Graduate Thesis Or Dissertation
 

Plasmonic color filter array, high performance analog to digital converter architectures and novel circuit techniques

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1544bx01x

Descriptions

Attribute NameValues
Creator
Abstract
  • Part I: Plasmonic color filters can be manufactured at lower cost since they can be fabricated in single lithographic process step as compared to Fabry-Perot based filters. In addition, they have narrow passband making resolving sharp features in sample spectrum possible. Due to these benefits, in this thesis, Plasmonic color filters are investigated as alternative to conventional color filters and their feasibility for spectroscopy demonstrated through reconstruction of 6 sample spectra by using a set of 20 color filters. The error in reconstructed sample spectra is less than 0.137 root mean squared error across all samples. Part II: A novel 12-bit pipelined successive approximation analog to digital converter is investigated for high speed data conversion. The design was implemented in TSMC 65nm process to demonstrate the feasibility of the architecture. Furthermore, a high dynamic range audio delta sigma modulator using pseudo-pseudo differential topology was investigated and feasibility simulated using TSMC 65nm process. In addition, various novel systems and circuit techniques including efficient calibration of feedback digital to analog converters, new boosted switch and push-pull source follower circuits were investigated to improve upon existing circuit topologies.
License
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Rights Statement
Publisher
Peer Reviewed
Language

Relationships

Parents:

This work has no parents.

In Collection:

Items