Graduate Thesis Or Dissertation

 

Finite element modeling of reinforced concrete bridge columns with steel jackets using plastic hinge integration 公开 Deposited

可下载的内容

下载PDF文件
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1n79h663d

Header

Attribute Name LabelAttribute Values Label
Creator
Abstract
  • In recent years confinement requirements for concrete columns have increased in seismic regions. Steel jackets are one way to confine reinforced concrete columns. The increased confinement provides additional strength and ductility for the columns during seismic events. For reinforced concrete columns with steel jackets, there are different section properties in the jacketed and non-jacketed regions. The variation can cause difficulties modeling the seismic response of these columns. A plastic hinge integration method, derived from the modified two-point Gauss-Radau quadrature rule, is used to model steel jacketed columns with force-based finite elements. This integration method allows for the specification of the plastic hinge length in the element, thereby confining the spread of material nonlinear response to selected regions. Controlling the location of material nonlinear response provides an objective numerical solution for strain-softening behavior that occurs due to the crushing of concrete. In addition, different material properties can be specified for the jacketed and non-jacketed regions, which allows for only one frame element to be used in modeling. This integration method is verified for elements with different material properties using a single force-based beam-column element. After the verification, the integration method is validated against experimental data from tests of steel jacketed reinforced concrete bridge columns conducted at the University of California at San Diego. The results of this research will be incorporated in pushover analysis software, developed at Oregon State University, for Alaska-style bridge bents.
License Label
Resource Type
Date available
Date issued
Degree Level
Degree Name
Degree Field
Degree Grantors
Graduation Year
Contributor Advisor
Contributor Committeemember
Academic Affiliation
Other Affiliation
Subject
权利声明
Publisher
Language
File Format
File Extent
  • 7904404 bytes
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2007-07-10T15:09:55Z (GMT) No. of bitstreams: 1 Adam Carlton Thesis.pdf: 7904404 bytes, checksum: cfb930b1a7a9079437c5fb3014d9c011 (MD5)
  • description.provenance : Submitted by Adam Carlton (carltona@onid.orst.edu) on 2007-06-30 No. of bitstreams: 1 Adam Carlton Thesis.pdf: 7904404 bytes, checksum: cfb930b1a7a9079437c5fb3014d9c011 (MD5)
  • description.provenance : Made available in DSpace on 2007-07-20T14:50:53Z (GMT). No. of bitstreams: 1 Adam Carlton Thesis.pdf: 7904404 bytes, checksum: cfb930b1a7a9079437c5fb3014d9c011 (MD5)

关联

Relationships Parent Rows Label

Rows Empty Text

属于 Collection:

单件