mirage   mirage   mirage

A direct comparison of non-destructive techniques for determining bridging stress distributions

DSpace/Manakin Repository

Show simple item record

dc.creator Greene, R. B.
dc.creator Gallops, S.
dc.creator Fuenfschilling, S.
dc.creator Fett, T.
dc.creator Hoffmann, M. J.
dc.creator Ager, J. W., III
dc.creator Kruzic, J. J.
dc.date.accessioned 2012-10-09T17:18:03Z
dc.date.available 2012-10-09T17:18:03Z
dc.date.issued 2012-08
dc.identifier.citation Greene, R., Gallops, S., Funfschilling, S., Fett, T., Hoffmann, M., Ager, J., & Kruzic, J. (2012). A direct comparison of non-destructive techniques for determining bridging stress distributions. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 60(8), 1462-1477. doi: 10.1016/j.jmps.2012.04.007 en_US
dc.identifier.uri http://hdl.handle.net/1957/34263
dc.description This is the publisher’s final pdf. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/journal-of-the-mechanics-and-physics-of-solids/. To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work. en_US
dc.description.abstract Crack bridging is an important source of crack propagation resistance in many materials and the bridging stress distribution as a function of crack opening displacement is widely believed to represent a true material property uninfluenced by sample geometry, loading conditions, and other extrinsic factors. Accordingly, accurate measurement of the bridging stress distribution is needed and many non-destructive methods have been developed. However, there are many challenges to accurately determining bridging stresses. A comparison of bridging stresses measured using R-curve, crack opening displacement (COD), and spectroscopy methods has been made using two bridging ceramics, Y₂O₃ and MgO doped Si₃N₄ and 99.5% pure Al₂O₃. The COD method is surface sensitive and gives a lower peak bridging stress compared to the R-curve technique which samples through the entire material thickness. This is attributed to a more compliant near surface bridging zone. Conversely, when R-curves rise steeply over the first few micrometers of growth from a notch, an effect of negative T-stress is expected to raise the R-curve determined peak bridging stress. Spectroscopy methods were only found to yield reliable bridging stress results if a reasonable through thickness volume of material is sampled. It was found that 2.5% of the specimen thickness achieved using fluorescence spectroscopy appears adequate for Al₂O₃ while 0.1–0.2% of the sample thickness achieved using Raman spectroscopy for Si₃N₄ appears inadequate. Overall, it is concluded that in the absence of T-stresses a bridging distribution can be determined that is a true material property. Also, a new method is proposed for determining the bridging stresses of fatigue cracks from (1) the bridging stress distribution for monotonically loaded cracks and (2) experimental fatigue data. en_US
dc.description.sponsorship J.J. Kruzic, R.B. Greene, and S. Gallops would like to acknowledge support from the National Science Foundation CAREER Award No. 0547394. S. Funfschilling and M.J. Hoffmann would like to thank the Deutsche Forschungsgemeinschaft DFG for financing parts of this work within the SFB 483. en_US
dc.language.iso en_US en_US
dc.publisher Elsevier en_US
dc.relation.ispartofseries Journal of the Mechanics and Physics of Solids en_US
dc.relation.ispartofseries Vol. 60 no. 8 en_US
dc.subject Bridging stress distribution en_US
dc.subject Fracture mechanisms en_US
dc.subject Ceramic material en_US
dc.subject R-curves en_US
dc.subject T-stress en_US
dc.title A direct comparison of non-destructive techniques for determining bridging stress distributions en_US
dc.type Article en_US
dc.description.peerreview yes en_US
dc.identifier.doi 10.1016/j.jmps.2012.04.007

This item appears in the following Collection(s)

Show simple item record

Search ScholarsArchive@OSU

Advanced Search


My Account