Graduate Thesis Or Dissertation

 

Digital Solutions for Analog Shortcomings in Delta-Sigma Analog-to-Digital Converters Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/sb397f105

Descriptions

Attribute NameValues
Creator
Abstract
  • Portable, high power efficiency communication devices is a growing market in the semiconductor industry. Analog-to-digital converters (ADC) are key interface that are used to digitize the sensed information. Recently, digital techniques have been proposed to improve analog building block power efficiency in sub-micron technologies. This research focuses on mixed signal approaches to improve the power efficiency of the noise shaping ADCs and mitigate analog inaccuracies such as non-linearity and mismatch. First, a novel continuous-time filtering delta-sigma ADC is proposed to save power and area. Digital techniques have been proposed to make the architecture more robust to out-of-band unwanted signals. A prototype was fabricated in a 65 nm CMOS technology achieving an SNDR of 72.4 dB operating at 250 MHz sampling frequency over 7 MHz bandwidth, with a power consumption of 16.3 mW. Next, A novel digital circuitry is proposed to improve the tolerance of a discrete-time delta sigma ADC to mismatch and enhance the resolution of an ADC in the presence of mismatch. A custom IC was fabricated in a 65 nm CMOS technology consuming 40.4 μA from a 1 V supply. It achieves 76.18 dB SNDR operating at 1.2 MHz sampling frequency and 25 kHz signal bandwidth.
License
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Rights Statement
Publisher
Peer Reviewed
Language

Relationships

Parents:

This work has no parents.

In Collection:

Items