Graduate Thesis Or Dissertation
 

A study of hardware/software multithreading

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/4t64gq48w

Descriptions

Attribute NameValues
Creator
Abstract
  • As the design of computers advances, two important trends have surfaced: The exploitation of parallelism and the design against memory latency. Into these two new trends has come the Multithreaded Virtual Processor (MVP). Based on a standard superscalar core, the MVP is able to exploit both Instruction Level Parallelism (ILP) and, utilizing the concepts of multithreading, is able to further exploit Thread Level Parallelism (TLP) in program code. By combining both hardware and software multithreading techniques into a new hybrid model, the MVP is able to use fast hardware context switching techniques along with both hardware and software scheduling. The new hybrid creates a processor capable of exploiting long memory latency operations to increase parallelism, while introducing both minimal software overhead and hardware design changes. This thesis will explore the MVP model and simulator and provide results that illustrate MVP's effectiveness and demonstrate its recommendation to be included in future processor designs. Additionally, the thesis will show that MVP's effectiveness is governed by four main considerations: (1) The data set size relative to the cache size, (2) the number of hardware contexts/threads supported, (3) the amount of locality within the data sets, and (4) the amount of exploitable parallelism within the algorithms.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using Capture Perfect 3.0.82 on a Canon DR-9080C in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items