficient of variation for the TIMP-2 assay was 3.7%.
MMP-2 and -9 Concentrations Relative to Cyst Number

MMP-2 and -9 plasma concentrations were analyzed relative to the number of lactations a cow had been diagnosed with a cyst as number of cysts. MMP-2 plasma concentrations decreased as number of cysts increased, except in the 3 cyst group, however no differences (P=0.79) were observed (Figure 5). MMP-9 plasma concentrations remained similar (P=0.98) in all groups (Figure 6).

TIMP-1 and -2 Concentrations Relative to Cyst Number

Likewise, TIMP-1 and -2 plasma concentrations were analyzed relative to the number of lactations a cow had been diagnosed with a cyst as number of cysts. Although TIMP-1 plasma concentrations decreased as number of cysts increased, no differences (P=0.90) were observed (Figure 7). No differences (P=0.46) were observed due to cyst number in plasma concentrations of TIMP-2, however the cow with a history of 3 cysts had the highest plasma concentration (Figure 8).

TIMP-1:MMP-9 and TIMP-2:MMP-2 Molar Ratios

TIMP-1:MMP-9 molar ratio was greater (P=0.099) in cystic compared to non-cystic cows (421.0 ± 108.0 vs. 224.1 ± 47.1, respectively; Figure 9). Similarly, TIMP-2:MMP-2 molar ratio was greater (P=0.038) in cystic
compared to non-cystic cows (3510.6 ± 1177.1 vs. 958.9 ± 134.0, respectively; Figure 10). Cystic cows with one cyst in their production record had a TIMP-1:MMP-9 molar ratio twofold greater (P<0.05) than non-cystic cows (Figure 11). The TIMP-2:MMP-2 molar ratio was four times (P<0.05) greater in cystic cows with one cyst compared to non-cystic cows (Figure 11).

Correlations for TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios with age and parity were negative for cystic cows and only the TIMP-1:MMP-9 molar ratios with age and parity approached statistical significance (Table 1). No significant correlations were observed for TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios with age and parity for non-cystic cows (Table 2).

Discussion

These data suggest cows diagnosed with COD do not have significantly altered plasma concentrations of MMP-2, MMP-9, TIMP-1 or TIMP-2 compared to cows with no history of cystic follicles. Although no statistical differences in plasma MMP-2 and -9 concentrations were observed between normal and cystic cows, both MMP-2 and -9 were higher in cows with no cystic history compared to cystic cows. In fact, MMP-2 plasma concentrations were approximately 36% higher in cows with no history of follicular cysts. However, noticeable between animal variation was observed in MMP-2 plasma concentrations, as evidenced by the SE associated with the means. Perhaps with a larger sample size significant differences may have been realized in
MMP-2. Sample size calculated from a Power analysis with Power similar to that for the TIMP-2:MMP-2 analysis for a one-sided test would require a sample size of 112 cows per group. Results from the present study differ from those of Imai et al. (2003) who observed more proMMP-9 activity, albeit in follicular fluid, in bovine cystic follicles compared to follicles below the threshold diameter for cysts. Our results also differ from several studies reporting elevated concentrations of MMP-2 and -9 in plasma and follicular fluid in women with PCOS (Shalev et al. 2001; Lewandowski et al. 2006; Baka et al. 2010).

Concentrations of TIMP-1 were very similar in both groups and as TIMP-1 is often regarded as being constitutively expressed this observation was not surprising. TIMP-2 plasma concentrations were elevated in cystic compared to non-cystic cows and the difference approached significance with a P-value of 0.15. Similar to MMP-2, a larger sample size may have been able to detect significant differences in plasma concentrations of TIMP-2. Sample size calculated from a Power analysis with Power similar to that for the TIMP-2:MMP-2 analysis for a one-sided test would require a sample size of 52 cows per group. TIMP-2 is tightly tied to regulation of MMP-2 and MMP-9 is regulated by multiple TIMP. Interestingly, serum TIMP-1, but not TIMP-2, was higher in women with PCOS compared to healthy women (Lewandowski et al. 2006). However Baka et al. (2010) reported higher concentrations of both
TIMP-1 and -2 in follicular fluid recovered from women with PCOS compared to women without the pathology.

Molar ratios of TIMP-1:MMP-9 and TIMP-2:MMP-2 were at least 100 and 1000-fold, respectively, greater in favor of TIMP compared to MMP. Both TIMP-1:MMP-9 and especially TIMP-2:MMP-2 molar ratios were greater in cystic cows compared to non-cystic cows suggesting an imbalance in the protease inhibitor to protease ratio in favor of reduced proteolysis in cows with COD. Whether this difference translates to impaired proteolysis at the follicular level is not known however it suggests a plausible explanation for the follicular cyst pathology where reduced follicular wall proteolysis could lead to the anovulatory condition.

