Graduate Thesis Or Dissertation
 

Molecular dynamics applications and techniques : a comparison study of silica potentials and techniques for accelerating computation

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290d85x

Descriptions

Attribute NameValues
Creator
Abstract
  • This thesis presents a study of applications and techniques for molecular dynamics simulations. Three studies are presented that are intended to improve our ability to simulate larger systems more realistically. A comparison study of two- and three-body potential models for liquid and amorphous Si0₂ is presented. The structural, vibrational, and dynamic properties of the substance are compared using two- and three-body potential energy models against experimental results. The three-body interaction does poorly at reproducing the experimental phonon density of states, but better at reproducing the Si-O-Si bond angle distribution. The three-body interaction also produces much higher diffusivities than the two-body interactions. A study of tabulated functions in molecular dynamics is presented. Results show that the use of tabulated functions as a method for accelerating the force and potential energy calculation can be advantageous for interactions above a certain complexity level. The decrease in precision due to the use of tabulated functions is negligible when the tables are sufficiently large. Finally, an investigation into the benefits of multi-threaded programming for molecular dynamics is presented.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items