Article
 

Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/pc289k544

Descriptions

Attribute NameValues
Creator
Abstract
  • Detailed observations of the structure within internal solitary waves propagating shoreward over Oregon's continental shelf reveal the evolving nature of interfaces as they become unstable and break, creating turbulent flow. A persistent feature is high acoustic backscatter beginning in the vicinity of the wave trough and continuing through its trailing edge and wake. This is demonstrated to be due to enhanced density microstructure. Increased small-scale strain ahead of the wave trough compresses select density interfaces, thereby locally increasing stratification. This is followed by a sequence of overturning, high-density microstructure, and turbulence at the interface, which is coincident with the high acoustic backscatter. The Richardson number estimated from observations is larger than 1/4, indicating that the interface is stable. However, density profiles reveal these preturbulent interfaces to be O(10 cm) thick, much thinner than can be resolved with shipboard velocity measurements. By assuming that streamlines parallel isopycnals ahead of the wave trough, a velocity profile is inferred in which the shear is sufficiently high to create explosively growing, small wavelength shear instabilities. It is argued that this is the generation mechanism for the observed turbulence and hence the persistent structure of high acoustic backscatter in these internal solitary waves.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Moum, J. N., D. M. Farmer, W. D. Smyth, L. Armi, S. Vagle, 2003: Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf. Journal of Physical Oceanography, 33, 2093–2112.
Journal Title
Journal Volume
  • 33
Journal Issue/Number
  • 10
Rights Statement
Funding Statement (additional comments about funding)
  • This work was funded by the Office of Naval Research.
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

Items