Age and parity have been suggested to be factors associated with COD (Peter 1997; Silvia et al. 2002). In the current study the TIMP-1:MMP-9 molar ratio approached significance for cystic cows where as age and parity increased the ratio decreased. However relationships with the TIMP-2:MMP-2 molar ratio and age and parity were decidedly nonsignificant. Meaningful relationships with either molar ratio with age and parity for non-cystic cows were not observed.

Multiple ECM degrading proteinase systems play a role in the regulation of ovulation. Having an imbalance in one of these multiple systems could play a role in COD. In the present study, molar ratios of TIMP-1:MMP-9 and TIMP-2:MMP-2 in plasma were greater in cystic cows compared to non-
cystic cows and favored reduced proteolysis in cows with COD. If this difference translates to the ovarian level the impaired proteolysis may predicate development of the follicular cyst pathology. Whether the plasma TIMP-2:MMP-2 molar ratio can be used as a marker for heifers with a predilection to develop COD remains to be determined. However, given the economic losses suffered by dairy producers due to COD, evaluation of such a relationship bears merit for future research.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review.

Funding
This research was supported by a grant from the USDA Animal Health and Disease Research Fund.

Acknowledgements
Thanks to the Konyn Dairy for the generous use of their production animals.

References
Amweg A, Rodríguez F, Huber E, Marelli B, Salvetti N, Rey F & Ortega H
2016 Role of glucocorticoids in cystic ovarian disease: expression of
glucocorticoid receptor in the bovine ovary. *Cells Tissues Organs* 201(2) 138-47.

Arpino V, Brock M & Gill S 2015 The role of TIMPs in regulation of

Baka S, Zourla K, Kouskouni E, Makrakis E, Demeridou S, Tzanakaki D,
Hassiakos D & Creatsas G 2010 Matrix metalloproteinases 2 and 9 and
their tissue inhibitors in the follicular fluid of patients with polycystic ovaries
undergoing in vitro fertilisation. *In Vivo* 24 293-96.

Casida LE & Chapman AB 1951 Factors affecting the incidence of cystic

Management West Virginia University.*

2016)

Lewandowski KC, Komorowski J, O'Callaghan CJ, Tan BK, Chen J, Prelevic GM & Randeva HS 2006 Increased circulating levels of matrix metalloproteinase-2 and -9 in women with the polycystic ovary syndrome. *J Clin Endocrin Metab* 91 1173-77.

McNeel AK 2010 The role of the plasminogen activator system in the etiology of ovarian follicular cysts in dairy cattle. Ph.D. Dissertation Oregon State University.

McNeel AK & Menino AR 2011 Differences in expression of the plasminogen activator family of genes in follicular cysts and preovulatory follicles in dairy cattle. Biol Reprod 85 (Suppl 1) 649.

Ortega H, Marelli B, Rey F, Amweg A, Diaz P, Stangaferro M & Salvetti N
2015 Molecular aspects of bovine cystic ovarian disease pathogenesis.
Reproduction **149** 251-64.

Roberts SJ 1971 Veterinary Obstetrics and Genital Diseases (2nd Ed). S.J. Roberts Publisher, Ithaca, NY.

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Correlation coefficients for molar ratios by parity and age in cystic cows</td>
<td>34</td>
</tr>
<tr>
<td>2. Correlation coefficients for molar ratios by parity and age in non-cystic cows</td>
<td>35</td>
</tr>
</tbody>
</table>
Table 1. Correlation coefficients (r) for TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios by parity and age in cystic cows.

<table>
<thead>
<tr>
<th>Y-variable</th>
<th>X-variable</th>
<th>N</th>
<th>R</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMP-1:MMP-9</td>
<td>Age (mos)</td>
<td>29</td>
<td>-0.353</td>
<td>0.06</td>
</tr>
<tr>
<td>TIMP-1:MMP-9</td>
<td>Parity</td>
<td>29</td>
<td>-0.293</td>
<td>0.12</td>
</tr>
<tr>
<td>TIMP-2:MMP-2</td>
<td>Age (mos)</td>
<td>30</td>
<td>-0.102</td>
<td>0.59</td>
</tr>
<tr>
<td>TIMP-2:MMP-2</td>
<td>Parity</td>
<td>30</td>
<td>-0.141</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Table 2. Correlation coefficients (r) for TIMP-1:MMP-9 and TIMP-2:MMP-2 molar ratios by age and parity in non-cystic cows.

