Age systematics of two young en echelon Samoan volcanic trails Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/08612q25v

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • The volcanic origin of the Samoan archipelago can be explained by one of three models, specifically, by a hot spot forming over a mantle plume, by lithospheric extension resulting from complex subduction tectonics in the region, or by a combination of these two processes, either acting sequentially or synchronously. In this paper, we present results of 36 high-resolution ⁴⁰Ar/³⁹Ar incremental heating age analyses for the initial (submarine) phase of Samoan volcanoes, ranging from 13.2 Ma for the westernmost Samoan seamounts to 0.27 Ma in the eastern Samoan volcanic province. Taken as a whole, our new age data point to a hot spot origin for the shield-building volcanism in the Samoan lineament, whereby seamounts younger than 5 Ma are consistent with a model of constant 7.1 cm/yr plate motion, analogous to GPS measurements for the Pacific Plate in this region. This makes our new ⁴⁰Ar/³⁹Ar ages of the submarine basalts all older compared to recent absolute plate motion (APM) models by Wessel et al. (2008), which are based on the inversion of twelve independent seamount trails in the Pacific relative to a fixed reference frame of hot spots and which predict faster plate motions of around 9.3 cm/yr in the vicinity of Samoa. The Samoan ages are also older than APM models by Steinberger et al. (2004) taking into account the motion of hot spots in the Pacific alone or globally. The age systematics become more complicated toward the younger end of the Samoan seamount trail, where its morphology bifurcates into two en echelon subtracks, termed the VAI and MALU trends, as they emanate from two eruptive centers at Vailulu'u and Malumalu seamount, respectively. Spaced ~50 km apart, the VAI and MALU trends have distinct geochemical characters and independent but overlapping linear ⁴⁰Ar/³⁹Ar age progressions since 1.5 Ma. These phenomena are not unique to Samoa, as they have been observed at the Hawaiian hot spot, and can be attributed to a geochemical zoning in its underlying mantle source or plume. Moreover, the processes allowing for the emergence of two distinct eruptive centers in the Samoan archipelago, the stepped offset of these subtracks, and their slight obliqueness with respect to the overall seamount trail orientation may very well be controlled by local tectonics, stresses, and extension, also causing the rejuvenated volcanism on the main islands of Savai'i, Upolu, and Tutuila since 0.4 Ma.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Koppers, A. A. P., J. A. Russell, J. Roberts, M. G. Jackson, J. G. Konter, D. J. Wright, H. Staudigel, and S. R. Hart (2011), Age systematics of two young en echelon Samoan volcanic trails, Geochemistry Geophysics Geosystems, 12, Q07025, doi:10.1029/2010GC003438.
Series
Keyword
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Language
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2012-03-28T20:49:35Z (GMT). No. of bitstreams: 1 KoppersAAP.CEOAS.AgeSystematicsTwo.pdf: 21072037 bytes, checksum: 2d308e5d2d87761f185024629ca7c7ec (MD5) Previous issue date: 2011-07-29
  • description.provenance : Submitted by Deborah Campbell (deborah.campbell@oregonstate.edu) on 2012-03-28T20:49:35Z No. of bitstreams: 1 KoppersAAP.CEOAS.AgeSystematicsTwo.pdf: 21072037 bytes, checksum: 2d308e5d2d87761f185024629ca7c7ec (MD5)

Relationships

In Administrative Set:
Last modified: 07/25/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items