Article
 

Coding sequence density estimation via topological pressure

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/9k41zg517

Descriptions

Attribute NameValues
Creator
Abstract
  • We give a new approach to coding sequence (CDS) density estimation in genomic analysis based on the topological pressure, which we develop from a well known concept in ergodic theory. Topological pressure measures the ‘weighted information content’ of a finite word, and incorporates 64 parameters which can be interpreted as a choice of weight for each nucleotide triplet. We train the parameters so that the topological pressure fits the observed coding sequence density on the human genome, and use this to give ab initio predictions of CDS density over windows of size around 66,000bp on the genomes of Mus Musculus, Rhesus Macaque and Drososphilia Melanogaster. While the differences between these genomes are too great to expect that training on the human genome could predict, for example, the exact locations of genes, we demonstrate that our method gives reasonable estimates for the ‘coarse scale’ problem of predicting CDS density. Inspired again by ergodic theory, the weightings of the nucleotide triplets obtained from our training procedure are used to define a probability distribution on finite sequences, which can be used to distinguish between intron and exon sequences from the human genome of lengths between 750bp and 5,000bp. At the end of the paper, we explain the theoretical underpinning for our approach, which is the theory of Thermodynamic Formalism from the dynamical systems literature. Mathematica and MATLAB implementations of our method are available at http://sourceforge.net/projects/topologicalpres/.
  • This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer and can be found at: http://link.springer.com/journal/285
  • Keywords: DNA sequence analysis, Topological pressure, Coding sequence density estimation
Resource Type
DOI
Date Available
Date Issued
Citation
  • Koslicki, D., & Thompson, D. J. (2015). Coding sequence density estimation via topological pressure. Journal of Mathematical Biology, 70(1-2), 45-69. doi:10.1007/s00285-014-0754-2
Journal Title
Journal Volume
  • 70
Journal Issue/Number
  • 1-2
Rights Statement
Funding Statement (additional comments about funding)
  • D.K. was partially supported by NSF grant DMS-1008538. D.T. was partially supported by NSF grants DMS-1101576 and DMS-1259311.
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

Items