<table>
<thead>
<tr>
<th>Y-variable</th>
<th>X-variable</th>
<th>N</th>
<th>r</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMP-1:MMP-9</td>
<td>Age (mos)</td>
<td>30</td>
<td>-0.036</td>
<td>0.85</td>
</tr>
<tr>
<td>TIMP-1:MMP-9</td>
<td>Parity</td>
<td>30</td>
<td>-0.028</td>
<td>0.88</td>
</tr>
<tr>
<td>TIMP-2:MMP-2</td>
<td>Age (mos)</td>
<td>30</td>
<td>0.017</td>
<td>0.93</td>
</tr>
<tr>
<td>TIMP-2:MMP-2</td>
<td>Parity</td>
<td>30</td>
<td>-0.026</td>
<td>0.89</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MMP-2 plasma concentrations in cystic and non-cystic cows</td>
<td>38</td>
</tr>
<tr>
<td>2. MMP-9 plasma concentrations in cystic and non-cystic cows</td>
<td>39</td>
</tr>
<tr>
<td>3. TIMP-1 plasma concentrations in cystic and non-cystic cows</td>
<td>40</td>
</tr>
<tr>
<td>4. TIMP-2 plasma concentrations in cystic and non-cystic cows</td>
<td>41</td>
</tr>
<tr>
<td>5. MMP-2 plasma concentrations compared to number of cysts</td>
<td>42</td>
</tr>
<tr>
<td>6. MMP-9 plasma concentrations compared to number of cysts</td>
<td>43</td>
</tr>
<tr>
<td>7. TIMP-1 plasma concentrations compared to number of cysts</td>
<td>44</td>
</tr>
<tr>
<td>8. TIMP-2 plasma concentrations compared to number of cysts</td>
<td>45</td>
</tr>
<tr>
<td>9. Molar ratios of TIMP-1:MMP-9 in cystic and non-cystic cows</td>
<td>46</td>
</tr>
<tr>
<td>10. Molar ratios of TIMP-2:MMP-2 in cystic and non-cystic cows</td>
<td>47</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>11. Molar ratios compared to number of cysts</td>
<td>48</td>
</tr>
</tbody>
</table>
Figure 1. Plasma concentrations of MMP-2 (mean ± SE) in cows diagnosed with a follicular cyst (n=32) or non-cystic cows (n=32).
Figure 2. Plasma concentrations of MMP-9 (mean ± SE) in cows diagnosed with a follicular cyst (n=32) or non-cystic cows (n=32).
Figure 3. Plasma concentrations of TIMP-1 (mean ± SE) in cows diagnosed with a follicular cyst (n=33) or non-cystic cows (n=32).
Figure 4. Plasma concentrations of TIMP-2 (mean ± SE) in cows diagnosed with a follicular cyst (n=33) or non-cystic cows (n=32).
Figure 5. Plasma concentrations of MMP-2 (mean ± SE) in cows with 0 (n=31), 1 (n=26), 2 (n=3) or 3 cysts (n=1).
Figure 6. Plasma concentrations of MMP-9 (mean ± SE) in cows with 0 (n=31), 1 (n=26), 2 (n=3) or 3 cysts (n=1).
Figure 7. Plasma concentrations of TIMP-1 (mean ± SE) in cows with 0 (n=32), 1 (n=26), 2 (n=3) or 3 cysts (n=1).
Figure 8. Plasma concentrations of TIMP-2 (mean ± SE) in cows with 0 (n=32), 1 (n=26), 2 (n=3) or 3 cysts (n=1).
Figure 9. Molar ratios of TIMP-1:MMP-9 (mean ± SE) in cows diagnosed with a follicular cyst (n=31) or non-cystic cows (n=31).

* Different from non-cystic cows (P=0.099).
Figure 10. Molar ratios of TIMP-2:MMP-2 (mean ± SE) in cows diagnosed with a follicular cyst (n=32) or non-cystic cows (n=31).

* Different from non-cystic cows (P=0.038).
Figure 11. Molar ratios of TIMP-1:MMP-9 (mean ± SE) in cows diagnosed with 0 (n=31), 1 (n=25), 2 (n=3) or 3 cysts (n=1) and TIMP-2:MMP-2 (mean ± SE) in cows diagnosed with 0 (n=31), 1 (n=26), 2 (n=3) or 3 cysts (n=1).

\textit{a,b} Means without common superscripts for TIMP-1:MMP-9 molar ratios differ (P<0.05)

\textit{c,d} Means without common superscripts for TIMP-2:MMP-2 molar ratios differ (P<0.05)