Graduate Thesis Or Dissertation

Axial development of two-phase flow parameters in a vertical column

Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • The next generation of nuclear safety analysis computer codes will include detailed modeling of the interfacial area concentration. The interfacial area concentration is the essence of the two-fluid model. It is the most accurate of the two-phase models since it considers each phase independently and links the two phases together with six conservation equations. The interfacial area concentration, along with a driving potential, determines the energy, momentum and mass transfer between the two phases. The importance of this research lies in obtaining a greater understanding of the developing nature of two-phase flows and the application of the two-fluid model. With proper characterization of two-phase flow, the next generation of nuclear safety analysis computer codes will be able to incorporate this information to predict parameters during an accident scenario with greater precision. This research will provide a first order look into the developing nature of two-phase flow. As part of this research, the development of two-phase flow in a vertical column was analyzed using double sensor impedance probes. The resident vapor and liquid times were recorded along with the velocity of the vapor phase. By creating distributions of the bubble residence times, liquid residence times, velocities, and sizes, one can characterize the developing nature of the two-phase flow. Data was taken at four different axial locations for six different flow rates. The resulting data show clear trends in how the standard deviation and mean values for the measured parameters change as a function of flow rate and axial position. The void fraction contribution from the spherical/distorted bubble group as well as the cap/slug bubble group was also recorded to determine the net transfer rate of vapor between the two bubble groups. Interfacial area concentration was not included in the measurement since the probes that were used can only determine interfacial area concentration for spherical bubbles. Further research will be conducted with the inclusion of interfacial area concentration at a later time.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Committee Member
Academic Affiliation
Non-Academic Affiliation
Rights Statement
Peer Reviewed
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.



This work has no parents.

In Collection: