Flavor chemistry of irradiated milk fat Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/v405sc77p

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Increasing interest has been shown in the irradiation sterilization and irradiation pasteurization of foods, but problems of off-flavors and odors are still unsolved, especially in the case of dairy products. From the flavor chemistry point of view, milk lipids are very highly susceptible to irradiation effects. Therefore, this investigation was designed to study some irradiation induced reactions involving flavor changes in the milk fat and to identify the volatile components produced in the milk fat upon irradiation. Milk fat, prepared from raw sweet cream and washed free of phospholipids, was first irradiated in the presence of air and under vacuum in glass vials at 4.5 Mrad with gamma rays from cobalt-60. The irradiation resulted in increase in TBA number, peroxide value, total monocarbonyls, bleaching of color, slightly rancid and typical candle-like off-flavors. Free fatty acids were also produced upon irradiation. The changes were more drastic in air along with production of a slight oxidized flavor. The monocarbonyls identified by column and paper chromatographic methods in irradiated milk fat include: C₁ through C₁₂, C₁₄ , and C₁₆ n-alkanals; C₃ through C₉, C₁₁, C₁₃ and C₁₅ alk-2-ones with only traces of C₆ and C₈ alk-2- ones; and C₅, C₆, C₉, and C₁₂ alk-2-enals. Irradiation of milk fat that had been dried over calcium hydride also caused free fatty acid production, especially short chain fatty acids. Methyl octanoate treated with calcium hydride and irradiated at 1.5, 3.0, 4.5, and 6.0 Mrad yielded small quantities of free octanoic acid, confirming that irradiation caused fission of the ester linkage even when traces of water were removed. The quantities of octanoic acid formed increased with increasing dose of irradiation. For identification of volatile components, the milk fat was irradiated in 307x409 'C' enameled cans under vacuum. The headspace analysis showed some air still left in the cans. Irradiation resulted in consumption of oxygen and production of hydrogen, carbon monoxide, carbon dioxide, and methane as identified in the headspace gases. The volatiles were isolated from the irradiated and control milk fats by low temperature, vacuum steam distillation at 40°C and 1-2 mm Hg. The volatile components were then extracted from the aqueous distillate with ethyl ether. The ethyl ether extract exhibited the typical candle-like defect. The ethyl ether concentrate was analyzed by combination of GLC and fast-scan mass spectrometric techniques. Identification of various components was achieved on the basis of mass spectral data and coincidence of gas chromatographic retention times. In the case of the components for which only GLC t[subscript r]/t[subscript r] evidence was available or the mass spectra obtained were not satisfactory, the identity assigned was only tentative. The volatile compounds that were positively identified to be present in irradiated milk fat are given below: n-Alkanes C₅ through C₁₇ 1-Alkenes C₅, C₇ through C₁₇ Fatty acids C₄, C₆, C₈ and C₁₀ n-Alkanals C₅ through C₁₁ Others γ-decalactone, δ-decalactone, 2-heptanone, benzene, ethyl acetate, chloroform, and dichlorobenzene. The tentative identification was obtained for the following compounds: γ-lactones C₆ and C₈ δ-lactones C₆, C₈, C₁₁, and C₁₂ 1, ?-alkadienes C₁₀, C₁₁, C₁₂, C₁₆ and C₁₇ iso-alkanes C₁₀, C₁₁, C₁₂, and C₁₃ Others methyl hexanoate, 2-hexanone, 4-heptanone and n-dodecanal. The compounds present in unirradiated control milk fat included: short chain fatty acids (C₄, C₆, C₈, and C₁₀), C₈, C₁₀, and C₁₂ δ-lactones, 2-heptanone, chloroform, dichlorobenzene, benzene, toluene, and ethyl-benzene. Only tentative identity was established for most of these components in control milk fat. Possible reaction mechanisms are presented for the formation of the compounds in irradiated milk fat.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 256 Grayscale) using Scamax Scan+ V.1.0.32.10766 on a Scanmax 412CD by InoTec in PDF format. LuraDocument PDF Compressor V.5.8.71.50 used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2012-03-08T22:32:53Z (GMT). No. of bitstreams: 1 KHATRILAKHO1966.pdf: 3276045 bytes, checksum: 834d44b67b0d2f7330e612793d68d0d6 (MD5) Previous issue date: 1965-10-25
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-03-08T22:32:53Z (GMT) No. of bitstreams: 1 KHATRILAKHO1966.pdf: 3276045 bytes, checksum: 834d44b67b0d2f7330e612793d68d0d6 (MD5)
  • description.provenance : Submitted by Erin Clark (ecscannerosu@gmail.com) on 2012-03-08T17:52:43Z No. of bitstreams: 1 KHATRILAKHO1966.pdf: 3276045 bytes, checksum: 834d44b67b0d2f7330e612793d68d0d6 (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-03-08T22:31:34Z (GMT) No. of bitstreams: 1 KHATRILAKHO1966.pdf: 3276045 bytes, checksum: 834d44b67b0d2f7330e612793d68d0d6 (MD5)

Relationships

In Administrative Set:
Last modified: 08/03/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items